
https://doi.org/10.1007/s00145-021-09404-0
J Cryptol (2021)34:40

On the Exact Round Complexity of Secure Three-Party
Computation

Arpita Patra · Divya Ravi
Indian Institute of Science, Bangalore, India

arpita@iisc.ac.in
divyar@iisc.ac.in

Communicated by Nigel Smart

Received 29 May 2020 / Revised 22 June 2021 / Accepted 22 June 2021
Online publication 18 August 2021

Abstract. We settle the exact round complexity of three-party computation (3PC) in
honest-majority setting, for a range of security notions such as selective abort, unanimous
abort, fairness and guaranteed output delivery. It is a folklore that the implication holds
from the guaranteed output delivery to fairness to unanimous abort to selective abort. We
focus on computational security and consider two network settings—pairwise-private
channels without and with a broadcast channel. In the minimal setting of pairwise-
private channels, 3PC with selective abort is known to be feasible in just two rounds,
while guaranteed output delivery is infeasible to achieve irrespective of the number
of rounds. Settling the quest for exact round complexity of 3PC in this setting, we
show that three rounds are necessary and sufficient for unanimous abort and fairness.
Extending our study to the setting with an additional broadcast channel, we show that
while unanimous abort is achievable in just two rounds, three rounds are necessary and
sufficient for fairness and guaranteed output delivery. Our lower bound results extend
for any number of parties in honest majority setting and imply tightness of several
known constructions. While our lower bounds extend to the common reference string
(CRS) model, all our upper bounds are in the plain model. The fundamental concept of
garbled circuits underlies all our upper bounds. Concretely, our constructions involve
transmitting and evaluating only constant number of garbled circuits. Assumption-wise,
our constructions rely on injective (one-to-one) one-way functions.

Keywords. MPC, Round complexity, 3PC, Fairness, Guaranteed output delivery,
Selective abort, Unanimous abort.

1. Introduction

In secure multi-party computation (MPC) [29,52,89], n parties wish to jointly perform
a computation on their private inputs in a secure way, so that no adversary A actively
corrupting a coalition of t parties can learn more information than their outputs (privacy),

This article is a full and extended version of an earlier article (https://link.springer.com/chapter/10.1007/
978-3-319-96881-0_15) that appeared in CRYPTO 2018.

© International Association for Cryptologic Research 2021

http://crossmark.crossref.org/dialog/?doi=10.1007/s00145-021-09404-0&domain=pdf
https://springerlink.bibliotecabuap.elogim.com/chapter/10.1007/978-3-319-96881-0_15
https://springerlink.bibliotecabuap.elogim.com/chapter/10.1007/978-3-319-96881-0_15

40 Page 2 of 77 A. Patra, D. Ravi

nor can they affect the outputs of the computation other than by choosing their own inputs
(correctness). MPC has been a subject of extensive research and has traditionally been
divided into two classes: MPC with dishonest majority [5,11,17,39,40,44,52] and MPC
with honest majority [12,13,15,16,23,26,28,38,86]. While the special case of MPC with
dishonest majority, namely the two-party computation (2PC) has been at the focus of
numerous works [9,57,62,72,78,87–89], the same is not quite true for the special case
of MPC protocols with honest majority.

The three-party computation (3PC) and MPC with small number of parties maintain-
ing an honest majority make a fascinating area of research due to myriad reasons as
highlighted below. First, they present useful use-cases in practice, as it seems that the
most likely scenarios for secure MPC in practice would involve a small number of parties.
In fact, the first large-scale implementation of secure MPC, namely the Danish sugar
beet auction [10] was designed for the three-party setting. Several other applications
solved via 3PC include statistical data analysis [24], email-filtering [70], financial data
analysis [24] and distributed credential encryption service [79]. The practical efficiency
of 3PC has thus got considerable emphasis in the past and some of them have evolved to
technologies [6,22,36,41,43,70,71]. Second, in practical deployments of secure com-
putation between multiple servers that may involve long-term sensitive information,
three or more servers are preferred as opposed to two. This enables recovery from faults
in case one of the servers malfunctions. Third and importantly, practical applications
usually demand strong security goals such as fairness (corrupted parties receive their
output only if all honest parties receive output) and guaranteed output delivery (corrupt-
ed parties cannot prevent honest parties from receiving their output) which are feasible
only in honest majority setting [35].

Furthermore, there are evidences galore that having to handle a single corrupt party can
be leveraged conveniently and taken advantage of to circumvent known lower bounds and
impossibility results. A lower bound of three rounds has been proven in [48] for fair MPC
with t ≥ 2 and arbitrary number of parties, even in the presence of broadcast channels.
[59] circumvents the lower bound by presenting a two-round 4PC protocol tolerating a
single corrupt party that provides guaranteed output delivery without even requiring a
broadcast channel. Verifiable secret sharing (VSS) which serves as an important tool in
constructing MPC protocols are known to be impossible with t ≥ 2 with one round in
the sharing phase irrespective of the computational power of the adversary [20,47,82].
Interestingly enough, a perfect VSS with (n = 5, t = 1) [47], statistical VSS with
(n = 4, t = 1) [59,82] and cryptographic VSS with (n = 4, t = 1) [20] are shown to
be achievable with one round in the sharing phase.

The world of MPC for small population in honest majority setting witnesses a few more
interesting phenomena. While MPC protocols in honest majority setting can be built from
one-way functions (OWF), the existing round-optimal generic constructions (that work
for anyn, tolerating t < n/2 corruptions) rely on public-key assumptions. However, there
exist round-optimal protocols for small population in the honest majority setting that can
be built from OWF or injective one-way functions/permutations [59] and shun public-
key primitives such as Oblivious Transfer (OT) entirely (which is the primary building
block in the 2-party setting). Last but not the least, the known constructions for small
population in the honest majority setting perform arguably better than the constructions
with two parties while offering the same level of security. For instance, 3PC with honest

On the Exact Round Complexity of Secure Three-Party Computation Page 3 of 77 40

majority [59,79] allows to circumvent certain inherent challenges in malicious 2PC such
as enforcing correctness of garbling which incurs additional communication. The exact
round complexity is yet another measure that sets apart the protocols with three parties
over the ones with two parties. For instance, 3PC protocol is achievable just in two
rounds with the minimal network setting of pairwise-private channels [59]. The 2PC
(and MPC with dishonest majority) protocols achieving the same level of security (with
abort) necessarily require 4 rounds [66] and have to resort to a common reference string
(CRS) to shoot for the best possible round complexity of 2 [58].

With the impressive list of motivations that are interesting from both the theoretical and
practical viewpoint, we explore 3PC in the honest majority setting tolerating a malicious
adversary. In this work, we set our focus on the exact round complexity of 3PC. To set
the stage for our contributions, we start with a set of relevant works below.

RelatedWorks. Since round complexity is considered an important measure of efficiency
of MPC protocols, there is a rich body of work studying the round complexity of secure
2PC and MPC protocols under various adversarial settings and computational models.
We highlight some of them below, focusing on computational security.

Firstly, it is known that two rounds of interaction are essential for realizing an MPC
protocol irrespective of the setting. This is because in a 1-round protocol, a corrupted
party could repeatedly evaluate the “residual function” with the inputs of the honest
parties fixed on many different inputs of its own (referred as “residual function” attack)
[58]. In the plain model, any actively secure 2PC is known to require five rounds in
non-simultaneous message model [66] (under black-box simulation). The bound can
be improved to 4 even in the dishonest majority setting [51] in simultaneous message
model and tight upper bounds are presented in [5,14,17,27,37,56]. Among the upper
bounds, the latter three present constructions under polynomial-time assumptions. With
a common reference string (CRS), the lower bound can be further improved to 2 rounds
[58]. A series of work present matching upper bounds under various assumptions [44,
54,80] culminating with the works of [21,55] that attain the goal under the minimal
assumption of 2-round oblivious transfer (OT).

In the honest majority setting which is shown to be necessary [35] and sufficient
[15,26,34] for the feasibility of protocols with fairness and guaranteed output delivery,
the study on round complexity has seen the following interesting results. Three is shown
to be the lower bound for fair protocols in the broadcast-only model (no private channels),
surprisingly even with access to a CRS [50]. Several matching upper bounds can be found
in [3,19,50]. The protocol of [50] can be collapsed to two rounds given access to PKI
where the infrastructure carries the public keys corresponding to the multi-key FHE they
use.

In the plain model, three rounds are shown to be necessary for MPC with fairness
and t ≥ 2, even in the presence of a broadcast channel and arbitrary number of parties
[48]. In an interesting work, [59] circumvents the above result by considering 4PC with
one corruption. The protocol provides guaranteed output delivery, yet does not use a
broadcast channel. In the same setting (plain model and no broadcast), [59] presents a 2-
round 3PC protocol tolerating single corruption, whose communication and computation
efficiency was improved by the 3-round protocol of [79]. Both these protocols achieve a
weaker notion of security known as security with selective abort. Selective abort security

40 Page 4 of 77 A. Patra, D. Ravi

[60] (referred as ‘security with abort and no fairness’ in [49]) allows the corrupt parties
to selectively deprive some of the honest parties of the output. In the mildly stronger
version of unanimous abort (referred as ‘security with unanimous abort and no fairness’
in [49]), either all or none of the honest parties receive the output. An easy observation
concludes that the 3PC of [79] achieves unanimous abort, when its third round message
is broadcasted.

Subsequent to this work, [2,4] presented 2-round (round-optimal) protocols achiev-
ing selective abort in the honest majority setting and plain model, assuming one-way
functions. In the same setting (plain model and honest majority), [8] presents a 3-
round (round-optimal) construction achieving guaranteed output delivery, assuming
R-intractable hash functions and computationally hiding non-interactive commitments
(NICOM).

The works relevant to honest majority setting are listed in Table 1.
3PC has been studied in different settings as well. High-throughput MPC with non-

constant round complexity are studied in [6,41]. [33] studies 3PC with dishonest major-
ity. [30] presents a practically efficient 5-party MPC protocol in honest majority setting,
going beyond 3-party case, relying on distributed garbling technique based on [23].

1.1. Our Results

In this paper, we set our focus on the exact round complexity of computationally-secure
3PC protocols with one active corruption achieving a range of security notions, namely
selective abort, unanimous abort, fairness and guaranteed output delivery in a setting with
pair-wise private channels and without or with a broadcast channel (and no additional
setup). Though our primary focus is on the plain model, our lower bounds extend to the
stronger setting of common reference string (CRS) model.

In the minimal setting of pair-wise private channels, it is known that 3PC with selective
abort is feasible in just two rounds [59], while guaranteed output delivery is infeasible
to achieve irrespective of the number of rounds [31]. No bound on round complexity
is known for unanimous abort or fairness. In the setting with a broadcast channel, the
result of [79] implies 3-round 3PC with unanimous abort. Neither the round optimality
of the [79] construction, nor any bound on round complexity is known for protocols with
fairness and guaranteed output delivery.

This work settles all the above questions via two lower bound results and three upper
bounds. Both our lower-bounds extend for general n and t with strict honest majority,
i.e., n/3 ≤ t < n/2. They imply tightness of several known constructions of [59] and
complement the lower bound of [48] which holds for only t > 1. Our upper bounds
are from injective (one-to-one) one-way functions. The fundamental concept of garbled
circuits (GC) contributes as their key basis, following several prior works in this domain
[33,59,79].

Open Questions. The techniques in our upper bounds do not seem to extend for t > 1,
leaving open designing round-optimal protocols for the general honest majority setting
(t < n/2) with various security notions and minimal assumptions. This was partially
resolved by the subsequent works of [2,4,8], as mentioned in the related work. We also

On the Exact Round Complexity of Secure Three-Party Computation Page 5 of 77 40

Ta
bl
e
1.

R
el

ev
an

tw
or

k
in

ho
ne

st
m

aj
or

ity
se

tti
ng

.

