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Abstract. We prove lower bounds on the round complexity of randomized Byzantine
agreement (BA) protocols, bounding the halting probability of such protocols after one
and two rounds. In particular, we prove that: 1. BA protocols resilient against n/3 [resp.,
n/4] corruptions terminate (under attack) at the end of the first round with probability at
most o(1) [resp., 1/2 + o(1)]. 2. BA protocols resilient against a fraction of corruptions
greater than 1/4 terminate at the end of the second round with probability at most
1 − �(1). 3. For a large class of protocols (including all BA protocols used in practice)
and under a plausible combinatorial conjecture, BA protocols resilient against a fraction

∗A preliminary version of this work appeared in DISC’19 [23].
Ran Cohen: Research supported in part by NSF Grant No. 2055568. Some of this work was done while the
author was a post-doc at Tel Aviv University, supported by ERC starting Grant 638121.
Iftach Haitner: Member of the Check Point Institute for Information Security. Research supported by Israel
Science Foundation Grant 666/19. Research supported by ERC starting Grant 638121.
Nikolaos Makriyannis: This work was done while the author was a post-doc at Technion, supported by ERC
advanced Grant 742754. Research supported by ERC starting Grant 638121.
Matan Orland: Research supported by ERC starting Grant 638121.
Alex Samorodnitsky: Research partially supported by ISF Grant 1724/15.

© International Association for Cryptologic Research 2022

http://crossmark.crossref.org/dialog/?doi=10.1007/s00145-022-09421-7&domain=pdf


10 Page 2 of 51 R. Cohen et al.

of corruptions greater than 1/3 [resp., 1/4] terminate at the end of the second round
with probability at most o(1) [resp., 1/2 + o(1)]. The above bounds hold even when
the parties use a trusted setup phase, e.g., a public-key infrastructure (PKI). The third
bound essentially matches the recent protocol of Micali (ITCS’17) that tolerates up to
n/3 corruptions and terminates at the end of the third round with constant probability.
Keywords. Byzantine agreement, Lower bound, Round complexity.

1. Introduction

Byzantine agreement (BA) [50,63] is one of the most important problems in theoretical
computer science. In a BA protocol, a set of n parties wish to jointly agree on one of
the honest parties’ input bits. The protocol is t-resilient if no set of t corrupted parties
can collude and prevent the honest parties from completing this task. In the closely
related problem of broadcast, all honest parties must agree on the message sent by
a (potentially corrupted) sender. Byzantine agreement and broadcast are fundamental
building blocks in distributed computing and cryptography, with applications in fault-
tolerant distributed systems [16,49], secure multiparty computation [8,17,36,69], and
more recently, blockchain protocols [18,35,62].

In this work, we consider the synchronous communication model, where the protocol
proceeds in rounds. It is well known that in the plain model, without any trusted setup
assumptions, BA and broadcast can be solved if and only if t < n/3 [28,32,50,63]. As-
suming the existence of digital signatures and a public-key infrastructure (PKI), BA can
be solved in the honest-majority setting t < n/2, and broadcast under any number of cor-
ruptions t < n [24]. Information-theoretic variants that remain secure against computa-
tionally unbounded adversaries exist using information-theoretic pseudo-signatures [65].

An important aspect of BA and broadcast protocols is their round complexity. For
deterministic t-resilient protocols, t + 1 rounds are known to be sufficient [24,32] and
necessary [24,27]. The breakthrough results of Ben-Or [6] and Rabin [66] showed that
this limitation can be circumvented using randomization. In particular, Rabin [66] used
random beacons (common random coins that are secret-shared among the parties in a
trusted setup phase) to construct a BA protocol resilient to t < n/4 corruptions. The
failure probability of Rabin’s protocol after r rounds is 2−r , and the expected number
of rounds to reach agreement is constant. This line of research culminated with the
work of Feldman and Micali [26] who showed how to compute the common coins from
scratch, yielding expected-constant-round BA protocol in the plain model, resilient to
t < n/3 corruptions. Katz and Koo [47] gave an analogue result in the PKI-model for the
honest-majority case. Recent results used trusted setup and cryptographic assumptions
to establish a surprisingly small expected round complexity, namely 9 for t < n/3 [54]
and 10 for t < n/2 [2,55].

The expected-constant-round protocols mentioned above are guaranteed to terminate
(with negligible error probability) within a poly-logarithmic number of rounds. The
lower bounds on the guaranteed termination from [24,27] were generalized by [20,46],
showing that any randomized r -round protocol must fail with probability at least (c ·
r)−r for some constant c; in particular, randomized agreement with sub-constant failure
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probability cannot be achieved in strictly constant rounds. However, to date there is no
lower bound on the expected round complexity of randomized BA.

In this work, we tackle this question and show new lower bounds for randomized BA.
To make the discussion more informative, we consider a more explicit definition that
bounds the halting probability within a specific number of rounds. A lower bound based
on such a definition readily implies a lower bound on the expected round complexity of
the BA protocol.

1.1. The Model

We start with describing in more details the model in which our lower bounds are
given. In the BA protocols considered in this work, the parties are communicating over
a synchronous network of private and authenticated channels. Each party starts the
protocol with an input bit and upon completion decides on an output bit. The protocol
is t-resilient if when facing t colluding parties that attack the protocol it holds that:
(1) all honest parties agree on the same output bit (agreement), (2) if all honest parties
start with the same input bit, then this is the common output bit (validity), and (3) the
protocol eventually terminates (termination). The protocols might have a trusted setup
phase: a trusted external party samples correlated values (or receives a value from each
party) and distributes them among the parties. A setup phase is known to be essential
for tolerating t ≥ n/3 corruptions, and seems to be crucial for highly efficient protocols
such as [1,2,18,54,55]. The trusted setup phase is typically implemented using (heavy)
secure multiparty computation [10,13], distributed key generation [34,64], via a public-
key infrastructure (see [14] for a discussion on different flavors of PKI), or with a random
oracle (that can be used to model proofs of work) [61].

Locally consistent adversaries. The attacks presented in this paper require very limited
capabilities from the corrupted parties (a limitation that makes our bounds stronger).
Specifically, a corrupted party can deviate from the protocol only by: (1) prematurely
aborting, and (2) altering (possibly a multiple number of times) its input bit and/or
incoming messages from corrupted parties (see Sect. 3.1.2 for a precise definition). We
emphasize that corrupted parties sample their random coins honestly (and use the same
coins for all messages sent). In addition, they do not lie about messages received from
honest parties.

Public-randomness protocols. In many randomized protocols, including all those used
in practice, cryptography is merely used to provide message authentication—preventing
a party from lying about the messages it received—and verifiable randomness—forcing
the parties to toss their coins correctly. The description of such protocols can be greatly
simplified if only security against locally consistent adversaries is required (in which
corrupted parties do not lie about their coin tosses and their incoming messages from
honest parties). This motivates the definition of public-randomness protocols, where
each party publishes its local coin tosses for each round (the party’s first message also
contains its setup parameter, if such exists). Although our attacks apply to arbitrary BA
protocols, we show even stronger lower bounds for public-randomness protocols.

We illustrate the simplicity of the model by considering the BA protocol of Micali
[54]. In this protocol, the cryptographic tools, digital signatures and verifiable random
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functions (VRFs),1 are used to allow the parties elect leaders and toss coins with prob-
ability 2/3 as follows: each party Pi in round r evaluates the VRF on the pair (i, r) and
multicasts the result. The leader is set to be the party with the smallest VRF value, and
the coin is set to be the least-significant bit of this value. Since these values are uni-
formly distributed κ-bit strings (κ is the security parameter), and there are at least 2n/3
honest parties, the success probability is 2/3. (Indeed, with probability 1/3, the leader is
corrupted, and can send its value only to a subset of the parties, creating disagreement.)

When considering locally consistent adversaries, Micali’s protocol can be significantly
simplified by having each party randomly sample and multicast a uniformly distributed
κ-bit string (cryptographic tools and setup phase are no longer needed). Corrupted parties
can still send their values to a subset of honest parties as before, but they cannot send
different random values to different honest parties.

A similar simplification applies to other BA protocols that are based on leader election
and coin tosses such as [26,29,47] (private channels are used for a leader-election sub-
protocol), [2,55] (cryptography is used for coin-tossing and message-authentication),
and [1,18] (cryptography is used to elect a small committee per round).2

Proposition 1.1. (Malicious security to locally consistent public-randomness proto-
col, informal) Each of the BA protocols of [1,2,18,26,29,47,54,55] induces a public-
randomness BA protocol secure against locally consistent adversaries, with the same
parameters.

A useful abstraction for protocol design. To complete the picture, we remark that
security against locally consistent adversaries, which may seem somewhat weak at first
sight, can be compiled using standard cryptographic techniques into security against
arbitrary adversaries. This reduction becomes lossless, efficiency-wise and security-
wise, when applied to public-randomness protocols. Thus, building public-randomness
protocols secure against locally consistent adversaries is a useful abstraction for protocol
designers that want to use what cryptography has to offer, but without being bothered
with the technical details. See more details in Sect. 1.3.

Connection to the full-information model. The public-randomness model can be
viewed as a restricted form of the full-information model [5,7,9,19,37,39,45,48,51,52].
In the latter model, the adversary is computationally unbounded and has complete access
to all the information in the system, i.e., it can listen to all transmitted messages and
view the internal states of honest parties (such an adversary is also called intrusive [19]).
One of the motivations to study full-information protocols is to separate randomization
from cryptography and see to what extent randomization alone can speed up Byzantine
agreement. Bar-Joseph and Ben-Or [5] showed that any full-information BA protocol
tolerating t = �(n) adaptive, fail-stop corruptions (i.e., the adversary can dynamically
choose which parties to crash) runs for �̃(

√
n) rounds. Goldwasser et al. [39] constructed

1A pseudorandom function that provides a non-interactively verifiable proof for the correctness of its
output.

2Unlike the aforementioned protocols that use “simple” preprocess and “light-weight” cryptographic tools,
the protocol of Rabin [66] uses a heavy, per execution, setup phase (consisting of Shamir sharing of a random
coin for every potential round) that we do not know how to cast as a public-randomness protocol.
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an O(log n)-round BA protocol tolerating t = (1/3 − ε)n static, malicious corruptions,
for an arbitrarily small constant ε > 0.

We chose to state our results in the public-randomness model for two reasons. First,
our lower bounds readily extend to lower bounds in the full-information model (since we
consider weaker adversarial capabilities, e.g., all our attacks are efficient). Second, when
considering locally consistent adversaries, public-randomness captures essentially what
efficient cryptography has to offer. Indeed, all protocol used in practice can be cast as
public-randomness protocols tolerating locally consistent adversaries (Proposition 1.1)
and every public-randomness protocol secure against locally consistent adversaries can
be compiled, using cryptography, to malicious security in the standard model, where
security relies on secret coins (see Theorem 1.6 below).

We note that it is known how to compile certain full-information protocols and “boost”
their security from fail-stop into malicious; however, these compilers capture either de-
terministic protocols [15,42,59] or protocols with a non-uniform source of randomness
(namely, an SV-source [67]) [39]. It is unclear whether these compilers can be extend-
ed to capture arbitrary protocols (this is in fact stated as an open question in [15,39]).
In addition, these compilers are designed to be information theoretic and not rely on
cryptography; thus, they do not model highly efficient protocols used in practice.

1.2. Our Results

We present three lower bounds on the halting probability of randomized BA protocols.
To keep the following introductory discussion simple, we will assume that both validity
and agreement properties hold perfectly, without error. Throughout we consider t < n/2
(as otherwise Byzantine agreement cannot be achieved).

First-round halting. Our first result bounds the halting probability after a single com-
munication round. This is the simplest case since parties cannot inform each other about
inconsistencies they encounter. Indeed, the established lower bound is quite strong,
showing an exponentially small bound on the halting probability when t ≥ n/3, and
exponentially close to 1/2 when t ≥ n/4.

Theorem 1.2. (First-round halting, informal) Let � be an n-party BA protocol and let
γ denote the halting probability after a single communication round facing a locally
consistent, static, adversary corrupting t parties. Then,

• n/2 > t ≥ n/3 implies γ ≤ 2t−n for arbitrary protocols, and γ = 0 for public-
randomness protocols.

• n/2 > t ≥ n/4 implies γ ≤ 1/2 + 2t−n for arbitrary protocols, and γ ≤ 1/2 for
public-randomness protocols.

Note that the deterministic (t +1)-round, t-resilient BA protocol of Dolev and Strong
[24] can be cast as a locally consistent public-randomness protocol (in the plain model).3

Theorem 1.2 shows that for n = 3 and t = 1, this two-round BA protocol is essentially

3When considering locally consistent adversaries, the impossibility of BA for t ≥ n/3 does not apply.
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optimal and cannot be improved via randomization (at least without considering complex
protocols that cannot be cast as public-randomness protocols).

Second-round halting for arbitrary protocols. Our second result considers the halting
probability after two communication rounds. This is a much more challenging regime,
as honest parties have time to detect inconsistencies in first-round messages. Our bound
for arbitrary protocols in this case is weaker, and shows that when t > n/4, the halting
probability is bounded away from 1.

Theorem 1.3. (Second-round halting, arbitrary protocols, informal) Let � be an n-
party BA protocol and let γ denote the halting probability after two communication
rounds facing a locally consistent, static, adversary corrupting t = (1/4+ε) ·n parties.
Then, γ ≤ 1 − (ε/5)2.

Second-round halting for public-randomness protocols. Theorem 1.3 bounds the
second-round halting probability of arbitrary BA protocols away from one. For public-
randomness protocol we achieve a much stronger bound. The attack requires adaptive
corruptions (as opposed to static corruptions in the previous case) and is based on a
combinatorial conjecture that is stated below.4

Theorem 1.4. (Second-round halting, public-randomness protocols, informal) Let �

be an n-party public-randomness BA protocol and let γ denote the halting probabil-
ity after two communication rounds facing a locally consistent adversary adaptively
corrupting t parties. Then, for sufficiently large n and assuming Conjecture 1.5 holds,

• t > n/3 implies γ = 0.
• t > n/4 implies γ ≤ 1/2.

Theorem 1.4 shows that for sufficiently large n, any public-randomness protocol
tolerating t > n/3 locally consistent corruptions cannot halt in less than three rounds
(unless Conjecture 1.5 is false). In particular, its expected round complexity must be at
least three.

To understand the meaning of this result, recall the protocol of Micali [54]. As dis-
cussed above, this protocol can be cast as a public-randomness protocol tolerating
t < n/3 adaptive locally consistent corruptions. The protocol proceeds by continuously
running a three-round sub-protocol until halting, where each sub-protocol consists of a
coin-tossing round, a check-halting-on-0 round, and a check-halting-on-1 round. Exe-
cuting a single instance of this sub-protocol demonstrates a halting probability of 1/3
after three rounds. By Theorem 1.4, a protocol that tolerates slightly more corruptions,
i.e., (1/3 + ε) · n, for arbitrarily small ε > 0, cannot halt in fewer rounds.

Our techniques. Our attacks follow the spirit of many lower bounds on the round
complexity on BA and broadcast [4,24,25,27,33,46]. The underlying idea is to start

4The attack holds even without assuming Conjecture 1.5 when considering strongly adaptive corruption-
s [40], in which an adversary sees all messages sent by honest parties in any given round and, based on
the messages’ content, decides whether to corrupt a party (and alter its message or sabotage its delivery) or
not. Similarly, the conjecture is not required if each party is limited to tossing a single unbiased coin. These
extensions are not formally proved in this paper.
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with a configuration in which validity assures the common output is 0, and gradually
adjust it, while retaining the same output value, into a configuration in which validity
assures the common output is 1. (For the simple case of deterministic protocols, each
step of the argument requires the corrupted parties to lie about their input bits and
incoming messages from other corrupted parties, but otherwise behave honestly.) Our
main contribution, which departs from the aforementioned paradigm, is adding another
dimension to the attack by aborting a random subset of parties (rather than simply
manipulating the input and incoming messages). This change allows us to bypass a
seemingly inherent barrier for this approach. We refer the reader to Sect. 2 for a detailed
overview of our attacks.

