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Abstract. We present a new approach to designing concretely efficient MPC protocols
with semi-honest security in the dishonest majority setting. Motivated by the fact that
within the dishonest majority setting the efficiency of most practical protocols does
not depend on the number of honest parties, we investigate how to construct protocols
which improve in efficiency as the number of honest parties increases. Our central idea
is to take a protocol which is secure for n − 1 corruptions and modify it to use short
symmetric keys, with the aim of basing security on the concatenation of all honest
parties’ keys. This results in a more efficient protocol tolerating fewer corruptions,
whilst also introducing an LPN-style syndrome decoding assumption. We first apply this
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technique to a modified version of the semi-honest GMW protocol, using OT extension
with short keys, to improve the efficiency of standard GMW with fewer corruptions.
We also obtain more efficient constant-round MPC, using BMR-style garbled circuits
with short keys, and present an implementation of the online phase of this protocol. Our
techniques start to improve upon existing protocols when there are around n = 10 parties
with h = 4 honest parties, and as these increase we obtain up to a 13 times reduction
(for n = 400, h = 120) in communication complexity for our GMW variant, compared
with the best-known GMW-based protocol modified to use the same threshold.

Keywords. Multi-Party Computation, Syndrome Decoding, Large-Scale.

1. Introduction

Secure multi-party computation (MPC) protocols allow a group of n parties to compute
some function f on the parties’ private inputs, while preserving a number of security
properties such as privacy and correctness. The former property implies data confiden-
tiality, namely, nothing leaks from the protocol execution but the computed output. The
latter requirement implies that the protocol enforces the integrity of the computations
made by the parties, namely, honest parties are not lead to accept a wrong output. Secu-
rity is proven either in the presence of an honest-but-curious adversary that follows the
protocol specification but tries to learn more than allowed from its view of the protocol,
or a malicious adversary that can arbitrarily deviate from the protocol specification in
order to compromise the security of the other parties in the protocol.

The efficiency of a protocol typically also depends on how many corrupted parties
can be tolerated before security breaks down, a quantity known as the threshold, t . With
semi-honest security, most protocols either require t < n/2 (where n is the number of
parties), in which case unconditionally secure protocols [11,27] based on Shamir secret-
sharing can be used, or support any choice of t up to n − 1, as in computationally secure
protocols based on oblivious transfer [39,40]. Interestingly, within these two ranges, the
efficiency of most practical semi-honest protocols does not depend on t . For instance,
the GMW [39] protocol (and its many variants) is full-threshold, so supports any t < n
corruptions. However, we do not know of any practical protocols with threshold, say,
t = 2

3 n, or even t = n/2 + 1, that are more efficient than full-threshold GMW-style
protocols. One exception to this is when the number of parties becomes very large, in
which case protocols based on committees can be used. In this approach, due to an idea
of Bracha [23], first a random committee of size n′ � n is chosen. Then, every party
secret-shares its input to the parties in the committee, who runs a secure computation
protocol for t < n′ to obtain the result. The committee size n′ must be chosen to
ensure (with high probability) that not the whole committee is corrupted, so clearly a
lower threshold t allows for smaller committees, giving significant efficiency savings.
However, this technique is only really useful when n is very large, at least in the hundreds
or thousands.

In this paper, we investigate designing MPC protocols where an arbitrary threshold
for the number of corrupted parties can be chosen, which are practical both when n is
very large, and also for small to medium sizes of n. Specifically, we ask the question:

Can we design concretely efficient MPC protocols where the performance
improves gracefully as the number of honest parties increases?



TinyKeys: A New Approach to Efficient Page 3 of 66 13

Note that the performance of an MPC protocol can be measured both in terms of com-
munication overhead and computational overhead. Using fully homomorphic encryp-
tion [37], it is possible to achieve very low communication overhead that is independent
of the circuit size even in the malicious setting [6], but for reasonably complex functions
FHE is impractical due to very high computational costs. On the other hand, practical
MPC protocols typically communicate for every AND gate in the circuit, and use obliv-
ious transfer (OT) to carry out the computation. Fast OT extension techniques allow a
large number of secret-shared bit multiplications1 to be performed using only symmetric
primitives and an amortized communication complexity of O(κ) [46] or O(κ/ log κ)

[31,49] bits, where κ is a computational security parameter. This leads to an overall
communication complexity which grows with O(n2κ/ log κ) bits per AND gate for
GMW-style protocols based on secret-sharing, and O(n2κ) in those based on garbled
circuits [14,20,73].

1.1. Short Keys for Secure Computation

Our main idea towards achieving the above goal is to build a secure multi-party protocol
with h honest parties, by distributing secret key material so that each party only holds
a small part of the key. Instead of basing security on secret keys held by each party
individually, we then base security on the concatenation of all honest parties’ keys.

As a toy example, consider the following simple distributed encryption of a message
m under n keys:

Ek(m) =
n⊕

i=1

H(i, ki ) ⊕ m

where H is a suitable hash function and each key ki ∈ {0, 1}� belongs to party Pi . In the
full-threshold setting with up to n − 1 corruptions, to hide the message we need each
party’s key to be of length � = 128 to ensure 128-bit computational security. However,
if only t < n − 1 parties are corrupted, it seems that, intuitively, an adversary needs to
guess all h := n − t honest parties’ keys to recover the message, and potentially each
key ki can be much less than 128 bits long when h is large enough. This is because
the “obvious” way to try to guess m would be to brute force all h keys until decrypting
“successfully”.

In fact, recovering m when there are h unknown keys corresponds to solving an
instance of the regular syndrome decoding (RSD) problem [4], which is related to the
well-known learning parity with noise (LPN) problem, and believed to be hard for
suitable choices of parameters.

1.2. Our Contribution

In this work, we use the above idea of short secret keys to design new MPC protocols
in both the constant round and non-constant round settings, which improve in efficiency

1Note that OT is equivalent to secret-shared bit multiplication, and when constructing MPC it is more
convenient to use the latter definition.
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as the number of honest parties increases. We consider security against a static, honest-
but-curious adversary. Our contribution is captured by the following:

GMW-style MPC with short keys (Sect. 4). We present a GMW-style MPC protocol
for binary circuits, where multiplications are done with OT extension using short sym-
metric keys. This reduces the communication complexity of OT extension-based GMW
from O(n2κ/ log κ) [49] to O(nt�), where the key length � decreases as the number of
honest parties, h = n − t , increases. When h is large enough (h = Ω(κ)), we can even
have � as small as 1. To construct this protocol, we first analyse the security of the IKNP
OT extension protocol [46] when using short keys and formalise the leakage obtained
by a corrupt receiver in this case. We then show how to use this version of “leaky OT”
to generate multiplication triples using a modified version of the GMW method, where
pairs of parties use OT to multiply their shares of random values. We also optimize our
protocol by reducing the number of communication channels using two different-sized
committees, improving upon the standard approach of choosing one committee to do all
the work.

Multi-party garbled circuits with short keys (Sect. 5). Our second contribution
is the design of a constant round, BMR-style [20] protocol based on garbled circuits with
short keys. Our offline phase uses the multiplication protocol from the previous result in
order to generate the garbled circuit, using secret-shared bit and bit/string multiplications
as done in previous works [14,45], with the exception that the keys are shorter. In the
online phase, we then use the LPN-style assumption to show that the combination of all
honest parties’ �-bit keys suffices to obtain a secure garbling protocol. This allows us to
save on the key length as a function of the number of honest parties.

As well as reducing communication with a smaller garbled circuit, we also reduce
computation when evaluating the circuit, since each garbled gate can be evaluated with
only O(n2�/κ) block cipher calls (assuming the ideal cipher model), instead of O(n2)

when using κ-bit keys. For this protocol, � can be as small as 8 when n is large enough,
giving a significant saving over 128-bit keys used previously.

1.2.1. Concrete Efficiency Improvements

The efficiency of our protocols depends on the total number of parties, n, and the number
of honest parties, h, so there is a large range of parameters to explore when comparing
with other works. We discuss this in more detail in Sect. 6. Our protocols seem most
significant in the dishonest majority setting, since when there is an honest majority
there are unconditionally secure protocols with O(n log n) communication overhead
and reasonable computational complexity, e.g. [33], whilst our protocols have Ω(nt)
communication overhead.

Our GMW-style protocol starts to improve upon previous protocols already when we
reach n = 10 parties and t = 6 corruptions: here, our triple generation method requires
less than half the communication cost of the fastest triple generation protocol based on
OT extension [31] tolerating up to n −1 corruptions. When the number of honest parties
is large enough, we can use 1-bit keys, giving a 25-fold reduction in communication
over previous protocols when n = 400 and t = 280. In some settings, we rely on yet
another improvement that optimizes our triple generation protocol using Vandermonde
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matrices. As shown in Sect. 6, this approach is particularly convenient when the number
of honest parties is small and allows us to avoid relying on the RSD assumption. Finally,
we describe a simple threshold-t variant of GMW-style protocols, which our protocol
still outperforms by 1.1x and 13x, respectively, in these two scenarios.

For our constant round protocol, with n = 20, t = 10 we can use 32-bit keys, so the
size of each garbled AND gate is 1/4 the size of [14]. As n increases, the improvements
become greater, with a 16-fold reduction in garbled AND gate size for n = 400, t = 280.
We also reduce the communication cost of creating the garbled circuit. Here, the improve-
ment starts at around 50 parties and goes up to a 7 times reduction in communication
when n = 400, t = 280. Note that our protocol does incur a slight additional overhead,
since we need to use extra “splitter gates”, but this cost is relatively small.

To demonstrate the practicality of our approach, we also present an implementation
of the online evaluation phase of our constant-round protocol for key lengths ranging
between 1 and 4 bytes, and with an overall number of parties ranging from 15 to 1000;
more details can be found in Sect. 6.

1.2.2. Applications

Our techniques seem most useful for large-scale MPC with around 70% corruptions,
where we obtain the greatest concrete efficiency improvements. An important motivation
for this setting is privacy-preserving statistical analysis of data collected from a large
network with potentially thousands of nodes. In scenarios where the nodes are not always
online and connected, our protocols can also be used with the “random committee”
approach discussed earlier, so only a small subset of, say, a hundred nodes need to be
online and interacting during the protocol.

An interesting example is safely measuring the Tor network [32] which is among
the most popular tools for digital privacy, consisting of more than 6000 relays that can
opt-in for providing statistics about the use of the network. Nowadays, due to privacy
risks, the statistics collected over Tor are generally poor: There is a reduced list of
computed functions and only a minority of the relays provide data, which has to be
obfuscated before publishing [32]. Hence, the statistics provide an incomplete picture
which is affected by a noise that scales with the number of relays. Running MPC in this
setting would enable for more complex, accurate and private data processing, for example
through anomaly detection and more sophisticated censorship detection. Moreover, our
protocols are particularly well-suited to this setting since all relays in the network must
be connected to one another already, by design.

Another possible application is for securely computing the interdomain routing within
the Border Gateway Protocol (BGP), which is performed at a large scale of thousands of
nodes. A recent solution in the dishonest majority setting [2] centralizes BGP so that two
parties run this computation for all Autonomous Systems. Our techniques allow scaling
to a large number of systems computing the interdomain routing themselves using MPC,
hence further reducing the trust requirements.

1.2.3. Decisional Regular Syndrome Decoding Problem

The security of our protocols relies on the Decisional Regular Syndrome Decoding
(DRSD) problem, which, given a random binary matrix H, is to distinguish between
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the syndrome obtained by multiplying H with an error vector e = (e1‖ · · · ‖eh) where
each ei ∈ {0, 1}2�

has Hamming weight one, and the uniform distribution. This can
equivalently be described as distinguishing

⊕h
i=1 H(i, ki ) from the uniform distribution,

where H is a random function and each ki is a random �-bit key (as in the toy example
described earlier).

This problem was introduced in 2003 by Augot, Finiasz and Sendrier [4], who used it
for the SHA-3 candidate FSB (Fast Syndrome-Based) hash function. RSD is similar to
the (standard) syndrome decoding problem [21,58], where each component of the error
vector is 0 or 1 with some constant probability, and which, in turn, is equivalent to the
problem of learning parity with noise (LPN) [10] for a restricted number of samples.
Like LPN, the RSD problem is NP-hard in general, and the best-known attacks on RSD
do not perform much better than those against LPN. We also show that RSD admits a
simple search-to-decision reduction, similar to a previous reduction for LPN [5].

We remark that in some of our settings, the problem is unconditionally hard even for
� = 1, which means for certain parameter choices in our GMW-based protocol we can
use much smaller keys without introducing any additional assumptions. This introduces
a significant saving in our triple generation protocol.

Overall, our approach demonstrates a new application of LPN-type assumptions to
efficient MPC without introducing asymmetric operations. Our techniques may also be
useful in other distributed applications where only a small fraction of nodes are honest.

1.2.4. Additional Related Work

Another work which applies a similar assumption to secure computation is that of Apple-
baum [8], who built garbled circuits with the free-XOR technique in the standard model
under the LPN assumption. Conceptually, our work differs from Applebaum’s since
our focus is to improve the efficiency of multi-party protocols with fewer corruptions,
whereas in [8], LPN is used in a more modular way in order to achieve encryption with
stronger properties and under a more standard assumption.

In a recent work [62], Nielsen and Ranellucci designed a protocol in the dishonest
majority setting with malicious, adaptive security in the presence of t < cn corruption
for c ∈ [0, 1). Their protocol is aimed to work with a large number of parties and
uses committees to obtain a protocol with poly-logarithmic overhead. This protocol
introduces high constants and is not useful for practical applications.

Finally, in work concurrent to the proceedings version of this work [22], Ben-Efraim
and Omri also explore how to optimize garbled circuits in the presence of non-full-
threshold adversaries. By using deterministic committees, they achieve AND gates of
size 4(t + 1)κ , where κ is the computational security parameter. By using the same
technique, our work achieves a size of 4(t + h)�, where h is the minimum number of
honest parties in the committee and the parameter � � κ depends on h according to the
Decisional Regular Syndrome Decoding problem. The rest of their results apply only to
the honest majority setting.

1.2.5. History and Subsequent Work

An earlier version of this work was published at Crypto 2018 [43]. The current version
extends this with complete security proofs, more detailed complexity and security anal-
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ysis, and an additional optimization. In particular, Sect. 4.3 describes a new variant of
our GMW protocol which leads to lower communication in several settings and can also
remove reliance on the DRSD assumption for a wider range of parameters.

In follow-up work, we extended these techniques to the malicious setting [42]. There,
we show how to improve the communication and computation complexity of protocols
from the ‘TinyOT’ family [35,45,61,72]. Furthermore, such techniques can be combined
with the BMR protocol of [45] to obtain more efficient constant-round MPC.

1.3. Technical Overview

In what follows, we explain the technical side of our results in more detail.

1.3.1. Leaky Oblivious Transfer (OT)

We first present a two-party secret-shared bit multiplication protocol, based on the IKNP
OT extension protocol [46] which we adapt to use short keys. Recall that the IKNP
protocol can be broken into two stages: first, the parties create a batch of correlated OTs,
where the sender’s messages in each OT are strings of the form qi , qi ⊕ Δ for some
fixed Δ ∈ {0, 1}κ . Secondly, the parties break the correlation by hashing each string
individually; if the hash function H has one-bit output, this produces OTs on random
bits, which can be directly used for secret-shared multiplication. For security, H must
satisfy a correlation robustness property, namely, if Δ is a random, secret string, then
H(qi ⊕ Δ) is indistinguishable from random to the receiver, even given qi . Note that
this last step is completely local, while the first step requires κ bits of communication
per OT when using optimized IKNP variants [7,49] which we build upon.

In our protocol, we modify the first step by choosing the sender’s secret Δ to be an
�-bit string, for some � < κ , instead of κ bits. This reduces the communication cost of
this step down to ≈ � bits per OT. However, the protocol now leaks some information
on the sender’s secret Δ ← {0, 1}� to the receiver, which also reveals information about
the sender’s inputs. Roughly speaking, the leakage is of the form H(i,Δ) + xi , where
xi ∈ {0, 1} is an input of the sender and H is a hash function with 1-bit output. Clearly,
when � is short, this is not secure to use on its own, since all of the receiver’s inputs only
have � bits of min-entropy (based on the choice of Δ).

1.3.2. MPC from Leaky OT

We then show how to apply this leaky two-party protocol to the multi-party setting, whilst
preventing any leakage on the parties shares. The main observation is that, when using
additive secret-sharing, we only need to ensure that the sum of all honest parties’ shares is
unpredictable; if the adversary learns just a few shares, they can easily be rerandomized
by adding pseudorandom shares of zero, which can be done non-interactively using a
PRF. However, we still have a problem, which is that in the standard GMW approach,
each party Pi uses OT to multiply their share xi with every other party Pj ’s share y j .
Now, there is leakage on the same share xi from each of the OT instances between all
other parties, which seems much harder to prevent than leakage from just a single OT
instance.
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To work around this problem, we have the parties add shares of zero to their xi inputs
before multiplying them. So, every pair (Pi , Pj ) will use leaky OT to multiply xi ⊕ si, j

with y j , where si, j is a random share of zero satisfying
⊕n

i=1 si, j = 0. This preserves
correctness of the protocol, because the parties end up computing an additive sharing of:

n⊕

i=1

n⊕

j=1

(xi ⊕ si, j )y j =
n⊕

j=1

y j
n⊕

i=1

(xi ⊕ si, j ) = xy.

This also effectively removes leakage on the individual shares, so we only need to be
concerned with the sum of the leakage on all honest parties’ shares, and this turns out
to be of the form:

⊕n
i=1(H(i,Δi ) + xi ) which is pseudorandom under the decisional

regular syndrome decoding assumption.
We realize our protocol using a hash function with a polynomial-sized domain, so

that is can be implemented using a CRS which simply outputs a random lookup-table.
This means that, unlike when using the IKNP protocol, we do not need to rely on a
random oracle or a correlation robustness assumption (which is also defined using an
oracle). Furthermore, in some cases we can avoid reliance on decisional regular syndrome
decoding, by choosing parameters such that the problem is information-theoretically
secure. We present two variants of this approach, where the first requires a large number
of honest parties but allows � = 1, while the second requires � ≥ log n, and uses
Vandermonde matrices to extract randomness from a smaller number of honest parties.

When the number of parties is large enough, we can also improve our triple generation
protocol using random committees. In this case, the amortized communication cost is
≤ nhn1(�+ �κ/r + 1) bits per multiplication where we need to choose two committees
of sizes nh and n1 which have at least h and 1 honest parties, respectively.