R
ef

.
Se

tti
ng

R
ou

nd
Se

tu
p

N
et

w
or

k
se

tti
ng

/a
ss

um
pt

io
n

Se
cu

ri
ty

C
om

m
en

ts

[4
]

t
<

n/
2

2
Pl

ai
n

Pr
iv

at
e

ch
an

ne
l/O

W
F

Se
le

ct
iv

e
ab

or
t

U
pp

er
bo

un
d

[2
]

t
<

n/
2

2
Pl

ai
n

Pr
iv

at
e

ch
an

ne
l/O

W
F

Se
le

ct
iv

e
ab

or
t

U
pp

er
bo

un
d

[7
]

t
<

n/
2

≥
5

C
R

S
Pr

iv
at

e
ch

an
ne

l,
br

oa
dc

as
t/F

H
E

,N
IZ

K
Fa

ir
ne

ss
U

pp
er

bo
un

d
[5

0]
t
<

n/
2

3
C

R
S

B
ro

ad
ca

st
-o

nl
y/

FH
E

G
ua

ra
nt

ee
d

ou
tp

ut
de

liv
er

y
U

pp
er

bo
un

d
[5

0]
t
<

n/
2

2
C

R
S,

PK
I

B
ro

ad
ca

st
-o

nl
y/

FH
E

G
ua

ra
nt

ee
d

ou
tp

ut
de

liv
er

y
U

pp
er

bo
un

d
[1

9]
t
<

n/
2

3
Pl

ai
n

B
ro

ad
ca

st
-o

nl
y/

Z
ap

s,
FH

E
,d

en
se

cr
yp

to
-s

ys
te

m
s

G
ua

ra
nt

ee
d

ou
tp

ut
de

liv
er

y
U

pp
er

bo
un

d
[3

]
t
<

n/
2

3
Pl

ai
n

B
ro

ad
ca

st
-o

nl
y/

Z
ap

s,
pu

bl
ic

-k
ey

en
cr

yp
tio

n
G

ua
ra

nt
ee

d
ou

tp
ut

de
liv

er
y

U
pp

er
bo

un
d

[8
]

t
<

n/
2

3
Pl

ai
n

Pr
iv

at
e

ch
an

ne
l,

br
oa

dc
as

t/R
-i

nt
ra

ct
ab

le
ha

sh
,

G
ua

ra
nt

ee
d

ou
tp

ut
de

liv
er

y
U

pp
er

bo
un

d
C

om
pu

ta
tio

na
lly

-h
id

in
g

N
IC

O
M

[6
0]

n
=

5,
t
=

1
2

Pl
ai

n
Pr

iv
at

e
ch

an
ne

l/O
W

F
G

ua
ra

nt
ee

d
ou

tp
ut

de
liv

er
y

U
pp

er
bo

un
d

[5
9]

n
=

3,
t
=

1
2

Pl
ai

n
Pr

iv
at

e
ch

an
ne

l/O
W

F
Se

le
ct

iv
e

ab
or

t
U

pp
er

bo
un

d
[5

9]
n

=
4,
t
=

1
2

Pl
ai

n
Pr

iv
at

e
ch

an
ne

l/(
in

je
ct

iv
e)

O
W

F
G

ua
ra

nt
ee

d
ou

tp
ut

de
liv

er
y

U
pp

er
bo

un
d

[7
9]

n
=

3,
t
=

1
3

Pl
ai

n
Pr

iv
at

e
ch

an
ne

l,
br

oa
dc

as
t/P

R
G

U
na

ni
m

ou
s

ab
or

t
U

pp
er

bo
un

d
[5

0]
t
<

n/
2

3
C

R
S

B
ro

ad
ca

st
-o

nl
y

Fa
ir

ne
ss

L
ow

er
bo

un
d

[4
8]

n;
t
>

1
3

C
R

S
Pr

iv
at

e
ch

an
ne

l,
br

oa
dc

as
t

Fa
ir

ne
ss

L
ow

er
bo

un
d

40 Page 6 of 77 A. Patra, D. Ravi

leave open the question of studying the security notion of ‘identifiable abort’ (where
honest parties unanimously identify a cheater in case of an abort) in our setting.

We now elaborate on our results below:
Without Broadcast Channel. In this paper, we show that three rounds are necessary to
achieve 3PC with unanimous abort and fairness, in the absence of a broadcast channel.
The sufficiency is proved via a 3-round fair protocol (which also achieves unanimous
abort security). Our lower bound result immediately implies tightness of the 3PC protocol
of [59] achieving selective abort in two rounds, in terms of security achieved. This
completely settles the questions on exact round complexity of 3PC in the minimal setting
of pair-wise private channels. Our 3-round fair protocol uses a sub-protocol that is
reminiscent of Conditional Disclosure of Secrets (CDS) [46], with an additional property
of authenticity that allows a recipient to detect the correct secret. Our implementation
suggests a realization of authenticated CDS from privacy-free GCs.

With Broadcast Channel. With access to a broadcast channel, we show that it takes just
two rounds to get 3PC with unanimous abort, implying non-optimality of the 3-round
construction of [79]. On the other hand, we show that three rounds are necessary to con-
struct a 3PC protocol with fairness and guaranteed output delivery. The sufficiency for
fairness already follows from our 3-round fair protocol without broadcast. The sufficien-
cy for guaranteed output delivery is shown via yet another construction in the presence
of broadcast. The lower bound result restricted for t = 1 complements the lower bound
of [48] making three rounds necessary for MPC with fairness in the honest majority
setting for all the values of t . The lower bound further implies that for two-round fair
(or guaranteed output delivery) protocols with one corruption, the number of parties
needs to be at least four, making the 4PC protocol of [59] an optimal one. Notably, our
result does not contradict with the two-round protocol of [50] that assumes PKI (where
the infrastructure contains the public keys of a ‘special’ FHE), CRS and also broadcast
channel.

The table below captures the complete picture of the round complexity of 3PC. The
necessity of two rounds for any type of security follows from [58] via the ‘residual
attack.’ Notably, broadcast facility only impacts the round complexity of unanimous
abort and guaranteed output delivery, leaving the round complexity of selective abort
and fairness unperturbed.

Security Without References With References
Broadcast Necessity/sufficiency Broadcast Necessity/sufficiency

Selective Abort 2 [58]/ [59] 2 [58]/[59]
Unanimous Abort 3 This paper/This paper 2 [58]/This paper
Fairness 3 This paper/This paper 3 This paper/This paper
Guaranteed output delivery Impossible [31] 3 This paper/This paper

On the Exact Round Complexity of Secure Three-Party Computation Page 7 of 77 40

1.2. Techniques

Lower Bounds.We present two lower bounds—(a) three rounds are necessary for achiev-
ing fairness in the presence of pair-wise channels and a broadcast channel; (b) three
rounds are necessary for achieving unanimous abort in the presence of just pair-wise
channels. The lower bounds are shown by taking a special 3-party function and by de-
vising a sequence hybrid executions under different adversarial strategies, allowing to
conclude any 3PC protocol computing the considered function cannot be simultaneously
private and fair or secure with unanimous abort.
Upper Bounds. We present three upper bounds— (a) 3-round fair protocol; (b) 2-round
protocol with unanimous abort and (c) 3-round protocol with guaranteed output delivery.
The former in the presence of just pairwise channels, the latter two with an addition-
al broadcast channel. The known generic transformations such as, unanimous abort
to (identifiable) fairness [61] or identifiable fairness to guaranteed output delivery [34],
does not help in any of our constructions. For instance, any 3-round fair protocol without
broadcast cannot take the former route as it is not round-preserving and unanimous abort
in two rounds necessarily requires broadcast as shown in this work. A 3-round protocol
with guaranteed output delivery cannot be constructed combining both the transforma-
tions due to inflation in round complexity.

Building on the protocol of [79], the basic building block of our protocols needs
two of the parties to enact the role of the garbler and the remaining party to carry out
the responsibility of circuit evaluation. Constrained with just two or three rounds, our
protocols are built from the parallel composition of three sub-protocols, each one with
different party enacting the role of the evaluator (much like [59]). Each sub-protocol
consumes two rounds. Based on the security needed, the sub-protocols deliver distinct
flavors of security with ‘identifiable abort.’ For the fair and unanimous abort, the identifi-
ability is in the form of conflict that is local (privately known) and public/global (known
to all), respectively, while for the protocol with guaranteed output delivery, it is local
identification of the corrupt. Achieving such identifiability in just two rounds (sometime
without broadcast) is challenging in themselves. Pulling up the security guarantee of
these subprotocols via entwining three executions to obtain the final goals of fairness,
unanimous abort and guaranteed output delivery constitute yet another novelty of this
work.

Maintaining the input consistency across the three executions pose another challenge
that are tackled via mix of novel techniques (that consume no additional cost in terms
of communication) and existing tricks such as ‘proof-of-cheating’ or ‘cheat-recovery’
mechanism [33,72]. The issue of input consistency does not appear in the construction
of [79] at all, as it does not deal with parallel composition. On the other hand, the generic
input consistency technique adopted in [59] can only (at the best) detect a conflict locally
and cannot be extended to support the stronger form of identifiability that we need.

Below, we present the common issues faced and approach taken in all our protocols
before turning toward the challenges and way-outs specific to our constructions. Two
of the major efficiency bottlenecks of 2PC from garbled circuits, namely the need of
multiple garbled circuits due to cut-and-choose approach and Oblivious Transfer (OT)
for enabling the evaluator to receive its input in encoded form, are bypassed in the 3PC
scenario through two simple tricks [59,79]. First, the garblers use common randomness

40 Page 8 of 77 A. Patra, D. Ravi

to construct the same garbled circuit individually. A simple comparison of the GCs
received from the two garblers allows to conclude the correctness of the GC. Since at
most one party can be corrupt, if the received GCs match, then its correctness can be
concluded. Second, the evaluator shares its input additively among the garblers at the
onset of the protocol, reducing the problem to a secure computation of a function on
the garblers’ inputs alone. Specifically, assuming P3 as the evaluator, the computation
now takes inputs from P1 and P2 as (x1, x31) and (x2, x32), respectively, to compute
C(x1, x2, x31, x32) = f (x1, x2, x31 ⊕ x32). Since the garblers possess all the inputs
needed for the computation, OT is no longer needed to transfer the evaluator’s input in
encoded form to P3.

Next, to force the garblers to input encoding and decoding information (the keys)
that are consistent with the GCs, the following technique is adopted. Notice that the
issue of input consistency where a corrupt party may use different inputs as an evaluator
and as a garbler in different instances of the sub-protocols is distinct and remains to be
tackled separately. Together with the GC, each garbler also generates the commitment
to the encoding and decoding information using the common shared randomness and
communicates to the evaluator. Again a simple check on whether the set of commitments
are same for both the garblers allows to conclude their correctness. Now it is infeasible
for the garblers to decommit the encoded input corresponding to their own input and
the evaluator’s share to something that are inconsistent to the GC without being caught.
Following a common trick to hide the inputs of the garblers, the commitments on the
encoding information corresponding to every bit of the garblers’ input are sent in per-
muted order that is privy to the garblers. The commitment on the decoding information is
relevant only for the fair protocol where the decoding information is withheld to force a
corrupt evaluator to be fair. Namely, in the third round of the final protocol, the evaluator
is given access to the decoding information only when it helps the honest parties to com-
pute the output. This step needs us to rely on the obliviousness of our garbling scheme,
apart from privacy. The commitment on the decoding information and its verification by
crosschecking across the garblers are needed to prevent a corrupt party to lie later. Now
we turn to the challenges specific to the constructions.

Achieving fairness in 3 rounds. The sub-protocol for our fair construction only achieves
a weak form of identifiability, a local conflict to be specific, in the absence of broad-
cast. Namely, the evaluator either computes the encoded output (‘happy’ state) or it just
gets to know that the garblers are in conflict (‘confused’ state) in the worst case. The
latter happens when it receives conflicting copies of GCs or commitments to the encod-
ing/decoding information. In the composed protocol, a corrupt party can easily breach
fairness by keeping one honest evaluator happy and the other confused in the end of
round 2 and selectively enable the happy party to compute the output by releasing the
decoding information in the third round (which was withheld until Round 2). Noting
that the absence of a broadcast channel ensues conflict and confusion, we handle this
using a neat trick of ‘certification mechanism’ that tries to enforce honest behavior from
a sender who is supposed to send a common information to its fellow participants.

A party is rewarded with a ‘certificate’ for enacting an honest sender and emulating
a broadcast by sending the same information to the other two parties, for the common
information such as GCs and commitments. This protocol internally mimics a CDS

On the Exact Round Complexity of Secure Three-Party Computation Page 9 of 77 40

protocol [46] for equality predicate, with an additional property of ‘authenticity,’ a
departure from the traditional CDS. An authenticated CDS allows the receiver to detect
correct receipt of the secret/certificate (similar to authenticated encryption where the
receiver knows if the received message is the desired one). As demonstrated below,
the certificate allows to identify the culprit behind the confusion on one hand, and to
securely transmit the decoding information from a confused honest party to the happy
honest party in the third round, on the other. The certificate, being a proof of correct
behavior, when comes from an honest party, say Pi , the other honest party who sees
conflict in the information distributed by Pi communicated over point-to-point channel,
can readily identify the corrupt party responsible for creating the conflict in Round 3. This
aids the latter party to compute the output using the encoded output of the former honest
party. The certificate further enables the latter party to release the decoding information in
Round 3 in encrypted form so that the other honest party holding a certificate can decrypt
it. The release of encryption is done only for the parties whose distributed information
are seen in conflict, so that a corrupt party either receives its certificate or the encryption
but not both. Consequently, it is forced to assist at least one honest party in getting
the certificate and be happy to compute the output, as only a happy party releases the
decoding information on clear.

In a nutshell, the certification mechanism ensures that when one honest party is happy,
then no matter how the corrupt party behaves in the third round, both the honest parties
will compute the output in the third round. When no honest party is happy, then none
can get the output. Lastly, the corrupt party must keep one honest party happy, for it to
get the output.

Yet again, we use garbled circuits to implement the above where a party willing to
receive a certificate acts as an evaluator for a garbled circuit implementing ‘equality’
check of the inputs. The other two parties act as the garblers with their inputs as the
common information dealt by the evaluator. With no concern of input privacy, the circuit
can be garbled in a privacy-free way [42,64]. The certificate that is the key for output 1 is
accessible to the evaluator only when it emulates a broadcast by dealing identical copies
of the common information to both the other parties. Notably, [63] suggests application
of garbling to realize CDS.

Achieving unanimous abort in 2 rounds. Moving on to our construction with unanimous
abort, the foremost challenge comes from the fact that it must be resilient to any corrupt
Round 2 private communication. Because there is no time to report this misbehavior to
the other honest party who may have got the output and have been treated with honest
behavior all along. Notably, in our sub-protocols, the private communication from both
garblers in second round inevitably carries the encoded share of the evaluator’s input
(as the share themselves arrives at the garblers’ end in Round 1). This is a soft spot for
a corrupt garbler to selectively misbehave and cause selective abort.

While the problem of transferring encoded input shares of the evaluator without relying
on second round private communication seems unresolvable on the surface, our take
on the problem uses a clever ‘two-part release mechanism.’ The first set of encoding
information for random inputs picked by the garblers themselves is released in the first
round privately and any misbehavior is brought to notice in the second round. The second
set of encoding information for the offsets of the random values and the actual shares

40 Page 10 of 77 A. Patra, D. Ravi

of the evaluator’s input is released in the second round via broadcast without hampering
security, while allowing public detection. Thus, the sub-protocol achieves global/public
conflict and helps the final construction to exit with ⊥ unanimously when any of the
sub-protocol detects a conflict.