We remark that a similar approach was employed by Attiya and Censor [3] for obtain-
ing lower bounds on consensus protocols in the asynchronous shared-memory model,
a flavor of BA in a communication model very different to the one considered in the
present paper. Specifically, [3] showed that in an asynchronous shared-memory system,
�(n2) steps are required for n processors to reach agreement when facing �(n) com-
putationally unbounded strongly adaptive corruptions (see Footnote 4). Their adversary
also aborts a subset of the parties to prevent halting; however, the difference in commu-
nication model (synchronous in our work, vs. asynchronous in [3]) and the adversary’s
power (efficient and adaptive in our work, vs. computationally unbounded and strongly
adaptive in [3]) yields a very different attack and analysis (though, interestingly, both
attacks boil down to different variants of isoperimetric-type inequalities).

The combinatorial conjecture. We conclude the present section by motivating and
stating the combinatorial conjecture assumed in Theorem 1.4, and discussing its plau-
sibility. We believe the conjecture to be of independent interest, as it relates to topics
from Boolean functions analysis such as influences of subsets of variables [60] and
isoperimetric-type inequalities [57,58]. The nature of our conjecture makes the follow-
ing paragraphs somewhat technical, and reading them can be postponed until after going
over the description of our attack in Sect. 2.

The analysis of our attack naturally gives rise to an isoperimetric-type inequality. For
limited types of protocols, we manage to prove it using Friedgut’s theorem [31] about
approximate juntas and the KKL theorem [44]. For arbitrary protocols, however, we can
only reduce our attack to the conjecture below.

We require the following notation before stating the conjecture. Let � denote some
finite set. For x ∈ �n and S ⊆ [n], define the vector ⊥S(x) ∈ {� ∪ ⊥}n by assigning
all entries indexed by S with the value ⊥, and all other entries according to x. Finally,
let Dn,σ denote the distribution induced over subsets of [n] by choosing each element
with probability σ independently at random.

Conjectures 1.5. For any σ, λ > 0 there exists δ > 0 such that the following holds for
large enough n ∈ N: let � be a finite alphabet, and letA0,A1 ⊆ {� ∪ ⊥}n be two sets
such that for both b ∈ {0, 1}:

Pr
S←Dn,σ

[
Pr

r←�n
[r,⊥S(r) ∈ Ab] ≥ λ

]
≥ 1 − δ.
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Then,

Pr
S←Dn,σ 0

r←�n

[∀b ∈ {0, 1} : {r,⊥S(r)} ∩ Ab = ∅] ≥ δ.

Consider two large sets A0 and A1 which are “stable” in the following sense: for both
b ∈ {0, 1}, with probability 1 − δ over S ← Dn,σ , it holds that both r and ⊥S(r)
belong to Ab, with probability at least λ over r . Conjecture 1.5 stipulates that with
high probability (≥ δ), the vectors r and ⊥S(r) lie in opposite sets (i.e., one is in A0
and the other A1), for random r and S. It is somewhat reminiscent of the following
flavor of isoperimetric inequality: for any two large sets B0 and B1, taking a random
element from B0 and resampling a few coordinates, yields an element in B1 with large
probability. Less formally, one can “move” from one set to the other by manipulating a
few coordinates [57,58].

A few remarks are in order. First, it suffices for our purposes to show that δ is a
noticeable (i.e., inverse polynomial) function of n, rather than independent of n.5 We
opted for the latter as it gives a stronger attack. Second, the conjecture holds for “natural”
sets such as balls, i.e.,A0 andA1 are balls centered around 0n and 1n of constant radius,6

and “prefix” sets, i.e., sets of the form Ab = bk × {� ∪ ⊥}n−k . Furthermore, the claim
can be proven when the probabilities over S and r are reversed, i.e., “with probability
λ over r , it holds that both r and ⊥S(r) belong to Ab with probability at least 1 − δ

over S”, instead of the above. Interestingly, this weaker statement boils down to the
aforementioned isoperimetric-type inequality (cf. [57] for the Boolean case and [58] for
the non-Boolean case).

We conclude by pointing out that, as mentioned in Footnote 4, the conjecture is not
needed for certain limited cases that are not addressed in detail in the present paper. One
such case is sketched out in Sect. 2.

1.3. Locally Consistent Security to Malicious Security

As briefly mentioned in Sect. 1.1, protocols that are secure against locally consistent
adversaries can be compiled to tolerate arbitrary malicious adversaries. The compiler
requires a PKI setup for digital signatures, verifiable random functions (VRFs) [56],
and non-interactive zero-knowledge proofs (NIZK) [11]. A VRF is a pseudorandom
function with an additional property: using the secret key and an input x , the VRF
outputs a pseudorandom value y along with a proof string π ; using the public key,
everyone can use π to verify whether y is the output of x . We consider a trusted setup
phase for establishing the PKI, where a trusted party generates VRF and signature keys
for every party, securely gives the secret keys to each party, and publishes the public
keys to all.

Given a protocol that is secure against locally consistent adversaries, the compiled
protocol proceeds as follows, round by round. Each party Pi sets its random coins for
the r ’th round ρr

i (together with a proof πr
i ) by evaluating the VRF over the pair (i, r).

5We remark that it is rather easy to show that δ ≥ 2−n , which is not good enough for our purposes.
6The alphabet � is not necessarily Boolean, and there are a couple of subtleties in defining balls.
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Next, for every j ∈ [n], party Pi uses these coins to compute the message mr
i→ j for

P j , signs mr
i→ j as σ r

i→ j , and sends (mr
i→ j , σ

r
i→ j , π

r
i ) to P j . Finally, Pi sends to P j a

NIZK proof that:

1. There exist an input bit b, random coins ρr
i , as well as random coins ρr ′

i and

incoming messages and (mr ′
1→i , . . . ,m

r ′
n→i ) for every prior round r ′ < r , such

that: (1) πr
i verifies that ρr

i is the VRF output of (i, r) (using the VRF public key
of Pi ), (2) the message mr

i→ j was signed by Pi , and (3) the message mr
i→ j is the

output of the next-message function of Pi when applied to these values.
2. For r > 1, the messages (mr ′

k→i , σ
r ′
k→i , π

r ′
k ) received by Pi from every Pk in prior

rounds are proven to be properly generated. That is, Pk provided a NIZK proof
that explains how mr ′

k→i was generated using random coins computed via the VRF
on (k, r ′) and on incoming messages that were signed by the senders.

When considering public-randomness protocols, the above compilation can be made
much more efficient. Instead of proving in zero knowledge the consistency of each
message, each party Pi concatenates to each message all of its incoming messages from
the previous round. A receiver can now locally verify the coins used by Pi are the VRF
output of (i, r) (as assured by the VRF), that the incoming messages are properly signed,
and that the message is correctly generated from the internal state of Pi (which is now
visible and verified).

Theorem 1.6. (Locally consistent to malicious security, folklore, informal) Assume
PKI for digital signatures, VRF, and NIZK. Then, an expected-constant-round BA pro-
tocol secure against locally consistent adversaries can be compiled into a maliciously
secure protocol with the same parameters.

The proof of Theorem 1.6 can be found in Sect. A.

1.4. Additional Related Work

Following the work of Feldman and Micali [26] in the two-thirds majority setting, Katz
and Koo [47] improved the expected round complexity to 23, and Micali [54] to 9. In the
honest-majority setting, Fitzi and Garay [29] showed expected-constant-round protocol
and Katz and Koo [47] expected 56 rounds. Micali and Vaikuntanathan [55] adjusted
the technique from [54] to the honest-majority case. Abraham et al. [2] achieved expect-
ed 10 rounds assuming static corruptions and expected 16 rounds assuming adaptive
corruptions. Abraham et al. [1] constructed an expected-constant-round protocol toler-
ating (1/2 − ε) · n adaptive corruptions with sublinear communication complexity. In
the dishonest-majority setting, Garay et al. [33] constructed a broadcast protocol with
expected O(k2) rounds, tolerating t < n/2 + k corruptions, that was improved by Fitzi
and Nielsen [30] to expected O(k) rounds.

Attiya and Censor-Hillel [4] extended the results of Chor et al. [20] and of Karlin and
Yao [46] on guaranteed termination of randomized BA protocols to the asynchronous
setting, and provided a tight lower bound.

Randomized protocols with expected constant round complexity have probabilistic
termination, which requires delicate care with respect to composition (i.e., their usage as
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subroutines by higher-level protocols). Parallel composition of randomized BA protocols
was analyzed in [6,29], sequential composition in [53], and universal composition in
[21,22].

1.5. Open Questions

Our attack on two-round halting of public-randomness protocols is based on Conjec-
ture 1.5. In this work we prove special cases of this conjecture, but proving the general
case remains an open challenge.

A different interesting direction is to bound the halting probability of protocols when
t < n/4. It is not clear how to extend our attacks to this regime.

Paper Organization

In Sect. 2 we present a technical overview of our attacks. The formal model and the
exact bounds are stated in Sect. 3. The proof of the first-round halting is given in Sect. 4,
and for second-round halting in Sect. 5. The proof of Theorem 1.6 appears in Sect. A.

2. Our Techniques

In this section, we outline our techniques for proving our results. We start with explaining
our bound for first-round halting of arbitrary protocols (Theorem 1.2). We then move
to second-round halting, starting with the weaker bound for arbitrary protocols (Theo-
rem 1.3), and then move to the much stronger bound for public-randomness protocols
(Theorem 1.4).

Notations. We use calligraphic letters to denote sets, uppercase for random variables,
lowercase for values, boldface for vectors, and sans-serif (e.g., A) for algorithms (i.e.,
Turing Machines). For n ∈ N, let [n] = {1, . . . , n} and (n) = {0, 1, . . . , n}. Let
dist(x, y)denote the hamming distance between x and y. For a setS ⊆ [n] letS = [n]\S.
For a set R ⊆ {0, 1}n , let R|S = {xS ∈ {0, 1}|S| s.t. x ∈ R}, i.e., R|S is the projection
of R on the index-set S.

Fix ann-party randomized BA protocol� = (P1, . . . ,Pn). For presentation purposes,
we assume that n is divisible by 3, that validity and agreement hold perfectly, and
consider no setup parameters (in the subsequent sections, we remove these assumptions).
Furthermore, we only address here the case where the security threshold is t > n/3. The
case t > n/4 requires an additional generic step that we defer to the technical sections
of the paper. We denote by �(v; r) the output of an honest execution of � on input
v ∈ {0, 1}n and randomness r (each party Pi holds input vi and randomness ri ). We let
�(v) denote the resulting random variable determined by the parties’ random coins, and
we write �(v) = b to denote the event that the parties output b in an honest execution of
� on input v. All corrupt parties described below are locally consistent (see Sect. 1.1).



On the Round Complexity of Randomized Byzantine Agreement Page 11 of 51 10

2.1. First-Round Halting

Assume the honest parties of � halt at the end of the first round with probability γ > 0
when facing t corruptions (on every input). Our goal is to upperbound the value of γ . Our
approach is inspired by the analogous lower-bound for deterministic protocols (see [24,
27]). Namely, we start with a configuration in which validity assures the common output
is 0, and, while maintaining the same output, we gradually adjust it into a configuration
in which validity assures the common output is 1, thus obtaining a contradiction. For
randomized protocols, the challenge is to maintain the invariant of the output, even when
the probability of halting is far from 1. We make the following observations:

Almost pre-agreement: dist(v, bn) ≤ t �⇒ �(v) = b. (1)

That is, in an honest execution of �, if the parties almost start with preagreement, i.e.,
with at least n − t of b’s in the input vector, then the parties output b with probability 1.
Equation (1) follows from agreement and validity by considering an adversary corrupting
exactly those parties with input vi = b, and otherwise not deviating from the protocol.

Neighboring executions (N1): dist(v0, v1) ≤ t �⇒ Pr
r

[�(v0; r) = �(v1; r)] ≥ γ.

(2)

That is, for two input vectors that are at most t-far (i.e., the resiliency threshold), the
probability that the executions on these vectors yield the same output when using the
same randomness is bounded below by the halting probability. To see why Eq. (2) holds,
consider the following adversary corrupting subset C, for C being the set of indices where
v0 and v1 disagree. For an arbitrary partition {C0, C1} of C, the adversary instructs C
to send messages according to v0 to C0 and according to v1 to C1, respectively. With
probability at least γ , all parties halt at the first round, and, by perfect agreement, all
parties compute the same output.7 Since parties in Cb cannot distinguish this execution
from a halting execution of �(vb; r), Eq. (2) follows.

We deduce that if there are more than n/3 corrupt parties, then the halting probability
is 0; this follows by combining the two observations above for v0 = 02n/31n/3 and
v1 = 0n/312n/3. Namely, by Eq. (1), it holds that Prr [�(v0; r) = �(v1; r)] = 0. Thus,
by Eq. (2), γ = 0.

2.2. Second-Round Halting – Arbitrary Protocols

We proceed to explain our bound for second-round halting of arbitrary protocols. Assume
the honest parties of � halt at the end of the second round with probability γ > 0 when

7In the above, we have chosen to ignore a crucial subtlety. In an execution of the protocol, it may be
the case that there is a suitable message (according to v0 or v1) to prevent halting, yet the adversary cannot
determine which one to send. In further sections, we address this issue by taking a random partition of C
(rather than an arbitrary one). By doing so, we introduce an error-term of 1/2n−t when we upper bound the
halting probability γ .
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facing t corruptions (on every input). Let t = (1/3+ε)·n, for an arbitrary small constant
ε > 0. In spirit, the attack follows the footsteps of the single-round case described
above; we show that neighboring executions compute the same output with good enough
probability (related to the halting probability), and lower-bound the latter using the
almost pre-agreement observation. There is, however, a crucial difference between the
first-round and second-round cases; the honest parties can use the second round to detect
whether (some) parties are sending inconsistent messages. Thus, the second round of the
protocol can be used to “catch-and-discard” parties that are pretending to have different
inputs to different parties, and so our previous attack breaks down. (In the one-round
case, we exploit the fact that the honest parties cannot verify the consistency of the
messages they received.) Still, we show that there is a suitable variant of the attack that
violates the agreement of any “too-good” scheme.

At a very high level, the idea for proving the neighboring property is to gradually
increase the set of honest parties towards which the adversary behaves according to v1
(for the remainder it behaves according to v0, which is a decreasing set of parties). While
the honest parties might identify the attacking parties and discard their messages, they
should still agree on the output and halt at the conclusion of the second round with high
probability. We exploit this fact to show that at the two extremes (where the adversary is
merely playing honestly according to v0 and v1, respectively), the honest parties behave
essentially the same. Therefore, if at one extreme (for v0) the honest parties output b, it
follows that they also output b at the other extreme (for v1), which proves the neighboring
property for the second-round case.

We implement the above by augmenting the one-round attack as follows. In addition
to corrupting a set of parties that feign different inputs to different parties, the adversary
corrupts an extra set of parties that is inconsistent with regards to the messages it received
from the first set of corrupted parties. To distinguish between the two sets of corrupted
parties, the former (first) will be referred to as “pivot” parties (since they pivot their
input) and will be denoted P , and the latter will be referred to as “propagating” parties
(since they carefully choose what message to propagate at the second round) and will
be denoted L. We emphasize that the propagating parties deviate from the protocol only
at the second round and only with regards to the messages received by the pivot parties
(not with regards to their input—as is the case for the pivot parties). In more detail,
we partition P = [n] \ P into � = �1/ε� sets {L1, . . . ,L�}, and we show that, unless
there exists i such that parties in C = P ∪ Li violate agreement (explained below), the
following must hold for neighboring executions.

Neighbouring executions (N2): dist(v0, v1) ≤ n/3 �⇒
Pr [�(v0) = b in two rounds] ≥ Pr [�(v1) = b in two rounds] − 2(� + 1)2 · (1 − γ ).