1.3.3. Garbled Circuits with Short Keys

We next revisit the multi-party garbled circuits technique by Beaver, Micali and Rog-
away, known as BMR, that extends the classic Yao garbling [73] to an arbitrary number
of parties, where essentially all the parties jointly garble using one set of keys each. This
method was recently improved in a sequence of works [14,45,54,55], where the two
latter works further support the free-XOR property.

Our garbling method uses an expansion function H : [n] × {0, 1} × {0, 1}� →
{0, 1}n�+1, where � is the length of each parties’ keys used as wire labels in the garbled
circuit. To garble a gate, the hash values of the input wire keys ki

u,b and ki
v,b are XORed

over i and used to mask the output wire keys.
Specifically, for an AND gate g with input wires u, v and output wire w, the 4 garbled

rows g̃a,b, for each (a, b) ∈ {0, 1}2, are computed as:

g̃a,b =
(

n⊕

i=1

H(i, b, ki
u,a) ⊕ H(i, a, ki

v,b)

)
⊕
(

c, k1
w,c, . . . , kn

w,c

)
.

Security then relies on the DRSD assumption, which implies that the sum of h hash
values on short keys is pseudorandom, which suffices to construct a secure garbling
method with h honest parties.
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Using this assumption instead of a PRF (as in recent works) comes with difficulties,
as we can no longer garble gates with arbitrary fan-out, or use the free-XOR technique,
without degrading theDRSD parameters. To allow for arbitrary fan-out circuits with our
protocol, we use splitter gates, which take as input one wire w and provide two outputs
wires u, v, representing the same wire value. Splitter gates were previously introduced
as a fix for an error in the original BMR paper in [69]. We stress that transforming
a general circuit description into a circuit where XOR and AND gates are fan-out-1
requires adding at most a single splitter gate per AND or XOR gate.

The restriction to fan-out-1 gates and the use of splitter gates allow us to garble XOR
gates ‘almost for free’ in BMR, more specifically at the cost of at most one splitter
gate per arbitrary-fan-in XOR gate. Our technique is based on FlexOR [50], by setting
each XOR gate to use a unique offset. As a side effect of using different offsets, we do
not need to rely on circular security assumptions or correlation-robust hash functions.
Furthermore, the overhead of splitter gates is very low, since garbling a splitter gate
does not use the underlying MPC protocol: shares of the garbled gate can be generated
non-interactively.

2. Preliminaries

We denote the security parameter by κ . We say that a function μ : N → N is negligible if
for every positive polynomial p(·) and all sufficiently large κ it holds that μ(κ) < 1

p(κ)
.

The function μ is noticeable (or non-negligible) if there exists a positive polynomial p(·)
such that for all sufficiently large κ it holds that μ(κ) ≥ 1

p(κ)
. We use the abbreviation

PPT to denote probabilistic polynomial-time. We further denote by a ← A the uniform
sampling of a from a set A, and by [d] the set of elements {1, . . . , d}. We often view
bit-strings in {0, 1}k as vectors in F

k
2, depending on the context, and denote exclusive-or

by “⊕” or “+”. If a, b ∈ F2, then a · b denotes multiplication (or AND), and if c ∈ F
κ
2 ,

then a · c ∈ F
κ
2 denotes the product of a with every component of c.

We first specify the definition of computational indistinguishability.

Definition 2.1. Let X = {X (a, κ)}a∈{0,1}∗,κ∈N and Y = {Y (a, κ)}a∈{0,1}∗,κ∈N be two
distribution ensembles. We say that X and Y are computationally indistinguishable,

denoted X
c≈ Y , if for every PPT machine D and every a ∈ {0, 1}∗, there exists a

negligible function negl such that:

∣∣Pr
[D(X (a, κ), a, 1κ ) = 1

]− Pr
[D(Y (a, κ), a, 1κ ) = 1

] ∣∣ < negl(κ).

2.1. Security and Communication Models

We prove security of our protocols in the universal composability (UC) framework [24].
See Appendix A for a summary of this. We assume all parties are connected via secure,
authenticated point-to-point channels, which is the default method of communication in
our protocols. The adversary model we consider is a static, honest-but-curious adversary
who corrupts a subset A ⊂ [n] of parties at the beginning of the protocol. We denote by
Ā the subset of honest parties and define h = | Ā| = n − t .
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Fig. 1. Random zero sharing functionality .

2.2. Random Zero-Sharing

Our protocols require the parties to generate random additive sharings of zero, as in
the FZero functionality in Fig. 1. This can be done efficiently using a PRF F , with
interaction only during a setup phase, as in [3]. We do this by asking each party Pi

to send a random PRF key ki, j to every other party Pj . Next, Pi defines its share by⊕
j �=i (Fki, j (τ ) ⊕ Fk j,i (τ )) where τ is an index that identifies the generated share. It is

simple to verify that all the shares XOR to zero since each PRF value is used exactly twice.
Moreover, privacy holds in the presence of any subset of n−2 corrupted parties because
the respective values Fkl,l′ and Fkl′,l of honest parties Pl and Pl ′ are pseudorandom,
which implies that their zero shares are also pseudorandom. Finally, the communication
complexity of the setup phase amounts to sending O(n2) PRF keys, whilst creating the
shares requires 2(n − 1) PRF evaluations to produce κ bits.

2.3. IKNP OT Extension

Here, we shortly recall the passively secure OT extension protocol presented by Ishai,
Kilian, Nissim and Petrank in 2003 [46], including some optimations by Asharov, Lin-
dell, Schneider and Zohner [7]. This protocol allows to generate r = poly(κ) random
oblivious transfers from κ oblivious transfers using only cheap symmetric cryptographic
primitives. At a high level, the protocol can be divided into three phases. The private
inputs of the receiver PB are the choice bits x = (x1, . . . , xr ).

In the first step, called “seed OT phase”, the sender, PA, and the receiver, PB , acting
with their roles reversed, perform κ OTs on random strings of length κ . PB obtains
random (si

0, s
i
1) ∈ {0, 1}κ and PA obtains (si

Δi
), where Δ = (Δ1, . . . Δκ) ∈ {0, 1}κ is

the choice vector used by PA as input in the OTs.
Then, they locally expand these strings through a pseudorandom generator, so that

PB obtains (t i0, t
i
1) ∈ {0, 1}r , i ∈ [κ], and PA obtains (t iΔi

). In the second step, PB

introduces a correlation by sending the values

ui = t0i ⊕ t11 ⊕ x,

where x = (x1, . . . , xr ) are the receiver’s r choice bits. In this way, the sender PA can
compute

qi = t iΔi
⊕ Δi · ui

= t i0 ⊕ Δi · x = t i ⊕ Δ · x,
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and can define the matrix Q ∈ {0, 1}κ×r having the vectors qi as rows. Similarly, PB

can define the matrix T ∈ {0, 1}κ×r with rows t i0. By taking the columns of these two
matrices, PA and PB , respectively, obtain q j , t j ∈ {0, 1}κ , j ∈ [r ] such that:

t j ⊕ q j = Δ · x j .

Finally, the last step permits to obtain r OTs on random strings, by breaking the
correlation Δ. To do this, the sender computes H(q j ) and H(q j ⊕ Δ) and the receiver
computes H(t j ), where H is a correlation robust hash function.

Note that this protocol only requires interaction to generate the seed OTs and during the
second phase when the receiver sends the values ui . Note that in this second interaction
the receiver must communicate κ bits for each of the r OTs to be produced.

3. Syndrome Decoding Problem

We now describe the Regular Syndrome Decoding (RSD) problem [4] and some of its
properties.

Definition 3.1. A vector e ∈ F
m
2 is (m, h)-regular if e = (e1‖ · · · ‖eh) where each

ei ∈ {0, 1}m/h has Hamming weight one. We denote by Rm,h the set of all the (m, h)-
regular vectors in F

m
2 .

Definition 3.2. (Regular Syndrome Decoding (RSD)) Let r, h, � ∈ N with m = h · 2�,
H ← F

r×m
2 and e ← Rm,h . Given (H,He), the RSDr,h,� problem is to recover e with

noticeable probability.

The decisional version of the problem, given below, is to distinguish the syndrome
He from uniform.

Definition 3.3. (Decisional Regular Syndrome Decoding (DRSD)) Let H ← F
r×m
2

and e ← Rm,h , and let Ur be the uniform distribution on r bits. The DRSDr,h,� problem
is to distinguish between (H,He) and (H, Ur ) with noticeable advantage.

3.1. Hash Function Formulation

The DRSD problem can be equivalently described as distinguishing from uniform⊕h
i=1 H(i, ki ) where H : [h] × {0, 1}� → {0, 1}r is a random hash function, and each

ki ← {0, 1}�. With this formulation, it is easier to see how the DRSD problem arises
when using our protocols with short keys, since this appears when summing up a hash
function applied to h honest parties’ secret keys.

To see the equivalence, we can define a matrix H ∈ F
r×h·2�

2 , where for each i ∈
{0, . . . , h − 1} and k ∈ [2�], column i · 2� + k of H contains H(i, k). Then, multiplying
H with a random (m, h)-regular vector e is equivalent to taking the sum of H over h
random inputs, as above.
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3.2. Statistical Hardness of DRSD

We next observe that for certain parameters where the output size of H is sufficiently
smaller than the min-entropy of the error vector e, the distribution in the decisional
problem is statistically close to uniform.

Lemma 3.4. If � = 1 and h ≥ r + s, then DRSDr,h,� is statistically hard, with
distinguishing probability 2−s .

Proof. Suppose � = 1 and h ≥ r+s, so m = 2h. For a vector e = (e1‖ · · · ‖eh) ∈ Rm,h ,
we can write each of the weight-1 vectors ei ∈ {0, 1}2 as (e′i , 1 − e′i ). An RSD sample
H, y = He therefore defines a system of r linear equations in the h variables {e′i }i , and
it can be shown that this simplifies to the form y = H′e′ + c, where e′ = (e′1, . . . , e′h),
by defining the j-th column of H′ ∈ F

r×h
2 to be the sum of columns 2 j − 1 and 2 j from

H, and c to be the sum of all even-indexed columns in H. Note that H′ is uniformly
random because H is, and it is easy to show (e.g. [63, Lemma 1]) that the probability
that H′ ← F

r×h
2 is not full rank is no more than 2−s when h ≥ r + s. Assuming that H′

has full rank and h ≥ r , y = H′e′ + c must be uniformly random because e′ is. �

For the general case of �-bit keys, we use the following form of the leftover hash
lemma.

Lemma 3.5. (Leftover Hash Lemma [47]) Let H ← F
r×m
2 and e ← χ , where χ is a

distribution over F
m
2 with min-entropy at least k. If r ≤ k − 2s, then

ΔSD((H,He), (H, u)) ≤ 2−s

where u ← F
r
2 and ΔSD is the statistical distance.

Note that if e ← Rm,h , then we have H∞(e) = h�. Applying Lemma 3.5 with k = h�,
we obtain the following.

Corollary 3.6. If h ≥ (r + 2s)/�, then DRSDr,h,� is statistically hard, with distin-
guishing probability 2−s .

3.3. Search-to-Decision Reduction

For all parameter choices of DRSD, there is a simple reduction to the search version of
the regular syndrome decoding problem with the same parameters.

Lemma 3.7. Any efficient distinguisher for the DRSDr,h,� problem can be used to
efficiently solve RSDr,h,�.

The proof (inspired by a similar result for LPN [5]) is a simplified version of previous
reductions for syndrome decoding.

We first recall the Goldreich–Levin hardcore-bit theorem.
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Theorem 3.8. [38] Let f be a one-way function. Then, given (r, f (x)) for uniformly
random r and x, the inner product 〈x, r〉 over F2 is unpredictable.

Proof. (of Lemma 3.7) Suppose A distinguishes between (H,He) and (H, Ur ) with
noticeable advantage δ. We construct an adversary A′ that breaks the Goldreich–Levin
hardcore bit of f (e) = (H,He) by guessing the inner product 〈e, s〉 for some vector
s ∈ F

m
2 . On input (H, y = He, s), algorithm A′ proceeds as follows:

1. Sample t ← {0, 1}r

2. Compute H′ = H− t · s�
3. Run A on input (H′, y)
4. Output the same as A

First, notice that because H is uniformly random, H′ is also. Secondly, y = He =
(H′ + t · s�)e = H′e+ t · 〈s, e〉. So, if 〈s, e〉 = 0, then the input to A is a correct sample
(H′,H′e), whereas if 〈s, e〉 = 1, then the input is uniformly random. Therefore, it holds
that:

Pr[A′(H,He, r) = 〈e, r〉] = Pr[A′(H,He, r) = 0|〈e, r〉 = 0] · Pr[〈e, r〉 = 0]
+ Pr[A′(H,He, r) = 1|〈e, r〉 = 1] · Pr[〈e, r〉 = 1]

= 1

2
· (Pr[A(H′,H′e) = 0] + (1 − Pr[A(H′, Ur ) = 0]))

≥ 1

2
+ δ

2
.

�

3.4. Multi-Secret RSD

We now consider a variant of DRSD with multiple sets of secrets, where the matrix H
is fixed for each sample. We then reduce this to the standard DRSD problem with the
same parameters, with a security loss of the number of secrets.

Definition 3.9. (Multi-Secret DRSD) Let H ← F
r×m
2 and e1, . . . , eq ← Rm,h

(as in Definition 3.2). The q-DRSDr,h,� problem is to distinguish between a tuple
(H,He1, . . . ,Heq) and (H, U q

r ) with noticeable advantage.

Lemma 3.10. q-DRSDr,h,� is reducible to DRSDr,h,�, where the reduction loses a
tightness factor of q.

Proof. The proof is based on a standard hybrid argument with a sequence of q + 1
hybrid distributions, where each pair of neighbouring hybrids is indistinguishable based
on DRSD.

The first hybrid, H0, outputs (H, u1, . . . , uq), where H ← F
r×m
2 and ui ← {0, 1}r ,

which is exactly the uniform distribution used in q-DRSD. In hybrid Hi , for i =
1, . . . , q, we sample regular secrets e1, . . . , ei and output (H,He1, . . . ,Hei , ui+1, . . . ,

uq). Note that Hq is the same as the real distribution in the q-DRSD problem. Any
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adversaryAwho distinguishes between Hi and Hi+1 can be used to breakDRSDr,h,�, as
follows. The distinguisherD receives aDRSD challenge (H, y), then samples e1, . . . , ei

from the error distribution and random strings ui+2, . . . , uq ← {0, 1}r . It then outputs
A(H,He1, . . . ,Hei , y, ui+2, . . . , uq). The advantage of D against the DRSD problem
is identical to that of A. A standard argument then implies that any adversary who dis-
tinguishes H0 and Hq with advantage δ can solve DRSDr,h,� with advantage at least
δ/q. �

3.5. Extended Double-Key RSD

In our final variant of RSD—used in the security proof of our BMR-style online phase—
we consider multiple sets of secrets and also give the adversary two challenges for each
secret which captures the double use of each key in the garbling procedure. This means
we cannot preserve the RSD parameters and must reduce to 2-DRSD2r,h,�. We also make
a conceptual change and specify the problem using a random hash function H with small
domain (which can be modelled as a random oracle, or a random lookup table given as
a common random string) instead of matrices and vectors. We switch to this notation in
order to capture the computation made by the honest parties when garbling a gate.

Definition 3.11. (Extended Double-Key DRSD) The extended double-key decisional-
RSD problem states that, for every fixed subset S ⊂ [n] of size h, it holds that

(
H,

⊕

i∈S

H(i, 0, ki ),
⊕

i∈S

H(i, 0, k′
i ),

⊕

i∈S

H(i, 1, ki ),
⊕

i∈S

H(i, 1, k′
i )

)
c≈ (H, U4r ) ,

where H : [n]×{0, 1}×{0, 1}� → {0, 1}r is a randomly sampled function, and ki , k′
i ←

{0, 1}� for i ∈ S.

Lemma 3.12. The extended double-key decisional-RSD problem with parameters
(r, h, �) is reducible to 2-DRSD(2r, h, �).

Proof. Suppose there exists a set S ⊂ [n] for which an adversary A distinguishes the
above two distributions with noticeable advantage. We useA to construct a distinguisher
D for the 2-DRSD(2r, h, �) problem. D receives a challenge (H, y0, y1), where H ∈
F

2r×m
2 , m = h ·2� and y0, y1 ∈ F

2r
2 . Write H =

(
H0
H1

)
and y j =

( z j

z′j

)
. Define the hash

function H : [n]×{0, 1}×{0, 1}� → {0, 1}r so that H(i, b, k) is equal to column 2�i +k
(viewing k also as an integer in [2�]) of the matrix Hb, for each i ∈ S and b ∈ {0, 1}.
For i ∈ [n] \ S, let the output of H(i, ·, ·) be uniformly random. The distinguisher then
runs A with input

(
H, z0, z′0, z1, z′1

)
,

and outputs the same as A. Notice that if the DRSD challenge is random, then the input
to A is random, whereas if the challenge is computed as y j = He j for some regular
error e j and j ∈ {0, 1}, then we have z j = H0e j and z′j = H1e j , and by the definition
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Fig. 2. Functionality for oblivious transfer on random, correlated strings .

of H, these values are equal to the sum of hash function outputs under some secret keys
corresponding to e j . It follows that the distinguishing advantage of D is the same as that
of A. �

4. GMW-Style MPC with Short Keys

In this section, we design a protocol for generating multiplication triples over F2 using
short secret keys, with reduced communication complexity as the number of honest
parties increases. More concretely, we first design a leaky protocol for secret-shared
two-party bit multiplication, based on correlated OT and OT extension techniques with
short keys. This protocol is not fully secure, and we precisely define the leakage, which
is obtained by the receiver. We next show how to use the leaky protocol to produce
multiplication triples, removing the leakage by rerandomizing the parties’ shares with
shares of zero, and using the DRSD assumption. Finally, this protocol can be used with
Beaver’s multiplication triple technique [9] to obtain MPC for binary circuits with an
amortized communication complexity of O(nt�) bits per triple, where t is the threshold
and � is the secret key length. In some cases, we can use short keys without relying on
DRSD, obtaining either � = 1 when the number of honest parties is large enough, or
� = log n otherwise.