Achieving guaranteed output delivery in 3 rounds. For achieving this stronger notion,
the sub-protocol here needs a stronger kind of identifiability, identifying the corrupt
locally to be specific, to facilitate all parties to get output within an additional round
no matter what. To this effect, our sub-protocol is enhanced so that the evaluator either
successfully computes the output or identifies the corrupt party. We emphasize that the
goals of the sub-protocols for unanimous abort and guaranteed output delivery, namely
global conflict vs. local identification, are orthogonal and do not imply each other. The
additional challenge faced in composing the executions to achieve guaranteed output
delivery lies in determining the appropriate ‘committed’ input of the corrupt party based
on which round and execution of sub-protocol it chooses to strike.

Tackling input consistency. We take a uniform approach for all our protocols. We note
that a party takes three different roles across the three composed execution: an evaluator,
a garbler who initiate the GC generation by picking the randomness, a co-garbler who
verifies the sanity of the GC. In each instance, it gets a chance to give inputs. We take
care of input consistency in two parts.

First, we tie the inputs that a party can feed as an evaluator and as a garbler who
initiates a GC construction via a mechanism that needs no additional communication at
all. This is done by setting the permutation strings (used to permute the commitments of
encoding information of the garblers) to the shares of these parties’ input in a certain way.
The same trick fails to work in two rounds for the case when a party acts as a garbler and
a co-garbler in two different executions. We tackle this by superimposing two mirrored
copies of the sub-protocol where the garblers exchange their roles. Namely, in the final
sub-protocol, each garbler initiates an independent copy of garbled circuit and passes
on the randomness used to the fellow garbler for verification. The previous trick is used
to tie the inputs that a party feeds as an evaluator and as a garbler for the GC initiated
by it (inter-execution consistency).

The input consistency of a garbler for the two garbled circuits (one initiated by him
and the other by the co-garbler) is taken care using ‘proof-of-cheating’ mechanism
[72] where the evaluator can unlock the clear input of both the other parties using
conflicting output wire keys (intra-execution consistency). While this works for our
protocols with unanimous abort and guaranteed output delivery, the fair protocol faces
additional challenges. First, based on whether a party releases a clear or encoded input,
a corrupt garbler feeding two different inputs can conclude whether f leads to the same
output for both his inputs, breaching privacy. This is tackled by creating the ciphertexts
using conflicting input keys. Second, inspite of the above change, a corrupt garbler can
launch ‘selective failure attack’ [68,77] and breach privacy of his honest co-garbler. We
tackle this using ‘XOR-tree approach’ [74] where every input bit is broken into s shares
and security is guaranteed except with probability 2−(s−1) per input bit. We do not go

On the Exact Round Complexity of Secure Three-Party Computation Page 11 of 77 40

for the refined version of this technique, known as probe-resistant matrix, [74,88] for
simplicity.

On the assumption needed. While the garbled circuits can be built just from OWF, the
necessity of injective OWF comes from the use of commitments that need binding prop-
erty for any (including adversarially-picked) public parameter. Our protocols, having
2-3 rounds, seem unable to spare rounds for generating and communicating the public
parameters by a party who is different from the one opening the commitments.

On concrete efficiency. Though the focus is on the round complexity, the concrete effi-
ciency of our protocols is comparable to Yao [89] and require transmission and evaluation
of few GCs (upto 9) (in some cases we only need privacy-free GCs which permit more
efficient constructions than their private counterparts [42,64]). The broadcast commu-
nication of the optimized variants of our protocols is independent of the GC size via
applying hash function. We would like to draw attention toward the new tricks such
as the ones used for input consistency, getting certificate of good behavior via garbled
circuits, which may be of both theoretical and practical interest. We believe the detailed
take on our protocols will help to lift them or their derivatives to practice in future.

1.3. Roadmap

We present a high-level overview of the primitives used in Sect. 2. The security definition
and the functionalities appear in Appendix B. We present our 3-round fair protocol,
2-round protocol with unanimous abort and 3-round protocol with guaranteed output
delivery in Sects. 3, 4 and 5, respectively. The respective security proofs appear in
Appendices D, E and F and the common optimizations in Appendix C. Our lower bound
results appear in Sect. 6. We define authenticated CDS in Appendix G and show its
realization from one of the sub-protocol used in our 3-round fair protocol.

2. Preliminaries

2.1. Model

We consider a set of n = 3 parties P = {P1, P2, P3}, connected by pair-wise secure
and authentic channels. For our upper bounds, we assume the plain model, i.e., no setup
such as CRS or PKI (public-key infrastructure) is available. Our lower bounds extend to
the setting where CRS is assumed. Each party is modeled as a probabilistic polynomial
time Turing (PPT) machine. We assume that there exists a PPT adversary A, who
can actively corrupt at most t = 1 out of the n = 3 parties and make them behave
in any arbitrary manner during the execution of a protocol. We assume the adversary
to be static, who decides the set of t parties to be corrupted at the onset of a protocol
execution. For our 2-round protocol achieving unanimous abort and 3-round protocol
achieving guaranteed output delivery, a broadcast channel is assumed to exist.

We denote the cryptographic security parameter by κ . A negligible function in κ is
denoted by negl(κ). A function negl(·) is negligible if for every polynomial p(·)
there exists a value N such that for all m > N it holds that negl(m) < 1

p(m)
. We

40 Page 12 of 77 A. Patra, D. Ravi

denote by [x], the set of elements {1, . . . , x} and by [x, y] for y > x , the set of elements
{x, x + 1, . . . , y}. For any x ∈R {0, 1}m , xi denotes the bit of x at index i for i ∈ [m].
Let S be an infinite set and X = {Xs}s∈S,Y = {Ys}s∈S be distribution ensembles. We
say X and Y are computationally indistinguishable, if for any PPT distinguisher D and
all sufficiently large s ∈ S, we have | Pr[D(Xs) = 1] − Pr[D(Ys) = 1]| < 1/p(|s|) for
every polynomial p(·).
Security definition and the functionalities. The security definition (based on the standard
real/ideal world paradigm) and the functionalities appear in Appendix B. The ideal func-
tionalities for selective abort, unanimous abort, fairness and guaranteed output delivery
are denoted by Fsa, Fua, Ffair and Fgod, respectively. Since we consider deterministic
functionalities, the security guarantees of correctness and privacy are analyzed separately
[73] in all our security proofs.

2.2. Primitives

Garbling Schemes. The term ‘garbled circuit’ (GC) was coined by Beaver [23], but it
had largely only been a technique used in secure protocols until they were formalized
as a primitive by Bellare et al. [18]. ‘Garbling Schemes’ as they were termed, were
assigned well-defined notions of security, namely correctness, privacy, obliviousness,
and authenticity. A garbling scheme G is characterized by a tuple of PPT algorithms
G = (Gb,En,Ev,De) described below.

– Gb (1κ ,C) is invoked on a circuitC in order to produce a ‘garbled circuit’C, ‘input
encoding information’ e, and ‘output decoding information’ d.

– En (x, e) encodes a clear input x with encoding information e in order to produce
a garbled/encoded input X.

– Ev (C,X) evaluates C on X to produce a garbled/encoded output Y.
– De (Y, d) translates Y into a clear output y as per decoding information d.

We give an informal intuition of the notion captured by each of the security properties,
namely correctness, privacy, obliviousness, and authenticity. Correctness enforces that
a correctly garbled circuit, when evaluated, outputs the correct output of the underlying
circuit. Privacy aims to protect the privacy of encoded inputs. Authenticity enforces that
the evaluator can only learn the output label that corresponds to the value of the function.
Obliviousness captures the notion that when the decoding information is withheld, the
garbled circuit evaluation leaks no information about any underlying clear values; be
they of the input, intermediate, or output wires of the circuit. The formal definitions are
deferred to Appendix A.1.

We are interested in a class of garbling schemes referred to as projective in [18].
When garbling a circuit C : {0, 1}n �→ {0, 1}m , a projective garbling scheme produces
encoding information of the form e = (

e0
i , e

1
i

)
i∈[n], and the encoded input X for x =

(xi)i∈[n] can be interpreted as X = En(x, e) = (
exii

)
i∈[n].

Our 3-round fair protocol relies on garbling schemes that are simultaneously correct,
private and oblivious. One of its subroutine uses a garbling scheme that is only authentic.
Such schemes are referred as privacy-free [42,64].

On the Exact Round Complexity of Secure Three-Party Computation Page 13 of 77 40

Our protocols with unanimous abort and guaranteed output delivery need a correct,
private and authentic garbling scheme that need not provide obliviousness. Both these
protocols and the privacy-free garbling used in the fair protocol further need an additional
decoding mechanism denoted as soft decoding algorithm sDe [79] that can decode
garbled outputs without the decoding information d. The soft-decoding algorithm must
comply with correctness: sDe(Ev(C,En(e, x))) = C(x) for all (C, e, d). While both
sDe and De can decode garbled outputs, the authenticity needs to hold only with respect
to De. In practice, soft decoding in typical garbling schemes can be achieved by simply
appending the truth value to each output wire label.

Non-interactiveCommitment Schemes.A non-interactive commitment scheme (NICOM)
consists of two algorithms (Com,Open) defined as follows. Given a security parameter
κ , a common parameter pp, message x and random coins r ,PPT algorithmCom outputs
commitment c and corresponding opening information o. Given κ , pp, a commitment
and corresponding opening information (c, o), PPT algorithm Open outputs the mes-
sage x . The algorithms should satisfy correctness, binding (i.e., it must be hard for an
adversary to come up with two different openings of any c and any pp) and hiding (a
commitment must not leak information about the underlying message) properties. We
need this kind of strong binding as the same party who generates the pp and commitment
is required to open later. Two such instantiations of NICOM based on symmetric key
primitives (specifically, injective one-way functions) and the formal definitions of the
properties are given in Appendix A.2.

We also need a NICOM scheme that admits equivocation property. An equivocal non-
interactive commitment (eNICOM) is a NICOM that allows equivocation of a certain
commitment to any given message with the help of a trapdoor. The formal definitions
and instantiations appear in Appendix A.3.

Symmetric-KeyEncryption (SKE)with Special Correctness.Our fair protocol uses a SKE
π = (Gen,Enc,Dec) which satisfies CPA security and a special correctness property
[65,75]—if the encryption and decryption keys are different, then decryption fails with
high probability. The definition and an instantiation appear in Appendix A.4.

3. 3-Round 3PC with Fairness

This section presents a tight upper bound for 3PC achieving fairness in the setting with
just pair-wise private channels. Our result from Sect. 6.2 rules out the possibility of
achieving fairness in 2 rounds in the same setting. Our result from Sect. 6.1 further
shows tightness of 3 rounds even in the presence of a broadcast channel.

Our fair protocol is built from parallel composition of three copies of each of the
following two sub-protocols: (a) fairi and (b) certi . We begin with a high-level overview
of our construction, which is followed by descriptions of fairi (Sect. 3.1) and certi
(Sect. 3.2). Entwining the six executions, tackling the input consistency and the final
presentation of protocol fair appear in the end (Sect. 3.3).

ProtocolOverview.Building on the intuition given in the introduction, we proceed toward
more detailed discussion of our protocol. Our fair protocol involves three copies of each

40 Page 14 of 77 A. Patra, D. Ravi

of the following two sub-protocols: (a) fairi where Pi acts as the evaluator and the other
two as garblers for computing the desired function f . This sub-protocol ensures that
honest Pi either computes its encoded output or identifies just a conflict in the worst
case. The decoding information is committed to Pi , yet not opened. It is released in
Round 3 of the final composed protocol under subtle conditions as elaborated below.
(b) certi where Pi acts as the evaluator and the other two as garblers for computing
an equality checking circuit on the common information distributed by Pi in the first
round of the final protocol. Notably, though the inputs come solely from the garblers,
they are originated from the evaluator and so the circuit can be garbled in a privacy-free
fashion. This sub-protocol ensures either honest Pi gets its certificate, the key for output
1 (meaning the equality check passes through), or identifies a conflict in the worst case.
The second round of certi is essentially an ‘authenticated’ CDS for equality predicate
tolerating one active corruption as discussed in Appendix G.

Three global variables are maintained by each party Pi to keep tab on the conflicts and
the corrupt. Namely, Ci to keep the identity of the corrupt, flag j and flagk (for distinct
i, j, k ∈ [3]) as indicators of detection of conflict with respect to information distributed
by Pj and Pk , respectively. The sub-protocols fairi and certi assure that if neither the
two flags nor Ci is set, then Pi must be able to evaluate the GC successfully and get its
certificate, respectively.

Once {fairi , certi }i∈[3] complete by the end of round 2 of the final protocol fair, any
honest party will be in one of the three states: (a) no corruption and no conflict detected
((Ci = ∅) ∧ (flag j = 0) ∧ (flagk = 0)); (b) corruption detected (Ci �= ∅); (c) conflict
detected (flag j = 1) ∨ (flagk = 1). An honest party, guaranteed to have computed its
encoded output and certificate only in the first state, releases these as well as the decoding
information for both the other parties unconditionally in the third round. In the other two
states, an honest party conditionally releases only the decoding information. This step
is extremely crucial for maintaining fairness. Specifically, a party that belongs to the
second state releases the decoding information only to the party identified to be honest.
A party that belongs to the third state releases the decoding information in encrypted
form only to the party whose distributed information are not agreed upon, so that the
encryption can be unlocked only via a valid certificate. A corrupt party will either have
its certificate or the encrypted decoding information, but not both. The former when it
distributes its common information correctly and the latter when it does not.