(3)

That is, for two input vectors that are at most n/3–far, the difference in probability that
two distinct executions (for each input vector) yield the same output within two rounds is
roughly upper-bounded by the quantity (1−γ )/ε2 (i.e., non-halting probability divided
by ε2). To see that Eq. (3) holds true, fix v0, v1 ∈ {0, 1}n of hamming distance at most
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n/3, and let P be the set of indices where v0 and v1 differ. Consider the following � + 1
distinct variants of �, denoted {�0, . . . ,��}; in protocol �i , parties inP send messages
to L1, . . . ,Li according to the input prescribed by v1 and to Li+1, . . . ,L� according to
the input prescribed by v0, respectively. All other parties follow the instructions of � for
input v0. We write �i = b to denote the event that the parties not in P output b. Notice
that the endpoint executions �0 and �� are identical to honest executions with input v0
and v1, respectively. LetHalti denote the event that the parties not inP halt at the second
round in an execution of �i . We point out that Pr

[¬Halti
] ≤ (� + 1) · (1 − γ ), since

otherwise the adversary corruptingP and running�i , for a random i ∈ (�) ..= {0, . . . , �},
prevents halting with probability greater than 1 − γ . Next, we inductively show that

Pr
[
�i = b ∧ Halti

] ≥ Pr
[
�0 = b ∧ Halt0

] − 2i · (� + 1) · (1 − γ ), (4)

for every i ∈ (�), which yields the desired expression for i = �. In pursuit of contradic-
tion, assume Eq. (4) does not hold, and let i denote the smallest index for which it does
not hold (observe that i = 0, by definition). Notice that

Pr
[
(�i−1 = b ∧ Halti−1) ∧ (�i = b ∧ Halti )

]
≥ Pr

[
�i−1 = b ∧ Halti−1

] − Pr
[
�i = b ∨ ¬Halti

]
≥ Pr

[
�i−1 = b ∧ Halti−1

] − Pr
[
�i = b ∧ Halti

] − Pr
[¬Halti

]
> 2 · (� + 1) · (1 − γ ) − Pr

[¬Halti
]

≥ (� + 1) · (1 − γ ) > 0.

The second inequality follows from union bound and A ∨ ¬B ≡ (A ∧ B) ∨ ¬B,
the third inequality is by induction hypothesis, and the last inequality by the bound
Pr

[¬Halti
] ≤ (� + 1) · (1 − γ ).

It follows that an adversary corrupting C = P ∪ Li causes disagreement with non-
zero probability by acting as follows: parties in P and Li send messages according
to �i and �i−1 to C0 and C1, respectively, where {C0, C1} is an arbitrary partition
of C = [n] \ P ∪ Li . Since disagreement is ruled out by assumption, we deduce E-
q. (4) and (3). To conclude, we combine the almost pre-agreement property (Eq. (1))
with the neighboring property (Eq. (3)) with v0 = 02n/31n/3, v1 = 0n/312n/3, and
b = 1. Namely, Pr [�(v0) = 1 in two rounds] = 0, by almost pre-agreement and
Pr [�(v1) = 1 in two rounds] ≥ γ , by almost pre-agreement and halting. It follows
that 0 ≥ γ − 2(� + 1)2 · (1 − γ ), by Eq. (3), and thus 1 − 1

2(�+1)2+1
≥ γ , which yields

the desired expression.

2.3. Second-Round Halting – Public-Randomness Protocols

In Sect. 2.2, we ruled out “very good” second-round halting for arbitrary protocols via
an efficient locally consistent attack. Recall that if the halting probability is close to
1, then there is a somewhat simple attack that violates agreement and/or validity. In



10 Page 14 of 51 R. Cohen et al.

this subsection, we discuss ruling out any second-round halting, i.e., halting probability
bounded away from zero, for public-randomness protocols.

We first explain why the attack—as is—does not rule out second-round halting. Sup-
pose that at the first round the parties of � send a deterministic function of their input,
and at the second round they send the messages they received at the first round together
with a uniform random bit. On input v and randomness r , the parties are instructed
not to halt at the second round (i.e., carry on beyond the second round until they reach
agreement with validity) if a super-majority (≥ n − t) of the vi ’s are in agreement and
maj(r1, . . . , rn) = maj(v1, . . . , vn), i.e., the majority of the random bits does not agree
with the super-majority of the inputs. In all other cases, the parties are instructed to out-
put maj(r1, . . . , rn). It is not hard to see that this protocol will halt with probability 1/2,
even in the presence of the previous locally consistent adversary (regardless of the choice
of propagating parties Li ). More generally, if the randomness uniquely determines the
output, then the protocol designer ensures that halting does not result in disagreement
(by partitioning the randomness appropriately), and thus foiling the previous attack.8

To overcome the above apparent obstacle, we introduce another dimension to our
locally consistent attack; we instruct an extra set of corrupted parties to abort at the second
round without sending their second-round messages. By utilizing aborting parties, the
adversary can potentially decouple the output/halting from the parties’ randomness and
thus either prevent halting or cause disagreement. In Sect. 2.3.1, we explain how to rule
out second-round halting for a rather unrealistic class of public-randomness protocol.
What makes the class of protocols unrealistic is that we assume security holds against
unbounded locally consistent adversaries, and the protocol prescribes only a single bit of
randomness per party per round. That being said, this case illustrates nicely our attack,
and it also makes an interesting connection to Boolean functions analysis (namely, the
KKL theorem [44]). For general public-randomness protocols, we only know how to
analyze the aforementioned attack assuming Conjecture 1.5, as explained in Sect. 2.3.2.

2.3.1. “Superb” Single-Coin Protocols

A BA protocol � is t-superb if agreement and validity hold perfectly against an adaptive
unbounded locally consistent adversary corrupting at most t parties, i.e., the probability
that such an adversary violates agreement or validity is 0. A public-randomness protocol
is single-coin, if, at any given round, each party samples a single unbiased bit.

Theorem 2.1. (Second-round halting, superb single-coin protocols) For every ε > 0
there exists c > 0 such that the followingholds for large enoughn.For t = (1/3+ε)·n, let
� be a t-superb, single-coin, n-party public-randomness Byzantine agreement protocol
and let γ denote the probability that the protocol halts in the second round under a
locally consistent attack. Then, γ ≤ n−c.

We assume for simplicity that the parties do not sample any randomness at the first
round, and write r ∈ {0, 1}n for the vector of bits sampled by the parties at the second
round, i.e., ri is a uniform random bit sampled by Pi .

8In Sect. 2.2, halting was close to 1 and thus the randomness was necessarily ambiguous regarding the
output.
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As discussed above, our attack uses an additional set of corrupted parties of size σ ·n,
dubbed the “aborting” parties and denoted S, that abort indiscriminately at the second
round (the value of σ is set to ε/4 and � = 2 · �1/ε� to accommodate for the new set
of corrupted parties, i.e., |Li | ≤ n · ε/2). In more detail, analogously to the previous
analysis, we consider (� + 1) · ( n

σn

)
distinct variants of �, denoted {�S

i }i,S and indexed
by i ∈ (�) and S ⊆ [n] of size σn, as follows. In protocol �S

i , parties in P send
messages to L1, . . . ,Li according to the input prescribed by v1, and to Li+1, . . . ,L�

according to the input prescribed by v0 (recall that P consists of exactly those indices
where v0 and v1 differ). Parties in S act according to P or L j , for the relevant j , except
that they abort at the second round without sending their second-round messages. We
write �S

i (r) = b to denote the event that the parties not in P ∪ S output b, where

the parties’ second-round randomness is equal to r . Let HaltSi denote the event that
all parties not in P ∪ S halt at the second round in an execution of �S

i , and define

RS
i (b) = {r ∈ {0, 1}n s.t. �S

i (r) = b ∧ HaltSi }. The following holds:

Neighbouring executions (N2 † ):

∀v0, v1 ∈ {0, 1}n with dist(v0, v1) ≤ n/3, ∀b ∈ {0, 1}, i ∈ [�] ..= {1, . . . , �} :(
∀S : Pr

[
�S

i−1 = b ∧ HaltSi−1

]
≥ γ /2

)

�⇒
(
∀S : Pr

[
�S

i = b ∧ HaltSi
]

≥ γ /2
)

. (5)

In words, for both b ∈ {0, 1}: if �S
i−1 = b and halts in two rounds with large probability

(≥ γ /2), for every S, then �S
i = b and halts in two rounds with large probability, for

every S. Before proving Eq. (5), we show how to use it to derive Theorem 2.1. We apply
Eq. (5) for v0 = 02n/31n/3, v1 = 0n/312n/3, b = 0, and i = �, in combination with the
properties of validity and almost pre-agreement (Eq. (1)). Namely, by these properties,
a random execution of � on input v0 where the parties in S abort at the second round
yields output 0 with probability at least γ /2, for every S ∈ ([n]

σn

)
. Therefore, by Eq. (5),

we deduce that a random execution of � on input v1 where the parties in S abort at the
second round yields output 0 with probability at least γ /2, for every S ∈ ([n]

σn

)
. The latter

violates either validity or almost pre-agreement—contradiction. To conclude the proof
of Theorem 2.1, we prove Eq. (5) by using the following corollary of the seminal KKL
theorem [44] from Bourgain et al. [12]. (Recall that R|S is the projection of R on the
index-set S.)

Lemma 2.2. For every σ, δ ∈ (0, 1), there exists c > 0 s.t. the following holds for
large enough n. LetR ⊆ {0, 1}n be s.t. |R|S | ≤ (1 − δ) · 2(1−σ)n, for every S ⊆ [n] of
size σn. Then, |R| ≤ n−c · 2n.
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Loosely speaking, Lemma 2.2 states that for a set R ⊆ {0, 1}n , if the size of every
projection on a constant fraction of indices is bounded away from one (in relative size),
then the size of R is vanishingly small (again, in relative size).9

Going back to the proof, in pursuit of contradiction, let i ≥ 1 denote the smallest
index for which Eq. (5) does not hold, and without loss of generality suppose b = 0,
i.e., there exists S such that |RS

i (0)| < γ/2 · 2n , and |RS ′
i−1(0)| ≥ γ /2 · 2n , for every

relevant S ′. We prove Eq. (5) by proving Eqs. (6) and (7), which result in contradiction
via Lemma 2.2.

Halting: |RS
i (1)| ≥ γ /2 · 2n (6)

Perfect agreement: ∀S ′ : |RS
i (1)|S ′ | ≤ (1 − γ /2) · 2(1−σ)n (7)

Eq. (6) follows by the halting property of �S
i , since the execution halts if and only if

r ∈ RS
i (1) ∪ RS

i (0), and, by assumption, |RS
i (0)| < γ/2 · 2n . To conclude, we prove

Eq. (7) by observing that for every S ′ and b ∈ {0, 1}, and every r and r ′, if r ∈ RS ′
i−1(0)

and r|S ′ = r ′|S ′ , then r ′ ∈ RS ′
i−1(0) (by definition), i.e., membership to RS ′

i−1(0) does

not depend on the indices of S ′. Therefore, if r ∈ RS
i (1) and r|S ′ ∈ RS ′

i−1(0)|S ′ , for

some S ′ and r , then r ∈ RS ′
i−1(0)∩RS

i (1) which gives rise to the following attack. The

attacker controls P , Li , S, and S ′, and sends messages according to �S
i and �S ′

i−1 to C0

and C1, respectively, where {C0, C1} is an arbitrary partition of C = [n]\P∪Li ∪S∪S ′.
It is not hard to see the attacker violates agreement, whenever the randomness lands on
r .

Finally, since |RS ′
i−1(0)| ≥ γ /2 · 2n , we observe that |RS ′

i−1(0)|S ′ | ≥ γ /2 · 2(1−σ)n ,

and, since RS ′
i−1(0)|S ′ and RS

i (1)|S ′ are non-intersecting for every S ′, it follows that

|RS
i (1)|S ′ | ≤ (1 − γ /2) · 2(1−σ)n , which yields Eq. (7).

Remark 2.3. For superb, single-coin, public-randomness protocol, repeated application
of Eq. (2)and Lemma 2.2 rules out second-round halting for arbitrary (constant) fraction
of corrupted parties (and not only n/3 fraction).

2.3.2. General (Public-Randomness) Protocols

The analysis above crucially relies on the superb properties of the protocol. While it
can be generalized for protocols with near-perfect statistical security and constant-bit
randomness, we only manage to analyze the most general case (i.e., protocols with non-
perfect computational security and arbitrary-size randomness) assuming Conjecture 1.5.
Very roughly (and somewhat inaccurately), when applying the above attack on general
public-randomness protocols, the following happens for some δ > 0 and both values
of b ∈ {0, 1}: for (1 − δ)-fraction of possible aborting subsets S, the probability that
the honest parties halt in two rounds and output the same value b, whether parties in S

9In the jargon of Boolean functions analysis, since every large set has a o(n)-size index-set of influence
almost one, it follows that some projection on a constant fraction of indices is almost full.
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all abort or not, is bounded below by the halting probability. Assuming Conjecture 1.5,
it follows that with probability δ over the randomness and S, the honest parties under
the attack output opposite values depending whether the parties in S abort or not. We
conclude that the agreement of the protocol is at most δ. We refer the reader to Sect. 5.2
for the full details.

3. Our Lower Bounds

In this section, we formally state our lower bounds on the round complexity of Byzantine
agreement protocols. The communication and adversarial models as well as the notion
of Byzantine agreement protocols we consider are given in Sect. 3.1, and our bounds
are formally stated in Sect. 3.2.

3.1. The Model

3.1.1. Protocols

All protocols considered in this paper are ppt (probabilistic polynomial time): the run-
ning time of every party is polynomial in the (common) security parameter (given as a
unary string). We only consider Boolean-input Boolean-output protocols: apart from the
common security parameter, all parties have a single input bit, and each of the honest
parties outputs a single bit. For an n-party protocol �, an input vector v ∈ {0, 1}n and
randomness r , let �(v; r) denote the output vector of the parties in an (honest) execution
with partyPi ’s input being vi and randomness r i . For a set of partiesP ⊆ [n], we denote
by �(v; r)P the output vector of the parties in P .

The protocols we consider might have a setup phase in which before interaction
starts a trusted party distributes (correlated) values between the parties. We only require
the security to hold for a single use of the setup parameters, i.e., for a single instance
of the BA protocol (in reality, these parameters are set once and then used for many
interactions). This, however, only makes our lower bound stronger.

The communication model is synchronous, meaning that the protocols proceed in
rounds. In each round every party can send a message to every other party over a private
and authenticated channel. (Allowing the protocol to be executed over private channels
makes our lower bounds stronger.) It is guaranteed that all of the messages that are sent
in a round will arrive at their destinations by the end of that round.

3.1.2. Adversarial Model

We consider both adaptive and non-adaptive (also known as, static) adversaries. An
adaptive adversary can choose which parties to corrupt for the next round immediately
after the conclusion of the previous round but before seeing the next round’s messages.
If a party has been corrupted then it is considered corrupt for the rest of the execution. A
non-adaptive (static) adversary chooses which parties to corrupt before the execution of
the protocol begins (i.e., before the setup phase, if such exists). We measure the success
probability of the latter adversaries as the expectation over their choice of corrupted
parties.
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We consider both rushing and non-rushing adversaries. A non-rushing adversary
chooses the corrupted parties’ messages in a given round based on the messages sent
in the previous rounds. In contrast, a rushing adversary can base the corrupted parties’
messages on the messages sent in the previous rounds, and on those sent by the honest
parties in the current round.
Locally consistent adversaries. As discussed in Sect. 1.1, our attack requires very
limited capabilities from each corrupted party: to prematurely abort, and to lie about its
input bit and incoming messages from other corrupted parties. In particular, a corrupted
party tosses its local coins honestly and does not lie about incoming messages from
honest parties. We now present the formal definition.