4.1. Leaky Two-Party Secret-Shared Multiplication

We first present our protocol for two-party secret-shared bit multiplication. We modify
the IKNP protocol for OT extension to use short keys, where by ‘IKNP’ we refer to
the optimized variant by Asharov et al. [7], which we summarized in Sect. 2.3. With
short keys, we cannot hope for computational security based on standard symmetric
primitives, because an adversary can search every possible key in polynomial time. Our
goal, therefore, is to define the precise leakage that occurs when using short keys, in
order to remove this leakage at a later stage.
4.1.1. OT Extension and Correlated OT

Recall that the main observation of the IKNP protocol for extending oblivious transfer
[46] is that correlated OT is symmetric, so that κ correlated OTs on r -bit strings can
be locally converted into r correlated OTs on κ-bit strings. Secondly, a κ-bit correlated
OT can be used to obtain an OT on chosen strings with computational security. The
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first stage of this process is abstracted away by the functionality F-ROT in Fig. 2 and is
implemented by the first two phases of IKNP as described in Sect. 2.3.

Using IKNP to multiply an input bit xk from the sender, PA, with an input bit yk from
PB , the receiver, PB sends yk as its choice bit to F-ROT and learns tk = qk ⊕ yk ·Δ. The
sender PA obtains qk and then, sends

dk = H(qk) ⊕ H(qk ⊕ Δ) ⊕ xk,

where H is a 1-bit output hash function. This allows the parties to compute an additive
sharing of xk ·yk as follows: PA defines the shareH(qk), and PB computesH(tk)⊕yk ·dk .
This can be repeated many times with the same Δ to perform a large batch of poly(κ)

secret-shared multiplications, because the randomness in Δ serves to computationally
mask each x with the hash values (under a suitable correlation robustness assumption
for H). The downside of this is that for Δ ∈ {0, 1}κ , the communication cost is O(κ)

bits per two-party bit multiplication, to perform the correlated OTs.

4.1.2. Variant with Short Keys

We adapt this protocol to use short keys by performing the correlated OTs on �-bit
strings, instead of κ-bit, for some small key length � = O(log κ) (we could have � as
small as 1). This allows F-ROT to be implemented with only O(�) bits of communication
per OT instead of O(κ).

Our protocol, shown in Fig. 4, performs a batch of r multiplications at once. First,
the parties create r correlated OTs on �-bit strings using F-ROT. Next, the parties hash
the output strings of the correlated OTs, and PA sends over the correction values dk ,
which are used by PB to convert the random OTs into a secret-shared bit multiplication.
Finally, we require the parties to add a random value (from FZero, shown in Fig. 1) to
their outputs, which ensures that they have a uniform distribution.

Note that if � ∈ O(log κ), then the hash functionHAB has a polynomial-sized domain,
so can be described as a lookup table provided as a common input to the protocol by
both parties. At this stage, we do not make any assumptions about HAB ; this means that
the leakage in the protocol will depend on the hash function, so its description is also
passed to the functionality FLeaky-2-Mult (Fig. 3). We require HAB to take as additional
input an index k ∈ [r ] and a bit in {0, 1}, to provide independence between different
uses, and our later protocols require the function to be different in protocol instances
between different pairs of parties (we use the notation HAB to emphasize this).

4.1.3. Leakage

We now analyse the exact security of the protocol in Fig. 4 when using short keys and
explain how this is specified in the functionality FLeaky-2-Mult (Fig. 3). Since a random
share of zero is added to the outputs, note that the output distribution is uniformly random.
Also, like IKNP, the protocol is perfectly secure against a corrupt PA (or sender), so we
only need to be concerned with leakage to a corrupt PB who also sees the intermediate
values of the protocol.
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Fig. 3. Ideal functionality for leaky secret-shared two-party bit multiplication .

The leakage is different for each k, depending on whether yk = 0 or yk = 1, so we
consider the two cases separately. Within each case, there are two potential sources of
leakage: firstly, the corrupt PB’s knowledge of tk and ρk may cause leakage (where ρk

is a random share of zero), since these values are used to define PA’s output. Secondly,
the dk values seen by PB , which equal

dk = HAB(k, yk, tk) ⊕ HAB(k, 1 ⊕ yk, tk ⊕ Δ) ⊕ xk, (1)

may leak information on PA’s inputs xk .

Case 1 (yk = 1).
In this case, there is only leakage from the values tk and ρk , which are used to define

PA’s output. Since z A
k = HAB(k, 0, tk ⊕ Δ) ⊕ ρk , all of PA’s outputs (and hence, also

inputs) where yk = 1 effectively have only � bits of min-entropy in the view of PB ,
corresponding to the random choice of Δ. In this case, PB’s output is zB

k = z A
k ⊕ xk =

HAB(k, 0, tk ⊕ Δ) ⊕ ρk ⊕ xk . To ensure that PB’s view is simulable, the functionality
needs to sample a random string Δ ← {0, 1}� and leak HAB(k, 0, tk ⊕ Δ) ⊕ xk to a
corrupt PB .

Concerning the dk values, notice that when yk = 1 PB can compute HAB(k, 1, tk)
and use (1) to recover HAB(k, 0, qk)+ xk , which equals z A

k + ρk + xk . However, this is
not a problem, because in this case we have zB

k = z A
k + xk , so dk can be simulated given

PB’s output.

Case 2 (yk = 0).
Here, the dk values seen by PB cause leakage on PA’s inputs, because Δ is short.

Looking at (1), dk leaks information on xk because Δ ← {0, 1}� is the only unknown in
the equation and is fixed for every k. Similarly to the previous case, this means that all
of PA’s inputs where yk = 0 have only � bits of min-entropy in the view of an adversary
who corrupts PB . We can again handle this leakage, by defining FLeaky-2-Mult to leak
HAB(k, 1, tk ⊕ Δ) + xk to a corrupt PB .

Note that there is no leakage from the tk values when yk = 0, because then tk = qk ,
so these messages are independent of Δ and the inputs of PA.

In the functionality FLeaky-2-Mult, we actually modify the above slightly so that the
leakage is defined in terms of linear algebra, instead of the hash functionHAB , to simplify
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Fig. 4. Leaky secret-shared two-party bit multiplication protocol .

the translation to the DRSD problem later on. Therefore, FLeaky-2-Mult defines a matrix

H ∈ F
r×2�

2 , which contains the 2� values {HAB(k, 1 ⊕ yk, tk ⊕ Δ)}Δ∈{0,1}� in row k,
where each tk is uniformly random. Given H, the leakage from the protocol can then be
described by sampling a random unit vector e ∈ F

2�

2 (which corresponds to Δ ∈ {0, 1}�
in the protocol) and leaking u = He+ x to a corrupt PB .

We remark that this leakage reveals a lot of information about PA’s input x, and in
particular, if a corrupt PB knows something about the distribution of x then it might
leverage this to learn Δ and thus all of x. This illustrates the challenge of using leaky
multiplication to build a secure MPC protocol, which we overcome in the next section.

Theorem 4.1. Protocol Π
r,�
Leaky-2-Mult securely implements the functionality

Fr,�
Leaky-2-Mult with perfect security in the (F-ROT,FZero)-hybrid model in the presence of

static honest-but-curious adversaries.

Proof. The main challenge in the proof consists of showing that the leakage to PB in
the functionality can be translated directly to the leakage introduced in the protocol in the
view of PB . More formally, for the two cases of a corrupt PA, and a corrupt PB , we define
a simulator who obtains the corrupted party’s inputs and the output of FLeaky-2-Mult, and
simulates the view of the corrupted party during a protocol execution.

4.1.4. No Corruptions

Here, no simulation is necessary because all communication is over private channels, so
we just need to show that the outputs of an honest execution are distributed identically to
the functionality. By inspection, the protocol is correct. Observe that the outputs of PA

are uniformly random, because ρk is uniformly random. Since PB’s outputs are fixed by
the inputs and PA’s outputs, we are done.
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4.1.5. Corrupt PA

This is the simpler of the remaining two cases. The simulator SA receives PA’s inputs
x1, . . . , xr ∈ F2, as well as the outputs z A

1 , . . . , z A
r from FLeaky-2-Mult. It completes the

view of PA by sampling the q1, . . . , qr ← {0, 1}� PA receives from F-ROT and then,
sends ρk = z A

k − HAB(k, 0, qk) to simulate PA’s outputs from FZero.
It is easy to see that the views in the two executions are identically distributed, since

no messages are sent to PA during the protocol, and the definition of ρk in the simulation
ensures that ρk is uniformly random (because z A

k is) and also consistent with PA’s output
and the hash function, as in the protocol.

4.1.6. Corrupt PB

We define a simulator SB , who receives the inputs y1, . . . , yr ∈ {0, 1} and then, obtains
the values zB

1 , . . . , zB
r ,H, u = (u1, . . . , ur ) from the functionality.

Let SB sample values t1, . . . , tr ∈ {0, 1}� at random, subject to the constraint that
for every k ∈ [r ] and k′ ∈ {0, 1}�, HAB(k, 1 ⊕ yk, tk ⊕ k′) is equal to entry (k, k′) of
H (viewing k′ also as an integer in [2�]). Note that because of the way H is defined
in FLeaky-2-Mult, such a tk is guaranteed to exist and can be found by searching all
22� = poly(κ) possibilities of k′ and tk . This also ensures it will be identically distributed
to the tk sampled by the functionality. SB sends these values tk as the outputs of F-ROT
to PB .

For all k ∈ [r ], SB then emulates the output of FZero to PB as follows:

1. If yk = 0, send ρk = zB
k + HAB(k, 0, tk).

2. If yk = 1, send ρk = zB
k + uk .

Finally, for k ∈ [r ], SB sends dk = uk + HAB(k, yk, tk) to PB . This completes the
simulation of PB’s view.

Regarding indistinguishability, first note that the tk values are identically distributed
as a uniformly random value in both executions, since in the real world tk = qk ⊕ yk ·Δ
and qk ← {0, 1}�. Now, considering the case when yk = 0, we have:

zB
k + HAB(k, 0, tk) + ρk = 0,

from the definition of ρk . Since in both worlds zB
k , tk and ρk are all uniformly random,

subject to the above, this means that these values are identically distributed in both
worlds. Also, it is easy to see that the simulated dk values are computed exactly as in
the protocol, because of the way FLeaky-2-Mult computes uk .

When yk = 1, we have:

zB
k +HAB(k, 1, tk)+dk+ρk = 0 ⇐⇒ (ρk + uk) + HAB(k, 1, tk) + ρk = dk

⇐⇒ HAB(k, 0, tk ⊕ Δ̃) + HAB(k, 1, tk) + xk = dk,

where Δ̃ ∈ [2�] denotes the position of the 1 in e sampled by FLeaky-2-Mult to compute
u, so is identically distributed to Δ ∈ {0, 1}� in the real protocol. Therefore, the last
equation above holds, which implies that zB

k , ρk and dk are all distributed identically to
the values in the real protocol.



13 Page 20 of 66 C. Hazay et al.

Fig. 5. Multiplication triple generation functionality .

4.1.7. Communication Complexity

The cost of computing r secret-shared products is that of � random, correlated OTs on
r -bit strings, and a further r bits of communication. Using OT extension [7,46] with a
correlation-robust hash function to implement the correlated OTs, the amortized cost is
�(r + κ) bits for computational security κ . This gives a total cost of �(r + κ) + r bits.

4.2. MPC for Binary Circuits From Leaky OT

We now show how to use the leaky OT protocol to compute multiplication triples over
F2, using a GMW-style protocol [39,40] optimized for the case of at least h honest
parties. This can then be used to obtain a general MPC protocol for binary circuits using
Beaver’s method [9].

4.2.1. Triple Generation

We implement the triple generation functionality over F2, shown in Fig. 5. Recall that to
create a triple using the GMW method, first each party locally samples shares xi , yi ←
F2. Next, the parties compute shares of the product based on the fact that:

(
n∑

i=1

xi

)
·
(

n∑

i=1

yi

)
=

n∑

i=1

xi yi +
n∑

i=1

∑

j �=i

x i y j .

where xi denotes Pi ’s share of x = ∑
i x i .

Since each party can compute xi yi on its own, in order to obtain additive shares of
z = xy it suffices for the parties to obtain additive shares of xi y j for every pair i �= j .
This can be done using oblivious transfer between Pi and Pj , since a 1-out-of-2 OT
implies two-party secret-shared bit multiplication. To improve efficiency, we actually
realize a slight variation of this functionality where two (possibly overlapping) subsets
P(h),P(1) such that P(h) has at least h honest parties and P(1) has at least one honest
party, choose the respective shares of x and y.

If we plug in our leaky two-party batch multiplication protocol to GMW, this naive
approach fails to give a secure protocol, because the leakage in FLeaky-2-Mult allows a
corrupt PB to guess PA’s inputs with probability 2−�. When obtaining shares of the
pairwise products, PA does a secret-shared multiplication using the same input shares
with every other party, which introduces further leakage on PA’s shares for every corrupt
party, increasing the success probability further. If the number of corrupted parties is not
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too small, then this gives the adversary a significant chance of successfully guessing the
shares of every honest party, completely breaking security.

To avoid this issue, we require PA to randomize the shares used as input to
FLeaky-2-Mult, in such a way that we still preserve correctness of the protocol. To do
this, the parties will use FZero to generate random zero shares si, j ∈ F2 (held by Pi ),
satisfying

∑
i si, j = 0 for all j ∈ [n], and then Pi and Pj will multiply xi + si, j and

y j . This means that all parties end up computing shares of:

n∑

i=1

n∑

j=1

(xi + si, j )y j =
n∑

j=1

y j
n∑

i=1

(xi + si, j ) = xy,

so still obtain a correct triple.
Finally, to ensure that the output shares are uniformly random, fresh shares of zero

will be added to each party’s share of xy.
Note that masking each xi input to FLeaky-2-Mult means that it does not matter if the

individual shares are leaked to the adversary, as long as it is still hard to guess the sum
of all shares. This means that we only need to be concerned with the sum of the leakage
from FLeaky-2-Mult. Recall that each individual instance leaks the input of an honest party

Pi masked by Hi ei , where Hi is a random matrix and ei ∈ F
2�

2 is a random unit vector.
Summing up all the leakage from h honest parties, we get

h∑

i=1

Hi ei = (H1‖ · · · ‖Hh)

⎛

⎜⎝
e1
...

eh

⎞

⎟⎠

This is exactly an instance of the DRSDr,h,� problem, so is pseudorandom for an appro-
priate choice of parameters.

We remark that the number of triples generated, r , affects the hardness of DRSD.
However, we can create an arbitrary number of triples without changing the assumption
by repeating the protocol for a fixed r . Note that each invocation of Π

r,�
Leaky-2-Mult samples

a different value Δ.

4.2.2. Reducing the Number of OT Channels

The above approach reduces communication of GMW by a factor κ/�, for �-bit keys, but
still requires a complete network of n(n − 1) OT and communication channels between
the parties. We can reduce this further by again taking advantage of the fact that there
are at least h honest parties. We observe that when using our two-party secret-shared
multiplication protocol to generate triples, information is only leaked on the xi shares,
and not the yi shares of each triple. This means that h −1 parties can choose their shares
of y to be zero, and y will still be uniformly random to an adversary who corrupts up
to t = n − h parties. This reduces the number of OT channels needed from n(n − 1) to
(t + 1)(n − 1).

When the number of parties is large enough, we can do even better using random
committees. We randomly choose two committees, P(h) and P(1), such that except with
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Fig. 6. Secret-shared triple generation using leaky two-party multiplication .

negligible probability, P(h) has at least h honest parties and P(1) has at least one honest
party. Only the parties in P(h) choose nonzero shares of x , and parties in P(1) choose
nonzero shares of y; all other parties do not take part in any OT instances, and just output
random sharings of zero. We remark that it can be useful to choose the parameter h lower
than the actual number of honest parties, to enable a smaller committee size (at the cost
of potentially larger keys). When the total number of parties, n, is large enough, this
means the number of interacting parties can be independent of n. The complete protocol,
described for two fixed committees satisfying our requirements, is shown in Fig. 6.

4.2.3. Communication Complexity

Recall from the analysis in Sect. 4.1 that the cost of r multiplications with ΠLeaky-2-Mult is
that of � random, correlated OTs on r -bit strings, and a further r bits of communication.
Using OT extension, this gives a cost of �(r +κ)+r bits between every pair of parties in
P(h)×P(1) (ignoringFZero and the seed OTs for OT extension, since their communication
cost is independent of the number of triples). If the two committees P(h),P(1) have sizes
nh ≤ n and n1 ≤ t + 1, then we have the following theorem

Theorem 4.2. Protocol ΠTriple securely realizesFr
Triple in the (Fr,�

Leaky-2-Mult,F (n+1)r
Zero )-

hybrid model, based on the DRSDr,h,� assumption, where h is the number of honest
parties in P(h). The amortized communication cost is ≤ nhn1(� + �κ/r + 1) bits per
triple, using OT extension based on a correlation-robust function.

Proof. The claimed communication complexity follows from the previous analysis.
Security relies on the fact that Pi ∈ P(h)’s input to FLeaky-2-Mult is always of the form
xi + si, j , where si, j is a fresh, random sharing of zero. This means that any leakage on
Pi ’s input from FLeaky-2-Mult is perfectly masked by si, j , and we only need to consider
the sum of the leakage from all honest parties in P(h).
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Recall that we have two committees P(h) and P(1) of sizes nh and n1, with at least
h and 1 honest parties, respectively. Let A be an adversary corrupting a set of parties
A. Throughout the proof, we will write x1, . . . , xr to denote the components of a vector
x ∈ F

r
2.

We construct a simulator, S, which interacts with A as follows:

1. Simulate the CRS with nh randomly sampled functionsHi : [r ]×{0, 1}×{0, 1}� →
{0, 1}.

2. CallFr
Triple to receive the corrupted parties’ outputs, (xi

k , yi
k, zi

k)i∈A∩(P(h)∪P(1)),k∈[r ].
3. For each i ∈ P(h) ∩ A, sample si, j ← F

r
2, for j ∈ [n1], and send these to A as the

shares output by FZero.
4. Let Pi ∈ P(h), Pj ∈ P(1). Compute the messages that would be sent by

FLeaky-2-Mult to the adversary as follows:

(a) Pi , Pj ∈ A: Using both parties’ inputs, generate their random output shares as
FLeaky-2-Mult would do and send these to A. Explicitly, the simulator samples
shares ai, j , b j,i that sum to (xi + si, j ) ∗ y j , and the leakage (Hi, j , ui, j ) on
xi + si, j (just as FLeaky-2-Mult would do).

(b) Pi ∈ A, Pj /∈ A: Emulate the corrupt Pi ’s view honestly, by sampling ai, j ←
F

r
2.

(c) Pi /∈ A, Pj ∈ A: Sample uniform values b j,i , ui, j ← F
r
2, and sample Hi, j ∈

F
m×2�

2 exactly as FLeaky-2-Mult would do, using knowledge of Hi and y j .