The only way a corrupt party can get its decoding information is by keeping one
honest party in the first state, in which case both the honest parties will be able to
compute the output as follows. The honest party in state one, say Pi , either gets it
decoding information on clear or in encrypted form. The former when the other honest
party, Pj is in the first or second state and the latter when Pj is in the third state. Pi
retrieves the decoding information no matter what, as it also holds the certificate to open
the encryption. An honest party Pj in the second state, on identifying Pi as honest, takes
the encoded output of Pi and uses its own decoding information to compute the output.
The case for an honest party Pj in the third state is the most interesting. Since honest Pi
belongs to the first state, a corrupt party must have distributed its common information
correctly as otherwise Pi will find a conflict and would be in third state. Therefore, Pj in
the third state must have found Pi ’s information on disagreement due the corrupt party’s
misbehavior. Now, Pi ’s certificate that proves his correct behavior allows Pj to identify

On the Exact Round Complexity of Secure Three-Party Computation Page 15 of 77 40

the corrupt, enter into the second state and compute the output by taking the encoded
output of honest Pi .

3.1. Protocol fairi

At a high level, fairi works as follows. In the first round, the evaluator shares its input
additively between the two garblers making the garblers the sole input contributors to the
computation. In parallel, each garbler initiates construction of a GC and commitments on
the encoding and decoding information. While the GC and the commitments are given
to the evaluator Pi , the co-garbler, acting as a verifier, additionally receives the source
of the used randomness for GC and openings of commitments. Upon verification, the
co-garbler either approves or rejects the GC and commitments. In the former case, it
also releases its own encoded input and encoded input for the share of Pi via opening the
commitments to encoding information in second round. In the latter case, Pi sets the flag
corresponding to the generator of the GC to true. Failure to open a verified commitment
readily exposes the corrupt to the evaluator. If all goes well, Pi evaluates both circuits
and obtains encoded outputs. The correctness of the evaluated GC follows from the fact
that it is either constructed or scrutinized by a honest garbler. The decoding information
remains hidden (yet committed) with Pi and the obliviousness of GC ensures that Pi
cannot compute the output until it receives the correct opening.

To avoid issues of adaptivity, the GCs are not sent on clear in the first round to Pi
who may choose its input based on the GCs. Rather, a garbler sends a commitment to
its GC to Pi and it is opened only by the co-garbler after successful scrutiny. The cor-
rectness of evaluated GC still carries over as a corrupt garbler cannot open to a different
circuit than the one committed by an honest garbler by virtue of the binding property
of the commitment scheme. We use an eNICOM for committing the GCs and decoding
information as equivocation is needed to tackle a technicality in the security proof. The
simulator of our final protocol needs to send the commitments on GC, encoding and de-
coding information without having access to the input of an evaluator Pi (and thus also
the output), while acting on behalf of the honest garblers in fairi . The eNICOM cannot
be used for the encoding information, as they are opened by the ones who generate the
commitments and eNICOM does not provide binding in such a case. Instead, the GCs
and the decoding information are equivocated based on the input of the evaluator and
the output.

Protocol fairi appears in Fig. 1 where Pi returns encoded outputs Yi = (Y j
i ,Y

k
i)

(initially set to ⊥) for the circuits created by Pj , Pk , the commitments to the respective
decoding information Cdec

j ,Cdec
k and the flags flag j , flagk (initially set to false) to be

used in the final protocol. The garblers output their respective corrupt set, flag for the
fellow garbler and opening for the decoding information corresponding to its co-garbler’s
GC and not its own. This is to ensure that it cannot break the binding of eNICOM which
may not necessarily hold for adversarially-picked public parameter.

Lemma 1. Assume that (Com,Open) is a secureNICOMand (eGen,eCom,eOpen,

Equiv) is a secure eNICOM. Then, during fairi , Pβ /∈ Cα holds for honest Pα, Pβ .

40 Page 16 of 77 A. Patra, D. Ravi

Inputs: Party Pα has xα for α ∈ [3].
Common Inputs: The circuit C(x1, x2, x3, x4) that computes f(x1, x2, x3 ⊕ x4).
Output: A garbler Pl (l ∈ {j, k}) outputs corrupt set Cl, flag{j,k}\l and Odec

i . Pi

outputs (Ci,Yi = (Yj
i ,Y

k
i), Cdec

j , Cdec
k , flagj , flagk) where Yi denote a pair of

encoded outputs or ⊥.
Primitives: A garbling scheme G = (Gb,En,Ev,De) that is correct, private and

oblivious, a NICOM (Com,Open), an eNICOM (eGen, eCom, eOpen,Equiv) and
a PRG G.

Round 1:

– Pi randomly secret shares his input xi as xi = xij ⊕ xik and sends xij to Pj and
xik to Pk.

– Pl for l ∈ {j, k} samples sl ∈R {0, 1}κ, eppl and ppl for G, eNICOM and NICOM
resp. and:
◦ compute garbled circuit (Cl, el, dl) ← Gb(1κ, C) using randomness from

G(sl). Assume {e0lα, e1lα}α∈[], {e0l(+α), e
1
l(+α)}α∈[], {e0l(2 +α), e

1
l(2 +α)}α∈[2]

denote the encoding information for the input of Pj , Pk and the secret shares
of Pi respectively.

◦ compute commitments for GC and decoding information. (cl, ol) ← eCom(eppl,
Cl) and (cdecl , odecl) ← eCom(eppl, dl).

Protocol fairi

◦ sample permutation strings plj , plk ∈R {0, 1} for the inputs of Pj and Pk.
Compute commitments to encoding information as: for b ∈ {0, 1}, (cb

lα, ob
lα) ←

Com(ppl, e
pα

lj⊕b

lα), (cb
l(+α), o

b
l(+α)) ← Com(ppl, e

pα
lk⊕b

l(+α)) when α ∈ [], (cb
l(2 +α),

ob
l(2 +α)) ← Com(ppl, e

b
l(2 +α)) when α ∈ [2].

◦ send Dl = (eppl, ppl, cl, {cb
lα, }α∈[4],b∈{0,1}, cdecl) to both the other parties and

send {sl, plj , plk, ol, {ob
lα, }α∈[4],b∈{0,1}, odecl } only to co-garbler P{j,k}\l.

– Pj sets Cj = Pk if Dk and {sk, pkj , pkk, ok, {ob
kα, }α∈[4],b∈{0,1}, odeck } are inconsis-

tent. Else, set Odec
i = odeck . Pk performs similar steps for the values received from

Pj .

Round 2:

– Pi sends Dj to Pk and Dk to Pj . Pj sets flagk = 1 if Dk received from Pi and Pk

does not match. Similar step is executed by Pk.
– Pj computes the indicator strings mjj = pjj ⊕xj , mkj = pkj ⊕ xj for its inputs. If

Pk /∈ Cj , send (OK, Dk, (ok, {o
mα

kj

kα , o
xα

ij

k(2 +α)}α∈[], mkj), ({o
mα

jj

jα , o
xα

ij

j(2 +α)}α∈[], mjj))
to Pi. Else, send nOK to Pi. Pk performs similar steps.

– (Local Computation) Pi sets Yj
i = ⊥ and flagj = 1 when (a) Pk sent nOK or (b)

Dj sent by Pj and Pk do not match. Otherwise, Pi sets Cdec
j = cdecj ∈ Dj and

does:
◦ open Cj ← eOpen(eppj , cj , oj) with oj received from Pk. Set Ci = Pk if

Cj = ⊥.

◦ open Xα
j = Open(ppj , c

mα
jj

jα , o
mα

jj

jα), Xα
ij = Open(ppj , c

xα
ij

j(2 +α), o
xα

ij

j(2 +α)), for
α ∈ [], for the opening received from Pj and the commitments taken from
Dj . Include Pj in Ci if any of the opened input labels above is opened to ⊥.

◦ openXα
k = Open(ppj , c

mα
jk

j(+α), o
mα

jk

j(+α)) andXα
ik = Open(ppj , c

xα
ik

j(3 +α), o
xα

ik
j(3 +α))

for α ∈ [], for the opening received from Pk and the commitments taken from
Dj . Include Pk in Ci if any of the opened input labels above is opened to ⊥.

◦ If Ci = ∅, set X = Xj |Xk|Xij |Xik, run Yj
i ← Ev(Cj ,X). Else set Yj

i = ⊥
Similar steps for Ck will be executed to compute Yk

i , populate Ci and update
flagk.

Fig. 1. Protocol fairi .

On the Exact Round Complexity of Secure Three-Party Computation Page 17 of 77 40

Proof. An honest Pα would include Pβ in Cα only if one of the following hold: (a)
Both are garblers and Pβ sends commitments to garbled circuit, encoding and decoding
information inconsistent with the randomness and openings shared privately with Pα

(b) Pα is an evaluator and Pβ is a garbler and either (i) Pβ ’s opening of a committed
garbled circuit fails or (ii) Pβ ’s opening of a committed encoded input fails. It follows
directly from correctness of the NICOM and eNICOM that these cases will never occur
for honest (Pα, Pβ). �

Lemma 2. If honest Pi has Ci = ∅ and flag j = flagk = 0, then Yi = (Y j
i ,Y

k
i) �= ⊥.

Proof. According to fairi , Pi fails to compute Yi when it identifies the corrupt or
finds a mismatch in the common information D j or Dk or receives a nOK signal from
one of its garblers. The first condition implies Ci �= ∅. The second condition implies,
Pi would have set either flag j or flagk to true. For the third condition, if Pj sends
nOK then Pi would set flagk = 1. Lastly, if Pk sends nOK, then Pi sets flag j = 1.
Clearly when Ci = ∅ ∧ flag j = 0 ∧ flagk = 0, Pi evaluates both C j ,Ck and obtains

Yi = (Y j
i ,Y

k
i) �= ⊥. �

3.2. Protocol certi

When a party Pi in fairi is left in a confused state and has no clue about the corrupt, it is
in dilemma on whether or whose encoded output should be used to compute output and
who should it release the decoding information (that it holds as a garbler) to in the final
protocol. Protocol certi , in a nutshell, is introduced to help a confused party to identify
the corrupt and take the honest party’s encoded output for output computation, on one
hand, and to selectively deliver the decoding information only to the other honest party,
on the other.

Protocol certi implements evaluation of an equality checking function that takes
inputs from the two garblers and outputs 1 when the test passes and outputs the inputs
themselves otherwise. In the final protocol, the inputs are the common information (GCs
and commitments) distributed by Pi across all executions of fair j . The certificate is the
output key corresponding to output 1. Since input privacy is not a concern here, the
circuit is enough to be garbled in privacy-free way and authenticity of garbling will
ensure a corrupt Pi does not get the certificate. certi follows the footstep of fairi with
the following simplifications: (a) Input consistency need not be taken care across the
executions implying that it is enough one garbler alone initiates a GC and the other
garbler simply extends its support for verification. To divide the load fairly, we assign
garbler Pj where i = (j + 1) mod 3 to act as the generator of GC in certi . (b) The
decoding information need not be committed or withheld. We use soft decoding that
allows immediate decoding.

Similar to fairi , at the end of the protocol, either Pi gets its certificate (either the key
for 1 or the inputs themselves), or sets its flags (when GC and commitment do not match)
or sets its corrupt set (when opening of encoded inputs fail). Pi outputs its certificate, the
flag for the GC generator and corrupt set, to be used in the final protocol. The garblers
output the key for 1, flag for its fellow garbler and the corrupt set. Notice that, when

40 Page 18 of 77 A. Patra, D. Ravi

certi is composed in the bigger protocol, Pi will be in a position to identify the corrupt
when the equality fails and the certificate is the inputs fed by the garblers. The protocol
appears in Fig. 2.

Lemma 3. Assume that (Com,Open) is a secure NICOM. Then, during certi , Pβ /∈
Cα holds for honest Pα, Pβ .

Proof. An honest Pα would include Pβ in Cα only if one of the following holds: (a)
Pβ sends inconsistent (sβ,Wβ) to Pα . (b) Pβ ’s opening of committed encoded input
or garbled circuit fails. It is straightforward to verify that the cases will never occur for
honest (Pβ, Pα), due to correctness of NICOM. �

Lemma 4. If an honest Pi has Ci = ∅ and flag j = flagk = 0, then, certi �= ⊥.

Proof. The proof follows easily from the steps of the protocol. �
3.3. Protocol fair

Building on the intuition laid out before, we only discuss input consistency that is taken
care in two steps: Inter-input consistency (across executions) and intra-input consistency
(within an execution). In the former, Pi ’s input as an evaluator in fairi is tied with its
input committed as garblers for its own garbled circuits in fair j and fairk . In the latter,
the consistency of Pi ’s input for both garbled circuits in fair j (and similarly in fairk) is
tackled. We discuss them one by one.

We tackle the former in a simple yet clever way without incurring any additional
overhead. We explain the technique for enforcing P1’s input consistency on input x1 as
an evaluator during fair1 and as a garbler during fair2, fair3 with respect to his GC C1.
Since the protocol is symmetric in terms of the roles of the parties, similar tricks are
adopted for P2 and P3. Let in the first round of fair1, P1 shares its input x1 by handing
x12 and x13 to P2 and P3, respectively. Now corresponding to C1 during fair2, P1 and
P3 who act as the garblers use x13 as the permutation vector p11 that defines the order of
the commitments of the bits of x1. Now input consistency of P1’s input is guaranteed if
m11 transferred by P1 in fair2 is same as x12, P1’s share for P2 in fair1. For an honest P1,
the above will be true since m11 = p11 ⊕ x1 = x13 ⊕ x1 = x12. If the check fails, then
P2 identifies P1 as corrupt. This simple check forces P1 to use the same input in both
fair1 and fair2 (corresponding to C1). A similar trick is used to ensure input consistency
of the input of P1 across fair1 and fair3 (corresponding to C1) where P1 and P2 who act
as the garblers use x12 as the permutation vector p11 for the commitments of the bits
of x1. The evaluator P3 in fair3 checks if m11 transferred by P1 in fair3 is same as x13
that P3 receives from P1 in fair1. While the above technique enforces the consistency
with respect to P1’s GC, unfortunately, the same technique cannot be used to enforce
P1’s input consistency with respect to C2 in fair3 (or fair2) since p21 cannot be set to
x12 which is available to P2 only at the end of first round. While, P2 needs to prepare
and broadcast the commitments to the encoding information in jumbled order as per
permutation string p21 in the first round itself. We handle it differently as below.