Definition 3.1. (locally consistent adversaries) Let � = (P1, . . . ,Pn) be an n-party
protocol and let {α j

i,i ′ }i,i ′∈[n], j∈N be its set of next-message functions, i.e.,

m j
i,i ′ = α

j
i,i ′

(
b; r; (m1

1,i , . . . ,m
1
n,i ), . . . , (m

j−1
1,i , . . . ,m j−1

n,i )
)

is the message party Pi sends to party Pi ′ in the j’th round, given that its input bit is b,

the random coins it flipped till now are r , and in round j ′ < j , it got the message m j ′
i ′′,i

from party Pi ′′ . An adversary taking the role of Pi is said to be locally consistent with
respect to �, if it flips its random coins honestly, and the message it sends in the j’th
round to party Pi ′ takes one of the following two forms:

Abort: the message ⊥.
Input and message selection: a set of messages {m�}k�=1, for some k, such that for
each � ∈ [k]:

m� = α
j
i,i ′

(
b�; r; ((m1

1)�, . . . , (m
1
n)�), . . . , ((m

j−1
1 )�, . . . , (m

j−1
n )�)

)
,

where b� ∈ {0, 1}, r are the coins Pi tossed (honestly) until now, and (m j ′
i ′′)�, for each

j ′ < j and i ′′ = i , is one of the messages Pi received from party Pi ′′ in the j’th
round (or the empty string).

That is, a locally consistent party Pi might send party Pi ′ a sequence of messages
(and not just one as instructed), each consistent with a possible choice of its input bit,
and some of the messages it received in the previous round. In turn, this will enable
party Pi ′ , if corrupted, the freedom to choose in the next rounds the message of Pi it
would like to act according to. Note that without loss of generality, Pi will always send
a single message to the honest parties, as otherwise they will discard the messages.

A few remarks are in place.

1. While the above definition does not enforce between-rounds consistency (a party
might send to another party a first-round message consistent with input 0 and a
second-round message consistent with input 1), compiling a given protocol so that
every message party Pi sends to Pi ′ contains the previous messages Pi sent to Pi ′ ,
will enforce such between-rounds consistency on locally consistent parties.
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2. Although a locally consistent adversary tosses its random coins honestly, he may
toss all random coins at the beginning of the protocol and choose its actions as a
function of these coins. Our attacks in Sects. 4 and 5 do not take advantage of this
capability, and let the corrupted parties toss the random coins for a given round at
the beginning of the round.

3. Using standard cryptographic techniques, a protocol secure against locally con-
sistent adversaries can be compiled into one secure against arbitrary malicious
adversaries, without hurting the efficiency of the protocol “too much,” and in par-
ticular preserve the round complexity (see Sect. 1.3).

4. The locally consistent parties considered in Sects. 4 and 5 do not take full advantage
of the generality of Definition 3.1. Rather, the parties considered either act honestly
but abort at the conclusion of the first round, cheat in the first round and then abort,
or cheat only in the second round and then abort.

3.1.3. Public-Randomness Protocols

In Sect. 1.1, we showed that the description of many natural protocols can be simplified
when security is required to hold only against locally consistent adversaries. In this
relaxed description a trusted setup phase and cryptographic assumptions are not required,
and every party can publish the coins it locally tossed in each round.

Definition 3.2. (Public-randomness protocols) A protocol has public randomness,
if every party’s message consists of two parts: the randomness it sampled in that round,
and an arbitrary message which is a function of its view (input, incoming messages, and
coins tossed up to and including that point). The party’s first message also contains its
setup parameters, if such exist.

3.1.4. Byzantine Agreement

We now formally define the notion of Byzantine agreement. Since we focus on lower
bounds we will consider only the case of a single input bit and a single output bit. A
more general notion of Byzantine agreement will include string input and string outputs.
A generic reduction shows that the cost of agreeing on strings rather than bits is two
additional rounds [68].

Definition 3.3. (Byzantine Agreement) We associate the following properties with a
ppt n-party Boolean input/output protocol �.

Agreement. Protocol � has (t, α)-agreement, if the following holds with respect
to any ppt adversary controlling at most t parties in � and any value of the non-
corrupted parties’ input bits: in a random execution of � on sufficiently large
security parameter, all non-corrupted parties output the same bit with probability
at least 1 − α.10

Validity. Protocol � has (t, β)-validity, if the following holds with respect to any
ppt adversary controlling at most t parties in � and an input bit b given as input to

10A more general definition would allow the parameter α (and the parameters β, γ below) to depend on
the protocol’s security parameter. But in this paper we focus on the case that α is a fixed value.
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all non-corrupted parties: in a random execution of � on sufficiently large security
parameter, all non-corrupted parties output b with probability at least 1 − β.
Halting. Protocol � has (t, q, γ )-halting, if the following holds with respect to
any ppt adversary controlling at most t parties in � and any value of the non-
corrupted parties’ input bits: in a random execution of � on sufficiently large
security parameter, all non-corrupted parties halt within q rounds with probability
at least γ .

Protocol� is a (t, α, β, q, γ )-BA, if it has (t, α)-agreement, (t, β)-validity, and (t, q, γ )-
halting. If the protocol has a setup phase, then the above probabilities are taken with
respect to this phase as well.

Remark 3.4. (Concrete security) Since we care about fixed values of a protocol’s char-
acteristics (i.e., agreement), the role of the security parameter in the above definition is
to enable us to bound the running time of the parties and adversaries in consideration in a
meaningful way, and to parametrize the cryptographic tools used by the parties (if there
are any). Since the attacks we present are efficient assuming the protocol is efficient (in
any reasonable sense), the bounds we present are applicable for a fixed protocol that
might use a fixed cryptographic primitive, e.g., SHA-256.

3.2. The Bounds

We proceed to present the formal statements of the three lower bounds. Recall that
Byzantine agreement cannot be achieved for t ≥ n/2, since otherwise the corrupted
parties can simply play honestly on an input of their choice and force the output. We
therefore consider t < n/2 throughout the paper.

First-round halting, arbitrary protocols.The first result bounds the halting probability
of arbitrary protocols after a single round. Namely, for “small” values of α and β, the
halting probability is “small” for t ≥ n/3 and “close to 1/2” for t ≥ n/4.

Theorem 3.5. (restating Theorem 1.2) Let� be a ppt n-party protocol that is (t, α, β,

1, γ )-BA against locally consistent, static, non-rushing adversaries. Then,

• t ≥ n/3 implies γ ≤ 6α + 2β + err
• t ≥ n/4 implies γ ≤ 1/2 + 5α + β + err,

for err = 2t−n (err = 0 for public-randomness protocols whose security holds against
rushing adversaries).

Second-round halting, arbitrary protocols.The second result bounds the halting prob-
ability of arbitrary protocols after two rounds.

Theorem 3.6. (restating Theorem 1.3) Let� be a ppt n-party protocol that is (t, α, β,

2, γ )-BA against locally consistent, static, non-rushing adversaries for t > n/4. Then
γ ≤ 1 + 2α + β

w2 − 1
2w2 for w = �(n − �n/4�)/ �t − n/4�� + 1.

In particular, for t = (1/4 + ε) · n and “small” α and β, the protocol might not halt
at the conclusion of the second round with probability ≈ ε2.
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Second-round halting, public-randomness protocols.The third result bounds the halt-
ing probability of public-randomness protocols after two rounds. The result requires
adaptive and rushing adversaries, and is based on Conjecture 3.8 (stated in Sect. 3.3
below).

Theorem 3.7. (restating Theorem 1.4) Assume Conjecture 3.8 holds, then for any
(constants) εt , εγ > 0 there exists α > 0 such that the following holds for large enough
n: let � be a ppt n-party, public-randomness protocol that is (t, α, β = ε2

γ /200, 2, γ )-
BA against locally consistent, rushing, adaptive adversaries. Then,

• t ≥ (1/3 + εt ) · n implies γ < εγ .
• t ≥ (1/4 + εt ) · n implies γ < 1

2 + εγ .

In particular, assuming the protocol has perfect agreement and validity, the protocol
never halts in two rounds if the fraction of corrupted parties is greater than 1/3, and halts
in two rounds with probability at most 1/2 if the fraction of corrupted parties is greater
than 1/4.

The value of α in the theorem is (roughly) δ ·εt ·ε2
γ where δ is the constant guaranteed

by Conjecture 3.8. We were not trying to optimize over the constants in the above
statement, and in particular it seems that β can be pushed to ε2

γ .

3.3. The Combinatorial Conjecture

Next, we provide the formal statement for the combinatorial conjecture used in Theo-
rem 3.7. For n ∈ N and σ ∈ [0, 1], let Dn,σ be the distribution induced on the subsets
of [n] by sampling each element independently with probability σ . For a finite alphabet
�, a vector x ∈ �n , and a subset S ⊆ [n], define the vector ⊥S(x) ∈ �n by

⊥S(x)i =
{

⊥, i ∈ S,

xi , otherwise.

Conjectures 3.8. (restating Conjecture 1.5) For any σ, λ > 0 there exists δ > 0 such
that the following holds for large enough n ∈ N. Let � be a finite alphabet and let
A0,A1 ⊆ {� ∪ ⊥}n be two sets such that for both b ∈ {0, 1}:

Pr
S←Dn,σ

[
Pr

r←�n
[r,⊥S(r) ∈ Ab] ≥ λ

]
≥ 1 − δ.

Then,

Pr
r←�n

S←Dn,σ

[∀b ∈ {0, 1} : {r,⊥S(r)} ∩ Ab = ∅] ≥ δ.
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4. Lower Bounds on First-Round Halting

In this section, we present our lower bound for the probability of first-round halting in
Byzantine agreement protocols.

Theorem 4.1. (Bound on first-round halting. Theorem 3.5 restated) Let � be a ppt
n-party protocol that is (t, α, β, 1, γ )-BA against locally consistent, static, non-rushing
adversaries. Then,

• t ≥ n/3 implies γ ≤ 6α + 2β + err
• t ≥ n/4 implies γ ≤ 1/2 + 5α + β + err,

for err = 2t−n (err = 0 for public-randomness protocols whose security holds against
rushing adversaries).

Let � be as in Theorem 4.1. Without loss of generality and for ease of notation, we
denote by � the modified protocol that outputs ⊥ if a party does not halt after the first
round (it will be clear that the attack, described below, does not benefit from this change).
We also omit the security parameter from the parties’ input list, it will be clear though
that the adversaries we present are efficient with respect to the security parameter.

Lemma 4.2. (Neighboring executions)Let v, v′ ∈ {0, 1}n bewith dist(v, v′) ≤ t . Then
for both b ∈ {0, 1}:

Pr
[
�(v′) ∈ {b,⊥}n \ {⊥n}] ≥ Pr

[
�(v) ∈ {b,⊥}n] − (1 − γ ) − 4α − err.

Namely, the lemma bounds from below the probability that in a random honest execution
of the protocol on input v′, at least one party halts in the first round while outputting b.

We prove Lemma 4.2 below, but first use it to prove Theorem 4.1. We also make use
of the following immediate observation.

Claim 4.3. (Almost pre-agreement) Let v ∈ {0, 1}n and b ∈ {0, 1} be such that
dist(v, bn) ≤ t . Then, Pr

[
�(v) ∈ {b,⊥}n] ≥ 1 − α − β.

Proof. Let A ⊂ [n] be a subset of size n− t such that vA = b|A|. The claimed validity
of � yields that

Pr
[
�(v)A /∈ {b,⊥}|A|] ≤ β.

This follows from β-validity of � and the fact that an honest party cannot distinguish
between an execution of �(v) and an execution of �(bn) in which all parties not in A
act as if their input bit is as in v. Hence, by the claimed agreement of �,

Pr
[
�(v) /∈ {b,⊥}n] ≤ α + β. �
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Proof of Theorem 4.1. We separately prove the theorem for t ≥ n/3 and for t ≥ n/4.
The case t ≥ n/3. Let v0 = 0t1�(n−t)/2�0�(n−t)/2� and v1 = 1t1�(n−t)/2�0�(n−t)/2�. Note
that dist(v0, v1) = t , and that for both b ∈ {0, 1} it holds that dist(vb, bn) ≤ t . Hence,
by Claim 4.3, for both b ∈ {0, 1}:

Pr
[
�(vb) ∈ {b,⊥}n] ≥ 1 − α − β.

Applying Lemma 4.2 to v = v0 and v′ = v1 yields that

Pr
[
�(v1) ∈ {0,⊥}n \ {⊥n}] ≥ Pr

[
�(v0) ∈ {0,⊥}n] − (1 − γ ) − 4α − err

≥ 1 − 5α − β − (1 − γ ) − err.

Since by Claim 4.3 it holds that Pr
[
�(v1) ∈ {0,⊥}n \ {⊥n}] ≤ Pr

[
�(v1) /∈ {1,⊥}n] ≤

α + β, we conclude that 6α + 2β + (1 − γ ) + err ≥ 1, hence γ ≤ 6α + 2β + err.
The case t ≥ n/4. In this case there are no two vectors that are t apart in Hamming
distance, and still each of them hasn−t entries of opposite values. Rather, we consider the
two vectors v0 = 0t0t0t1n−3t and v1 = 1t1t0t1n−3t of distance 2t . For both b ∈ {0, 1},
the vector vb has at least n − t entries with b and is of distance t from the vector
v� = 1t0t0t1n−3t .

As in the first part of the proof, Applying Claim 4.3 and Lemma 4.2 on vb and v�, for
both b ∈ {0, 1}, yields that

Pr
[
�(v�) ∈ {b,⊥}n \ {⊥n}] ≥ Pr

[
�(vb) ∈ {b,⊥}n] − (1 − γ ) − 4α − err

≥ 1 − 5α − β − (1 − γ ) − err.

By union bound, we conclude that 2(5α + β + (1 − γ ) + err) ≥ 1, hence γ ≤ 1/2 +
5α + β + err. �

4.1. Proving Lemma 4.2

Proof of Lemma 4.2. Fix b ∈ {0, 1} and let δ = Pr
[
�(v) ∈ {b,⊥}n]. Let P be the

coordinates in which v and v′ differ, and let P = [n] \P . Let I be the index (a function
of the parties’ coins and setup parameters) of the smallest party in P that halts in the first
round and outputs the same value, both if the parties in P send their messages according
to input v and if they do that according to v′. We let I = 0 if there is no such party, and
(abusing notation) sometimes identify I with the event that I = 0, e.g., Pr [I ] stands for
Pr [I = 0]. By definition,

δ ≤ Pr
[
�(v) ∈ {b,⊥}n ∧ I

] + (1 − Pr [I ])

and thus

Pr
[
�(v) ∈ {b,⊥}n ∧ I

] ≥ δ − (1 − Pr [I ]) (8)
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It follows that

Pr
[
�(v′) ∈ {b,⊥}n \ {⊥n}] ≥ Pr

[
�(v′) ∈ {b,⊥}n ∧ I

]
= Pr

[
�(v′) ∈ {b,⊥}n ∧ �(v′)I = b

]
≥ Pr

[
�(v′)I = b

] − α

= Pr [�(v)I = b] − α

≥ Pr
[
�(v) ∈ {b,⊥}n ∧ �(v)I = b

] − 2α

= Pr
[
�(v) ∈ {b,⊥}n ∧ I

] − 2α

≥ δ − (1 − Pr [I ]) − 2α. (9)

The first inequality and the equalities hold by the definition of I . The second and third
inequalities hold by agreement, and the last inequality holds by Eq. (8). We conclude
the proof showing that:

Pr [I ] ≥ γ − err − 2α (10)

Let C denote the event (a function of the parties’ coins and setup parameters) that for
each party j in P there exists an input in

{
v, v′} on which it does not halt. Furthermore,

let F ..= ¬C ∧ (I = 0), i.e., there exists a party that halts on both inputs but outputs
different values. By definition, I = 0 is equivalent to the event F ∨ C .

Consider the adversary that in the first round acts toward a random subset P ′ ⊆ P
according to input v, towards the remaining parties according to v′, and aborts at the
end of this round. Fix some random coins and setup parameters in F , and let i ∈ P be
a party that, under this fixing, halts in the first round on both v and v′, but outputs a
different value. Note that the other parties in P cannot distinguish whether i is in P ′

or
not (in both cases i halts at the end of the first round). Since, by assumption, t < n/2
(i.e., there exist additional honest parties), it follows that under the above conditioning,
agreement is violated with probability at least 1/2. We conclude that Pr [F] ≤ 2α.