5. For i ∈ A ∩ (P(h) ∪P(1)), compute ρi = zi + (xi + si,i ) ∗ yi +∑
j �=i (a

i, j + bi, j )

and send this as the ρi
k share from FZero.

6. Send to A the values {ai, j }i∈P(h)∩A, j∈P(1)
∪ {b j,i ,Hi, j , ui, j }i∈P(h), j∈P(1)∩A as

defined above, to simulate the outputs of FLeaky-2-Mult.

�

We first consider the distribution of the parties’ outputs.

Claim 4.3. The outputs of the protocol are distributed identically to outputs of the
functionality.

Proof. We need to show that, in the real protocol, {zi
k}i,k are uniformly random subject

to
∑

i zi
k = ∑

i x i
k ·∑i yi

k . Firstly, the correctness constraint holds because

n∑

i=1

zi
k =

n∑

i=1

⎛

⎝(xi
k + si,i

k ) · yi
k +

∑

j �=i

(ai, j
k + bi, j

k ) + ρi
k

⎞

⎠

=
n∑

i=1

xi
k · yi

k +
n∑

i=1

⎛

⎝yi
k · si,i

k +
∑

j �=i

(ai, j
k + b j,i

k )

⎞

⎠

=
n∑

i=1

xi
k · yi

k +
n∑

i=1

⎛

⎝yi
k · si,i

k +
∑

j �=i

yi
k · (x j

k + s j,i
k )

⎞

⎠
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= xk · yk +
n∑

i=1

yi
k ·

n∑

j=1

s j,i
k

= xk · yk

where the second line above holds because
∑

i ρi
k = 0, and the final line uses

∑
j s j,i

k =
0.

Now, to see that (zi
k)i are uniformly random, subject to the above, notice that the

masks (ρi
k)

n−1
i=1 are uniformly random in the protocol, so the same is true of (zi

k)
n−1
i=1 .

This completes the claim. �

We next consider the entire view of the environment Z , which is the joint distribution
of all parties’ inputs and outputs, and the messages received by the adversary during the
protocol. Using vector notation, this is:

(xi , y j , zi , z j )i∈P(h), j∈P(1)
, (ρi , si, j , ai, j )i∈A∩P(h), j∈P(1)

,

(ρ j , b j,i , ui, j ,Hi, j )i∈P(h), j∈P(1)∩A

First note that the ρτ , τ ∈ P(h) ∪P(1) and si, j shares, for i ∈ P(h) ∩ A, j ∈ P(1) \ A,
are uniformly random in both executions, since the environment never sees the honest
parties’ shares. Secondly, recall that in the simulation, ai, j for corrupt Pi and honest
Pj ) and b j,i (for corrupt Pj and honest Pi ) are computed uniformly at random, and this
is identically distributed to the values in the protocol sampled by FLeaky-2-Mult, because
the outputs of the honest party in that instance are not seen by Z . Also, notice that when
Pj is corrupt, S computes Hi, j exactly as in the real protocol, because S knows Pj ’s
input y j .

This leaves the {ui, j }i∈P(h)\A, j∈P(1)∩A values, which are the main challenge, because
the simulation computes these with random values, whilst the real execution uses the
honest Pi ’s inputs, computing ui, j = Hi, j ei, j + xi + si, j for a random unit vector
ei, j . Let Pi1 , . . . , Pih be the honest parties in P(h). Because the si, j values are random
shares of zero, it holds that the partial views containing the entire transcript except
for (ui1, j ) j∈P(1)∩A are identically distributed. This is because for Pj ∈ P(1) ∩ A, the
masks si2, j , . . . , sih , j in the protocol are random and independent of the view of Z ,
which makes the corresponding ui2, j , . . . , sih , j values distributed the same as in the
simulation.

Once we include ui1, j , however, these values are no longer independent because∑n
i∈P(h)

si, j = 0. We therefore look at the distribution of
∑h

k=1 u
ik , j , for some fixed

j ∈ P(1) ∩ A. In the protocol, we have

∑

i∈P(h)\A

ui, j =
∑

i∈P(h)\A

(xi + si, j +Hi, j ei, j )

for some random, weight-1 vector ei, j . In the simulation, all of the ui, j ’s are uniformly
random.
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Since Z can compute
∑

i∈P(h)\A(xi + si, j ) with the information it already has, it
follows that distinguishing the two executions requires distinguishing

Hi ei := (
Hi1, j‖Hi2, j‖ · · · ‖Hih , j )

⎛

⎜⎜⎜⎝

ei1, j

ei2, j

...

eih , j

⎞

⎟⎟⎟⎠

and the uniform distribution on r bits (given Hi ).
We claim that this corresponds exactly to solving the DRSDr,h,� problem, because Hi

is uniformly distributed in F
r×2�h
2 and ei is a uniformly random, 1-regular error vector

of weight h.

Lemma 4.4. Any environment distinguishing the real and ideal executions with advan-
tage δ can be used to breakDRSDr,h,� with advantage at least δ/t (where t = |P(1)∩A|).

Proof. Assume w.l.o.g. that the corrupted parties in P(1) are indexed P1, . . . , Pt . We
construct a sequence of hybrid executions, HYB0, . . . ,HYBt , where hybrid HYB0 is
identical to the simulation. In hybrid HYB j ′ , instead of the simulator sampling ui, j (for
j ≤ j ′, i ∈ P(h) \ A) at random, we replace this with the real ui, j generated using Pi ’s
inputs as in the protocol. The final hybrid HYBt is therefore identically distributed to
the real execution.

Let A be an adversary for which the environment Z distinguishes between HYB j ′
and HYB j ′+1 with advantage δ, for some index j ′ < t . We construct a distinguisher

D for DRSDr,h,� as follows. D receives a DRSD challenge H j ′ ∈ F
r×h2�

2 , c j ′ ∈ F
r
2.

Write H j ′ = (Hi1, j ′ ‖Hi2, j ′ ‖ · · · ‖Hih , j ′), where each Hik , j ′ ∈ F
r×2�

2 . Now, D simulates
an execution of ΠTriple with A as S would, with the following differences.

– D samples a set of honest parties’ shares, (xi , yi , zi )i /∈A which, together with the
corrupt parties’ shares known to D, form correct triples.

– Instead of sampling the function Hi in the CRS at random, sample it such that for
every k ∈ [h], the matrixHik , j ′ , sent later to the corrupt Pj ′ , is equal to the challenge
matrix Hik , j ′ . (The remainder of the CRS is sampled at random.)

– Instead of sampling the leakage terms uik , j ′ (for k ∈ [h]) uniformly and indepen-
dently, sample them at random such that

∑
i∈P(h)

(ui, j ′ + xi ) = c j ′ .

– For each j < j ′, instead of sampling uik , j ′ uniformly, compute them as in the real
protocol using the honest parties’ shares and shares of zero.

To conclude, D sends all the output shares to Z and outputs the same as Z .
If the challenge (H j ′ , c j ′) comes from the DRSD distribution, then the uik , j ′ values

are distributed as in a real execution, so we are in hybrid HYB j ′+1. On the other hand,
if c j ′ is uniformly random, then so are the uik , j ′ , so we are in HYB j ′ . Therefore, the
advantage of D is δ, the same as that of Z . A standard hybrid argument then shows that
there exists a distinguisher for HYB0 and HYBt , which has advantage at least δ/t . �
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4.2.4. Parameters for Unconditional Security

Recall from Lemma 3.4 and Corollary 3.6 that if � = 1 and h ≥ r + s, or if h ≥
(r + 2s)/� for any �, then DRSDr,h,� is statistically hard, with statistical security 2−s .
This means when h is large enough, we can use 1-bit keys, and every pair of parties who
communicates only needs to send 2 + κ/r bits over the network.2

4.2.5. MPC Using Multiplication Triples

Our protocol for multiplication triples can be used to construct a semi-honest MPC
protocol for binary circuits using Beaver’s approach [9]. The parties first secret-share
their inputs between all other parties. Then, XOR gates can be evaluated locally on the
shares, whilst an AND gate requires consuming a multiplication triple, and two openings
with Beaver’s method. Each opening can be done with 2(n − 1) bits of communication
as follows: all parties send their shares to P1, who sums the shares together and sends
the result back to every other party.

In the 1-bit key case mentioned above, using two (deterministic) committees of sizes
n and t +1 and setting, for instance, r = κ implies the following corollary. Note that the
number of communication channels is (t + 1)(n − 1) and not (t + 1)n, because in the
deterministic case P(1) is contained in P(h), so t + 1 sets of the shared cross-products
can be computed locally.

Corollary 4.5. Assuming OT and a correlation-robust function, there is a semi-honest
MPC protocol for binary circuits with an amortized communication complexity of no
more than 3(t +1)(n−1)+4(n−1) bits per AND gate, if there are at least κ + s honest
parties.

Remark 4.6. We can obtain a feasibility result from OWF instead of a correlation-
robust function, by using standard OT instead of OT extension. This comes at the cost
of replacing κ with the communication complexity of the OT protocol.

4.3. Optimization with Vandermonde Matrices

In this section, we show how to optimize our triple generation protocol using Vander-
monde matrices. As we will see in Sect. 6, this approach is particularly convenient
when the number of honest parties is small and allows to avoid relying on the DRSD
assumption.

The high level idea is to replace the random choice of hash functions used in the pre-
vious protocol with deterministically chosen functions based on Vandermonde matrices.
We show that the variant of regular syndrome decoding induced by this choice is per-
fectly secure, so we can plug the new functions directly into protocol ΠTriple (Fig. 6)
and improve the efficiency.

2Note that we still need computational assumptions for OT and zero sharing in order to implement
FLeaky-2-Mult and FZero.
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We redefine the functions Hi , as follows. Let � ≥ log n and v1, . . . , vn be distinct
points in F2� . Let r = � · h, and let V ∈ F

n×h
2� be the Vandermonde matrix given by

V =

⎛

⎜⎜⎜⎝

1 v1 · · · vh−1
1

1 v2 · · · vh−1
2

...
. . .

. . .
...

1 vn · · · vh−1
n

⎞

⎟⎟⎟⎠

and let vi be the i-th row of V.
Define the hash functions Hi : [r ] × {0, 1}� → {0, 1}, for i = 1, . . . , n, so that

Hi ( j, x) outputs the j-th bit of x · vi ∈ F
h
2� , where we expand x · vi into a vector in

F
�×h
2 .
The following lemma implies perfect security of the variant of the RSD problem,

where the (r × h2�) matrix H contains Hi ( j, k) in entry ( j, i · 2� + k).

Lemma 4.7. LetH be a size-h subset of [n]. For Δi ← {0, 1}�, i ∈ [n], the distribution
of

U =
∑

i∈H
(Hi (1,Δi ), . . . ,Hi (r,Δi ))

is uniform in {0, 1}r .

Proof. From the definition of Hi , we have

U =
∑

i∈H
Δi · vi = (Δ1, . . . , Δn) · VH

where VH denotes the restriction of V to rows with indices in H. Since V is a Vander-
monde matrix, any square matrix formed by taking h rows of V is invertible. Hence, U
is uniformly distributed since VH is a bijection. �

With this technique, we can use �-bit keys to produce r = � · h triples in one go.
Just as with the DRSD-based protocol, the cost of producing the initial correlated OTs
is �(r + κ) bits of communication per pair of parties, with a further r bits for the leaky
OT protocol. Using two committees of size n1 and n2, the overall communication cost
per triple (from Theorem 4.2) is no more than

n1n2(� + �κ/r + 1) = n1n2(� + κ/h + 1)

Recall that the only constraint on the above parameters is that � ≥ log n, since we
need |F2� | ≥ n for the Vandermonde matrix to exist. Therefore, choosing � = log n we
obtain the following.
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Theorem 4.8. Assuming OT and a correlation-robust hash function, there is a semi-
honest MPC protocol for binary circuits with an amortized communication complexity
of no more than (t + 1)(n − 1)(log n + κ/(n − t) + 1) + 4(n − 1) bits per AND gate.

When h is very large, this is not as efficient as the previous case where we could
have � = 1, but for more reasonable sizes of h we can achieve much smaller keys than
previously, as we show in Sect. 6.

5. Multi-Party Garbled Circuits with Short Keys

In this section, we present our second contribution: a constant-round MPC protocol
based on garbled circuits with short keys. The protocol has two phases, a preprocessing
phase independent of the parties’ actual inputs where the garbled circuit is mutually
generated by all parties, and an online phase where the computation is performed. We
first abstractly discuss the details of our garbling method and then, turn to the two
protocols for generating and evaluating the garbled circuit.

5.1. The Multi-Party Garbling Scheme

Our garbling method is defined by the functionality F�BMR
Preprocessing (Fig. 7), which creates

a garbled circuit that is given to all the parties. It can be seen as a variant of the multi-
party garbling technique by Beaver, Micali and Rogaway [20], known as BMR, which
has been used and improved in a recent sequence of works [14,45,54,55].

The main idea behind BMR is that every party Pi contributes a pair of keys ki
w,0, ki

w,1 ∈
{0, 1}κ and a share of a wire mask λi

w ∈ {0, 1} for each wire w in the circuit. To
garble a gate, the corresponding output wire key from every party is encrypted under the
combination of all parties’ input wire keys, using a PRF or PRG, so that no single party
knows all the keys for a gate. In addition, the free-XOR property can be supported by
having each party choose their keys such that ki

w,0 ⊕ ki
w,1 = Δi , where Δi is a global

fixed random string known to Pi .
The main difference between our work and recent related protocols is that we use

short keys of length �BMR instead of κ , and then garble gates using a random, expanding
function H : [n] × {0, 1} × {0, 1}�BMR → {0, 1}n�BMR+1. Instead of basing security on
a PRF or PRG, we then reduce the security of the protocol to the pseudorandomness
of the sum of H when applied to each of the honest parties’ keys, which is implied by
the DRSD problem from Sect. 3. We also use H′ to denote H with the least significant
output bit dropped, which we use for garbling splitter gates.

To garble an AND gate g with input wires u, v and output wire w, each of the 4
garbled rows g̃a,b, for (a, b) ∈ {0, 1}2, is computed as:

g̃a,b =
(

n⊕

i=1

H(i, b, ki
u,a) ⊕ H(i, a, ki

v,b)

)
⊕ (c, k1

w,c, . . . , kn
w,c), (2)
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Fig. 7. Multi-party garbling functionality .

where c = (a ⊕ λu) · (b ⊕ λv) ⊕ λw and λu, λv, λw are the secret-shared wire masks.
Each row can be seen as an encryption of the correct n output wire keys under the
corresponding input wire keys of all parties. Note that, for each wire, Pi holds the keys
ki

u,0, ki
u,1 and an additive share λi

u of the wire mask. The extra bit value that H takes
as input is added to securely increase the stretch of H when using the same input key
twice, preventing a ‘mix-and-match’ attack on the rows of a garbled gate. Namely, when
mixing the rows of a garbled gate which implies that an incorrect output key is decrypted.
The output of H is also extended by an extra bit, to allow encryption of the output wire
mask c.3

3This only becomes necessary when using short keys—in BMR with full-length keys the parties can
recover the wire mask by comparing the output with their own two keys, but this does not work if collisions
are possible.
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5.1.1. Splitter Gates

When relying on the DRSD problem, the reuse of a key in multiple gates degrades
parameters and makes the problem easier (as the parameter r grows, the key length must
be increased), so we cannot handle circuits with arbitrary fan-out. For this reason, we
restrict our exposition of the garbling to fan-out-one circuits with so-called splitter gates.
This type of gate takes as input a single wire w and provides two output wires u, v, each
of them with fresh, independent keys representing the same value carried by the input
wire. Converting an arbitrary circuit to use splitter gates incurs a cost of roughly a factor
of two in the circuit size (see below)

Splitter gates were previously introduced in [69] as a fix for a similar issue in the
original BMR paper [20], where the wire “keys” were used as seeds for a PRG in order
to garble the gates, so that when a wire was used as input to multiple gates, their garbled
versions did not use independent pseudorandom masks. Other recent BMR-style papers
avoid this issue by applying the PRF over the gate identifier as well, which produces
distinct, independent PRF evaluations for each gate.

5.1.2. Free-XOR

The Free-XOR [51] optimization results in an improvement in both computation and
communication for XOR gates where a global fixed random Δi is chosen by each party
Pi and the input keys are locally XORed, yielding the output key of this gate. We cannot
use the standard free-XOR technique [14,51] for the same reason discussed above:
reusing a single offset across multiple gates would make the DRSD problem easier and
not be secure. We therefore introduce a new free-XOR technique (inspired by FleXOR
[50]) which, combined with our use of splitter gates, allows garbling XOR gates for
free without additional assumptions. For each arbitrary fan-in XOR gate g, each party
chooses a different offset Δi

g , allowing for a free-XOR computation for wires using keys
with that offset. For general circuits, this would normally introduce the problem that the
input wires may not have the correct offset, requiring some ‘translation’ to Δg . However,
because we restrict to gates with fan-out-one and splitter gates, we know that each input
wire to g is not an input wire to any other gate, so we can always ensure the keys use
the correct offset without any further changes.

5.1.3. Compiling to Fan-out-one Circuits with Splitter Gates

Let C f be an arbitrary fan-out circuit, with A AND gates and X XOR gates, both with
fan-in-two. Let IC f and OC f be the number of circuit-input and circuit-output wires,
respectively. We will now compute the number S of splitter gates that the compiled
circuit needs. First, note that each time a wire w is used as input to another gate or as
a circuit-output wire, w’s fan-out is increased by one. Each of the AND, XOR gates in
the pre-compiled circuit provides a fresh output wire to be used in C f , while using for
its inputs two pre-existing wires in the circuit. Output wires also use one pre-existing
wire each, while input wires use no pre-existing wires. This means that, to compile C f

to be a fan-out-one circuit, we need to add up to (2 · X + 2 · A + OC f )− (A + X + IC f )

wires. Each of these missing wires, however, can be created by using a splitter gate in the
compiled circuit, since each of these gates uses one wire to generate two fresh new wires.
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Fig. 8. Secret-shared bit multiplication functionality .

Fig. 9. Secret-shared bit/string multiplication functionality .

So, putting all the pieces together, the compiled circuit requires S ≤ X + A+OC f − IC f

splitter gates. This gives a close upper bound, as if w is a circuit output wire and an input
wire of another gate, then it is being counted twice rather than once in the formula.