On the Exact Round Complexity of Secure Three-Party Computation Page 19 of 77 40

F
ig
.2

.
Pr

ot
oc

ol
ce

rt
i

.

40 Page 20 of 77 A. Patra, D. Ravi

The consistency of Pi ’s input for both garbled circuits in fair j (and similarly in fairk)
is tackled via ‘cheat-recovery mechanism’ [72]. We explain with respect to P1’s input
in fair3. P2 prepares a ciphertext (cheat recovery box) with the input keys of P1 corre-
sponding to the mismatched input bit in the two garbled circuits, C1 and C2 in fair3.
This ciphertext encrypts the the input shares of garblers that P3 misses, namely, x12 and
x21. This would allow P3 to compute the function on clear inputs directly. To ensure
that the recovered missing shares are as distributed in fair1 and fair2, the shares are not
simply distributed but are committed via NICOM by the input owners and the openings
are encrypted by the holders. Since there is no way for an evaluator to detect any mis-
match in the inputs to and outputs from the two GCs as they are in encoded form, we
use encryption scheme with special correctness (Definition 6) to enable the evaluator to
identify the relevant decryptions. Crucially, we depart from the usual way of creating
the cheat recovery boxes using conflicting encoded outputs. Based on whether the clear
or encoded output comes out of honest P3 in round 3, corrupt garbler P1 feeding two
different inputs to C1 and C2 can conclude whether its two different inputs lead to the
same output or not, breaching privacy. Note that the decoding information cannot be
given via this cheat recovery box that uses conflicting encoded outputs as key, as that
would result in circularity.

Despite using the above fix, the mechanism as discussed above is susceptible to
‘selective failure attack,’ an attack well-known in the 2-party domain. While in the latter
domain, the attack is launched to breach the privacy of the evaluator’s input based on
whether it aborts or not. Here, a corrupt garbler can prepare the ciphertexts in an incorrect
way and can breach privacy of its honest co-garbler based on whether clear or encoded
output comes out of the evaluator. We elaborate the attack in fair3 considering a corrupt
P1 and single bit inputs. P1 is supposed to prepare two ciphertexts corresponding to
P2’s input bit using the following key combinations—(a) key for 0 in C1 and 1 in C2
and (b) vice-versa. Corrupt P1 may replace one of the ciphertexts using key based on
encoded input 0 of P2 in both the GCs. In case P2 indeed has input 0 (that he would
use consistently across the 2 GCs during fair3), then P3 would be able to decrypt the
ciphertext and would send clear output in Round 3. P1 can readily conclude that P2’s
input is 0. This attack is taken care via the usual technique of breaking each input bit to
s number of xor-shares, referred as ‘XOR-tree approach’ [74] (probe-resistance matrix
[74,88] can also be used; we avoid it for simplicity). The security is achieved except
with probability 2−(s−1).

Given that input consistency is enforced, at the end of round 2, apart from the three
states—(a) no corruption and no conflict detected (b) corrupt identified (c) conflict
detected, a party can be in yet another state. Namely, no corruption and no conflict
detected and the party is able to open a ciphertext and compute f on clear. A corrupt
party cannot be in this state since the honest parties would use consistent inputs and
therefore the corrupt would not get access to conflicting encoded inputs that constitute
the key of the ciphertexts. If any honest party is in this state, our protocol results in all
parties outputting this output. In Round 3, this party can send the computed output along
with the opening of the shares he recovered via the ciphertexts as ‘proof’ to convince
the honest party of the validity of the output. The protocol fair appears in Fig. 3 and the
schematic diagram is given in Figs. 4 and 5.

On the Exact Round Complexity of Secure Three-Party Computation Page 21 of 77 40

Before we state the formal theorem, we present a series of lemma useful to prove the
correctness of fair.

Lemma 5. Assume that (Com,Open) is a secure NICOM and the privacy-free gar-
bling scheme used in the subprotocols {certi }i∈[3] are secure. Then, during fair, Pj /∈ Ci
holds for honest Pi , Pj .

Proof. An honest Pi will not include Pj in its corrupt set in the sub-protocols {fairα,

certα}α∈[3] following Lemmas 1 and 3. Now we prove the statement individually inves-
tigating the three rounds of fair.

In Round 1 of fair, Pi includes Pj as corrupt only if (a) Pi , Pj are garblers and Pj sets
p j j �= x ji or (b) Pj sends pp j , c ji , o ji , x ji to Pi such that Open(pp j , c ji , o ji) �= x ji .
None of them will be true for an honest Pj . In Round 2 of fair, Pi includes Pj as
corrupt only if (a) Pj is a garbler and Pi is an evaluator and m j j �= x ji or (b) Pi obtains
certi = (γ ′

j , γ
′
k) and detects Pj ’s input γ ′

j in certi to be different from the information
sent by him.

The former will not be true for an honest Pj . The latter also cannot hold for honest
Pj by correctness of the privacy-free garbling used. In the last round of fair, Pi will
identify Pj as corrupt, if it has flagk = 1 and yet receives certk which is same as keyk
from Pk . A corrupt Pk receives keyk only by handing out correct and consistent common
information to Pi and Pj until the end of Round 1. Namely, the following must be true
for Pk to obtain keyk (except for the case when it breaks the authenticity of the GC): (i)
γi and γ j for certk must be same and (ii) Pk must not be in the corrupt set of any honest
party at the end of Round 1. In this case, flagk cannot be 1. �

Lemma 6. Assume that (Enc,Dec) is aCPA-secure symmetric-key encryption scheme
with special correctness. Then, no corrupt party can be in st1 by the end of Round 1,
except with negligible probability.

Proof. For a corrupt Pk , its honest garblers Pi and Pj create the ciphertexts cts using
keys with opposite meaning for their respective inputs from their garbled circuits. Since
honest Pi and Pj use the same input for both the circuits, Pk will not have a key to open
any of the ciphertexts. The openings (oi j , o ji) are therefore protected due to the CPA
security of the symmetric-key encryption scheme (Enc,Dec) (with special correctness,
(Definition 6)). Subsequently, Pk cannot compute y. �

Definition 1. A party Pi is said to be ‘committed’ to a unique input xi , if Pj holds
(ci j , cik, oi j , xi j) and Pk holds (ci j , cik, oik, xik) such that: (a) xi = xi j ⊕ xik and (b)
ci j opens to xi j via oi j and likewise, cik opens to xik via oik .

We next prove that a corrupt party must have committed its input if some honest party
is in st1 or st2. To prove correctness, the next few lemmas then show that an honest
party computes its output based on its own output or encoded output if it is in st1 or
st2 or relies on the output or encoded output of the other honest party. In all cases, the
output will correspond to the committed input of the corrupt party.

40 Page 22 of 77 A. Patra, D. Ravi

Fig. 3. A three-round fair 3PC protocol .

On the Exact Round Complexity of Secure Three-Party Computation Page 23 of 77 40

Fig. 3. continued.

Lemma 7. If an honest party is in {st1,st2}, then corrupt party must have committed
a unique input.

Proof. An honest Pi is in {st1,st2} only when Ci = ∅, flag j = 0, flagk = 0 hold at
the end of Round 2. Assume Pk is corrupt. Pk has not committed to a unique xk implies
either it has distributed different copies of commitments (cki , ck j) to the honest parties
or distributed incorrect opening information to some honest party. In the former case,
flagk will be set by Pi . In the latter case, at least one honest party will identify Pk to
be corrupt by the end of Round 1. If it is Pi , then Ci �= ∅. Otherwise, Pj populates its
corrupt set with Pk , leading to Pi setting flagk = 1 in Round 2. �

Lemma 8. Assume that (Com,Open) is a secure NICOM. If an honest party is in
st1, then its output y corresponds to the unique input committed by the corrupt party.

Proof. An honest Pi is in st1 only when Ci = ∅, flag j = 0, flagk = 0 hold at the end
of Round 2 and it computes y via decryption of the ciphertexts ct sent by either Pj or
Pk . Assume Pk is corrupt. By Lemma 7, Pk has committed to its input. The condition
flag j = 0 implies that Pk exchanges the commitments on the shares of Pj ’s input,
namely {c ji , c jk}, honestly. Now if Pi opens honest Pj ’s ciphertext, then it unlocks
the opening information for the missing shares, namely (okj , o jk) corresponding to
common and agreed commitments (ck j , c jk). Using these it opens the missing shares
xk j ← Open(ck j , okj) and x jk ← Open(c jk, o jk) and finally computes output on
(xi , x ji ⊕ x jk, xki ⊕ xk j). Next, we consider the case when Pi computes y by decrypting
a ct sent by corrupt Pk . In this case, no matter how the ciphertext is created, the binding
property of NICOM implies that Pk will not be able to open c jk, ck j to anything other
than x jk, xk j except with negligible probability. Thus, the output computed is still as
above and the claim holds. �

40 Page 24 of 77 A. Patra, D. Ravi

Fig. 4. Schematic diagram of fair protocol (round 1 and 2) .

On the Exact Round Complexity of Secure Three-Party Computation Page 25 of 77 40

F
ig
.5
.

Sc
he

m
at

ic
di

ag
ra

m
of

pr
ot

oc
ol

fa
ir

(r
ou

nd
3

w
ith

re
sp

ec
tt

o
P 1

)
.

40 Page 26 of 77 A. Patra, D. Ravi

Lemma 9. If an honest party is in st2, then its encoded output Y corresponds to the
unique input committed by the corrupt party.

Proof. An honest Pi is in st2 only when Ci = ∅, flag j = 0, flagk = 0 hold at the
end of Round 2. The conditions also imply that Pi has computed Yi successfully (due to
Lemma 2) and Pk has committed to its input (due to Lemma 7). Now we show that Yi

corresponds to the unique input committed by the corrupt Pk . We first note that Pk must
have used the same input for both the circuits C j and Ck in fairi . Otherwise one of the
ciphertexts prepared by honest Pj must have been opened and y would be computed,
implying Pi belongs to st1 and not in st2 as assumed. We are now left to show that
the input of Pk for its circuit Ck in fairi is the same as the one committed.

In fair, honest Pj would use permutation string pkk = xk j for permuting the commit-
ments in Dk corresponding to xk . Therefore, one can conclude that the commitments in
Dk are constructed correctly and ordered as per xk j . Now the only way Pk can decommit
x ′
k is by giving mkk = pkk ⊕ x ′

k . But in this case honest Pi would add Pk to Ci as the
check mkk = xki would fail (mkk = pkk ⊕ x ′

k �= pkk ⊕ xk) and will be in st3 and not
in st2 as assumed.

�

Lemma 10. Assume that the garbling scheme G = (Gb,En,Ev,De) and eNICOM
(eGen,eCom,eOpen,Equiv) used in the subprotocols {fairi }i∈[3] are secure. If an
honest party is in st2, then its output y corresponds to the unique input committed by
the corrupt party.

Proof. Note that an honest party Pi in st2 either uses y of another party in st1 or
computes output from its encoded output Yi . The proof for the former case goes as
follows. By Lemma 6, a corrupt Pk can never be in st1. The correctness of y computed
by an honest Pj follows directly from Lemma 8. For the latter case, Lemma 9 implies that
Yi corresponds to the unique input committed by the corrupt party. All that needs to be
ensured is that Pi gets the correct decoding information. The conditionflag j = flagk = 0
implies that the commitment to the decoding information is computed and distributed
correctly for both C j and Ck . Now the binding property of eNICOM ensures that the
decoding information received from either Pj (for Ck) or Pk (for C j) must be correct
implying correctness of y (by correctness of the garbling scheme). �

Lemma 11. Assume that (Com,Open) is a secure NICOM. If an honest party is in
st3 or st4, then its output y corresponds to the unique input committed by the corrupt
party.

Proof. An honest party Pi in st3 either uses y of another party in st1 or computes
output from encoded output Y j of Pj who it identifies as honest. For the latter case
note that an honest Pj will never be identified as corrupt by Pi , due to Lemma 5. The
claim now follows from Lemmas 6 and 8 and the fact that corrupt Pk cannot forge the
‘proof’ oi j (binding of NICOM) for the former case and from Lemma 9 and the fact
that it possesses correct decoding information as a garbler for Y j for the latter case. An

On the Exact Round Complexity of Secure Three-Party Computation Page 27 of 77 40

honest party Pi in st4 only uses y of another party in st1. The lemma follows in this
case via the same argument as before. �

We state the formal theorem below.

Theorem 1. Assume a network with pairwise-private channels and the existence of
injective one-way functions. Then, the three-round three-party protocol fair realizes
Ffair (Fig. 14) against single malicious corruption.

Proof. In order to prove the theorem, we first argue correctness—Specifically, we show
that if an honest party, say Pi outputs y that is not ⊥, then it corresponds to x1, x2, x3
where x j is the input committed by Pj (Definition 1). We note that an honest Pi belong
to one among {st1,st2,st3,st4} at the time of output computation. The proof now
follows from Lemmas 7, 8, 10 and 11.

Next, we defer the simulation-based argument for privacy to Appendix D. Lastly, we
note that each of the primitives used in fair such as NICOM, eNICOM, PRG, CPA-secure
SKE with special correctness and garbling schemes (correct, private and oblivious used
in fairi ; and correct, authentic and privacy-free used in certi) can be built from one-way
functions or injective one-way functions (as elaborated in Appendix A). �

Before concluding the section, we present an intuitive argument for security below.
Recall that fairness implies: (a) if a corrupt party gets the output then so does the honest
parties; (b) if an honest party gets the output then so does the other parties. We give the
intuition for both below starting with (a).