It is also clear that when C occurs, the above attacker fails to prevent an honest party
in P from halting in the first round only if the following event happens: each party in
P does not halt in �(v′′) for some v′′ ∈ {

v, v′}, but the adversary acts towards each of
these parties on the input in which it does halt. The latter event happens with probability

at most 2
−

∣∣∣P
∣∣∣ ≤ 2t−n = err. Thus, Pr [C] ≤ 1 − (γ − err). We conclude that

Pr [I ] ≥ 1 − Pr [C] − Pr [F] ≥ γ − err − 2α (11)

Finally, we note that if the protocol has public randomness, the (now rushing) attack-
er does not have to guess what input to act upon. Rather, after seeing the first-round
randomness, it finds an input v′′ ∈ {

v, v′} such that at least one party in P does not
halt in �(v′′) or violates agreement, and acts according to this input. Specifically, given
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the honest parties’ first-round coins, the attacker can compute on its own all honest-to-
honest first-round messages (recall that we consider private channels, so the attacker
does not see those messages on the channels), and locally check which honest party will
halt with output 0 and which will halt with output 1 when playing according to v and
when playing according to v′. Hence, the bound on I changes to

Pr [I ] ≥ γ − α,

proving the theorem statement for such protocols. �

5. Lower Bounds on Second-Round Halting

In this section, we prove lower bounds for second-round halting of Byzantine agreement
protocols. In Sect. 5.1, we prove a bound for arbitrary protocols, and in Sect. 5.2, we
give a much stronger bound for public-randomness protocols (the natural extension of
public-coin protocols to the “with-input” setting).

5.1. Arbitrary Protocols

We start by proving our lower bound for second-round halting of arbitrary protocols.

Theorem 5.1. (Bound on second-round halting, arbitrary protocols. Theorem 3.6 re-
stated) Let � be a ppt n-party protocol that is (t, α, β, 2, γ )-BA against locally con-
sistent, static, non-rushing adversaries for t > n/4. Then γ ≤ 1 + 2α + β

w2 − 1
2w2 for

w = �(n − �n/4�)/ �t − n/4�� + 1.

Let � be as in Theorem 5.1. Without loss of generality and for ease of notation,
we denote by � the modified protocol that outputs ⊥ if a party does not halt after
the first two rounds (it will be clear that the attack, described below, does not benefit
from this change). We also assume without loss of generality that the honest parties in
an execution of � never halt in the first round (by adding a dummy round if needed).
Finally, we omit the security parameter from the parties’ input list, it will be clear though
that the adversaries we present are efficient with respect to the security parameter.

Let k = �n/4� and let h = �(n − k)/(t − k)�. The theorem is easily implied by the
next lemma.

Lemma 5.2. (Neighboring executions) Let v, v′ ∈ {0, 1}n be with dist(v, v′) ≤ k.
Then, for every b ∈ {0, 1}:

Pr
[
�(v′) = bn

] ≥ Pr
[
�(v) = bn

] − h(h + 1)(2α + 1 − γ ) − α.

Namely, the lemma bounds from below the probability that in a random honest execution
of the protocol on input v′ all parties halt within two rounds while outputting b.

We prove Lemma 5.2 below, but first use it to prove Theorem 5.1. We also make use
of the following immediate observation.
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Claim 5.3. (Almost pre-agreement) Let v ∈ {0, 1}n and b ∈ {0, 1} be such that
dist(v, bn) ≤ t . Then, Pr

[
�(v) = bn

] ≥ 1 − α − β − (1 − γ ).

Proof. The same argument as in the proof of Claim 4.3 yields that

Pr
[
�(v) /∈ {b,⊥}n] ≤ α + β.

Thus, by γ -second-round halting

Pr
[
�(v) = bn

] ≤ α + β + (1 − γ ).

�

Proof of Theorem 5.1. Consider the vectors v0 = 0k0k0k1n−3k , v1 = 1k1k0k1n−3k

and v� = 1k0k0k1n−3k . Note that for both b ∈ {0, 1} it holds that dist(vb, bn) ≤ t since
n/4 ≤ k ≤ t), and that dist(vb, v�) = k. Applying Lemma 5.2 and Claim 5.3 for each
of these vectors, yields that for both b ∈ {0, 1}:

Pr
[
�(v�) = bn

] ≥ 1 − α − β − (1 − γ ) − h(h + 1)(2α + 1 − γ ) − α

≥ 1 − β − (h + 1)2(2α + 1 − γ ).

Note that w = h + 1, which implies β + w2(2α + 1 − γ ) ≥ 1/2, and the proof follows
by a simple calculation. �

5.1.1. Proving Lemma 5.2

We assume for ease of notation that dist(v, v′) = k (rather than ≤ k) and let � = t − k.
Assume for ease of notation that h · � = n− k (i.e., no rounding), and for a k-size subset
of parties P ⊂ [n], let LP

1 , . . . ,LP
h be an arbitrary partition of P = [n] \ P into �-size

subsets. Consider the following family of protocols:
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Protocol 5.4. (�P,S
d )

Parameters: A subset P ⊆ [n] and an index d ∈ (h).
Input: Every party Pi has an input bit vi ∈ {0, 1}.
First round:

Party Pi ∈ P . If d = 0 [resp., d = h], act honestly according to � with respect
to input bit vi [resp., 1 − vi ]. Otherwise,

1. Choose random coins honestly (i.e., uniformly at random).
2. To each party in

⋃
j∈{1,...,d} LP

j : send a message according to input 1−vi .

3. To each party in
⋃

j∈{d+1,...,h} LP
j : send a message according to input vi

(real input).
4. Send no messages to the other parties in P .

Other parties. Act according to �.

Second round:

Party Pi ∈ P . If d = 0 [resp., d = h], act honestly according to � with respect
to input bit vi [resp., 1 − vi ]; otherwise, abort.

Other parties. Act honestly according to �.
.............................................................................................................

Namely, the “pivot” parties in P gradually shift their inputs from their real input to
its negation according to parameter d. Note that protocol �

P,S
0 (v) is equivalent to an

honest execution of protocol �(v), and �
P,S
h (v) is equivalent to an honest execution of

�(v′), for v′ being v with the coordinates in P negated. Note that for “intermediately”
protocols �

P,S
d for 0 < d < h, the pivot parties send conflicting messages to honest

parties in the first round and abort in the second round. The reason that aborting in
the second round does not affect our analysis below is that, without loss of generality,
honest parties can exchange their views in the second round, realize the pivot parties
are cheating (as we consider locally consistent adversaries), and ignore their messages.
Lemma 5.2 easily follows by the next claim about Protocol 5.4. In the following we let

δb = Pr

[
�(v)P = b

∣∣∣P
∣∣∣]

.

Claim 5.5. For every k-size subset P ⊂ [n], b ∈ {0, 1} and d ∈ (h), it holds that

Pr

[
�

P,S
d (v)P = b

∣∣∣P∣∣∣] ≥ δb − d(h + 1)(2α + 1 − γ ).

We prove Claim 5.5 below, but first use it to prove Lemma 5.2.

Proof of Lemma 5.2. By Claim 5.5,

Pr

[
�

P,S
h (v)P = b

∣∣∣P
∣∣∣] ≥ δb − h(h + 1)(2α + 1 − γ ).
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Recall that �
P,S
h (v)P = b

∣∣∣P∣∣∣
only when parties complete the protocol in the second

round, since, by assumption, a party that continues to beyond the second round outputs
⊥. In addition, since �

P,S
h (v) is just an honest execution of �(v′), by agreement it holds

that

Pr
[
�(v′) = bn

] ≥ δb − h(h + 1)(2α + 1 − γ ) − α.

�

Proof of Claim 5.5. The proof is by induction on d. The base case d = 0 holds by
definition. Suppose for contradiction the claim does not hold, and let d∗ ∈ (h − 1) be
such that the claim holds for d∗ but not for d∗ + 1. Let γd be the probability that all
honest parties halt in the second round of a random execution of �

P,S
d (v). Since the

claim holds for d∗, it holds that

Pr

[
�

P,S
d∗ (v)P = b

∣∣∣P∣∣∣] ≥ δb − β − d∗(h + 1)(2α + 1 − γ ) (12)

Since the claim does not hold for d∗ + 1, but all honest parties output something in
�

P,S
d∗+1 with probability at least γd∗+1, we have that

Pr

[
�

P,S
d∗+1(v)P ∈ {0, 1}

∣∣∣P∣∣∣ \ {b
∣∣∣P∣∣∣}

]
> 1

− (
δb − β − (d∗ + 1)(h + 1)(2α + 1 − γ )

) − (1 − γd∗+1) (13)

We note that for every d ∈ (h)

1 − γd

h + 1
≤ 1 − γ (14)

Indeed, otherwise, the adversary that corrupts the parties in P and acts like �
P,S
d for

a random d ∈ (h), violates the γ -second-round-halting property of �. We conclude that

Pr
r

[
�

P,S
d∗ (v; r)P = b

∣∣∣P∣∣∣ ∧ �
P,S
d∗+1(v; r)P ∈ {0, 1}

∣∣∣P∣∣∣ \ {b
∣∣∣P∣∣∣}

]

≥ 1 −
(

1 − Pr
r

[
�

P,S
d∗ (v; r)P = b

∣∣∣P∣∣∣])

−
(

1 − Pr
r

[
�

P,S
d∗+1(v; r)P ∈ ({0, 1}

∣∣∣P
∣∣∣ \ {b

∣∣∣P
∣∣∣}

])

> (h + 1)(2α + 1 − γ ) − (1 − γd∗+1)

≥ 2α(h + 1), (15)

for r being the randomness of the parties. The second inequality is by Eq. (12) and (13),
and the third one by Eq. (14).
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Consider the adversary A that samples d ← (h−1), corrupts the parties in P ∪LP
d+1,

and acts towards a uniform random subset of the honest parties according to �
P,S
d and to

the remaining parties according to �
P,S
d+1 . SinceA violates agreement if it guesses d = d∗

and it partitions the honest parties suitably, Eq. (15) yields that A causes disagreement
with probability larger than 2α(h+1)/(2(h+1)) = α. Since A corrupts |P∪LP

d+1| ≤ t
parties, this contradicts the assumption about �. �

5.2. Public-Randomness Protocols

We proceed to prove our lower bound for second-round halting of public-randomness
protocols.

Theorem 5.6. (Lower bound on second-round halting, public-randomness protocols.
Theorem 3.7 restated) Assume Conjecture 3.8 holds, then for any (constants) εt , εγ > 0
there exists α > 0 such that the following holds for large enough n: let � be a ppt n-
party, public-randomness protocol that is (t, α, β = ε2

γ /200, 2, γ )-BA against locally
consistent, rushing, adaptive adversaries. Then,

• t ≥ (1/3 + εt ) · n implies γ < εγ .
• t ≥ (1/4 + εt ) · n implies γ < 1

2 + εγ .

Assume Conjecture 3.8 holds. Let � be as in the theorem statement, and assume
γ = εγ in the case t ≥ (1/3 + εt ) · n and γ = 1

2 + εγ in the case t ≥ (1/4 + εt ) · n.
Let λ = εγ /10 and σ = εt/4. Recall that ⊥S(x) is the string resulting by replacing
all entries of x indexed by S with ⊥. Conjecture 3.8 yields that there exists δ > 0
such that the following holds for large enough n: let � be a finite alphabet and let
A0,A1 ⊂ {� ∪ ⊥}n be two sets such that for both b ∈ {0, 1}:

Pr
S←Dn,σ

[
Pr

r←�n
[r,⊥S(r) ∈ Ab] ≥ λ

]
≥ 1 − δ.

Then,

Pr
r←�n ,S←Dn,σ

[∀b ∈ {0, 1} : {r,⊥S(r)} ∩ Ab = ∅] ≥ δ. (16)

In the following we assume α = min {δλεt/10, β} and derive a contradiction, yielding
that the agreement error has to be larger than that.

Fix n that is large enough for Eq. (16) to hold and that (by Chernoff bound)
PrS←Dn,σ

[|S| > 2σn] = 2−�(n·σ) ≤ α, i.e., n > �((log 1/α)/σ). As in the proof
of Theorem 5.1, we assume for ease of notation that an honest party that runs more
than two round outputs ⊥, and that the honest parties in � never halt in one round. We
also omit the security parameter from the parties input list. We assume without loss of
generality that in the first round, the parties flip no coin, since such coins can be added
to the setup parameter.

We use the following notation: the setup parameter and second-round randomness
of the parties in � are identified with elements of F and R, respectively. We denote
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by fi and ri the setup parameter and the second-round randomness of party Pi in �,
and let DF be the joint distribution of the parties’ setup parameters (by definition,
the joint distribution of the second-round randomness is the product distribution Rn).
For v ∈ {0, 1}n , f = ( f1, . . . , fn) ∈ Supp(DF ), and r = (r1, . . . , rn) ∈ Rn , let
�(v; ( f , r)) denote the execution of � in which party Pi gets input vi , setup parameter
fi and second-round randomness ri . We naturally apply this notation for the variants of
� considered in the proof.

For S ⊆ [n], let �S be the variant of � in which the parties in S halt at the end of the
first round. Let k = �t − εt · n� (i.e., k = �n/3� if t ≥ (1/3 + εt ) · n, and k = �n/4� if
t ≥ (1/4 + εt ) · n). The heart of the proof lies in the following lemma.

Lemma 5.7. (Neighboring executions) Let v, v′ ∈ {0, 1}n be with dist(v, v′) ≤ k, let

b ∈ {0, 1}, and let S = [n] \ S. Then, with probability at least γ − 7λ − α+Pr[�(v) =bn]
λ

over f ← DF , it holds that

Pr
S←Dn,σ

[
Pr

r←Rn

[
�(v′; ( f , r)) = bn ∧ �S(v′; ( f , r))S = b

∣∣∣S∣∣∣] ≥ λ

]
≥ 1 − δ.

Namely, in an execution of �(v′), all honest parties halt after two rounds and output b,
regardless of whether a random subset of parties aborts after the first round. Lemma 5.7
is proven in Sect. 5.2.1, but let us first use it to prove Theorem 5.6. We make use of the
following immediate observation:

Claim 5.8. (Almost pre-agreement) Let v ∈ {0, 1}n and b ∈ {0, 1} be such that
dist(v, bn) ≤ t . Then, Pr

[
�(v) ∈ {b,⊥}n] ≥ 1 − α − β.

Proof. The proof of this claim uses an identical argument as in the proof of Claim 4.3.
�

Proving Theorem 5.6.

Proof of Theorem 5.6. We separately prove the case t ≥ (1/3 + εt ) · n and t ≥ (1/4 +
εt ) · n.

The case t ≥ (1/3 + εt ) · n. Let v0 = 0k1�(n−k)/2�0�(n−k)/2� and let v1 = 1k1�(n−k)/2�
0�(n−k)/2�. Note that dist(v0, v1) = k and that for both b ∈ {0, 1} it holds that dist(vb, bn)
≤ t . We will use Lemma 5.7 and Claim 5.8 to prove that �(v1) = 0n with noticeable
probability, contradicting the validity of the protocol.

Recall that, in this case, γ = εγ , that λ = εγ /10 and α, β ≤ ε2
γ /200 = λ2/2.

Claim 5.8 yields that for both b ∈ {0, 1}:

Pr
[
�(vb) = b

n
]

≥ Pr
[
�(vb) ∈ {b,⊥}n] ≥ 1 − α − β ≥ 1 − λ2 (17)
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Applying Lemma 5.7 with respect to v0 and v1 and b = 0, yields that with probability
at least

γ − 7λ − α + Pr
[
�(v0) = 0n

]
λ

≥ 3λ − λ = 2λ

over f ← DF , it holds that (by discarding the probability over S since the item below
does not depend on S)

Pr
r

[
�(v1; ( f , r)) = 0n

] ≥ λ.

Therefore, overall

Pr
[
�(v1) = 0n

] ≥ 2λ2,

in contradiction to Eq. (17).
The case t ≥ (1/4+εt ) ·n. Consider the vectors v0 = 0k0k0k1n−3k , v1 = 1k1k0k1n−3k

and v� = 1k0k0k1n−3k . Note that for both b ∈ {0, 1} it holds that dist(vb, bn) ≤ t
and that dist(vb, v�) = k. Applying Lemma 5.7 and Claim 5.8 on vb and v�, for both
b ∈ {0, 1}, yields that �S(v�) = bn with noticeable probability over the choice of S.
This will allow us to use Conjecture 3.8 to lowerbound the protocol’s agreement.