5.2. The Preprocessing Protocol

Our protocol for generating the garbled circuit is shown in Fig. 10. We use two func-
tionalities FBit×Bit (Fig. 8) and FBit×String(Pj ) (Fig. 9) for multiplying two additively
shared bits, and multiplying an additively shared bit with a string held by Pj , respec-
tively. FBit×Bit can be easily implemented using a multiplication triple from FTriple in
the previous section, whilst FBit×String uses a variant of the ΠTriple protocol optimized
for this task. We provide more details on how to best implement the latter functionality
in Sect. 5.3.

Most of the preprocessing protocol is similar to previous works [14,45], where first
each party samples their sets of wire keys and shares of wire masks, and then, the parties
interact to obtain shares of the garbled gates. It is the second stage where our protocol
differs, so we focus here on the details of the gate garbling procedures (Fig. 10).

5.2.1. The Gate Garbling Protocol

We describe the details of the sub-protocol Π
�BMR
GateGarbling (Fig. 11), implementing the

gate garbling phase of F�BMR
Preprocessing. Creating garbled AND gates is done similarly to the

OT-based protocol [14], with the exception that we use short wire keys of length �BMR

instead of κ . We also show how to create sharings of garbled splitter gates without any
interaction, so these are much cheaper than AND gates.

Suppose that for an AND gate g, each Pi holds the wire mask share λi
v and keys

ki
v,0, ki

v,1 ← {0, 1}�BMR . Pi defines Ri
g = ki

w,0 ⊕ ki
w,1. After that all parties call FBit×Bit

once to compute additive shares of λuv = λu ·λv ∈ {0, 1}, which are then used to locally
compute shares of χg,a,b = (a ⊕ λu) · (b ⊕ λv) ⊕ λw, for each (a, b) ∈ {0, 1}2. Each
Pi obtains χ i

g,a,b such that χg,a,b = ⊕i∈[n]χ i
g,a,b. To compute shares of the products

χg,a,b · Ri
g , the parties call F�BMR

Bit×String(Pi ) three times, for each i ∈ [n], to multiply Ri
g
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Fig. 10. The preprocessing protocol that realizes F�BMR
Preprocessing .

Fig. 11. The gate garbling sub-protocol .
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with each of the bits λu, λv, (λuv ⊕ λw). These can then be used for each Pj to locally
obtain the shares (χg,a,b · Ri

g)
j , for all (a, b) ∈ {0, 1}2 (just as in [14]).

After computing the bit/string products, Pj then computes for each (a, b) ∈ {0, 1}2:

ρ
j
i,a,b =

{
(χg,a,b · Ri

g)
j j �= i

ki
w,0 ⊕ (χg,a,b · Ri

g)
i j = i.

These values define shares of χg,a,b · Ri
g ⊕ki

w,0. Finally, each party’s share of the garbled
AND gate is obtained as:

g̃i
a,b = H(i, b, ki

u,a) ⊕ H(i, a, ki
v,b) ⊕ (χ i

g,a,b, ρ
i
1,a,b, . . . , ρ

i
n,a,b), a, b ∈ {0, 1}

Summing up these values, we obtain:

⊕

i

g̃i
a,b =

⊕

i

H(i, b, ki
u,a) ⊕ H(i, a, ki

v,b) ⊕ (χ i
g,a,b, ρ

i
1,a,b, . . . , ρ

i
n,a,b)

=
n⊕

i=1

(H(i, b, ki
u,a) ⊕ H(i, a, ki

v,b)) ⊕ (c, k1
w,c, . . . , kn

w,c),

where c = χg,a,b, as required.
To garble a splitter gate, we observe that here there is no need for any secure multipli-

cations within MPC, and the parties can produce shares of the garbled gate without any
interaction. This is because the two output wire values are the same as the input wire
value, so to obtain a share of the encryption of the two output keys on wires u, v with
input wire w, party Pi just computes:

(H′(i, 0, ki
w,c),H

′(i, 1, ki
w,c)) ⊕ (0, . . . , ki

u,c, 0, . . . , ki
v,c, 0, . . . , 0)

for c ∈ {0, 1}, where the right-hand vector contains Pi ’s keys in positions i and n+i . The
parties then re-randomize this sharing with a share of zero from FZero, so that opening
the shares does not leak information on the individual keys.4

5.3. Protocols for Bit/String Multiplication

Even though we could implement F�BMR
Bit×String(Pj ) using FTriple, there are more efficient

ways to do so: One by building directly from FLeaky-2-Mult, and another using correlated
OT [7], as we are going to describe.

• Using FLeaky-2-Mult, we give protocol Π
r,�BMR
Bit×String in Fig. 13. Here, we multiply each

bit of the length-�BMR string with every share using leaky-OT.

4For AND gates, the shares output by F�BMR
Bit×String are uniformly random, so do not need re-randomizing

with sharings of zero.
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Fig. 12. Batch secret-shared bit/string multiplication between Pj and all parties .

Fig. 13. n-party secret-shared bit/string multiplication using leaky 2-party multiplication .

This is similar to our triple generation protocol ΠTriple (Sect. 4), except that since
the �BMR-string is not secret-shared but known to one party, we only need to perform
�BMR(n − 1) invocations of FLeaky-2-Mult in order to multiply it with a secret-shared
bit x = x1 + · · · + xn . The protocol uses random shares of zero to mask the inputs
and outputs of FLeaky-2-Mult, similarly to ΠTriple.

Note that this does not directly implement the functionality F�BMR
Bit×String(Pj ) shown

in Fig. 9, because Π
r,�BMR
Bit×String performs a batch of r independent multiplications

in parallel. However, in the protocol Π
�BMR
Preprocessing all the gates can be garbled in

parallel, so a batch version of the functionality (as described in Fig. 12) suffices.
• Alternatively, we can do the secret-shared multiplication using n − 1 (non-leaky)

correlated OTs of length �BMR (one between Pj and every other party), for example
using the protocol from [7].

5.3.1. Communication Complexity

First, we consider the communication complexity of Π
r,�BMR
Bit×String described in Fig. 13.

We note that in this case the communication complexity is exactly that of (n − 1)�BMR

instances of Fr,�OT
Leaky-2-Mult, where �OT is the leakage parameter used in the protocol

Π
r,�OT
Leaky-2-Mult. Note that �OT is independent of �BMR used in the bit/string protocol, but

affects the security and cost of realising FLeaky-2-Mult. The total complexity is then
(n −1)�BMR(�OT(r +κ)+r) bits, or an amortized cost of (n −1)�BMR(�OT +�OTκ/r +1)

bits per multiplication, as discussed in Sects. 4.1 and 4.2.
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The alternative instantiation of F�BMR
Bit×String(Pj ) using (non-leaky) correlated OTs

requires to invoke them n − 1 times. With the protocol from [7], each correlated OT
has an amortized communication complexity of κ + �BMR bits. Hence, the amortized
communication complexity of this approach is (n − 1)(κ + �BMR) bits.

Which of the two proposed implementations is more efficient depends on the key
lengths �BMR and �OT.

Theorem 5.1. Protocol Π
r,�BMR
Bit×String UC-securely realizes Fr,�BMR

Bit×String in the F2r
Zero-

hybrid in the presence of static honest-but-curious adversaries, under the DRSDr,h,�OT

assumption.

The proof is a direct extension of the proof of Theorem 4.2.

5.4. Security and Complexity

The above approach reduces size of the garbled circuit by a factor κ/�BMR, for �BMR-bit
keys, but still requires n keys for every row in the garbled gates. Similarly to Sect. 4,
when n is large we can reduce this by using a (random) committee P(h) of size nh that
has at least h honest parties. Π�BMR

Preprocessing and Π
�BMR
BMR are then run as if called only by the

parties in P(h). For circuit-input wires w where parties in P \ P(h) provide input, they
are sent the masks λw in Π

�BMR
Preprocessing, so in Π

�BMR
BMR (Fig. 14) they can then broadcast

Λw = ρi
w ⊕ λw in the same way as parties in P(h).

This reduces the size of the garbled circuit by an additional factor of n/nh . Finally,
the same committee P(h) can be combined with a (random) committee P(1) with a single
honest party in order to optimize the bit multiplications needed to compute the χg,a,b

values, as is described in Sect. 4.
In Sect. 6, we give some examples of committee sizes and key lengths that ensure

security and compare this with the naive approach of running the preprocessing phase
of BMR in P(1) only.

Theorem 5.2. Protocol Π
�BMR
Preprocessing UC-securely realizes the functionality

F�BMR
Preprocessing with perfect security in the (FBit×Bit,F�BMR

Bit×String,F2n�BMR
Zero )-hybrid model

in the presence of static honest-but-curious adversaries.

Proof. Let A denote a PPT adversary corrupting a subset of parties A ⊂ [n], then we
prove that there exists a PPT simulator S that simulates the adversary’s view. In the
following, we denote by Ā the set of honest parties. When we say that the simulator is
given some value, we mean that it receives it from F�BMR

Preprocessing.

5.4.1. The Description of the Simulation

Denote by W and OC f , respectively, the set of wires and the set of circuit-output wires
of a Boolean circuit C f . Denote by IC f ,S the set of circuit-input wires of a circuit
where a subset of parties S ⊂ [n] provides input to the circuit. We assume w.l.o.g. that
A is a deterministic adversary, which receives as additional input a random tape that
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determines its internal coin tosses. Upon receiving A’s input (1κ , A, C f ) and output

({λw}w∈OC f
, {k j

v,0, k j
v,1} j∈A,v∈W , {λu}u∈IC f ,A ), S incorporates A and internally emu-

lates an execution of the honest parties running Π
�BMR
Preprocessing with the adversary A.

1. Circuit-input wires’ masks and keys: For every circuit-input wire u and for
j ∈ A, S samples from Pj ’s random tape the wire mask shares λ

j
u and the keys

k j
u,0, k j

u,1 that party is meant to obtain fromF�BMR
Preprocessing. If a corrupted Pj provides

input to the circuit on a given wire u, S samples {λi
u}i /∈A such that

⊕
i /∈A λi

u =
λu ⊕⊕

j∈A λ
j
u , where the value λu was received from F�BMR

Preprocessing. If it is a honest

party providing input on u, S samples {λi
u}i /∈A uniformly at random.

2. Intermediate wires’ masks and keys: Passing topologically through the gates
g of the circuit:

• For j ∈ A: If g ∈ AND, S samples λ
j
w ∈ {0, 1} from Pj ’s random tape. If

g ∈ SPLIT, it sets λ
j
x = λ

j
w for both output wires x = u, v. If g ∈ XOR, it

sets λ
j
w = ⊕

x∈I λ
j
x .

• For j /∈ A: If g ∈ AND, S samples λi
w. If g ∈ SPLIT, it sets λi

x = λi
w for

both output wires x = u, v. If g ∈ XOR, it sets λi
w = ⊕

x∈I λi
x .

• If x is a circuit-output wire, the simulator adjusts the value λx ∈ {0, 1} that
F�BMR

Preprocessing sends to the parties to be λx = ⊕
i /∈A λi

x ⊕⊕
j∈A λ

j
x .

3. Garble gates: For each g ∈ AND ∪ SPLIT:

• If g ∈ AND, let ug, vg be its input wires and wg its output wire. S emulates

FBit×Bit by sampling shares z j
g from Pj ’s random tape, for j ∈ A, and setting

random zi
g for i /∈ A such that

∑
i∈[n] zi

g = λug · λvg , where λug , λvg were

obtained from F�BMR
Preprocessing. S has now all the values to compute shares of

χg,a,b as χ i
g,a,b = a · b ⊕ b · λi

ug
⊕ a · λi

vg
⊕ zi

g ⊕ λi
wg

for i ∈ [n].
For j ∈ [n], S emulates three calls to F�BMR

Bit×String(Pj ) with inputs

{χ i
g,0,0, χ

i
g,0,1, χ

i
g,1,0} from every Pi and additional input R j

g from Pj , where

R j
g = k j

wg,0 ⊕ k j
wg,1. In each of these emulated calls and for i ∈ A, it computes

the corrupted parties’ output shares from Pi ’s random tape, while for i /∈ A it
samples random shares that sum to each of the values R j

g · χg,0,0, R j
g · χg,0,1

and R j
g · χg,1,0 as required.

• If g ∈ SPLIT, S emulates twice F2n�BMR
Zero by computing shares si

0, si
1 from Pi ’s

random tape for i ∈ A and setting s j
0 , s j

1 for j /∈ A such that
⊕

i∈[n] si
c = 0 for

c ∈ {0, 1}.
Setting the ρ and g̃ values is local computation.

4. Reveal input/output wires’ masks: For every circuit-output wire w, S adds
values λi

w, i /∈ A (previously computed in Step 2) to the view of each Pj , j ∈ A.
For every circuit-input wire u on which a Pj , j ∈ A, provides input, S adds the
{λi

u}i /∈A values it previously computed in Step 1 to Pj ’s view.
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5. Open Garbling: Using the adversary’s output {g̃}g∈AND∪SPLIT, S proceeds as
follows: If 1 ∈ A, it plays the role of each Pj , for j /∈ A, and sends to P1 the shares
{g̃ j }g∈AND∪SPLIT that it previously computed. Otherwise, the simulator plays the
role of P1 by sending {g̃}g∈AND∪SPLIT to each Pi , i ∈ A.

5.4.2. Indistinguishability

The wire keys and the (circuit-input and circuit-output) wire masks output by the func-
tionality F�BMR

Preprocessing are i.i.d. uniformly random variables in the real world too. In both
worlds and for the additional simulated values, the corrupted parties’ shares for the wire
masks, the bit products (FBit×Bit functionality) and bit/string products (F�BMR

Bit×String func-
tionality) needed to garble AND gates are fixed by A’s random tape, while the honest
parties’ shares of the same values are uniformly random additive shares. In particular,
this implies that shares g̃i

a,b of garbled AND gates are uniformly random additive shares
in both executions. The same applies to shares of garbled splitter gates, due to the use
of the F2n�BMR

Zero functionality in the real world. Regarding the Open Garbling step, if
1 /∈ A the reconstructed garbled circuit is identically distributed in both worlds. Else,
if 1 ∈ A, the adversary gets additive shares of the garbled circuit both in the real and
simulated executions, as we argued.

Finally, the distribution of the variables corresponding to additive shares, on the one
hand, and that of the i.i.d. variables, on the other hand, guarantees that the joint output
of all parties, together with the simulated/real view of corrupted parties, are identically
distributed in both worlds. More formally, let outputπ (x, κ) (resp. f (x)) be the output
of Π

�BMR
Preprocessing (resp. F�BMR

Preprocessing) on input x ∈ {0, 1}∗ from all parties and security
parameter κ . Let viewπ

A(x, κ) (resp. f A(x)) be the restriction of these outputs to the
set of corrupted parties A. We just proved that:

{(S(1κ , x, f A(x)), f (x))}x,κ,A ≈ {(viewπ
A(x, κ),outputπ (x, κ))}x,κ,A.

�

5.5. The Online Phase

We present the online phase of our protocol for multi-party garbled circuits with short
keys in Fig. 14. Given the previous description of the garbling phase, the online phase
is quite straightforward, where upon reconstructing the garbled circuit and obtaining
all input keys, the evaluation process is similar to [20]. As in that work, all parties
run the evaluation algorithm, which in our case involves each party computing just 2n
hash evaluations per gate. During evaluation, the parties only see the randomly masked
wire values, which we call “public values”, and cannot determine the actual values
being computed. Upon completion, the parties obtain the actual output using the output
wire masks revealed from F�BMR

Preprocessing. The security of the protocol reduces to the
DRSDr,h,�BMR problem, where �BMR is the key length, h is the number of honest parties,
and r is twice the output length of the function H (sampled by the CRS).

We remark that in practice, we may want to implement the random function H in the
CRS using fixed-key AES in the ideal cipher model, as is common for garbling schemes
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Fig. 14. Online phase of the constant-round MPC protocol .

based on free-XOR. In Appendix C.2, we show that this reduces the number of AES
calls from O(n2) in previous BMR protocols to O(n2�BMR/κ).

We conclude with the following theorem

Theorem 5.3. Let f be an n-party functionality {0, 1}nκ �→ {0, 1}κ and assume that
the DRSD2r,h,�BMR assumption (cf. Definition 3.3) holds, where r = n�BMR + 1. Then,
Protocol Π�BMR

BMR from Fig. 14 UC-securely computes f in the presence of a static honest-

but-curious adversary corrupting t = n − h parties in the F�BMR
Preprocessing-hybrid model.

Proof. We reduce security of the protocol to the extended double-key decisional-
RSD problem (Definition 3.11) with parameters (r, h, �), where r := n�BMR + 1. By
Lemma 3.12, this is reducible to DRSD2r,h,�.

LetA be a PPT adversary corrupting a subset of parties A ⊂ [n] such that |A| = n−h.
We prove that there exists a PPT simulator S, with access to an ideal functionality F
that implements f , which simulates the adversary’s view. The simulator fixes the CRS
as a random 2n · 2�BMR × 2n�BMR+1 matrix. A key kw for wire w is denoted as an active
key if it is observed by the adversary upon evaluating the garbled circuit. The remaining
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hidden key is denoted as an inactive key. An active path is the set of all active keys that
are observed throughout the garbled circuit evaluation.

Denoting the set of honest parties by Ā, our simulator S is defined below.

5.5.1. The Description of the Simulation

1. Initialization. Upon receiving the adversary’s input (1κ , A, xA) and output y,
S samples a i.i.d uniformly random tapes ri for each i ∈ A, incorporates A and
internally emulates an execution of the honest parties running Π

�BMR
BMR with the

adversary A. When we say that S chooses a value for some corrupted party, we
mean that it samples the value from that party’s random tape ri .

2. Preprocessing. S obtains the adversary’s input C f which is a Boolean circuit that

computes f with a set of wires W and a set of G gates, and emulates F�BMR
Preprocessing,

as follows:

– For every XOR gate g and i ∈ A, the simulator samples Δi
g ∈ {0, 1}�BMR .

– For every input wire u, the simulator chooses a random bit Λu ∈ {0, 1} and, for
every i ∈ Ā, an active key ki

u,Λu
∈ {0, 1}�BMR . Additionally, it chooses a key

ki
u,0 ∈ {0, 1}�BMR for every i ∈ A. Finally, and also for i ∈ A, if u is input to a

XOR gate g′ it sets ki
u,1 = ki

u,0 ⊕ Δi
g′ , otherwise it samples ki

u,1 ∈ {0, 1}�BMR .

The simulator continues the emulation of the garbling phase by computing an
active path of the garbled circuit that corresponds to the sequence of keys which
will be observed by the adversary. Importantly, S never samples the inactive keys
ki

u,Λ̄u
, ki

v,Λ̄v
and ki

w,Λ̄w
for i ∈ Ā in order to generate the garbled circuit.