A corrupt Pk cannot be in st1 (due to Lemma 6). The only way it can retrieve the
output is by having an honest party in st1 or st2. An honest party in st3 only releases
the decoding information and it never release it to a corrupt party (Lemma 5 implies
it identifies the honest party correctly). An honest party in st4 releases the encrypted
decoding information zk under key keyk to Pk conditionally when flagk = 1. The
condition flagk = 1 implies that Pk must have distributed the common information
incorrectly and so γi and γ j are not same. This further implies certk is not same as keyk
and so Pk does not have access to the key to open zk and cannot recover the decoding
information. So the corrupt Pk getting the output implies that at least one honest party is
in {st1,st2}. Lemma 7 implies that in this case, Pk must have committed to a unique
input. By Lemmas 8 and 10, the y and encoded output Y computed by any honest party
in st1 and in st2, respectively, will correspond Pk’s committed input. Further, if Pk
computes encoded output Yk , it also correspond to Pk’s committed input. So no matter
how the corrupt party compute the output, it will be with respect to unique (x1, x2, x3).

We need to show that both honest parties receive the same output. This easily follows
when at least one honest party is inst1. We now prove the lemma based on the following
cases. (a) Both Pi , Pj are inst2: They receive the decoding information from each other
on the clear and use their respective computed encoded output to compute the output
y. (b) Pi is in st2 and Pj in st3: Pi uses the decoding information sent exclusively to
him by Pj and decode the output as in the previous case. Pj uses the encoded output of
Pi , Yi and its decoding information (held as a garbler) to compute the output. (c) Pi is
in st2 and Pj in st4: Pj must be in st4 because of flagi = 1. If flagk = 1, Pi will

40 Page 28 of 77 A. Patra, D. Ravi

have the same status for this flag and would belong to st4. Now since flagi = 1, Pj

sends encryption of the decoding information zi to Pi who can use certi to decrypt zi
and compute the output as in the previous two cases. Pj , on noting that flagi = 1, yet
Pi obtained certi = keyi , will identify Pk to be corrupt, upgrade to st3 and compute
the output as in the previous case.

Next, we argue for part (b). For an honest party to compute the output y, at least one
honest party must be in {st1,st2}. If both belong to {st3,st4}, then neither Pk has
committed any input (due to Lemma 7) nor anyone gets the output. The latter follows by
the argument below. An honest party in st3 only outputs based on the encoded output
of the other honest party. But since the other honest party is in {st3,st4}, it will output
⊥. An honest party in st4 outputs ⊥, except for the case it finds one in st1 which is not
true for both Pj and Pk (Lemma 6). The corrupt Pk does not get the output too following
the fact that it cannot be in st1 (Lemma 6) and it does not receive decoding information
from an honest party. An honest party Pi in st3 sends the decoding information only to
the identified honest party. An honest party Pi in st4 may send the encrypted decoding
information zk under key keyk to Pk when flagk = 1. But the condition flagk = 1
implies that Pk must have distributed the common information incorrectly and so γi and
γ j are not same. This further implies certk is not same as keyk and so Pk does not have
access to the key to open zk and cannot recover the opening information. Now we are
left to show that when at least one honest party is in {st1,st2}, then everyone gets the
output. This already follows from the argument given for the other direction.

4. 2-Round 3PC with Unanimous Abort

This section presents a tight upper bound for 3PC achieving unanimous abort in the
setting with pair-wise private channels and a broadcast channel. The impossibility of
one-round protocol in the same setting follows from “residual function” attack [58].
Our result from Sect. 6.2 rules out the possibility of achieving unanimous abort in the
absence of a broadcast channel in two rounds. This protocol can be used to yield a
round-optimal fair protocol with broadcast (lower bound in Sect. 6.1) by application
of the transformation of [61] that compiles a protocol with unanimous abort to a fair
protocol via evaluating the circuits that compute shares (using error-correcting secret
sharing) of the function output using the protocol with unanimous abort and then uses
an additional round for reconstruction of the output.

Similar to our fair protocol in Sect. 3, our upper bound for unanimous abort is built
from parallel composition of three copies of a subprotocol, namely, uai . We begin with
a high-level overview of our construction, which is followed by the description of uai
(Sect. 4.1). Entwining the three executions, tackling the input consistency and the final
presentation of protocol ua are done next in Sect. 4.2.

Protocol Overview. In an attempt to build a protocol with unanimous abort, we note
that any protocol with unanimous abort must be robust to any potential misbehavior
launched via the private communication in the second round. Simply because, there is
no way to report the abort to the other honest party who may have seen honest behavior
from the corrupt party all along and has got the output, leading to selective abort. Our

On the Exact Round Complexity of Secure Three-Party Computation Page 29 of 77 40

construction achieves unanimity by leveraging the availability of the broadcast channel
to abort when a corrupt behavior is identified either in the first round or in the broadcast
communication in the second round, and behaving robustly otherwise. In summary, if
the corrupt party does not strike in the first round and in the broadcast communication
of the second round, then our construction achieves robustness.

Turning to the garbled circuit-based constructions such as the two-round protocol of
[59] achieving selective abort or the composition of three copies of the sub-protocol
fairi of fair, we note that the second round private communication that involves encod-
ing information for inputs is crucial for computing the output and cannot transit via
broadcast because of input privacy breach. A bit elaborately, the transfer of the encoding
information for the inputs of the garblers can be completed in the first round itself and
any inconsistency can be handled via unanimous abort in the second round. However,
a similar treatment for the encoding information of the shares of the evaluator seems
impossible as they are transferred to garblers only in the first round. We get past this
seemingly impossible task via a clever ‘two-part release mechanism’ for the encoding
information of the shares of the evaluator. Details follow.

Similar to protocol fair, we build our protocol ua upon three parallel executions of
a sub-protocol uai (i ∈ [3]), each comprising of two rounds and with each party Pi
enacting the role of the evaluator once. With fairi as the starting point, each sub-protocol
uai allows the parties to reach agreement on whether the run was successful and the
evaluator got the output or not. A flag flagi is used as an indicator. The protocol ua then
decides on unanimous abort if at least one of the flags from the three executions uai for
i ∈ [3] is set to true. Otherwise, the parties must have got the output. Input consistency
checks ensure that the outputs are identical. Intra-execution input consistency is taken
care by cheat-recovery mechanism (similar and simplified version of what protocol fair
uses), while inter-execution input consistency is taken care by the same trick that we use
in our fair protocol.

Now looking insideuai , the challenge goes back to finding a mechanism for the honest
evaluator to get the output when a corrupt party behaves honestly in the first round
and in the broadcast communication of the second round. In other words, its private
communication in the second round should not impact robustness. This is where the
‘two-part release mechanism’ for the encoding information of the shares of the evaluator
kicks in. It is realized by tweaking the function to be evaluated as f (x j , xk, (z j ⊕ r j) ⊕
(zk ⊕ rk)) in the instance uai where Pi enacts the role of the evaluator. Here r j , rk
denotes random pads chosen by the garblers Pj , Pk , respectively, in the first round. The
encoding information for these are released to Pi privately in the first round itself. Any
inconsistent behavior in the first round is detected, the flag is set and the protocol exits
with ⊥ unanimously. Next, z j and zk are the offsets of these random pads with the
actual shares of Pi ’s input and are available only at the end of first round. The encoding
information for these offsets and these offsets themselves are transferred via broadcast in
the second round for public verification. As long as the pads are privately communicated,
the offsets do not affect privacy of the shares of Pi ’s input. Lastly, note that the encoding
information for a garbler’s input for its own generated circuit can be transferred in the
first round itself. This ensures that a corrupt garbler misbehaves either in the first round
or in the broadcast communication in the second round or lets the evaluator get the output
via its own GC.

40 Page 30 of 77 A. Patra, D. Ravi

4.1. Protocol uai

With the goal to achieve agreement among the honest parties regarding whether the
evaluator got the output or not, uai starts with fairi and makes the following changes.
First, the broadcast channel is used to reach agreement on the commitments to GCs
and the encoding information. Second, a garbling scheme with soft decoding property
is used to allow immediate output decoding. Third, a garbler opens its encoded input
for its own GC in the first round itself. In addition, we implement the two-part release
mechanism for Pi ’s shares where apart from the garblers, Pi too broadcasts the offsets
in the second round.

A flag flagi is used to keep track if a complaint is raised for the first round commu-
nication by broadcast in the second round or the offsets broadcasted in parallel by both
Pi and respective garblers do not match or the opening of the encoded input for the
offsets fails. When flagi remains to be false for the honest parties, an honest Pi must be
able to evaluate and output from the GC prepared by the corrupt garbler. Because, the
commitments to that GC and encoding information has been scrutinized by the honest
co-garbler, the encoded input of the corrupt party has been verified by the evaluator, the
release of the encoded inputs for the shares of the evaluator has been verified publicly
and the offsets themselves matched. Lastly, since the flag when set to be true by any
honest party in the end of first round can be propagated to all in the second round and is
only set based on the broadcasts in the second round, all honest parties exit uai with an
agreement on flagi . We now present our protocol in Fig. 6 assuming input consistency
and prove its properties needed later.

Lemma 12. At the end of protocol uai , all honest parties output the same flagi .

Proof. We have two cases based on whether atleast one honest party set flagi = 1 at
the end of Round 1. If this is true, then the honest party would broadcast abort in
Round 2 and all honest parties would output flagi = 1. Otherwise, an honest party sets
flagi based on the following conditions (a) abort was broadcast in Round 2 or (b)
either z j broadcast by (Pj , Pi) or zk broadcast by (Pk, Pi) do not match or (c) (D j ,W j)

or (Dk,Wk) is inconsistent. All these checks are with respect to broadcast messages.
Therefore, we can conclude that every honest party will output identical flagi . �

Lemma 13. Assume that G = (Gb,En,Ev,De) is a secure garbling scheme, (eGen,

eCom,eOpen,Equiv) is a secure eNICOM and (Com,Open) is a secure NICOM.
Then, assuming input consistency holds, if flagi = 0, then yk �= ⊥ where Pk is corrupt.

Proof. First, Lemma 12 implies that both Pi , Pj output identical flagi = 0. Now
flagi = 0 implies that: (a) Ck and the commitments to the encoding information are
computed correctly; (b) the opening of encoding information Xk,Rk for Ck is correct
in Round 1 with high probability due to binding property of eNICOM and NICOM; (c)
the opening of the remaining encoding information Zk is correct with high probability
due to binding property of NICOM. Pj being honest would open the encoding relevant
to his input for Ck , namely, X j ,R j ,Z j . So Pi has got complete encoded input X for Ck

and will evaluate Ck to obtain yk . Thus, if flagi = 0, then yk will not be ⊥. �

On the Exact Round Complexity of Secure Three-Party Computation Page 31 of 77 40

Fig. 6. Protocol uai .

40 Page 32 of 77 A. Patra, D. Ravi

4.2. Protocol ua

Our two-round 3PC protocol ua achieving unanimous abort composes uai for i ∈ [3]
in parallel. Assuming input consistency, entwining the three executions requires tapping
all the flags returned by the three executions and outputting the result computed as an
evaluator when none of them are set to true and ⊥, otherwise. This works since when a
flag for an execution uai is false, then the evaluator Pi is guaranteed to get the output.
The challenge that remains to handle is input consistency within and across executions
which ensures the outputs computed are the same irrespective of the execution and GC.
The inter-execution input consistency, i.e., the consistency of the input committed by
Pi in uai and the inputs given to the GCs constructed by Pi as garbler in the remaining
two executions are enforced using the same trick that we use in fair via setting the
permutation strings as the shares of the parties’ input.

Dealing with the input consistency within an execution uai to make sure the garblers
provide the same input for both the GCs without inflating the round complexity consti-
tutes yet another challenge. Noting that this misbehavior has no way to show up in the
common flag as this is targeted via the private communication in the second round, the
evaluator must find a way to robustly compute the output when conflicted outputs are
computed from the two garbled circuits. This output must be based on the input of the
corrupt garbler that it has committed as an evaluator and received output based on. We
use the trick of “proof-of-cheating” mechanism [72] to enable an (honest) evaluator with
conflicting outputs to retrieve the inputs committed by both garblers in their respective
instances. To be specific, the output keys corresponding to the mismatched output bit in
the two garbled circuits, say C1 and C3 in ua2, enables the evaluator P2 to unlock the
missing shares, namely, x31 and x13 of the two garblers from ua3 and ua1, respectively.
To ensure that the recovered missing shares are as distributed in ua1 and ua3, the shares
are committed via NICOM by the input owners and the openings are encrypted by the
holders (as in fair). The binding of NICOM prevents a corrupt P1 to lie on (x13, x31).
This allows the honest party to compute the same output that P1 gets from ua1. Lastly,
the flag in execution uai also takes into account consistent dealing of the commitments
by its evaluator Pi . Our protocol appears in Fig. 7 and its schematic diagram appears in
Fig. 8.

We use Definition 1 for input commitment.
Before we state the formal theorem, we present a lemma below which is useful to

prove the correctness of ua.

Lemma 14. If a corrupt party Pk has not committed its input or does not use the
committed input in its GCs in {uai ,ua j }, then each honest party outputs y = ⊥.

Proof. Pk has not committed to a unique input implies it has not dealt correct opening
to one or both the honest parties. In either case, abort is raised in the second round,
leading to an output that is ⊥. Now assume Pk uses input x ′

k �= xk during uai for its
own GC. Pk should use xk j as the permutation string pkk in execution uai for permuting
the commitments corresponding to xk . If it does not, then honest Pj sets flagi = 1 in
Round 1 and broadcastsabort in Round 2. Otherwise, the commitments are constructed
correctly and ordered as per xk j . Now the only way Pk can decommit x ′

k is by giving

On the Exact Round Complexity of Secure Three-Party Computation Page 33 of 77 40

Fig. 7. A two-round 3PC protocol achieving unanimous abort .

mkk = pkk ⊕x ′
k . But in this case honest Pi would set flagi = 1 in Round 1 and broadcast

abort in Round 2 as the check mkk = xki would fail (mkk = pkk ⊕ x ′
k �= pkk ⊕ xk).