Recall that the distribution Dn,σ , from which set S is sampled, is the distribution
induced on the subsets of [n] by sampling each element independently with probability
σ . In addition, recall that in the case at hand (t ≥ (1/4 + εt ) · n), we assume that
γ = 1/2 + εγ . A similar calculation to the previous case yields that by Lemma 5.7 and
Claim 5.8, for both b ∈ {0, 1}: with probability at least 1

2 + 2λ over f ← DF it holds
that

Pr
S←Dn,σ

[
Pr

r←Rn

[
�(v�; ( f , r)) = bn ∧ �S(v�; ( f , r))S = b

∣∣∣S
∣∣∣] ≥ λ

]
≥ 1 − δ.

It follows that there exists a set T ⊆ Supp(DF ) with Pr f←DF [T ] ≥ 4λ, such that for
every f ∈ T , for both b ∈ {0, 1}:

Pr
S←Dn,σ

[
Pr

r←Rn

[
�(v�; ( f , r)) = bn ∧ �S(v�; ( f , r))S = b

∣∣∣S
∣∣∣] ≥ λ

]
≥ 1 − δ

(18)

We assume without loss of generality that if a party gets ⊥ as its second-round random
coins, it aborts after the first round. For r ∈ (R ∪ {⊥})n let E(r) be the indices in r of
the value ⊥. For f ∈ Supp(DF ) and b ∈ {0, 1}, let

A f
b =

{
r ∈ {R ∪ {⊥}} : �(v�; ( f , r))E(r) = b

∣∣∣E(r)
∣∣∣}

(19)
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By Eq. (18), for f ∈ T and b ∈ {0, 1}, it holds that

Pr
S←Dn,σ

[
Pr

r←Rn

[
r,⊥S(r) ∈ A f

b

]
≥ λ

]
≥ 1 − δ (20)

Hence by Conjecture 3.8, see Eq. (16), for f ∈ T it holds that

Pr
r←Rn ,S←Dn,σ

[∀b ∈ {0, 1} : {r,⊥S(r)} ∩ Ab = ∅] > δ.

That is,

Pr
r←Rn ,S←Dn,σ

[
∀b ∈ {0, 1} ∃Sb ∈ {S,∅} : �Sb (v�; ( f , r))Sb

= b

∣∣∣Sb

∣∣∣]
> δ (21)

Consider the following adversary:

Algorithm 5.9. (A)

Pre-interaction. Corrupt a random subset S ← Dn,σ conditioned on |S| ≤ 2σn.
First round. Act according to �.
Second round. Sample S0,S1 at random from {∅,S}, and act towards some honest

parties according to �S0 and towards the others according to �S1 .
.............................................................................................................

Recall that n is chosen so that PrS←Dn,σ
[|S| > 2σn] ≤ α and that α < δ/2. By

Eq. (21), the above adversary violates the agreement of � on input v� with probability
larger than δ − PrS←Dn,σ

[|S| > 2σn] ≥ δ − α > α, in contradiction with the assumed
agreement of �. �

5.2.1. Proving Lemma 5.7

Fix v, v′ ∈ {0, 1}n and b ∈ {0, 1} as in the lemma statement. We assume for simplicity
that dist(v, v′) = k (rather than ≤ k). Let � = �(t − k)/2� and let h = �(n − k)/��.
Assume for ease of notation that h · � = n− k (i.e., no rounding), and for a k-size subset
of parties P ⊂ [n], let LP

1 , . . . ,LP
h be an arbitrary partition of P = [n] \ P into �-size

subsets. Consider the following protocol family.
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Protocol 5.10. (�P,S
d )

Parameters: subsets P,S ⊆ [n] and an index d ∈ (h).
Input: Party Pi has a setup parameter fi and an input bit vi .
First round:

Party Pi ∈ P . If d = 0 [resp., d = h], act honestly according to � with respect
to input bit vi [resp., 1 − vi ]. Otherwise,

1. Choose random coins honestly (i.e., uniformly at random).
2. To each party in

⋃
j∈{1,...,d} LP

j : send a message according to input 1−vi .

3. To each party in
⋃

j∈{d+1,...,h} LP
j : send a message according to input vi

(real input).
4. Send no messages to the other parties in P .

Other parties. Act according to �.

Second round:

Parties in P \ S. If d = 0 [resp., d = h], act honestly according to�with respect
to input bit vi [resp., 1 − vi ]; otherwise, abort.

Parties in S. Abort.
Other parties. Act according to �.

.............................................................................................................

Namely, the “pivot” parties in P shift their inputs from their real input to the flipped
one according to parameter d. The “aborting” parties in S abort at the end of the first
round. Note that protocol �

P,S
0 is the same as protocol �S , and �

P,S
h (v) acts like

�S(v′), for v′ being v with the coordinates in P flipped.
For P,S ⊆ [n], let P ∪ S = [n] \ (P ∪ S), let d ∈ (h), let c ∈ {0, 1}, and let

VP
d,c =

{
( f ,S, r) : �

P,S
d (v; ( f , r))P∪S = c

∣∣∣P∪S
∣∣∣}

.

Namely, VP
d,c are the sets, setup parameters and random strings on which honest parties

in �
P,S
d halt in the second round and output c. Let χ = Pr

[
�(v) = bn

]
and let

T P
d,c =

{
f : Pr

S←Dn,σ

[
Pr

r←Rn

[
( f ,S, r), ( f ,∅, r) ∈ VP

d,c

]
≥ λ

]
≥ 1 − δ

}
.

The proof of Lemma 5.7 immediately follows by the next lemma.

Lemma 5.11. For every k-size subset P ⊂ [n] and d ∈ [h], it holds that

Pr
DF

[
T P
d,b

]
≥ γ − 7λ − χ + α

λ
.

Proof of Lemma 5.7. Immediate by Lemma 5.11. �
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The rest of this subsection is devoted to proving Lemma 5.11. Fix a k-size subset
P ⊂ [n] and omit it from the notation when clear from the context. Let

Ṽd,c =
{
( f ,S, r) : ∀a ∈ {0, 1} �

P,S
d+a (v; ( f , r))P∪S = c

∣∣∣P∪S
∣∣∣}

.

Namely, Ṽd,c ⊆ Vd,c are the sets, setup parameters and random strings, on which honest
parties in �

P,S
d+a halt in the second round and output c, if the parties in S abort and

regardless of whether the parties in P act toward those in Ld+1 according to input 0 or
1. Let

T̃d,c =
{
f : Pr

S←Dn,σ

[
Pr

r←Rn

[
( f ,S, r), ( f ,∅, r) ∈ Ṽd,c

] ≥ λ

]
≥ 1 − δ

}
,

let T̃d = T̃d,0 ∪ T̃d,1, and let T̃ = ⋂
d∈(h−1) T̃d . Lemma 5.11 is proved via the following

claims (the following probabilities are taken over f ← DF ).

Claim 5.12. Pr
[
Td+1,b | T̃ ]

< η implies Pr
[
Td,1−b | T̃ ] ≥ 1 − η.

Proof of Claim 5.12. Assuming Pr
[
Td+1,b | T̃ ] ≤ η notice that

Pr
[
T̃d,b | T̃ ] ≤ Pr

[
Td+1,b | T̃ ] ≤ η.

Consequently, since Pr
[
T̃d | T̃ ] = 1, it follows that Pr

[
T̃d,b | T̃ ] ≤ η implies

Pr
[
T̃d,1−b | T̃ ] ≥ 1 − η and thus Pr

[
Td,1−b | T̃ ] ≥ Pr

[
T̃d,1−b | T̃ ] ≥ 1 − η. �

Claim 5.13. Pr
[
T̃

] ≥ γ − 5λ.

Claim 5.14. Pr
[
T1,b | T̃ ] ≥ 1 − (χ + α)/(Pr[T̃ ] · λ).

Claim 5.15. For every d ∈ [h − 1].

Pr
[
Td,0 | T̃ ] + Pr

[
Td,1 | T̃ ] ≤ 1 + λ

h · Pr[T̃ ] .

We prove Claims 5.13 to 5.15 below, but first use the above claims for proving Lem-
ma 5.7.
Proving Lemma 5.11.

Proof of Lemma 5.11. We first prove that for every d ∈ [h]:

Pr
[
Td,b | T̃ ] ≥ 1 − χ + α

Pr[T̃ ] · λ
− dλ

h · Pr[T̃ ] (22)
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The proof is by induction on d. The base case, d = 1, is by Claim 5.14. The induction
steps follows by the combination of Claim 5.15 and the contrapositive of Claim 5.12.
Applying Eq. (22) for d = h, yields that

Pr
[
Th,b

] ≥ Pr[T̃ ] − χ + α

λ
− λ,

and the proof follows by Claim 5.13. �

So it is left to prove Claims 5.13 to 5.15. Note that the following adversaries corrupt at
most k+�+2σn ≤ t parties and thus they make a valid attack. Since our security model
considers rushing adversaries, and � has public randomness, we assume the adversary
knows f = ( f1, . . . , fn) before sending its first-round messages. In the following we
let �S

d = �
P,S
d and �d = �∅

d .
Proving Claim 5.13. This is the only part in proof where we exploit the fact that the
protocol is secure against adaptive adversaries.

Proof of Claim 5.13. For d ∈ (h), let VP
d = VP

d,0 ∪ VP
d,1 and Ṽd = Ṽd,0 ∪ Ṽd,1. Since

Prr←Rn
[
( f ,S, r), ( f ,∅, r) ∈ Ṽd

] ≤ ∑
c∈{0,1} Prr←Rn

[
( f ,S, r), ( f ,∅, r) ∈ Ṽd,c

]
,

for f /∈ T̃d it holds that

Pr
S←Dn,σ

[
Pr

r←Rn

[
( f ,S, r), ( f ,∅, r) ∈ Ṽd

] ≥ 2λ

]
< δ (23)

Consider the following rushing adaptive adversary.

Algorithm 5.16. (A)

Pre interaction: Corrupt the parties in P .
First round. Let f be the parties’ setup parameters.

Do �1/λδ� times:
1. Sample S ← Dn,σ conditioned on |S| ≤ 2σn.
2. For each i ∈ (h − 1): estimate ξi = Prr←Rn

[
( f ,S, r), ( f ,∅, r) ∈ Ṽi

]
by

taking �(log(h/λ)) samples of r . Let ξ ′
i be the result of this estimation.

3. Let d = argmini∈(h−1)

{
ξ ′
i

}
.

4. If ξ ′
d < 3λ, break the loop.

Corrupt the parties in S ∪ Ld+1 (S is the set sampled in the last loop), and act
according to �d .

Second round. Let r be the parties’ second-round randomness.
If ( f ,W, r) /∈ Vd+a for some a ∈ {0, 1} and W ∈ {∅,S},
act according to �W

d+a.
Else, abort.

.............................................................................................................

By definition, if the attack does not abort then it violates either agreement or (second-
round) halting. Let D be the value of d chosen by the adversary A at the first round of
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the protocol. By construction, the attack abort with probability ξD . So it is left to argue
about the value of ξD .

Assume f /∈ T̃ . Recall that (by Chernoff/Hoeffding bound) PrS←Dn,σ
[|S| > 2σn] ≤

α < δ/2. Therefore, with probability at least δ/2 over the choice ofS in Step 1 ofA, there
exists i ∈ (h − 1) such that ξi < 2λ (by Eq. (23)). It follows that ξD < 3λ, except with
probability at most λ (i.e., error estimating ξD by another Chernoff/Hoeffding bound).
We conclude that if f /∈ T̃ the attack succeeds with probability at least 1 − 4λ.

It follows that under the above attack, the honest parties halt in the second round and
output the same value with probability at most Pr[T̃ ]+Pr[¬T̃ ] ·4λ ≤ Pr[T̃ ]+4λ. Since
the parties halt and agree with probability at least γ − α, we conclude that Pr[T̃ ] ≥
γ − α − 4λ ≥ γ − 5λ. �

Proving Claim 5.14.

Proof of Claim 5.14. By definition, for f ∈ T1,b it holds that

Pr
r←Rn

[
�1(v; ( f , r))H = b

∣∣∣H∣∣∣] = Pr
r←Rn

[
( f ,∅, r) ∈ V1,b

]
≥ λ,

letting H = P∪L1 and H = [n]\H. Let η = Pr f

[
T1,b | T̃

]
, clearly, Pr f

[
T1,b | T̃ ] =

1 − η. By the above

Pr

[
�1(v)H = b

∣∣∣H∣∣∣] ≥ Pr[T̃ ] · η · λ (24)

(recall that �1(v) stands for �1(v; ( f , r)), for a random choice of ( f , r))). Finally, we
notice that

Pr

[
�1(v) = b

∣∣∣H
∣∣∣] + Pr

[
�(v) = bn

] ≤ 1 + α (25)

If not, then the following attack violates the α-agreement. Recall that � is an honest
execution on input v and �1 is an execution of the protocol where the parties inL1 receive
inputs from P according to input v′ and all others receive inputs from P according to
input v (recall that v and v′ differ on exactly those indices indexed by P). The attack
proceeds as follows: the adversary corrupts the parties in H, partitions the honest parties
into two equal-size sets and acts toward the first honest parties according to � and
toward the rest according to �1. We conclude that Pr[T̃ ] · η · λ ≤ χ + α, and therefore
η ≤ (χ + α)/(Pr[T̃ ] · λ). �

Proving Claim 5.15. The proof uses Conjecture 3.8 in a similar way to the second part
of the proof of the theorem.

Proof of Claim 5.15. For r ∈ (R∪{⊥})n let E(r) be the indices in r of the value ⊥. We
assume without loss of generality that a party aborts upon getting ⊥ as its second-round
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random coins. For f ∈ Supp(DF ), for d ∈ [h − 1], and for b ∈ {0, 1}, let

A f
b =

{
r ∈ {R ∪ {⊥}} : �d(v; ( f , r))P∪Ld∪E(r) = b

∣∣∣P∪Ld∪E(r)
∣∣∣}

. (26)

By definition, for f ∈ Td,0 ∩ Td,1 and b ∈ {0, 1}, it holds that

Pr
S←Dn,σ

[
Pr

r←Rn

[
r,⊥S(r) ∈ A f

b

]
≥ λ

]
≥ 1 − δ. (27)

By Conjecture 3.8, see Eq. (16), for f ∈ Td,0 ∩ Td,1 it holds that

Pr
r←Rn ,S←Dn,σ

[
∀b ∈ {0, 1} : {r,⊥S(r)} ∩ A f

b = ∅
]

> δ.

That is,

Pr
r←Rn ,S←Dn,σ

[
∀b ∈ {0, 1} ∃Sb ∈ {S,∅} : �

Sb
d (v; ( f , r))P∪Ld∪Sb

= b

∣∣∣P∪Ld∪Sb

∣∣∣]

> δ. (28)

In pursuit of contradiction, assume that Pr
[
Td,0 | T̃ ]+Pr

[
Td,1 | T̃ ] ≥ 1+λ/(h ·Pr[T̃ ])

for some d ∈ [h − 1]. It follows that

Pr
f←DF

r←Rn ,S←Dn,σ

[
∀b ∈ {0, 1} ∃Sb ∈ {S,∅} : �

Sb
d (v; ( f , r))P∪Ld∪Sb

= b

∣∣∣P∪Ld∪Sb

∣∣∣]

> Pr
[
Td,0 ∩ Td,1

] · δ

≥ Pr[T̃ ] · Pr[Td,0 ∩ Td,1 | T̃ ] · δ

≥ Pr[T̃ ] · λ

h · Pr[T̃ ] · δ

= λδ/h

> 8α. (29)

The first inequality is by Eq. (28), the second one by the assumption that Pr[Td,0 |
T̃ ] + Pr[Td,1 | T̃ ] ≥ 1 + λ/(h · Pr[T̃ ]), and the last one by the definition of α. Next,
consider the following rushing adversary:

Algorithm 5.17. (A)

Pre-interaction.
1. For each i ∈ [h − 1], estimate

ξi = Pr
r←Rn ,S←Dn,σ

[
∀b ∈ {0, 1} ∃Sb ∈ {S,∅} : �

Sb
d (v; ( f , r))P∪Ld∪Sb

= b
∣∣P∪Ld∪Sb

∣∣]
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by taking �(log(h/α)) samples. Let d = argmaxi∈[h−1] {ξi }.
2. Sample a random S ← Dn,σ conditioned on |S| ≤ 2σn.