– Active path generation of XOR gates. For every XOR gate g with input a
set of wires I and an output wire w,

• S sets Λw = ⊕
x∈I Λx .

• Next, for i ∈ A it sets ki
w,0 = ⊕

x∈I ki
x,0 and ki

w,1 = ki
w,0 ⊕ Δi

g .

• Finally, for i ∈ Ā the simulator sets ki
w,Λw

= ⊕
x∈I ki

x,Λx
.

– Active path generation of AND gates. For every AND gate g with input
wires I = {u, v} and an output wire w, S samples a random Λw ∈ {0, 1} and
honestly generates the entry in row (Λu,Λv), where Λu (resp. Λv) is the public
value associated with the left (resp. right) input wire to g. Namely, the simulator
computes

g̃Λu ,Λv =
(

n⊕

i=1

H(i,Λv, ki
u,Λu

) ⊕ H(i,Λu, ki
v,Λv

)

)
⊕ (Λw, k1

w,Λw
, . . . , kn

w,Λw
).

The remaining three rows are sampled uniformly at random from {0, 1}n�BMR+1.
– Active path generation of splitter gates. For every splitter gate g with

an input wire I = {w} and output wires O = {u, v}, S sets Λx = Λw for every
x ∈ O and honestly generates the entry in row Λw, where Λw is the public
value associated with the input wire to g. Namely, the simulator computes
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g̃Λw =
(

n⊕

i=1

H′(i, 0, ki
w,Λw

),

n⊕

i=1

H′(i, 1, ki
w,Λw

)

)

⊕
(

k1
u,Λu

, . . . , kn
u,Λu

, k1
v,Λv

, . . . , kn
v,Λv

)
.

The remaining row is sampled uniformly at random from {0, 1}2n�BMR .
– Setting the translation table. For every output wire w ∈ W returning

the i th bit of y, the simulator sets λw = Λw ⊕ yi . For all input wires w ∈ W ′′
that are associated with the i th bit of xA (the adversary’s input), the simulator
sets λw = Λw ⊕ xA,i . The simulator forwards the adversary the λw value for
every output wire w ∈ W and every circuit-input wire w ∈ W ′′ associated
with a corrupted party. It completes the emulation of F�BMR

Preprocessing by adding
the complete garbled circuit to the view of each corrupted party.

3. Online computation. In the online computation, the simulator adds to the view
of every corrupted parity the public values {Λw}w∈W ′ that are associated with the
honest parties’ input wires W ′. The simulator adds the honest parties’ input keys
{ki

w,Λw
}i∈ Ā,w∈W ′ to the view of each corrupted party.

This concludes the description of the simulation. Note that the difference between
the simulated and the real executions is regarding the way the garbled circuit is
generated. More concretely, the simulated garbled gates include a single row that
is properly produced, whereas the remaining three rows are picked at random.

Let HYB
F�BMR

Preprocessing

Π
�BMR
BMR ,A,Z (1κ , z) denote the output distribution of the adversary A and

honest parties in a real execution using Π
�BMR
BMR with adversary A. Moreover, let

IDEALF ,S,Z (1κ , z) denote the output distribution of S and the honest parties in an
ideal execution.

We prove that the ideal and real executions are indistinguishable. �

Lemma 5.4. The following two distributions are computationally indistinguishable:

– {HYB
F�BMR

Preprocessing

Π
�BMR
BMR ,A,Z (1κ , z)}κ∈N,z∈{0,1}∗

– {IDEALF ,S,Z (1κ , z)}κ∈N,z∈{0,1}∗

Proof. We begin by defining a slightly modified simulated execution H̃YB, where
the generation of the garbled circuit is modified so that upon receiving the parties’
inputs {δi }i∈[n] the simulator S̃ first evaluates the circuit C f , computing the actual bit
δw to be transferred via wire w for all w ∈ W , where W is the set of wires of C f .
It then chooses wire mask shares and wire keys as in the description of functionality
F�BMR

Preprocessing from Fig. 7. Finally, S̃ fixes the active key for each wire w ∈ W to be

(k1
w,δw⊕λw

, . . . , kn
w,δw⊕λw

). The rest of this hybrid is identical to the simulation. This
hybrid execution is needed in order to construct a distinguisher for the Extended Double-
Key RSD assumption.
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Let H̃YB
F�BMR

Preprocessing

Π
�BMR
BMR ,A (1κ , z) denote the output distribution of the adversaryA and honest

parties in this game. It is simple to verify that the adversary’s views in H̃YB and IDEAL
are identical, as in both cases the garbling of each gate includes just a single row that
is correctly garbled and the public value associated with each wire w is independent of
�BMRw.

Our proof of the lemma follows by a reduction to the Extended Double-Key RSD
hardness assumption (cf. Definition 3.11). Assume by contradiction the existence of an
environment Z , an adversary A and a non-negligible function p(·) such that

∣∣ Pr[Z(HYB
F�BMR

Preprocessing

Π
�BMR
BMR ,A,Z (1κ , z)) = 1] − Pr[Z(H̃YB

Π
�BMR
BMR ,A,Z (1κ , z)) = 1]∣∣ ≥ 1

p(κ)

for infinitely many κ’s where the probability is taken over the randomness of Z as
well as the randomness for choosing the Λ values and the keys. Then, we construct a
PPT distinguisher D for the Extended Double-Key RSD assumption that distinguishes
between an instance of the form

⎛

⎝H,
⊕

i∈ Ā

H(i, 0, ki ),
⊕

i∈ Ā

H(i, 0, k′
i ),

⊕

i∈ Ā

H(i, 1, ki ),
⊕

i∈ Ā

H(i, 1, k′
i )

⎞

⎠

and five random elements, for some subset Ā of [n] of size h (that corresponds to the
set of honest parties) with probability at least 1

p(κ)·|C| via a sequence of hybrid games
{HYBi }i∈[|C|], where C = SPLIT∪AND. In more details, we define hybrid HYBi as a
hybrid execution with a simulator Si that garbles the circuit as follows. The first i gates
in the topological order are garbled as in the simulation, whereas the remaining |C | − i
gates are garbled as in the real execution. Note that HYB0 is distributed as hybrid HYB
and that HYB|C| is distributed as H̃YB. Therefore, if HYB and H̃YB are distinguishable
with probability 1

p(κ)
, then there exists τ ∈ [|C |] such that hybrids HYBτ−1 and HYBτ

are distinguishable with probability at least 1
p(κ)·|C| . Next, we formally describe our

reduction to the Extended Double-Key RSD hardness assumption. Upon receiving a tuple
(H, H̃0, H̃′

0, H̃1, H̃′
1) that is distributed according to the first or the second distribution, a

subset Ā of [n] that denotes the set of honest parties, an index τ and the environment’s
input z, distinguisher D internally invokes Z and simulator S. In more details,

– D internally invokes Z that fixes the honest parties’ inputs ρ.
– D emulates the communication with the adversary (controlled by Z) in the initial-

ization, preprocessing and garbling steps as in the simulation with S.
– For each wire u, let δu ∈ {0, 1} be the actual value on wire u. Note that these values,

as well as the output of the computation y, can be determined since D knows the
actual input of all parties to the circuit.

– For each wire u in the circuit and i ∈ A, D chooses a pair of keys ki
u,0, ki

u,1 ∈
{0, 1}�BMR , whereas for all i ∈ Ā it samples a random key ki

u,Λu
∈ {0, 1}�BMR . D

further fixes the public value Λu = λu ⊕ δu .
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– D then garbles the circuit as follows.

• For every g j ∈ AND with input wires u and v and output wire w, D continues
as follows. If j < τ , then D garbles g j exactly as in the simulation with S̃. If
j = τ , then D first honestly computes the (Λu,Λv)-th row by fixing

g̃Λu ,Λv =
(

n⊕

i=1

H(i,Λv, ki
u,Λu

) ⊕ H(i,Λu, ki
v,Λv

)

)
⊕ (c, k1

w,Λw
, . . . , kn

w,Λw
)

where c = Λw.
Next, D samples an inactive key ki

w,Λ̄w
for all i ∈ Ā and fixes the remaining three rows

as follows.

g̃Λu ,Λ̄v
=
(

n⊕

i=1

H(i, Λ̄v, ki
u,Λu

) ⊕
(⊕

i∈A

H(i,Λu, ki
v,Λ̄v

)

)
⊕ H̃′

Λu

)

⊕ (c, k1
w,c, . . . , kn

w,c), where c = Λu · Λ̄v ⊕ Λw ⊕ δw

g̃Λ̄u ,Λv
=
(
⊕

i∈A

H(i,Λv, ki
u,Λ̄u

) ⊕ H̃Λv ⊕
( n⊕

i=1

H(i, Λ̄u, ki
v,Λv

)

))

⊕ (c, k1
w,c, . . . , kn

w,c), where c = Λ̄u · Λv ⊕ Λw ⊕ δw

g̃Λ̄u ,Λ̄v
=
(
⊕

i∈A

H(i, Λ̄v, ki
u,Λ̄u

) ⊕ H̃Λ̄v
⊕
(⊕

i∈A

H(i, Λ̄u, ki
v,Λ̄v

)

)
⊕ H̃′

Λ̄u

)

⊕ (c, k1
w,c, . . . , kn

w,c), where c = Λ̄u · Λ̄v ⊕ Λw ⊕ δw.

Finally, if j > τ , then D garbles g j exactly as in hybrid HYB. For that, D needs to know
both active and inactive keys. It therefore chooses the inactive keys that are associated
with the input and output wires of this gate for i ∈ Ā, in order to be able to complete the
garbling. Recall that the circuit is with fan-out 1. Therefore, the distinguisher can choose
the inactive key for the input wire of this gate (as it was not used as an input wire to gate
gτ ).

• For every g j ∈ SPLIT with input wire w and output wires u, v, D completes the garbling
as follows.
If j < τ , then D garbles g j exactly as in the simulation with S̃.
If j = τ , then D first honestly computes the Λwth row by fixing

g̃Λw =
(

n⊕

i=1

H(i, 0, ki
w,Λw

) ⊕ H(i, 1, ki
w,Λw

)

)
⊕ (k1

u,Λu
, . . . , kn

v,Λv
).

Next, it samples inactive keys ki
u,Λ̄Λ̄u

, ki
v,Λ̄v

for all i ∈ Ā and fixes the remaining row as
follows.

g̃Λ̄w
=
(
⊕

i∈A

H(i, 0, ki
w,Λ̄w

) ⊕ H̃0 ⊕
⊕

i∈A

H(i, 1, ki
w,Λ̄w

) ⊕ H̃1

)
⊕ (k1

u,Λ̄u
, . . . , kn

v,Λ̄v
).
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If j > τ , then D garbles g j as in hybrid HYB using a similar process as for the case of
an AND gate.

– This concludes the description of the reduction. Note that the set XOR need not
be part of these hybrids since we do not send any garbling information for this set
of gates. D hands the adversary the complete description of the garbled circuit and
concludes the execution as in the simulation with S̃.

– D outputs whatever Z does.

Note first that if (H̃0, H̃′
0, H̃1, H̃′

1) are truly uniform, then the view generated by D
is distributed as in HYBτ . This is because only the active path is created as in the
real execution, whereas the remaining rows are sampled uniformly at random from
the appropriate domain. On the other hand, if this tuple is generated according to the
following distribution

(
H,

⊕

i∈A

H(i, 0, ki ),
⊕

i∈A

H(i, 0, k′
i ),

⊕

i∈A

H(i, 1, ki ),
⊕

i∈A

H(i, 1, k′
i )

)

then this emulates game HYBτ−1, since each tuple element emulates an evaluation of
the hash values for the honest parties on the secret keys.

This completes the proof. �

6. Complexity Analysis and Implementation Results

We now compare the complexity of the most relevant aspects of our approach to the
state-of-the-art prior results in semi-honest MPC protocols with dishonest majority. To
demonstrate the practicality of our approach, we also present implementation results for
the online evaluation phase of our BMR-based protocol.

6.1. Threshold Variants of Full-Threshold Protocols

Since the standard GMW and BMR-based protocols allow for up to n − 1 corruptions,
we also show how to modify previous protocols to support some threshold t and compare
our protocols with these variants. The method is very simple (and similar to the use of
committees in our protocols), but does not seem to have been explicitly mentioned in
the previous literature. To evaluate a circuit C , all parties first secret-share their inputs to
an arbitrarily chosen committee P ′, of size t + 1. Committee P ′ runs the full-threshold
protocol for a modified circuit C ′, which takes all the shares as input, and first XORs
them together so that it computes the same function as C . The committee P ′ then sends
the output to all parties inP . The complexity of the threshold-t variant of a full-threshold
protocol, Π , is then essentially the same as running Π between t + 1 parties instead of
n.
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Table 1. Min key-length for BMR-style MPC with 128 bits of security for different n and h when r = 2�n+2
.

n 20 50 80 100 200 400
h 10 11 16 10 20 25 40 16 24 32 56 20 30 40 60 60 100 80 120 180

� Pra 19 18 13 21 13 11 8 32 12 10 7 14 11 9 7 8 6 8 7 6
� 32 29 18 > 32 27 16 8 > 32 30 17 8 > 32 25 15 8 14 8 11 8 6

6.2. Concrete Hardness of RSD and Our Choice of Parameters

In this section, we give an overview of how we select the key length � in our protocols
according to n, h, r , so that the corresponding RSDr,h,� instance is hard enough. See
“Appendix B” for a more detailed survey of known attacks and the techniques involved.
As discussed in Sect. 3, RSD is similar to the (standard) syndrome decoding problem,
where each component of the error vector is 0 or 1 with some constant probability, which
is equivalent to the problem of learning parity with noise (LPN).

The most efficient attacks on RSD are Information Set Decoding (ISD), introduced
by Prange in 1962 [64], Wagner’s Generalised Birthday Attack (GBA) [71], and the
Linearization Attack (LA) by Bellare et al. [18] and Saarinen [65]. We stress that the goal
of our analysis is to find a reasonable estimation of the complexity of these attacks; giving
a complete description of all possible decoding techniques and a precise evaluation of
their cost is out of the scope of this paper. In our analysis, we intentionally underestimate
the complexity of all the attacks, resulting in a conservative estimate of the security of
our protocols.

When considering the hardness of RSD instances, we need to distinguish the case
where the solution to the problem is unique and the case of multiple solutions. In the
first case, which always occurs for our BMR-style protocols, GBA essentially reduces to
the classical birthday attack and the most efficient attack is ISD. Classical information set
decoding algorithms do not take into account the possibility that the solution is regular. In
practice, when we estimate the cost of this attack, we consider the cost of both a tailored
regular variant of ISD, augmented with the Stern [67] and Finiasz and Sendrier [36]
techniques, and the more recent non-regular variant due to Becker et al. [12], and then,
we take the minimum of the two. We have also analysed more recent variants of ISD
[19,57]. More precisely, the values in the tables are obtained by considering all the cost
analysis performed in Sect. B and computing the key-values corresponding to the most
efficient attack according to Eqs. 3, 5, 7, 9 and 10.

In Table 1, we provide an estimation of the minimal key-length � for our BMR-style
protocols to achieve more than 128 bits of security for different values of n, h and
r = 2�n + 2. Note that we only consider � ≤ 32, so when in the table we have that �

should be larger than 32, it means that ISD cost less than 2128 for that set of parameters.
We also give an estimation of minimal key-length respect to the plain ISD attack to RSD
by Prange.

When an RSD instance has more than one solution—this is sometimes the case for
our GMW-style protocol—we need to consider also GBA and LA. Notice that since
there are many solutions, attacking regular SD with classical ISD is more difficult than
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Table 2. Min key-length for GMW-style MPC with 128 bits of security for different n and h .

h 15 20 30 40 50 80

r 300 1500 300 3000 300 2000 400 3000 450 1000 420 2500
� 14 26 11 32 8 16 7 15 6 8 4 8

Table 3. Amortized communication cost (in kbit) of producing a single triple in GMW for different values of
n and h.

# (parties n, honest), (�OT, r ) GMW (t = n − 1) GMW (t = n − h) Ours (DRSD or Vandermonde)

(10, 4), (4, 16) 6.03 2.81 2.59 (V)
(15, 6), (4, 24) 14.07 6.03 3.95 (V)
(30, 8), (5, 40), 58.3 34 15.18 (V)
(60, 12), (6, 72) 237.18 157.584 52 (V)
(50, 15), (6, 90) 164.15 84.42 27.96 (V)
(60, 20), (6, 120) 237.18 109.88 32.96 (V)
(80, 30), (8, 300) 423.44 170.85 50.01 (V/D)
(100, 40), (7, 400) 663.3 245.22 61.84 (D)
(150, 40), (7, 400) 1497.5 818.07 169.36 (D)
(200, 50), (6, 450) 2666.6 1517.55 261.6 (D)
(400, 120), (1, 80) 10,693.2 5271.56 403.63 (D)

Bold values indicate the best performance among the different options
We consider [31] for 1-out-of-4 OT extension in the GMW protocols, and the protocol from Sect. 4 in our
work using the DRSD assumption and the Vandermonde-based technique described in Sect. 4.3 and reporting
the best of the two

attacking non-regular SD and an adversary needs to run the attack repeatedly until the
output is regular, increasing the cost of the attack. To estimate the complexity of GBA
and LA, we take the same conservative approach we use for ISD. Since LA is particularly
effective for larger h, especially when h > r/4, we always set up r > 2h + 1.

In Table 2, we propose a set of parameters for our GMW-style protocols for different
values of h (and irrespective to the total number of parties n), such that the estimated
complexity of the most efficient decoding algorithms is more than 2128.

6.3. GMW-Style Protocol

Recall that the relevant parameters are the key-length �, the number of honest parties h,
and the parameter r which is the batch size when producing triples; we fix the compu-
tational and statistical security parameters to κ = 128 and s = 40. We instantiate our
protocol with two variants, depending on how the hash functions Hi are defined:

– “DRSD” variant (Sect. 4.2): Hi are uniformly random. Security is either based on
the DRSD assumption, with � and r taken from Table 2, or statistically secure when
h ≥ r + s with � = 1.

– “Vandermonde” variant (Sect. 4.3): Hi come from a Vandermonde matrix. Perfect
security, key length � = log2 n, and r = � · h.

In both cases, the communication complexity is n1 · n2 · (� + �κ/r + 1) bits per triple.
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For comparison, we use the best-known instantiation of standard GMW, namely a
variant based on 1-out-of-4 OT to generate triples, optimized by [31] in the 2-party
setting. This easily extends to the multi-party case with communication complexity
O(n2κ/ log κ) bits per AND gate, so we consider both full-threshold and threshold-t
(§6.1) variants.