Thus, every honest party outputs y = ⊥. �

Theorem 2. Assume a network with both pairwise-private and broadcast channels,
and the existence of injective one-way functions. Then, the two-round three-party pro-
tocol ua realizes Fua (Fig. 13) against single malicious corruption.

40 Page 34 of 77 A. Patra, D. Ravi

Fig. 8. Schematic diagram of the 2-round ua protocol (wrt party P1) .

Proof. In order to prove the theorem, we first argue correctness—Specifically, we show
that if an honest party, say Pi outputs y that is not ⊥, then it corresponds to (x1, x2, x3)

where x j is the input committed by Pj . Assume that Pk is corrupt. Recall that Pi outputs
y j and yk in uai on evaluating the GCs of the garblers Pj and Pk , respectively. We have
the following cases.

– y = yk . Follows from Lemmas 13 and 14.
– y �= yk . In this case, y �= y j either as y is set to y j when y j = yk or yk = ⊥.

Following Lemma 13, yk cannot be ⊥. So it must be that Pi retrieves the output via
opening the ciphertexts. If the output is computed just from the ciphertext of honest
Pj , then y is computed as f (xi , x ji ⊕ x jk, xki ⊕ xk j) using openings okj , o jk given
by Pj . Since an honest Pj correctly reveals the opening okj of the share of Pk’s
input given to Pj and o jk corresponding to his input share, and the CPA-secure
SKE used is assumed to be correct; f (xi , x ji ⊕ x jk, xki ⊕ xk j) corresponds to the
correct value.

On the Exact Round Complexity of Secure Three-Party Computation Page 35 of 77 40

If the output is computed from the ciphertext of corrupt Pk , then y computed must be still
as above as a corrupt Pk cannot open the shares x jk, xk j in an incorrect way (following
binding property of NICOM).

Intuitively,ua achieves unanimous abort due to correctness and Lemma 12 that implies
the honest parties will be on the same page for all flags. We defer the formal simulation-
based security proof to Appendix E. Lastly, we note that each of the primitives used in
ua such as NICOM, eNICOM, CPA-secure SKE, PRG and garbling schemes (correct,
private and authentic) can be built from one-way functions or injective one-way functions
(as elaborated in Appendix A).

�

5. 3-Round 3PC with Guaranteed Output Delivery

In this section, we present a three-round 3PC protocol, given access to pairwise-private
channels and a broadcast channel. The protocol is round-optimal following 3-round
lower bound for fair 3PC proven in Sect. 6.1. The necessity of the broadcast channel for
achieving guaranteed output delivery with strict honest majority follows from [31].

Similar to our previous upper bound constructions, our upper bound for guaranteed
output delivery is built from parallel composition of three copies of a subprotocol,
namely,godi . We begin with a high-level overview of our construction, which is followed
by the description of godi (Sect. 5.1). Entwining the three executions, tackling the input
consistency and the final presentation of the protocol with guaranteed output delivery
are done next in Sect. 5.2.
Protocol Overview. Our tryst starts with the known generic transformations that are rele-
vant such as the transformations from the unanimous abort to (identifiable) fair protocol
[61] or identifiable fair to guaranteed output delivery [34]. However, these transforma-
tions being non-round-preserving do not turn out to be useful. Turning a 2-round protocol
offering unanimous (or even selective) abort with identifiability (when the honest parties
learn about the identity of the corrupt when deprived of the output) to a 3-round protocol
with guaranteed output delivery in a black-box way show some promise. The third round
can be leveraged by the honest parties to exchange their inputs and compute output on the
clear. The main obstacle we face with this approach is the following—There is neither
any known 2-round construction for selective/unanimous abort with identifiability nor
do we see how to transform our unanimous abort protocol to one with identifiability in
two rounds.

We get around this by taking a non-blackbox approach and tweaking uai and fairi to
get yet another sub-protocol godi that achieves a form of local identifiability. Namely,
the evaluator Pi in godi either successfully computes the output or identifies the corrupt
party. As usual, our final protocol god is built upon three parallel executions of godi
(i ∈ [3]), each comprising of two rounds and with each party Pi enacting the role of the
evaluator once. Looking ahead, the local identifiability helps in achieving guaranteed
output delivery as follows. In a case when both honest parties identify the corrupt party
and the corrupt party received the output by the end of Round 2, the honest parties can
exchange their inputs and reconstruct the corrupt party’s input using the shares received

40 Page 36 of 77 A. Patra, D. Ravi

during one of the executions of godi and compute the function on clear inputs in the
third round. Otherwise, the honest party who identifies the corrupt can simply accept
the output computed and forwarded by the other honest party.

5.1. Protocol godi

Recall that the goal of godi for i ∈ [3] comprising of two rounds is either successful
computation of output or successful identification of the corrupt party by the evaluator
Pi . Starting with the ideas of uai , we note that uai only ensures detection of the corrupt
party by some honest party that is not necessarily the evaluator in case of a failed output
computation. Specifically, a garbler would identify his co-garbler to be corrupt when
the broadcast communication of co-garbler is not consistent with the privately shared
randomness. In such a case, the evaluator neither gets the output nor has any clue on the
identity of the corrupt, which is not in accordance with the goal of godi . In the absence
of broadcast, fairi gives even weaker guarantee where the best any party gets to know
is a conflict. The above is handled by having the garblers send their inputs on clear to
the evaluator on finding inconsistent behavior of the fellow garbler in the first round.
If both the garblers are in conflict with each other, the evaluator gets their inputs and
computes the function on clear. Otherwise, the evaluator can either evaluate at least one
of the GCs or identify the corrupt.

Lastly, as we do not require unanimity of any form at the end of two rounds, we
simplify godi by removing the two-part release mechanism and the flag altogether. Like
uai , we do not take care of the possibility of a corrupt garbler handing out inconsistent
input for the two GCs in godi . This is taken care in the main protocol god via the input
consistency. Pi outputs (y = (y j , yk),Yi = (Y j

i ,Y
k
i), Ci), the outputs computed from

two GCs, the encoded outputs and its corrupt set, all initially set to ⊥ and to be used
in the main construction. If both (y j , yk) are ⊥, then the corrupt set will be non-empty.
The garblers output their corrupt set. We now prove a few lemmas. The protocol godi
appears in Fig. 9.

Lemma 15. Assume that (Com,Open) is a secureNICOMand (eGen,eCom,eOpen,

Equiv) is a secure eNICOM. Pβ /∈ Cα holds for honest Pα, Pβ .

Proof. An honest Pα would include Pβ in Cα only if one of the following holds: (a)
Both Pα, Pβ are garblers and Pβ broadcastsDβ inconsistent with values privately shared
with Pα (b) Pα is an evaluator and Pβ is a garbler and Pβ ’s opening of a committed
encoded input or garbled circuit approved by him fails. It is easy to verify that the cases
will never occur for honest (Pα, Pβ) due to correctness of the commitment schemes.

�

Lemma 16. Assume that (Com,Open) is a secure NICOM, (eGen,eCom,eOpen,

Equiv) is a secure eNICOM and G = (Gb,En,Ev,De) is a secure garbling scheme.
Suppose input consistency holds, at the end of protocol godi , an honest evaluator Pi
either computes the output or identifies the corrupt party.

Proof. Assume that Pk is the corrupt garbler. We have two cases.

On the Exact Round Complexity of Secure Three-Party Computation Page 37 of 77 40

F
ig
.9
.

Pr
ot

oc
ol

go
d i

.

40 Page 38 of 77 A. Patra, D. Ravi

– Pk sends nOK: If Pj sends nOK too, Pi receives xl from Pl for l ∈ { j, k} (else Pk
is identified to be corrupt) and computes f on inputs xi , x j , xk . If Pj sends OK,
then the garbled circuit Ck is correctly constructed and the corresponding encoding
information is correctly committed. The only way a corrupt garbler Pk can stop Pi
from evaluating Ck (and avoid being caught by Pi) is by sending encoded inputs
corresponding to (xk, xik) that are inconsistent with Ck via breaching the binding
property of NICOM which happens only with negligible probability.

– Pk sends OK: In this case, the binding property of eNICOM ensures that with high
probability the correct C j is opened (otherwise Pk is caught). The arguments now
follow as the previous case where the probability that Pi does not get the output
and does not detect Pk reduces to the probability of breaching binding of NICOM.

�

5.2. Protocol god

Our three-round 3PC protocol achieving guaranteed output delivery composes godi for
i ∈ [3], with each party acting as the evaluator in parallel. At a high level, the protocol
assures that every party either outputs y that is not ⊥ or identifies the corrupt by end of
second round. In the third round, a party simply sends his output if it is non-⊥, else it
sends its input and share of the corrupt party’s input to the honest party alone. A party
outputs its own output computed in second round if it is not ⊥. Otherwise, it outputs the
non-⊥ output received from the non-faulty party or computes the output using the input
and share sent by the non-faulty party. The input consistency is handled exactly as in ua.
Additionally every party maintains a corrupt set and populates it when it identifies the
corrupt. The overall composition maintains guaranteed output delivery as below based
on when a corrupt party chooses to expose itself.

The cases when a corrupt Pi is detected by the end of first round itself, the honest
party who makes the identification, halts the execution where it plays the evaluator with
the corrupt set as the output and also halts godi to stop letting Pi get output in godi .
Since the detection may be owing to non-commitment of any input by Pi in godi , the
unique input of Pi has to be set to the one that it commits in the running execution or
as a default value when either there is no running execution or Pi does not commit to
anything in the running execution. Specifically, if both the honest parties identify Pi to
be corrupt by the end of first round, both would have exchanged their input as per the
code of god protocols and a default common value is taken as the input of Pi to compute
the function output by the end of second round itself.

If just one of the parties detects the corrupt party Pi , say Pj , it stops its execution as
the evaluator in god j and as garbler in godi to prevent Pi getting any output in godi .
Now Pi has two options: either it passes on its input on clear to Pk or it lets Pk to evaluate
the garbled circuit of Pj by giving its encoded input. In either case, this input of Pi is
taken as his committed input and the output computed by Pk is the one to be outputted
by all. (Note that Pi ’s own GC will not be approved by its co-garbler who has identified
it as corrupt by the end of first round.) Pk can simply pass on the output to Pi and Pj

in the third round and Pj simply takes the output of Pk who it knows to be honest. Our
protocol appears in Fig. 10 and its schematic diagram appears in Fig. 11.

On the Exact Round Complexity of Secure Three-Party Computation Page 39 of 77 40

Before stating the formal theorem, we present a series of lemmas useful to prove the
correctness of god.

Lemma 17. Assume that (Com,Open) is a secure NICOM. Pβ /∈ Cα holds for honest
Pα, Pβ in protocol godi , where i ∈ [3].

Proof. This lemma follows from Lemma 15 and the fact that the following will not be
true for honest (Pα, Pβ): (a) Pβ sends oβα, xβα to Pα such that Open(cβα, oβα) �= xβα

(cannot happen due to correctness of NICOM) (b) Both Pα, Pβ are garblers and pββ �=
xβα . (c) Pβ is the garbler, Pα is an evaluator and mββ �= xβα �

Lemma 18. Every party Pi uses its ‘committed’ input xi (Definition 1) in its GCs in
{god j ,godk}. Otherwise, it is identified by at least one of the honest parties.

Proof. Pi has not committed to its input implies it has not dealt correct opening to
one or both the honest parties. In either case, at least one of the honest parties identify
him. Now assume Pi has committed to input xi but uses input x ′

i �= xi during god j
for the garbled circuit constructed by Pi . Pi should use xik as the permutation string
pii in execution god j for permuting the commitments corresponding to xi . If Pi does
otherwise, then it is identified by honest Pk . Otherwise, the commitments are constructed
correctly and ordered as per xik . Now the only way Pi can decommit x ′

i is by giving
mii = pii ⊕ x ′

i . But Pj identifies Pi as corrupt as mii = pii ⊕ x ′
i �= pii ⊕ xi . �

We now prove correctness of the protocol accounting exhaustively all the scenarios:
the corrupt party

– belongs to the corrupt set of both the honest parties,
– belongs to the corrupt set of exactly one of the honest parties and
– does not belong to the corrupt set of the honest parties

by the end of the first round. For simplicity, we assume that Pk is the corrupt party and
Pi , Pj are the honest parties.

Lemma 19. Assuming that the corrupt party belongs to the corrupt set of both the
honest parties by the end of the first round, protocol god is correct.

Proof. In this case, Pi and Pj does not communicate at all in the second round of godk
preventing Pk to compute an output. In godi and god j , Pj and Pi , respectively, send
their inputs on clear to each other along with nOK signal. Both compute y on the inputs
xi , x j that are exchanged and a default common value for xk by the end of round 2. In
the third round, Pk receives y from the honest parties and the honest parties output y.
In this case, the unique input of the corrupt party taken for computation is the default
commonly-agreed value. �

Lemma 20. Assume that the garbling schemes used in the subprotocols {godi }i∈[3]
are secure. Then, if the corrupt party belongs to the corrupt set of exactly one of the
honest parties by the end of the first round, protocol god is correct.

40 Page 40 of 77 A. Patra, D. Ravi

Fig. 10. A three-round 3PC protocol achieving guaranteed output delivery .

On the Exact Round Complexity of Secure Three-Party Computation Page 41 of 77 40

Fig. 11. Schematic diagram of the 3-round god protocol (wrt party P1) .