Corrupt the parties in P ∪ S ∪ Ld .
First round. Act according to �d .
Second round. Partition the honest parties arbitrarily into two equal-size setsH1 and

H2, and act towards H1 according to �S
d and towards H2 according to �∅

d ..............................................................................................................

Observe that Eq. (29) says that with probability 8α (over the setup parameter, the
choice of set S and coins r ) the output of the honest parties is sensitive to whether the
parties in S abort or not (while halting and agreement occurs for both cases). Therefore,
analogously to the proof of Claim 5.13, we deduce that the adversary described above
causes disagreement with probability at least α. �
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A. Locally Consistent Security to Malicious Security

In this section, we formally state and prove Theorem 1.6 and show how to compile any
BA protocol that is secure against locally consistent adversaries into a protocol that is
secure against malicious adversaries. That is, we prove the following theorem:

Theorem A.1. (Theorem 1.6, restated) Let � be a (t, α, β, q, γ )-BA against locally
consistent adversaries for q = O(log n) and assume the existence of verifiable random
functions and existentially unforgeable digital signatures under an adaptive chosen-
message attack. Then,

1. Assuming in addition the existence of non-interactive zero-knowledge proofs, there
exist a ppt protocol-compiler Comp(·) such that �′ = Comp(�) is a (t, α −
neg(κ), β − neg(κ), q, γ − neg(κ))-BA in the PKI model, resilient to malicious
adversaries.

2. There exists a ppt protocol-compiler CompPR(·) such that if � is a public-
randomness protocol, then�′ = CompPR(�) is a (t, α−neg(κ), β−neg(κ), q, γ−
neg(κ))-BA in the PKI model, resilient to malicious adversaries.

In Sect. A.1, we define the cryptographic primitives used in the compiler, and in
Sect. A.2, we construct the compiler and prove its security.

A.1. Preliminaries

The compiler makes use of verifiable random functions (VRF) [56], digital signatures,
and non-interactive zero-knowledge proofs, as defined below.
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A.1.1. Verifiable Random Functions

We follow the definition of VRF from [43].

Definition A.2. (VRF) A verifiable random function is a tuple of polynomial-time
algorithms � = (VRF.Gen,VRF.Eval,VRF.Verify) of the following form.

• VRF.Gen(1κ) → (sk, vk). On input the security parameter, the key-generation
algorithm outputs a secret key sk and a public verification key vk.

• VRF.Eval(sk, x) → (y, π). On input the secret key and an input x ∈ {0, 1}κ , the
evaluation algorithm outputs a value y ∈ S (for a finite set S) and a proof π .

• VRF.Verify(vk, x, y, π) → b. On input the verification key, an input x ∈ {0, 1}κ ,
an output y ∈ S, and a proof π , the deterministic verification algorithm outputs a
bit b ∈ {0, 1}.

We require the following properties:

• Correctness. For (sk, vk) ← VRF.Gen(1κ) and x ∈ {0, 1}κ it holds that if
(y, π) ← VRF.Eval(sk, x) then VRF.Verify(vk, x, y, π) = 1.

• Uniqueprovability.For all strings (sk, vk) (not necessarily generated byVRF.Gen)
and all x ∈ {0, 1}κ , there exists no (y0, π0, y1, π1) such that y0 = y1 and
VRF.Verify(vk, x, y0, π0) = VRF.Verify(vk, x, y1, π1) = 1.

• Pseudorandomness. For any ppt adversary A = (A1,A2) it holds that

∣∣∣∣Pr
[
ExptVRF�,A (κ) = 1

]
− 1

2

∣∣∣∣ ≤ neg(κ),

for the experiment ExptVRF defined below:

ExptVRF
�,A (κ) Oeval(x)

(sk, vk) ← VRF.Gen(1κ ) (y, π) ← VRF.Eval(sk, x) return (y, π)

(x∗, state) ← A
Oeval(·)
1 (vk)

(y0, π) ← VRF.Eval(sk, x∗)

y1 ←R S
b ←R {0, 1}
b′ ← A

Oeval(·)
2 (state, yb)

return 1 if and only if b = b′
and A didn’t query x∗

A.1.2. Digital Signatures

We consider the standard notion of existentially unforgeable signatures under an adaptive
chosen-message attack [38].
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Definition A.3. (Digital signatures) Adigital signatures scheme is a tuple of polynomial-
time algorithms � = (DS.Gen,DS.Sign,DS.Verify) of the following form.

• DS.Gen(1κ) → (sk, vk). On input the security parameter, the key-generation al-
gorithm outputs a secret signing key sk and a public verification key vk.

• DS.Sign(sk,m) → σ . On input the signing key and a message m, the signing
algorithm outputs a signature σ .

• DS.Verify(vk,m, σ ) → b. On input the verification key, a message m, and a
signature σ , the deterministic verification algorithm outputs a bit b ∈ {0, 1}.

We require the following properties:

• Correctness. For (sk, vk) ← DS.Gen(1κ) and a message m it holds that if σ ←
DS.Sign(sk,m) then DS.Verify(vk,m, σ ) = 1.

• Existentially unforgeable under an adaptive chosen-message attack. For any
ppt adversary A it holds that

∣∣∣Pr
[
ExptSig

�,A(κ) = 1
]∣∣∣ ≤ neg(κ),

for the experiment ExptSig defined below:

ExptSig
�,A(κ) Osign(m)

(sk, vk) ← DS.Gen(1κ ) σ ← DS.Sign(sk,m) return σ

(m, σ ) ← AOsign(·)
(vk)

return 1 if and only if DS.Verify(vk,m, σ ) = 1
and A didn’t query m

A.1.3. Non-interactive Zero-Knowledge Proofs

A non-interactive zero-knowledge proof [11] is a single-message protocol that allow
a prover to convince a verifier the a certain common statement belongs to a language,
without disclosing any additional information. We follow the definition from [41].

Definition A.4. (NIZK) LetR be an NP-relation and letLR be the language consisting
of the statements in R. A non-interactive zero-knowledge proof system for R is a
tuple of polynomial-time algorithms � = (NIZK.Gen,NIZK.Prover,NIZK.Verifier)
of the following form:

• NIZK.Gen(1κ) → crs. On input the security parameter, the setup-generation al-
gorithm outputs a common reference string crs.

• NIZK.Prover(crs, x, w) → ϕ. On input the crs, a statement x , and a witness w

such that (x, w) ∈ R, the prover algorithm outputs a proof string ϕ.
• NIZK.Verifier(crs, x, ϕ) → b. On input the crs, a statement x , and a proof ϕ, the

verification algorithm outputs a bit b ∈ {0, 1}.
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We require the following properties:

• Correctness. A proof system is complete if an honest prover with a valid witness
can convince an honest verifier. For (x, w) ∈ R it holds that

Pr
[
NIZK.Verifier(crs, x, ϕ) = 1 | crs ← NIZK.Gen(1κ ), ϕ ← NIZK.Prover(crs, x, w)

] = 1.

• Statistical soundness. A proof system is sound if it is infeasible to convince an
honest verifier when the statement is false. For all polynomial-size families {xκ } of
statements xκ /∈ LR and all adversaries A it holds that

Pr
[[
NIZK.Verifier(crs, xκ , ϕ) = 1 | crs ← NIZK.Gen(1κ )ϕ ← A(crs, xκ )

] = 1.
]

• Computational (adaptive, multi-theorem) zero knowledge. A proof system is
zero-knowledge if the proofs do not reveal any information about the witnesses.
There exists a polynomial-time simulator Snizkxspace = (Snizkxspace1,

Snizkxspace2), where Snizkxspace1 returns a simulated crs together with a sim-
ulation trapdoor τ that enables Snizkxspace2 to simulate proofs without having
access to the witness. That is, for every non-uniform polynomial-time adversary A
it holds that

∣∣∣∣ Pr
[
APcrs(·,·)(crs) = 1 | crs ← NIZK.Gen(1κ)

]

− Pr
[
AScrs,τ (·,·)(crs) = 1 | (crs, τ ) ← Snizkxspace

1(1κ)
] ∣∣∣∣

≤ neg(κ),

where Scrs,τ (x, w) = Snizkxspace2(crs, τ, x) for (x, w) ∈ R and Pcrs(x, w) =
NIZK.Prover(crs, x, w).

A.1.4. Next-Message Functions

An n-party protocol is represented by a set {next-msgi→ j }i, j∈[n] of next-message func-
tions, a set {outputi }i∈[n] of output functions, and a distribution D for generating setup
information. Initially, the setup information is sampled as (setup1, . . . , setupn) ← D
and every party Pi receives setupi before the protocol begins. The view of a party Pi in
the r ’th round, denoted viewr

i , consists of: its input bit xi , its setup information setupi ,
its random coin tosses ρi = (ρ1

i , . . . , ρ
r
i ) (where ρr ′

i are the tossed coins for round r ′)
and the incoming messages (mr ′

1→i , . . . ,m
r ′
n→i ) for every r ′ < r , where mr ′

j→i is the
message received from P j in round r ′. Given Pi ’s view in the r ’th round, the function
next-msgi→ j (view

r
i ) outputs the message mr

i→ j to be sent by Pi to P j , except for the
last round, where it outputs ⊥; in that case the output function output(viewr

i ) produces
the output value y. Without loss of generality we assume that a message mr

i→ j is of the
form (r, i, j,m); looking ahead, this will ensure that two messages in the protocol will
not have the same signature.
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A.1.5. The PKI Model

The compiled protocol is designed to work in the public-key infrastructure (PKI) model,
where a trusted third party generates private/public keys for the parties before the protocol
begins. In our setting, we will require a PKI for VRF, digital signatures, and NIZK,
meaning that the trusted party operates as follows:

1. For every i ∈ [n], compute VRF keys (skvrfi , vkvrfi ) ← VRF.Gen(1κ).
2. For every i ∈ [n], compute signature keys (skdsi , vkdsi ) ← DS.Gen(1κ).
3. Compute crs ← NIZK.Gen(1κ).
4. Send to every party Pi the secret keys (skvrfi , skdsi ) as well as all the public keys

crs, (vkvrf1 , . . . , vkvrfn ) and (vkds1 , . . . , vkdsn ).

A.2. The Compiler

Given a protocol that is secure against locally consistent adversaries, the main idea of
the compiler is to limit the capabilities of a malicious adversary attacking the compiled
protocol to those of a locally consistent one. This is achieved by proving an honest
behavior via the cryptographic tools described above (VRF, digital signatures, and NIZK
proofs) in a similar way to the GMW compiler [36]. Unlike GMW, where all consistency
proofs are carried out over a broadcast channel to ensure a consistent view between the
honest parties, in our case the consistency proofs are done over pairwise channels, so
they only guarantee local consistency.

We start by defining the NP relations that will be used for the zero-knowledge proofs.
Each instance consists of a message between a pair of parties (say from P′

i to P′
j ) and

the witness is the internal state of P′
i used to generate the message (the input, the random

coins, and all incoming messages) along with a “proof of correctness,” i.e., that the
random coins were properly generated using the VRF, that the incoming messages that
P′
i received from every P′

k were signed by P′
k , and in turn were proven to be generated

correctly (i.e., that each P′
k used the correct random coins generated by the VRF and

its incoming messages were signed by the senders). Note that this recursive step in the
verification is required for proving locally consistent behaviour, since if both P′

i and P′
k

are corrupt, then P′
k can send an arbitrary message to P′

i and sign it (in this case the
NIZK proof fromP′

k toP′
i will not verify). WhenP′

i sends its message to an honestP′
j , it

is not enough that P′
i proves that the messages from P′

k are properly signed, but P′
i must

also prove that P′
k provided a NIZK proof asserting that its messages were generated by

consistent random coins and correct incoming messages according to the next-message
function. For this reason we consider q = O(log n)

The Relation Rr
i→ j . We will consider the following set of NP relations, where for

i, j ∈ [n] and an integer r , the relation Rr
i→ j is parametrized by an n-party protocol �

(represented by {next-msgi→ j }i, j∈[n] and {outputi }i∈[n]), aVRF scheme, aDS scheme,
and a NIZK scheme, as well as:

• A vector of VRF verification keys (vkvrf1 , . . . , vkvrfn ).
• A vector of signature verification keys (vkds1 , . . . , vkdsn ).
• A NIZK common reference string crs.
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The instance consists of a message (mr
i→ j , σ

r
i→ j , π

r
i ) (the message from Pi to P j ). The

witness consists of:

• A bit xi ∈ {0, 1} and a string setupi .
• A vector of random coins (ρ1

i , . . . , ρ
r
i ).

• For r ′ ∈ [r − 1] and k ∈ [n], a message mr ′
k→i = (mr ′

k→i , σ
r ′
k→i , π

r ′
k , ϕr ′

k→i ) (Pi ’s
incoming messages).

The instance/witness pair is in the relation Rr
i→ j if the following holds:

1. For every r ′ ∈ [r ] it holds that VRF.Verify(vkvrfi , (i, r ′), ρr ′
i , πr ′

i ) = 1.

2. DS.Verify(vkdsi ,mr
i→ j , σ

r
i→ j ) = 1.

3. For r ′ ∈ [r − 1] and k ∈ [n] it holds that NIZK.Verifier(crs, (mr ′
k→i , σ

r ′
k→i , π

r ′
k ),

ϕr ′
k→i ) = 1 with respect to the relation Rr ′

k→i .

4. Set view1
i = (xi , setupi , ρ

1
i ) and for 1 < r ′ ≤ r set viewr ′

i = (viewr ′−1
i ,mr ′−1

1→i ,

. . . ,mr ′−1
n→i , ρ

r ′
i ). Then, it holds that mr

i→ j = next-msgi→ j (view
r
i ).

The compiledprotocol.Having defined the relations {Rr
i→ j }, we are ready to present the

compiler for a protocol �, secure against locally consistent adversaries to a maliciously
secure one. Initially, in the setup phase, each party receives its setup information for �

in addition to the PKI keys for VRF, digital signatures, and NIZK (as described above).
To generate its coins for the r ’th round (along with a proof), party Pi evaluates the
VRF over the pair (i, r); next, Pi computes the r ’th round messages for �, signs each
message, and sends to every other P j the corresponding message, the signature, and the
VRF proof. In addition, Pi sends to P j a NIZK proof for Rr

i→ j , proving that Pi behaves
consistently towards P j .

Let � = (P1, . . . ,Pn) be an n-party protocol represented by the set of next-message
functions {next-msgi→ j }i, j∈[n], the set of output functions {outputi }i∈[n], and a distri-
bution D for generating setup information. Let VRF be a verifiable random function, let
DS be a digital signatures scheme, and let NIZK be a non-interactive zero-knowledge
proof scheme. Later on, we will simplify the compiler for the case of public-randomness
protocols by removing the need for NIZK.

Protocol A.5. (Protocol �′ = (P′
1, . . . ,P

′
n) = Comp(�))

Setup: The setup-generation algorithm samples (setup1, . . . , setupn) ← D for the
protocol �, computes crs ← NIZK.Gen(1κ), and for every i ∈ [n] computes
(skvrfi , vkvrfi ) ← VRF.Gen(1κ) and (skdsi , vkdsi ) ← DS.Gen(1κ). The setup

string for party P′
i is set to be setup′

i =
(
setupi , sk

vrf
i , skdsi , crs, vkvrf1 , . . . ,

vkvrfn , vkds1 , . . . , vkdsn
)
.

Input: Party P′
i starts with an input bit xi ∈ {0, 1}.

Round r = 1:

1. P′
i computes (ρ

1
i , π

1
i ) ← VRF.Eval(skvrfi , (i, 1))and setsview1

i = (xi , setupi , ρ
1
i ).