Table 3 and Fig. 15 show the amortized communication complexity for triple produc-
tion using deterministic committees for different values of n and honest parties h. We
can see that the Vandermonde approach always wins for small values of (n, h); when
n > 80 and h > 30, then the DRSD technique performs better. Our protocol starts to
beat the best-known GMW protocol for producing multiplication triples when there are
just 4 honest parties. For example, with 15 parties and 6 corruptions, the communication
cost of our protocol is roughly 35% lower than threshold-6 GMW, and 82% lower than
the cost of standard, full threshold GMW. As the number of parties (and honest parties)
grows, our improvements become even greater, and when the number of honest parties
is more than 80, we can use 1-bit keys and improve upon the threshold variant of GMW
by more than 13 times.

In Sect. 4, we mentioned the possibility, when n and h are large enough, of using
random committees P(h) and P(1), such that except with negligible probability P(h) has
at least h′ ≤ h honest parties and P(1) has at least one honest party. In order to estimate
the communication complexity of our protocol, we consider the probability p(1) of P(1)

not having a single honest party and the probability p(h) of P(h) of having less than h′
honest parties. Let n1 = |P(1)| and nh = |P(h)|, we have that

p(1) =
(n−h

n1

)
( n

n1

) and p(h) =
∑min(h′,h′−v)

j=1

( n−h
nh−h′+ j

) · ( h
h′− j

)
( n

nh

) ,

where v = nh − (n −h) < h′. We fix the parameters n, h, h′ and compute the minimum
values nh, n1 such that p(h) and p(1) are less than 2−s . Table 4 compares our protocol
with random committees and GMW with a single random committee of size n1, i.e.
having at least one honest party with overwhelming probability, when s = 40. Even
if the communication complexity reduces in both protocols, our approach is always at
least 50% more efficient compared to GMW.

6.4. BMR-Style Protocol

6.4.1. Communication Complexity

To show the efficiency of our constant-round garbling protocol from Sect. 5.5, we provide
Table 5, which has two parts. First, it compares the amortized communication complexity
incurred for garbling an AND gate with [14]. We recall that this is the dominating cost for
BMR-style protocols using free-XOR, and that we incur no communication for creating
shares of garbled splitter gates. Note that in the first setting of n = 20, t = 10, although
our communication costs are around 3 times lower than [14], we do not improve upon
the threshold-t variant of that protocol, described earlier. Once we get to 50 parties,
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Fig. 15. Amortized communication cost (in kbit) for producing triples in GMW for n =
20, 50, 80, 100, 150, 400 and deterministic committees .
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Fig. 16. Communication complexity cost (in kbit) for garbling when n = 100 and n = 500 .

though, we start to improve upon [14], with a reduction in communication going up to
7× for 400 parties and 10× for 1000 parties.

The second half of the table shows the size of the garbled circuit in terms of the total
number of AND, XOR and splitter gates. Garbled circuit size only has a slight impact on
communication complexity, when opening the garbled circuit, which is much lower than
the communication in the rest of the garbling phase. However, if an implementation needs
to store the entire garbled circuit in memory (either for evaluation, or storage for later
use), then it is also important to optimize its size. Here, we also compare with [15], which
recently showed how to construct a compact multi-party garbled circuit based on key-
homomorphic PRFs. The size of their garbled circuit is constant and grows with O(κ) per
gate, with security proven in the presence of n − 1 corrupted parties. On the other hand,
their construction requires much more expensive operations based on the Decisional
Diffie–Hellman or Ring-LWE assumptions, and these also lead to fairly large keys—
with a 3072-bit discrete log prime (equivalent to 128-bit security) the size of a garbled
AND gate only beats our protocol at around 400 parties. Additionally, their construction
does not support free-XOR, and the concrete efficiency of the offline garbling phase
is not clear: garbling an AND gate requires O(n) secret-shared field multiplications,
which seems likely to be much higher than the offline cost of our protocol or [14], but
their paper does not give concrete numbers. In Fig. 16, we show the communication
complexity of garbling when n = 100, 500 and for different number of honest parties.

We conclude by remarking that known GC-based protocols in the malicious setting
naturally incur in much higher communication costs, even if the online running times are
overall comparable with those reported in [14]. The most efficient maliciously-secure
multiparty GC-based protocol [74] requires roughly κ ·A ·(4n−6) and 7κ ·A ·(n−1) bits
per party for the garbling and the function independent step, respectively (as in Table 5,
A denotes the number of AND gates and κ the security parameter).
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Fig. 17. Online time for evaluating various circuits with n = 30, 50, 100, 300. The corresponding numbers
of honest parties are h = 14, 21, 38, 105, respectively. Times for [14] are for a full-threshold implementation
.

6.4.2. Garbling Implementation

In Fig. 17, we present running times for evaluating the garbled circuit in our protocol
and compare with times for [14] running on the same machine.

The implementation runs on a single machine,5 to allow testing just the local compu-
tation in the online phase (note that there is very little interaction in the online phase). We
took as benchmarks the AES circuit (6800 AND gates, 31,796 Splitters), the SHA-256
circuit (90,825 AND gates, 132,586 Splitters), a binary multiplier for 32-bit numbers
(5926 AND gates, 6994 Splitters) and a randomly generated circuit with 100,000 AND
gates and 99,510 Splitters (as used in [15], for comparison). The CRS H was imple-
mented with fixed-key AES in counter mode using AES-NI instructions, which is a
random function under the assumption that AES behaves like a random permutation
(see Appendix C). We also tried precomputing every output of H and storing this as
a lookup-table, but in practice this did not perform well as the table size was usually

5Intel Xeon E5-2650 v3 2.3 GHz/25 M Cache, 10 Cores, 64 GB RAM.
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much larger than the CPU cache. Recall that the standard BMR online phase requires
each party to perform O(n2) AES operations per AND gate, whereas our online phase
reduces this to O(n2�BMR/κ), with some extra cost for evaluating splitter gates. The
results show that for the random circuit our protocol starts to pay off from around 50
parties, when the corruption threshold is between 20–40%, reaching a 3.3× improve-
ment for n = 300, h = 105. On the other hand, for AES, which has a relatively large
proportion of splitter gates, the crossover point is closer to 150 parties, and the greatest
improvement factor is 1.3× over [14] for n = 300, h = 105.

This shows that the performance improvements of our garbled circuit-based protocol
very much depend on the specific circuit being evaluated, but further improvements may
be possible by modifying secure computation compilers to produce circuits more suitable
for our protocol. It also seems likely that implementing our GMW-based protocol would
show much more significant gains, based on the communication costs presented earlier.

A. Universal Composability

We prove security of our protocols in the universal composability (UC) framework [24]
(see also [28] for a simplified version of UC). This framework is based on the real/ideal
paradigm, where all the entities (including the parties and the adversary) are modeled as
interactive Turing machines. The goal of a protocol is defined by an ideal functionality,
which can be seen as a trusted party sending the desired results to the parties. To prove
security of a protocol, we aim to show that any adversary attacking the real protocol can
be used to construct a corresponding ideal adversary, called the simulator, that runs in
the ideal world, interacting only with the functionality F and the real adversary, such
that the distributions of messages seen in the real world and ideal world executions are
indistinguishable. The UC framework additionally defines a powerful entity called the
environment, which is the interactive machine trying to distinguish the two worlds. The
environment has total control over the adversary and can choose the inputs, and see the
outputs, of all parties.

We denote by REALπ,A,Z (1κ , z) the output distribution of the environment Z in the
real-world execution of protocol π , with n parties and an adversary A, where κ is the
security parameter and z is the auxiliary input to Z . The output distribution of Z in the
ideal world is denoted by IDEALF ,S,Z (1κ , z), where F is the ideal functionality to
be realized and S is the simulator. Additionally, we denote the hybrid execution of a
protocol π , which is given access to an ideal functionality G, by HYBG

π,A,Z (1κ , z). This
is defined similarly to the real execution and is known as the G-hybrid model. Security
of a protocol is then defined as follows.

Definition A.1. A protocol π UC-securely computes an ideal functionality F in the
G-hybrid model if for any PPT adversary A, there exists a PPT simulator S such that
for any PPT environment Z , it holds that:

HYBG
π,A,Z

c≈ IDEALF ,S,Z .
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The composition theorem provides security guarantees when protocols are composed
together. This means that if ρ is a UC-secure protocol for G, then the protocol π in the
G-hybrid model can be replaced by the composition π ◦ ρ. Informally, the composition
theorem then guarantees that REALπ◦ρ,A,Z is indistinguishable from HYBG

π,A,Z .

B. Cryptanalysis

In this section, we give a concrete analysis of the hardness of the Syndrome Decoding
Problem (SD) and Regular Syndrome Decoding Problem (RSD) described in Sect. 3,
in order to justify the parameters selection for our protocols. Let us start by providing
useful notation on coding theory. For ease of presentation, all vectors are intended to be
column vectors.

A binary [m, k, d]2 linear code C is a k-dimensional subspace of F
m
2 , where m is the

length of the code, k is its dimension as a vector subspace and d is its distance, i.e. the
minimal nonzero Hamming distance between any two codewords. Equivalently, C can
be defined as the kernel of a full-rank matrixH ∈ F

(m−k)×m
2 , called a parity-check matrix

of C . Given a vector r = c+ e ∈ F
m
2 , where c ∈ C is a codeword and e an error vector,

the syndrome corresponding to c is the vector s = H · r = H · c+H · e = H · e ∈ F
m−k
2 .

Hence, the syndrome does not depend on the codeword, but only on the error vector.
When the Hamming weight of e is smaller than the error correction capability of C , that
is wt(e) ≤ � d−1

2 �, s is called correctable syndrome and r can be uniquely decoded to c.
More formally, we can define a mapping

Syn : F
m
2 −→ F

r
2 (r = m − k)

e �−→ H · e(= s).

When the domain of Syn is restricted to vectors of upper bounded Hamming weight,
inverting Syn is strictly related to the problem of decoding the [m, k, d]2 linear code
with parity-check matrix H, and this problem is equivalent to the average-case hardness
of the following computational problem.

Definition B.1. (Syndrome Decoding Problem (SD)) Let r, h, m ∈ N. Sample H ←
F

r×m
2 and e ← F

m
2 such that wt(e) = h, where wt(e) denotes the Hamming weight of

e. Given (H,H · e), the SDr,m,h problem is to recover e with noticeable probability.

Notice SD can be seen as a purely combinatorial problem and the most näive algorithm
could simply enumerate all the

(m
h

)
possible solutions.

We denote by Wm,h the set of all the binary vectors in F
m
2 of weight exactly h and

by Rm,h ⊂ Wm,h the set of all the binary (m, h)-regular vectors. We recall that a binary
(m, h)-regular vector is a vector in F

m
2 such that, if we divide it into h blocks of equal

length, each of them has Hamming weight exactly 1. When SD is restricted to vectors
in Rm,h , we have the following.
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Definition B.2. (Regular Syndrome Decoding (RSD)) Let r, h, � ∈ N and m = h · 2�.
Sample H ← F

r×m
2 and e ← Rm,h . Given (H,H ·e), the RSDr,h,� problem is to recover

e with noticeable probability.

This problem was introduced in 2003 by Augot et al. [4], who used it for the SHA-3
candidate FSB (Fast Syndrome-Based) hash function. As for SD, RSD can be seen as
a combinatorial problem and solved by enumerating all the (m/h)h possible solutions.
The most efficient attacks against SD and RSD are Information Set Decoding (ISD),
Generalised Birthday Attack (GBA) and Linearization Attack (LA). To establish which
attack is the most efficient, we need to distinguish different cases depending on the
choice of h. Clearly, the number of errors affect the practical security of SD and RSD.
In coding theory, the values of h usually considered are those corresponding to a single
solution of the problem, which happens with high probability if the number of errors
h is smaller than the Gilbert–Varshamov distance dGV .6 In cryptography, there is no
restriction on h as long as SD or RSD remain hard. In practice, when h ≤ dGV , ISD
is always the most efficient attack and has roughly the same cost when considering SD
and RSD; when h > dGV the best attack is either ISD or GBA. Furthermore, when
considering the regular case, the intuition is that if the solution to the problem is not
unique, attacking RSD is even harder than attacking SD: having a smaller set of inputs
decreases the number of possible solutions and thus increases the cost of the attacks.
Finally, when h is larger, say h > r/4, the best attack is linearization.

In the rest of this section, we analyse all the most efficient attacks to SD and RSD.

B.1. Linearization Attack

This attack was described in [65] and is a generalisation of [18, Appendix A]. It is very
efficient for h large, namely when h > r/4, and consists in finding linear relations
between h columns of H.

Algorithm 1 Linearization Attack
Input: H ← F2

r×m , s ∈ F
r
2, h ∈ N

Output: e ∈ F
m
2 such that wt(e) = h and He = s

Parameters: 1 ≤ λ ≤ r/h
1: repeat

2: Choose h columns, ha0
1 , . . . , ha0

h of H, one for each block, i.e. a0
i = (i − 1) · 2� + t0

i , i ∈ [h] and

1 ≤ t0
i ≤ 2�, and compute

∑
i h

a0
i + s = Δ

3: For j ∈ [λ] choose t1
j , . . . , th

j , such that 1 ≤ t i
j ≤ 2�

4: ∀(i, j) ∈ [h] × [λ], compute the differences δ
j
i = h

a0
j + h

ai
j , where ha j

i = h(i−1)2�+t j
i

5: until ∃ ε
j
i ∈ {0, 1}, (i, j) ∈ [h] × [λ], such that

∑h
i=1

∑λ
j=1 ε

j
i · δ j

i = Δ and for each i there is at most

one ε
j
i = 1 among the λ of them.

6The Gilbert–Varshamov (GV) distance is the largest integer dGV , such that
∑dGV −1

i=0

(m
i
) ≤ 2r .
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A description of this attack is given in Algorithm 1. As we are considering the RSD
problem, we can assume that the matrix H consists of h blocks of 2� columns, i.e.
H = [H1 | · · · | Hh]. The adversary chooses a parameter λ ≤ r/h and h columns of

H, say ha0
1 , . . . , ha0

h , in such a way that only one column for each of the h blocks is

chosen. Then, they compute Δ = ∑
i h

a0
i + s and, for each j ∈ [λ], choose a different

set of h columns, ha j
1 , . . . , ha j

h , of H. After that, using linear algebra, they look for
linear relations

∑h
i=1

∑λ
j=1 ε

j
i · δ j

i = Δ, with εi
i ∈ {0, 1}. As λ ≤ r/w, all the possible

linear combinations of the elements in {δ j
i }(i, j)∈[h]×[λ] form a vector space of dimension

h · λ ≤ r at most. Hence, the desired linear relation exists with probability 2hλ/2r . A
relation is useful only with probability ((λ + 1)/2λ)h , as for each i ∈ [h] it should
involve at most one of the δ

j
i values. More concretely and for a fixed i , as each ε

j
i is set

i.i.d. with probability 1/2, only λ+ 1 cases satisfy the restriction on the δ
j
i values, each

of those cases having probability 1/2λ. Overall, this means that the expected number of
iterations to find a useful relation is slightly above 2r

(λ+1)h . When h ≤ r/2λ, it is possible
to consider 2λ generators, so that, using the same arguments as above, the probability
of a useful relation is (λ + 1)2h/2r . Summing up:

CLA ≥
{

2r

(λ+1)h if h ≤ r/λ
2r

(λ+1)2h if h ≤ r/2λ
(3)

B.2. Generalised Birthday Attack

Algorithm 2 Wagner’s GBA
Input: t = 2a lists L0, . . . , Lt−1 containing uniform random elements from F

r
2

Output: hi ∈ Li , ∀i ∈ [t] such that
∑

i hi = 0
Let L0,0, . . . , L0,2a−1 be 2a lists of elements in F

r
2, where Li, j denotes the j th list on level i th, with

S = |Li j | = 2
r

a+1 .
Level 0. L1, j ← Merge(L0,2 j ,L0,2 j+1): Compute L0,2 j + L0,2 j+1 and consider only sums of two

vectors starting with r
a+1 zeros. Result of this step are 2a−1 lists L1, j .

Level 1. L2, j ← Merge(L1,2 j , L1,2 j+1): Sum elements starting with 2 r
a+1 zeros. The result of this

step are 2a−2 lists L2, j .
Level i. Pairwise merge lists from level i − 1 by considering elements starting with (i + 1) r

a+1 zeros.

Level a − 2. Proceed as before. As a result we obtain 2 lists containing 2
r

a+1 elements whose first
(a − 1) r

a+1 components are zeros.
Output: Only 2 r

a+1 components in the two remaining lists are nonzero, apply the standard birthday technique
to find a solution.

This attack is named after the famous birthday paradox which permits to find collisions
between two random lists much faster than checking every possible combinations. GBA
improves the standard birthday paradox by looking for specific solutions and discarding
the others, so it does not apply when a single solution to SD/RSD exists.
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Formally, the Generalised Birthday Problem (GBP) can be stated as follows: given t
lists L1, . . . , Lt , containing uniform random elements from F

r
2, find exactly one element

hi in each list Li , i ∈ [t], such that
∑

i∈[t] hi = 0.
Note that in this definition the number of available vectors is unbounded, but when

one considers SDr,m,h or RSDr,h,�, only m different r -bit strings are available, that is
the m columns of H. Also, when the syndrome s �= 0, we can simply subtract s from
each element of one list, say L1, and proceed to find a combination of elements that sum
up to zero as in GBP.

To solve GBP, Wagner proposed the so-called k-tree algorithm. It consists in a divide
and conquer approach: at each step, it uses only two lists at time, performing a simple
collision search. This procedure requires a large number of inputs and therefore more
memory than the classic birthday algorithm. Minder et al. [59] extended the k-tree
algorithm offering a solution which allows to balance time and memory efficiency of the
attack. This technique was firstly applied to decoding problems by Coron and Joux [29]
and then improved by [13,48,60].

For ease of exposition, we only consider the case t = 2a , however, the attack still
works if this is not the case, only with a slight loss of efficiency. In Algorithm 2, we give
a more detailed description of the algorithm, as described by Wagner. The algorithm
starts by building 2a lists of size S = 2

r
a+1 and consists of a steps. Each element in a

list is a vector in F
r
2 and can be seen as a concatenation of a + 1 elements in F

r
a+1
2 , so

that each element h in a list can be visualised as

(
h1, . . . , h r

a+1
‖h r

a+1+1, . . . , h 2r
a+1

‖h ar
r+1+1, . . . , hr

)
.

At each step, elements in these lists are pairwise merged so that the number of lists
is halved. More precisely, at level 0, we start with t = 2a lists L0,0, . . . , L0,2a−1 and
from these we obtain L1,0, . . . , L1,2a−2 by computing L1, j = L0,2 j + L0,2 j+1 and
considering only sums of vectors with the first block of r

a+1 coordinates equal to zero.
Clearly, with this condition some possible solutions will be discarded, but it permits to
maintain the size of the lists equal to S on average. Moreover, those zero coordinates
are not considered in the next level. This operation is repeated until only 2 lists remain
and a standard birthday technique can be applied to find a solution. Since this solution
is the sum of 2a elements from the original lists, it is also a solution for the GBP.

A first observation is that the last step, i.e. the standard birthday technique, will be
successful as long as the size S of the lists satisfies S2 ≥ 2r−(a−1) log2 S , that is S ≥ 2

r
a+1 .

Therefore, if it is possible to build lists of size S = 2
r

a+1 , then the complexity of the
algorithm can be lower bounded by O(S · log2 S). Now, if we use GBA to solve SDr,m,h

or RSDr,h,�, the size of the starting lists is bounded by the number of columns m of H.
As said above, the size S of these lists needs to verify S ≥ 2

r
a+1 , hence, assuming that

the starting lists contain sums of h
2a columns of H, we need:

(
m
h
2a

)
≥ 2

r
a+1 .
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Moreover, we need the lists to contain different values, so it should be

(
S

2a

)
≤
(

m

h

)
,

from which we obtain:

2a

a + 1
≤ log2(

(m
h

)
)

r
. (4)

When the solutions are regular, each list is associated with h/2a blocks, each of weight
1, of H and S cannot be larger than the number of words of weight h/2a . Since in each
block there are m/h words of weight 1, then we need

S ≤
(m

h

)h/2a

and (4) becomes

2a

a + 1
≤ h

r
log2

(m

h

)
. (5)

When we consider security against GBA, we also take into account improvements due
to Niebuhr et al. [60], Bernstein et al. [13] and Kirchner [48].

B.3. Information Set Decoding Attacks

Information Set Decoding (ISD) can be seen as a class of generic algorithms for solving
SD for random linear codes. Here, we assume an SD (respectively, an RSD) instance
with parameters (r, m, h), associated with the [m, k = m − r ]2 binary linear code with
parity-check matrix H. This decoding technique was introduced by Prange in 1962 [64]
and later improved, by a polynomial factor, by Lee and Bricknell [52] and Leon [53]. In
1988, Stern [67] proposed an exponential improvement, followed by further improve-
ments by Dumer [34], Finiasz and Sendrier [36] and Bernstein et al. [17]. In this section,
we describe a common framework for different variants of ISD and analyse their com-
plexity. We consider the Stern–Dumer variant, with the optimisation due to Finiasz and
Sendrier [36], and also we take into account more recent variants, more precisely, those
described by May et al. [56], Becker et al. [12] and May et al. [57].

The high level idea of these algorithms is to transform the original SD instance with
parameters (r, m, h) into a related instance with smaller parameters (r ′, m′, h′) and then
try to find a solution of the original problem from a solution of the easier instance. ISD
essentially applies linear algebra transformations to the parity-check matrix H in order
to obtain a new structured matrix H′, and reduce the space of solutions of the original
SD instance. The overall idea of ISD is given in Algorithm 3.

The algorithm consists of three steps:

1. First pick a random m × m permutation matrix P (this is equivalent to choosing
a uniform random subset of k columns of H) and then performing a Gaussian
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Algorithm 3 ISD Framework
Input: H ← F2

r×m , s ∈ F
r
2, h ∈ N

Output: e ∈ F
m
2 such that wt(e) = h and He = s

Parameters: 0 ≤ q ≤ r , 0 ≤ p ≤ k + q
1: repeat

2: H′ ← G(H): Pick P ← F
m×m
2 and compute H′ = UHP =

⎡

⎢⎢⎣

R1 0q

R2 Ir−q

⎤

⎥⎥⎦,

where R2 ∈ F
(r−q)×(k+q)
2 ,R1 ∈ F

q×(k+q)
2 and s′ = Us =

⎡

⎣
s1

s2

⎤

⎦ ,

with U ∈ F
r×r
2 invertible, s2 ∈ F

r−q
2 and s1 ∈ F

q
2 .

3: E ← SM(R1, s1, p): Compute the set E ⊂ {e1 ∈ F
k+q
2 | wt(e1) = p,R1 · e1 = s1}

4: for all e1 ∈ E do
5: e2 ← Extend(R2, e1, s2): Compute e2 = R2 · e1 + s2

6: until wt(e2) = h − p

elimination to get a structured matrix

H′ =
⎡

⎣
0q

R
Ir−q

⎤

⎦ =

⎡

⎢⎢⎣

R1 0q

R2 Ir−q

⎤

⎥⎥⎦ , R ∈ F
r×(k+q)
2 .

H′ consists of two blocks of columns R = [1, k + q] and I = [k + q + 1, m].
Essentially, this step is equivalent to finding an invertible matrix U ∈ F

r×r
2 such

that H′ = UHP, and forces a q × (r − q) zero block in the first q rows in the
second block of columns I. Notice the multiplication by P permutes the columns
of H and hence, the coordinates of e so that e′ = P · e, and the multiplication by
U permutes the coordinates of s, so that we get s′ = Us = (s1, s2). We denote
e′ = (e1, e2), e1 ∈ F

k+q
2 , e2 ∈ F

r−q
2 .

2. Next, fix a weight 0 ≤ p ≤ h, and consider the first slice [R1|0q ] of H′, containing
the first q rows. Compute SM, by creating a set of partial solutions E , that is a set
of vectors e1 ∈ F

k×q
2 s.t. wt(e1) = p and R1 · e1 = s1.

3. Extend partial solutions obtained in the previous step by computing for each e1 ∈ E
the vector e2 = R2e1 + s2. If wt(e2) = h − p, then return e′ = (e1, e2) and stop.

Note that this algorithm always outputs a correct solution:

H′e′ =

⎡

⎢⎢⎣

R1 0q

R2 Ir−q

⎤

⎥⎥⎦

⎡

⎣
e1

e2

⎤

⎦ =
[

R1e1
R2e1 + e2

]
=
⎡

⎣
s1

s2

⎤

⎦ = s′,

where H′e′ = UHPe′ = UHe = s′ ⇔ He = U−1s′ = s and wt(e) = wt(Pe′) = h.
ISD contains two parameters: p, with 0 ≤ p ≤ h, representing the number of errors in
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the selected k + q columns, and q, 0 ≤ q ≤ r , representing the coordinates where the
error components are zero. The case p = q = 0 corresponds to the plain information-set
decoding algorithm due to Prange.

The main difference among different ISD variants, and also the main computa-
tional task of the algorithm, is the second step, where SM is performed. Here, the
main problem is to find p columns of R1 that sum to s1. More in particular, let
R1 = [r1

1, . . . , r
k+q
1 ], r j

1 ∈ F
q
2 , we have to find an index set J ⊆ R, with |J | = p

and
∑

j∈J r j
1 = s1. This problem was called by May et al. [56] the submatrix matching

problem (SM).
We are going to examine the cost of ISD depending on how the SM step is instantiated,

considering both regular and non-regular syndrome decoding.

Complexity of ISD

We essentially follow and simplify the analysis done in [36,44,66,68], but we also
consider in more detail the regular case. We stress that our goal is to find a reasonable
estimation of the complexity of recent ISD algorithms and that a detailed analysis of
these algorithms and their cost is out of the scope of this paper.

To lower bound the cost, CISD, of the attack, we need to estimate the number, NI,
of iterations needed before the algorithm successfully stops. If we assume that those
iterations are independent, then NI is simply the reciprocal of the success probability P
of one iteration. In particular, when h ≤ dGV , that is when the solution of SD/RSD is
unique, NIsingle = 1/P; when h > dGV , NImult = 1/(P · N_Sol), where N_Sol is the

expected number of solutions. We have that N_Sol = (m
h)

2r in the non-regular case and

N_SolR = (m/h)h

2r for RSD.
Hence, an attack against SD will succeed if one finds an error (e1, e2) such that e1 = p

and e2 = h − p, which happens with probability

Psingle =
(k+q

p

) · (r−q
h−p

)
(m

h

) and Pmult =
(k+q

p

) · (r−q
h−p

)

2r
,

where Psingle and Pmult denote the success probability of one iteration when h ≤ dGV

and h > dGV , respectively.
Each iteration of ISD chooses r − q columns of H and applies Gaussian elimination

to obtain Ir−q . The cost of Gaussian elimination is essentially the same for all the
different ISD variants. This cost can be reduced using for example the bit-swapping
technique introduced by Omura (see [25]) and used in ISD by vanTilburg [70], Canteaut
and Chabaud [26] and Canteaut and Sendrier [30]. A generalisation of bit-swapping
is introduced by Bernstein et al. [16] which improves the balance between the cost of
Gaussian Elimination and the cost of error-searching. The idea is that of starting a new
iteration with the matrix H′ from previous iteration and then, instead of choosing a new
set of r −q columns, reusing r −q − t out of r −q columns from previous iteration and
selecting only t new columns randomly. In this way, only t columns need to be pivoted.
However, as observed by Bernestein et al., small values of t introduce a dependence
between iterations and require more iterations before the algorithm succeeds.
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Analysing the impact of t in the algorithm is very difficult as the iterations are no
more independent and the number of errors in the selected r columns is correlated with
the number of errors in the columns selected in the next iteration. So, to estimate the
cost of the algorithm, we should consider a Markov chain for the number of errors, as
in [26]. For this reason, we assume the iterations to be independent and that this step
approximately costs (r − q)3/ log2(r − q) [1]. Also, we would like to remark that the
cost of Gaussian elimination is most of the time negligible compared to other operations.

Next, we need to consider the number of expected iterations of Extend. Following
the same arguments as in [36,68], we have that the probability of success is

Psingle
Success ≈ 2q · (r−q

h−p

)
(m

h

) and Pmult
Success ≈ 2q · (r−q

h−p

)

2r
. (6)

Putting everything together, the average cost of ISD is

CISD ≈ min
p,q

{
min

{
2r ,

(m
h

)}
(r−q

h−p

) ·
(

KGauss + KSM(k+q
p

) + KExt

2q

)}
, (7)

where KSM and KExt denote the average cost in elementary binary operations of com-
puting SM and Extend, respectively, and both depend on the ISD variant. The impact
of KExt on the cost of the attack is relative small, it is essentially the cost of testing
e2 = R2 · e1 + s2 for e1 ∈ E . If we consider the plain information set decoding
described by Prange, we have p = q = 0 and obtain:

Csingle
ISD_Pra >

(m
h

)
(r

h

) Cmult
ISD_Pra >

2r
(r

h

) (8)

In Stern and Dumer’s algorithm, with Finiasz and Sendrier optimization, the submatrix
matching problem is solved using a birthday collision search. More precisely, the first
block of k+q coordinatesR is split in two disjoint setsR1 = [1,

k+q
2 ] andR2 = [ k+q

2 +
1, k+q] and then by using a birthday technique, one looks for two sets I1 ⊂ R1 and I2 ⊂
R2 of cardinality p/2 such that

∑
i∈I1

r i
2 = ∑

i∈I2
r i

2+ s1. Roughly, the initial lists have

size
(
(k+q)/2

p/2

)
, so KSD

SM >
(
(k+q)/2

p/2

)
. In 2012, May et al. [56] exponentially improved ISD

by using the representation technique introduced by Howgrave-Graham and Joux [41] in
the context of subset sum algorithms. We do not give further details of this ISD variant,
but it uses four initial lists of size

(
(k+q)/2

p/4

)
, so K ISD_MMT

SM >
(
(k+q)/4

p/4

)
. In a further work

of May et al. [12], the birthday decoding is replaced by an order 3 generalised birthday
decoding with 8 initial lists of size larger that

(
(k+q)/2

p/8

)
. The algorithm described in a

more recent work by May et al. [57] it is slightly different from previous variants. It
has the same main loop with the Gaussian Elimination, then it starts the BJMM variants
with 8 lists, but in the tree structure the last join is replaced by a “Nearest Neighbours”
(NN) search. This technique provides a significant asymptotic advance, but the analysis
hides a large factor and it does not lead to a significant practical improvement. Finally,
we would like to mention a very recent work by Both and May [19], which uses the
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same approach of [12] and the power of NN search in each step of the algorithm, and
not only in the last join like [57]. However, the practical impact of this new approach is
still unclear and it leads to a significant asymptotic improvement compared to previous
attacks only when the error rate is high, which is never the case in our protocol.

In practice to analyse the complexity of ISD, we use a lower bound on BJMM,
simplifying the analysis done in [44]. Notice that in our construction we are mostly
interested in solving RSDr,h,� with m = 2� · h. To estimate the cost of attacking RSD
with ISD, we first consider the case p = q = 0. In this case, an attacker can choose a
different strategy: here, the error e is regular, so it can be decomposed in h blocks with
m/h components and only one error for each block, hence to maximise the probability
of success when choosing the first k coordinates, the adversary should choose the same
number of positions k/h from each block. This means that they take k/h coordinates
out of m/h. Given that only 1 of these is different from 0, the probability of ending up
with an error e′ = (e1, e2) with wt(e1) = 0 and wt(e2) = h is:

P0,0,single =Pr({e = (e1, e2) ∈ Rm,h | wt(e1) = 0,wt(e2) = h})

=
(((m/h)−1

k/h

)

(m/h
k/h

)
)h

=
( r

m

)h
,

which correspond to CR,single
ISD_Pra, i.e. the cost of Prange’s algorithm for the regular case,

and similarly, when the number of solutions is greater than one,

P0,0,mult =
( r

h

)h · 2−r ,

which, as before, correspond to CR,mult
ISD_Pra for the regular case. Note that this probability

is smaller than for the SD, so finding a solution for RSD is harder. This strategy can
be easily generalised to the case p, q different from zero. To solve RSD, the adversary
could select the first block of k + p coordinates as follows: take p blocks, i.e. p · m/h
coordinates, and then fill the remaining (k + q)− p · m/h coordinates by following the
same strategy as before, i.e. take the same number of positions a from each remaining
block, where

a = (k + q) − p · m/h

h − p
.

Notice we are assuming k + q ≤ p · m/h and a integers. There are h − p remaining
blocks, each with m/h components of which only one is nonzero; therefore, the above
probability becomes

PR,single =
(

h

p

)
·
(((m/h)−1

a

)
(m/h

a

)
)h−p

=
(

h

p

)
·
( h · (r − q)

m · (h − p)

)h−p
. (9)
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and

PR,mult =
(

h

p

)
·
( r − q

h − p

)h−p ·
(m

h

)p · 2−r . (10)

Notice these are exactly P0,0 when p = q = 0. Similarly to the case of non-regular
SD, we can compute CR

ISD. For our parameters selection, we consider an estimation
of the cost of both this regular variant, associated with the Stern [67] and Finiasz and
Sendrier [36] techniques, and the more recent non-regular BJMM variant, and then,
we take the minimum of the two. It would be very interesting to apply more recent
techniques to the regular case, but this is out of the scope of this paper. It is worth noting
that all the improved ISD variants come at the price of much larger space complexity,
which is usually completely ignored in the cost analysis of these algorithms, but plays
a significant role in practical applications. For this reason, Prange’s plain information
set decoding still achieves the best time-space complexity product. However, for our
parameter selection, as we already said, we consider a lower bound on the cost of
BJMM and a special regular-case tailored SD variant, taking into account exclusively
the average number of operations and ignoring the memory cost of the algorithm.

C. Additional Material for Efficiency Analysis

C.1. BMR Preprocessing: Communication Complexity

Here, we detail how we compared our communication complexity with that of the best
previous passively secure BMR protocol, namely [14]. To simplify the comparison, we
exclude the communication related to input and output wires. Given a circuit C f with X
XOR gates and A AND gates, each of them with fan-in-two and arbitrary fan-out, [14]
has the following communication costs:

1. One bit multiplication and 3n bit-string multiplications per AND gate, where the
strings have length κ . A bit multiplication requires n(n−1) bit-OTs, each of which
involves sending 128+2 bits if instantiated with [46] or 84 bits if instantiated with
[49]. Each of the bit-string multiplication can be computed using n − 1 correlated
OTs, at a cost of 128 + 128 bits each.

2. Each AND gate has size 4nκ bits, and each party has a share of it. If the circuit is
reconstructed by every party sending her share to P1, and then P1 broadcasting the
addition of every share, the cost of putting an AND gate together is 8n(n − 1)κ

bits.

This gives a total cost of (130+ 768+ 8κ) · n · (n − 1) · A = 1922 · n · (n − 1) · A bits
for the [46] instantiation and (67 + 768 + 8κ) · n · (n − 1) · A = 1876 · n · (n − 1) · A
when using [31] instead. In our work, the costs are:

1. One bit multiplication and 3n bit/string multiplications per AND gate, where the
strings have length �. When implemented with our improved GMW protocol with
deterministic committees, these cost (n − h + 1)(n − 1)(�OT + �OTκ/r + 1) bits
and n(n − 1)�BMR(�OT + �OTκ/r + 1) bits, respectively.
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2. Each AND gate has size 4 · (n� + 1) bits. Each Splitter gate has size 4n� bits.

C.2. Instantiating the CRS

Our protocols require a CRS, which is a randomly sampled function, H. One way of
implementing this would be generate the function in a setup phase (e.g. with coin-
tossing) and store it as a lookup table. However, when the table grows large this will
have a prohibitive impact on performance, as there will likely be many cache misses
when reading from H at random locations. A more efficient alternative is to implement
H using fixed-key AES, which offers fast performance on modern CPUs with AES
hardware instructions. This gives security in the ideal cipher model, where fixed-key
AES is modelled as a random permutation.7

Depending on which of our two protocols is used, this method works as follows:

– For GMW, H is a 1-bit output hash function, so we can simply truncate the AES
output.

– For our BMR-style protocol, we need to expand the input to n · � + 1 bits. Let
B =  (n · � + 1)/128! be the number of AES blocks needed to generate one hash
output. The parties first fix a random key s ← {0, 1}128 and then define:

H(i, b, k) = (AESs(i‖b‖k‖0), . . . ,AESs(i‖b‖k‖B − 1)),

where the last block is truncated so that the total output length is n · �BMR + 1 bits.
The cost of a single call to H is that of B AES operations.
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