2. P′
i computes for every j ∈ [n] the message m1

i→ j = next-msgi→ j (view
1
i ) and

signs σ 1
i→ j ← DS.Sign(skdsi ,m1

i→ j ).
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3. P′
i computes for every j ∈ [n] a proof for the relation R1

i→ j on stat1i→ j =
(m1

i→ j , σ
1
i→ j , π

1
i ) and witness wit1i→ j = (xi , setupi , ρ

1
i ) as ϕ1

i→ j

← NIZK.Prover(crs, stat1i→ j ,wit
1
i→ j ).

4. P′
i sends m

1
i→ j = (m1

i→ j , σ
1
i→ j , π

1
i , ϕ1

i→ j ) to P
′
j .

Round r > 1: Let mr−1
j→i = (mr−1

j→i , σ
r−1
j→i , π

r−1
j , ϕr−1

i→ j ) be the message P′
i received

from P′
j in round r − 1. If P′

j did not send a message, or if NIZK.Verifier(crs,

(mr−1
j→i , σ

r−1
j→i , π

r−1
j ), ϕr−1

i→ j ) = 0, set mr−1
j→i = ⊥.

1. P′
i computes (ρr

i , π
r
i ) ← VRF.Eval(skvrfi , (i, r)) and sets the internal view as

viewr
i = (viewr−1

i ,mr−1
1→i , . . . ,m

r−1
n→i , ρ

r
i ).

2. P′
i computes for every j ∈ [n] the message mr

i→ j = next-msgi→ j (view
r
i )

and signs σ r
i→ j ← DS.Sign(skdsi ,mr

i→ j ).
3. P′

i computes for every j ∈ [n] a proof for the relation Rr
i→ j on the statement

statri→ j = (mr
i→ j , σ

r
i→ j , π

r
i )andwitnesswitri→ j = (witr−1

i→ j , ρ
r
i , {mr−1

k→i }k∈[n])
as ϕr

i→ j ← NIZK.Prover(crs, statri→ j ,wit
r
i→ j ).

4. P′
i sends m

r
i→ j = (mr

i→ j , σ
r
i→ j , ϕ

r
i→ j , π

r
i ) to P′

j .

Output: If in some round r, the output of next-msgi→ j (view
r
i ) is ⊥ for all j ∈ [n],

indicating it is the last round, P′
i outputs y = output(viewr

i ) and halts.
.............................................................................................................

A.2.1. Security Proof

We prove the security of Protocol A.5 using a sequence of arguments. Given a protocol �
secure against locally consistent adversaries, we first adjust it to use pseudorandom coins
computed using a VRF. The new protocol, denoted �1, remains secure against slightly
weaker locally consistent adversaries by the pseudorandomness property of the VRF.
Next, we show how to convert any malicious adversary against the compiled protocol
�′ = Comp(�) into a “weak” locally consistent attack against �1. The proof of the
second part of the theorem, concerning public-randomness protocols, follows in similar
lines.

Proof of Theorem A.1. We start by proving the first part of the theorem, considering
generic protocols, and later focus on public-randomness protocols.

Proof of Item 1 (generic protocols). We prove Item 1 in two steps. Initially, as an
intermediate step, we consider a variant of �, denoted �1, where the parties behave
exactly as in � except that they use a VRF to compute their random coins for each
round. Formally, �1 is defined in the PKI model, where, in addition to the setup infor-
mation for �, every party Pi receives skvrfi and (vkvrf1 , . . . , vkvrfn ) for (skvrfi , vkvrfi ) ←
VRF.Gen(1κ). During the execution of the protocol, each partyPi evaluates (ρr

i , π
r
i ) ←

VRF.Eval(skvrfi , (i, r)), sets its coins for the r ’th round to ρr
i (instead of a uniformly

distributed string), and appends πr
i to its r ’th round messages. Note that the strings ρr

i
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are deterministic, so a locally consistent adversary has the power to use arbitrary values
instead. To enable a reduction to the security of �, we will explicitly assume that cor-
rupted parties indeed use the honestly generated pseudorandom values ρr

i by evaluating
the VRF on (i, r); we call such a locally consistent adversary VRF -compliant.

Claim A.6. If � is a (t, α, β, q, γ )-BA against locally consistent adversaries, then
�1 is a (t, α − neg(κ), β − neg(κ), q, γ − neg(κ))-BA against locally consistentVRF-
compliant adversaries.

Proof. By assumption, a corrupted Pi uses the value ρr
i as its random coins for the r ’th

round. Therefore, the only difference between �1 and � are the use of pseudorandom
string instead of uniformly distributed strings. The proof follows by the pseudorandom-
ness of the VRF scheme using a standard hybrid argument. �

Next, let A′ be an adversary attacking �′ = (P′
1, . . . ,P

′
n). We will construct an

adversary A for the protocol �1 = (P1, . . . ,Pn). Let Snizkxspace = (Snizkxspace1,

Snizkxspace2) be the simulator that is guaranteed for the NIZK scheme. The adversary
A runs internally a copy of A′ and proceeds as follows:

• In the setup phase of�1,A receives the setup string
(
setupi , sk

vrf
i , vkvrf1 , . . . , vkvrfn

)
(consisting of the setup for � and the VRF keys). Next, A samples (crs, τ ) ←
Snizkxspace1(1κ) and (skdsi , vkdsi ) ← DS.Gen(1κ) for every i ∈ [n], and pro-

vides the setup stringsetup′
i =

(
setupi , sk

vrf
i , skdsi , crs, vkvrf1 , . . . , vkvrfn , vkds1 , . . . ,

vkdsn
)

for every corrupted P′
i .

• Upon receiving a message (mr
i→ j , π

r
i ) from an honestPi to a corruptedP j in the ex-

ecution of �1, A sends (mr
i→ j , σ

r
i→ j , π

r
i , ϕr

i→ j ) to A′ with

σ r
i→ j ← DS.Sign(skdsi ,mr

i→ j ) andϕr
i→ j ← Snizkxspace2(crs, τ, (mr

i→ j , σ
r
i→ j ,

πr
i )).

• WhenA receives (mr
i→ j , σ

r
i→ j , π

r
i , ϕr

i→ j ) fromA′ on behalf of a corruptedP′
i to an

honest P′
j (in the simulated execution of �′), A first verifies that

NIZK.Verifier(crs, (mr
i→ j , σ

r
i→ j , π

r
i ), ϕr

i→ j ) = 1. If the proof is verified, A sends
the message (mr

i→ j , π
r
i ) to P j in the protocol �1; otherwise, A considers Pi as an

aborting party towards P j .

We complete the proof in a series of steps, analyzing the attack under increasingly
stronger power of the adversary A′, starting from a locally consistent VRF-compliant
attack until reaching a full blown malicious attack. Initially, we will assume perfect
security of the NIZK, and remove this restriction later on.

Claim A.7. Consider a perfect NIZK scheme. If �1 is a (t, α, β, q, γ )-BA against
locally consistent VRF-compliant adversaries, then �′ is a (t, α, β, q, γ )-BA against
locally consistent VRF-compliant adversaries.

Proof. If A′ is a locally consistent VRF-compliant adversary, then in particular when-
ever A′ sends a message on behalf of a corrupted P′

i , he knows a witness for the NIZK
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proof. Therefore, without loss of generality we can assume that either a corrupted P′
i

does not send a message (i.e., aborts) to an honest P′
j or that P′

i correctly generates the
NIZK proof. In that case every locally consistent VRF-compliant attack by A′ translates
to a locally consistent VRF-compliant attack by A. �

The next claim considers stronger adversaries that are allowed to use arbitrary random
coins for computing the next-message function. We will use the following notations: A
message sent in �′ is of the form (m, σ, π, ϕ); we call m the content of the message.
For a party P′

i , let Mr ′,k→i
in denote the set of incoming messages’ contents received

from party P′
k in round r ′ (as this is a locally consistent attack, there could be multiple

incoming messages from each corrupted party, but at most one message from each honest
party). Let Mr,i→ j

out be the set of possible messages’ contents that P′
i can send to P′

j at
round r under a VRF-compliant locally consistent attack when using a subset of the
incoming messages’ contents {Mr ′,k→i

in }r ′<r,k∈[n] and randomness {ρr ′
i }r ′∈[r ] computed

as (ρr ′
i , πr ′

i ) ← VRF.Eval(skvrfi , (i, r ′)).

Claim A.8. Consider a perfect NIZK scheme. If �1 is a (t, α, β, q, γ )-BA against lo-
cally consistentVRF-compliant adversaries, then�′ is a (t, α − neg(κ), β − neg(κ), q,

γ − neg(κ))-BA against locally consistent adversaries.

Proof. We prove the claim by showing that the additional power of the adversary only
allows for a negligible cheating advantage. Consider a locally consistent adversary A′
and assume that a corrupted partyP′

i used arbitrary random coins to generate the message
content for party P′

j in round r , denoted m̃r
i→ j . There are two possible cases:

Case 1: If m̃r
i→ j ∈ Mr,i→ j

out , then the adversary can compute a witness for the re-
lation Rr

i→ j . That is, even if the actual coins used to generate m̃r
i→ j are

different than {ρr ′
i }r ′∈[r ], the message m̃r

i→ j can be explained as if generat-

ed using {ρr ′
i }r ′∈[r ] consistently with a subset of the incoming messages in

{Mr ′,k→i
in }r ′<r,k∈[n]. Therefore, without loss of generality this can be cast as

a locally consistent VRF-compliant attack.
Case 2: If m̃r

i→ j /∈ Mr,i→ j
out , let {ρ̃r ′

i }r ′∈[r ] be the coins used by A′ to generate m̃r
i→ j .

Then, ρ̃r ′
i = ρr ′

i for at least one r ′. To provide a witness for the relationRr
i→ j ,

A′ must generate π̃r ′
i such that VRF.Verify(vkvrfi , (i, r ′), ρ̃r ′

i , π̃r ′
i ) = 1. By

unique provability property of the VRF, such an attack can only succeed
with negligible probability.

�

The next claim considers stronger adversaries that are allowed to use arbitrary incom-
ing messages for their next-message function.

Claim A.9. Consider a perfect NIZK scheme. If �1 is a (t, α, β, q, γ )-BA against lo-
cally consistentVRF-compliant adversaries, then�′ is a (t, α − neg(κ), β − neg(κ), q,



On the Round Complexity of Randomized Byzantine Agreement Page 47 of 51 10

γ − neg(κ))-BA against locally consistent adversaries that are allowed to use arbitrary
messages’ contents when computing the next-message function.

Proof. Consider an adversary A′ that behaves locally consistent but can use arbitrary
values as incoming messages. Assume that A′ is VRF-compliant and let r be the first
round in which A′ deviates from the protocol with respect to incoming messages. Let
P′
i be a corrupted party that uses {M̃r ′,k→i

in }r ′<r,k∈[n] as its set of incoming messages to
generate the message content for party P′

j in round r , denoted m̃r
i→ j , and assume that⋃

M̃r ′,k→i
in �

⋃
Mr ′,k→i

in . There are two possible cases:

Case 1: If m̃r
i→ j ∈ Mr,i→ j

out , then the adversary can compute a witness for the

relation Rr
i→ j . That is, even if

⋃
M̃r ′,k→i

in �
⋃

Mr ′,k→i
in , the message m̃r

i→ j can

be explained as if generated using a subset of
⋃

Mr ′,k→i
in . Therefore, without loss

of generality this can be cast as a locally consistent attack.
Case 2: If m̃r

i→ j /∈ Mr,i→ j
out , then to find a witness for the relation Rr

i→ j , A
′ must

produce for every message m̃r ′
k→i ∈ ⋃

M̃r ′,k→i
in \ ⋃

Mr ′,k→i
in a signature σ̃ r ′

k→i , a

VRF proof πr ′
k→i and a NIZK proof ϕ̃r ′

k→i .

– If Pk is honest, A′ can find an accepting signature σ̃ r ′
k→i for m̃r ′

k→i under vkdsk only

with negligible probability (recall that every message m̃r ′
k→i encodes the values

k, i, r ′; hence, A′ cannot reuse messages that were signed by Pk in other rounds).
– If Pk is corrupted, then in turn it must have provided a valid witness for the re-

lation Rr ′
k→i . By the minimality of r , it is guaranteed that m̃r ′−1

k→i was honest-
ly generated with respect to the incoming messages of P′

k until round r ′ − 1,

{⋃Mr ′′,k′→k
in }r ′′∈[r ′−1],k′∈[n]. In this case, without loss of generality, the message

m̃r ′
k→i could have been sent by the corruptedP′

k to the corruptedP′
i , i.e., be included

in the set Mr ′,k→i
in .

The proof of the claim now reduces considering non-VRF-compliant adversaries,
which follows from Claim A.8. �

The next claim considers stronger adversaries that are not required to compute their
outgoing messages by the next-message function, but can send arbitrary messages in-
stead.

Claim A.10. Consider a perfect NIZK scheme. If�1 is a (t, α, β, q, γ )-BA against lo-
cally consistentVRF-compliant adversaries, then�′ is a (t, α − neg(κ), β − neg(κ), q,

γ − neg(κ))-BA against malicious adversaries.

Proof. Consider a malicious adversaryA′ and assume thatA′ behaves locally consistent
and VRF-compliant until round r , i.e., round r is the first round in which A′ does not
compute a message according to the next-message function. Let P′

i be a corrupted party
that generates the message content for party P′

j in round r , denoted m̃r
i→ j , arbitrarily.

There are two possible cases:
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Case 1: If m̃r
i→ j ∈ Mr,i→ j

out , then the adversary can compute a witness for the
relation Rr

i→ j . That is, the message m̃r
i→ j can be explained as if generated using

{ρr ′
i }r ′∈[r ] consistently with a subset of the incoming messages in {Mr ′,k→i

in }r ′<r,k∈[n]
according to the next-message function. Therefore, without loss of generality this
can be cast as a locally consistent VRF-compliant attack.
Case 2: If m̃r

i→ j /∈ Mr,i→ j
out , thenA′ must provide σ̃ r

i→ j and πr
i along with a witness

witri→ j consisting of:

– An input bit xi an setupi .
– For every r ′ ∈ [r ] random coins ρr ′

i .

– For every r ′ ∈ [r − 1] and k ∈ [n] a message m̃r ′
k→i = (m̃r ′

k→i , σ̃
r ′
k→i , π

r ′
k , ϕ̃r ′

k→i ).

In addition it holds that ((m̃r
i→ j , σ̃

r
i→ j , π

r
i ),witri→ j ) ∈ Rr

i→ j . As before, with all but

negligible probability it is guaranteed that VRF.Verify(vkvrfi , (i, r), ρr
i , π

r
i ) = 1 and

for every honest party P′
k , ((m̃r ′

k→i , σ̃
r ′
k→i , π

r ′
k ), ϕ̃r ′

k→i ) ∈ Rr ′
k→i . For a corrupted P′

k , if

((m̃r ′
k→i , σ̃

r ′
k→i , π

r ′
k ), ϕ̃r ′

k→i ) ∈ Rr ′
k→i then without loss of generality the message could

have been sent by P′
k to P′

i . We conclude that with all but negligible probability, the
m̃r

i→ j can be explained by a locally consistent VRF-compliant attack.
The proof of the claim now follows from Claim A.9. �

Finally, we remove the assumption of a perfect NIZK scheme and consider a NIZK
scheme that allows for negligible adversarial advantage, and obtain the following claim.

Claim A.11. If �1 is a (t, α, β, q, γ )-BA against locally consistent VRF-compliant
adversaries, then �′ is a (t, α − neg(κ), β − neg(κ), q, γ − neg(κ))-BA against mali-
cious adversaries.

This concludes the proof of the first part of the theorem.

Proof of Item 2 (public-randomness protocols). We prove Item 2 of Theorem A.1 by
adjusting the compiler Comp and removing the use of NIZK proofs. The new compiler
CompPR is defined like Comp except that instead of computing a NIZK proof ϕr

i→ j ←
NIZK.Prover(crs, statri→ j ,wit

r
i→ j ) for the relationRr

i→ j and sending ϕr
i→ j , the sender

P′
i simply sends the witness witri→ j . The receiver P′

j can now directly verify that witri→ j
is a valid witness. The proof follows immediately from Item 1 of Theorem A.1. �
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