Proof. For simplicity Pk ∈ Ci at the end of first round. (The proof follows in a similar
way when Pk ∈ C j .) This implies Pi , as an evaluator, ignores communication from both
the garblers in its execution godi and will conclude the second round with y = ⊥ and
Ci = Pk . Pi does not participate in godk as a garbler making sure Pk cannot compute an
output by the end of second round. In god j , Pi sends xi on clear to Pj with nOK signal
which implies evaluation of the GC created by Pk is ruled out. Now based on whether
Pk commits to any input or not, Pj computes the output in the following way. If nOK
signal is sent along with its input xk , then Pj computes y = yi = yk using its own input
x j and the inputs sent by Pi and Pk . If Pk sends OK with its encoded input which verifies
correctly with respect to the committed encoded information, Pj obtains y = yi upon
GC (Ci) evaluation (which is correct, due to correctness of garbling). In the case when
Pk does not commit to any input either on clear or in encoded form (namely, the encoded

40 Page 42 of 77 A. Patra, D. Ravi

input does not verify against the committed encoded input), Pj must have identified Pk
to be corrupt and computes y using its own input x j , the input sent by Pi and using a
default value for xk . The third round is finally used by Pi and Pk to obtain the output
of Pj and correctness follows. The unique input of Pk is taken as the one that it sends
either on clear or in encoded form to Pj in the former case and a default value in the
latter.

�

Lemma 21. Assume that the garbling schemes used in the subprotocols {godi }i∈[3]
are secure, (Com,Open) is a secure NICOM and the SKE (Enc,Dec) is CPA-secure.
Then, if the corrupt party does not belong to the corrupt set of both the honest parties
by the end of the first round, protocol god is correct.

Proof. In this case, Pk must have ‘committed’ (Definition 1) to his input (else would
be identified by atleast one of the honest parties at end of Round 1) and obtained output
y based on its committed input during godk . Further, Pk is not detected yet by the end of
first round, implies that it has played the role of the garblers in godi and god j honestly
in the first round. In this case, we prove that no matter how Pk behaves in the second
round, the honest parties will obtain y based on their inputs and Pk’s committed input.
We present the argument for honest Pi . Similar argument holds for Pj . Based on the
observation that Pi must have attempted to evaluate Ck since Pj must have sent OK
signal in godi , we consider the following cases:

– Pi is unsuccessful in evaluating the circuit Ck of garbler Pk in godi . This implies
Pk has given inconsistent encoded input for its circuit to Pi . So Pi concludes the
second round with y = ⊥ and Ci = Pk .

– Pi is successful in evaluating the circuit Ck of garbler Pk in godi . By Lemma 18,
Pk must have given encoded input corresponding to its committed input xk for Ck .
This implies the output obtained via Ck (i.e yk) is the desired y in this case. Now
we have two cases based on whether Pk approves the garbled circuit constructed
by Pj or not. In each case we show that, Pi outputs the desired y by the end of
second round itself. If Pk disapproves, then y j = ⊥ and Pi outputs the value y = yk
obtained via the GC Ck as per the specification of godi (which must be correct,
due to correctness of garbling). Otherwise, Pi evaluates both circuits, namely C j

and Ck . If the outputs are the same, then the guarantee provided by Lemma 18
implies Pi outputs the desired y. Else if Pi has got conflicting outputs (y j �= yk),
then it gets access to the key Y

y j
j ⊕ Yyk

k and uses it to decrypt at least one of the

ciphertexts {cty jj , ct
y j
k } generated by Pj and Pk . If the decryption of only the honest

party Pj ’s ciphertext succeeds, then Pi obtains (o jk, okj) (due to correctness of
the CPA secure SKE), retrieves his missing shares x jk, xk j and computes y using
xi , x j = x ji ⊕ x jk and xk = xki ⊕ xk j where Pi and Pj receives xki and xk j ,
respectively, from Pk in godk .

Even if corrupt Pk’s ciphertext is decrypted successfully,
the y computed is still as above due the fact that Pk cannot open a different value for
x jk, xk j due to the binding property of NICOM. Pi retains this output in the third round.

On the Exact Round Complexity of Secure Three-Party Computation Page 43 of 77 40

In the former case, if both Pi and Pj outputs ⊥ in the end of second round, then
the third round is used by Pi and Pj to exchange their inputs and the shares of xk that
they possess. By the end of third round Pi (and Pj as well) outputs the desired y. If Pj

was successful in computing y in god j , then Pj sends the output directly in third round
which Pi takes as the output. In the latter case, Pi retains his output in the third round.

�

We now state the formal theorem.

Theorem 3. Assume a network with both pairwise-private and broadcast channels,
and the existence of injective one-way functions. Then, the three-round three-party pro-
tocol god realizes Fgod (Fig. 15) against single malicious corruption.

Proof. Correctness follows from Lemmas 19, 20 and 21 as we have considered all the
cases exhaustively based on whether the corrupt party Pk is identified by none, exactly
one or both the honest parties by the end of first round. The simulation-based security
proof appears in Appendix F. Lastly, we note that each of the primitives used in god
such as NICOM, eNICOM garbling schemes (correct, private and authentic), PRG and
CPA-secure SKE can be built from one-way functions or injective one-way functions
(as elaborated in Appendix A). �

6. Lower Bounds

In this paper, we present two lower bounds—(a) three rounds are necessary for achieving
fairness in the presence of pair-wise private channels and a broadcast channel; (b) three
rounds are necessary for achieving unanimous abort in the presence of just pair-wise
private channels (and no broadcast). The second result holds even if broadcast was
allowed in the first round. Our results extend for anyn and t with 3t ≥ n > 2t via standard
player-partitioning technique [76]. Our results imply the following. First, selective abort
is the best amongst the four notions (considered in this work) that we can achieve in two
rounds without broadcast (from (b)). Second, unanimous abort as well as fairness require
3 rounds in the absence of broadcast (from (b)). Third, broadcast does not help to improve
the round complexity of fairness (from (a)). Lastly, guaranteed output delivery requires
3 rounds with broadcast (from (a)). Notably both our lower bounds extend to the stronger
model where parties have access to a common reference string (CRS). However, they
break down in the presence of PKI (as discussed in the respective technical sections).

6.1. The Impossibility of 2-Round Fair 3PC

In this section, we show that it is impossible to construct a fair 2-round 3PC for general
functions. [50] presents a lower bound of three rounds assuming non-private point-to-
point channels and a broadcast channel (their proof crucially relies on the assumption
of non-private channels). [48] presents a three-round lower bound for fair MPC with
t ≥ 2 (arbitrary number of parties) in the same network setting as ours. Similar to the
lower bounds of [50] and [48] (for the function of conjunction of two input bits), our

40 Page 44 of 77 A. Patra, D. Ravi

lower bound result does not exploit the rushing nature of the adversary and hence holds
for non-rushing adversary as well. Finally, we observe that the impossibility of 2-round
3PC for the information-theoretic setting follows from the impossibility of 2-round 3-
party statistical VSS of [82] (since VSS is a special case of MPC). We now prove the
impossibility formally.

Theorem 4. There exist functions f such that no two-round fair 3PC protocol can
compute f , even in the honest majority setting and assuming access to pairwise-private
and broadcast channel.

Proof. Let P = {P1, P2, P3} denote the set of 3 parties and the adversary A may
corrupt any one of them. We prove the theorem by contradiction. We assume that there
exists a two-round fair 3PC protocol π that can compute f (x1, x2, x3) defined below
for Pi ’s input xi :

f (x1, x2, x3) =
{

1 if x2 = x3 = 1

0 otherwise

At a high level, we discuss two adversarial strategies A1 and A2 of A. We consider
party Pi launching Ai in execution Σi (i ∈ [2]) of π . Both the executions are assumed
to be run for the same input tuple (x1, x2, x3) and the same random inputs (r1, r2, r3)

of the three parties. (Same random inputs are considered for simplicity and without
loss of generality. The same arguments hold for distribution ensembles as well.) When
strategy A1 is launched in execution Σ1, we would claim that by correctness of π , A
corrupting P1 should learn the output y = f (x1, x2, x3). Here, we note that the value of
f (x1, x2, x3) depends only on the inputs of honest P2, P3 (i.e input values x2, x3) and
is thus well-defined. We refer to f (x1, x2, x3) as the value determined by this particular
combination of inputs (x2, x3) henceforth. Now, since A corrupting P1 learnt the output,
due to fairness, P2 should learn the output too in Σ1. Next strategy A2 is designed so
that P2 in Σ2 can obtain the same view as in Σ1 and therefore it gets the output too.
Due to fairness, we can claim that P3 receives the output in Σ2. A careful observation
then lets us claim that P3 can, in fact, learn the output at the end of Round 1 itself in π .
Lastly, using the above observation, we show a strategy for P3 that explicitly allows P3
to breach privacy.

We use the following notation: Let pri→ j denote the pairwise communication from Pi
to Pj in round r and bri denote the broadcast by Pi in round r , where r ∈ [2], {i, j} ∈ [3].
Vi denotes the view of party Pi at the end of execution of π . Below we describe the
strategies A1 and A2.

A1: P1 behaves honestly during Round 1 of the protocol. In Round 2, P1 waits to
receive the messages from other parties, but does not communicate at all.

A2: P2 behaves honestly toward P3 in Round 1, i.e sends the messages p1
2→3,b

1
2 ac-

cording to the protocol specification. However P2 does not communicate to P1
in Round 1. In Round 2, P2 waits to receive messages from P3, but does not
communicate to the other parties.

On the Exact Round Complexity of Secure Three-Party Computation Page 45 of 77 40

Next we present the views of the parties in the two executions Σ1 and Σ2 in Table 2.
The communications that could potentially be different from the communications in
an honest execution (where all parties behave honestly) with the considered inputs and
random inputs of the parties are appended with � (e.g., p2

1→3(�)). We now prove a
sequence of lemmas to complete our proof.

Lemma 22. Acorrupt P1 launchingA1 inΣ1 should learn theoutput y = f (x1, x2, x3).

Proof. The proof follows easily. Since P1 behaved honestly during Round 1, it received
all the desired communication from honest P2 and P3 in Round 2 (refer to Table 2 for the
view of P1 in Σ1 in the end of Round 2). So it follows from the correctness property that
his view at the end of the protocol i.e V1 should enable P1 to learn the correct function
output f (x1, x2, x3). �

Lemma 23. A corrupt P2 launching A2 in Σ2 should learn the output y.

Proof. We prove the lemma with the following two claims. First, the view of P2 in
Σ2 subsumes the view of honest P2 in Σ1. Second, P2 learns the output in Σ1 due to
the fact that the corrupt P1 learns it and π is fair. We now prove our first claim. In Σ1,
we observe that P2 has received communication from both P1 and P3 in the first round,
and only from P3 in the second round. So V2 = {x2, r2,p1

1→2,b
1
1,p

1
3→2,b

1
3,p

2
3→2,b

2
3}

(refer to Table 2). We now analyze P2’s view in Σ2. Both P1 and P3 are honest and
must have sent {p1

1→2,b
1
1,p

1
3→2,b

1
3} according to the protocol specifications in Round

1. Since P3 received the expected messages from P2 in Round 1, P3 must have sent
{p2

3→2,b
2
3} in Round 2. Note that we can rule out the possibility of P3’s messages in

this round having been influenced by P1 possibly reporting P2’s misbehavior toward
P1. This holds since P3 would send the messages in the beginning of Round 2. We do
not make any assumption regarding P1’s communication to P2 in Round 2 since P1 has
not received the expected message from P2 in Round 1. Thus, overall, P2’s view V2
comprises of {x2, r2,p1

1→2,b
1
1,p

1
3→2,b

1
3,p

2
3→2,b

2
3} (refer to Table 2). Note that there

may also be some additional messages from P1 to P2 in Round 2 which can be ignored
by P2. These are marked with ‘(�)′ in Table 2. A careful look shows that the view of P2
in Σ2 subsumes the view of honest P2 in Σ1. This concludes our proof. �

Lemma 24. P3 in Σ2 should learn the output y by the end of Round 1.

Proof. According to the previous lemma, P2 should learn the function output in Σ2.
Due to fairness property, it must hold that an honest P3 learns the output as well (same
as obtained by P2, i.e., y). First, we note that as per strategy A2, P2 only communicates
to P3 in Round 1. Second, we argue that the second round communication from P1 does
not impact P3’s output computation as follows.

We observe that the function output depends only on (x2, x3). Clearly, Round 1 mes-
sages {p1

1→3,b
1
1} of P1 does not depend on x2. Next, since there is no private commu-

nication to P1 from P2 as per strategy A2, the only information that can possibly hold

40 Page 46 of 77 A. Patra, D. Ravi

Ta
bl
e
2.

V
ie

w
s

of
P 1

,
P 2

,
P 3

in
Σ

1
an

d
Σ

2
.

Σ
1

Σ
2

V
1

V
2

V
3

V
1

V
2

V
3

In
iti

al
in

pu
t

(x
1
,
r 1

)
(x

2
,
r 2

)
(x

3
,
r 3

)
(x

1
,
r 1

)
(x

2
,
r 2

)
(x

3
,
r 3

)

R
ou

nd
1

p1 2→
1
,
p1 3→

1
p1 1→

2
,
p1 3→

2
,

p1 1→
3
,
p1 2→

3
,

–,
p1 3→

1
,

p1 1→
2
,
p1 3→

2
,

p1 1→
3
,
p1 2→

3
,

b1 2
,
b1 3

b1 1
,
b1 3

b1 1
,
b1 2

b1 2
,
b1 3

b1 1
,
b1 3

b1 1
,
b1 2

R
ou

nd
2

p2 2→
1
,
p2 3→

1
,

–,
p2 3→

2
,

–,
p2 2→

3
,

–,
p2 3→

1
,

p2 1→
2
(�

),
p2 3→

2
,

–,
p2 1→

3
(�

),

b2 2
,
b2 3

b2 3
b2 2

b2 3
b2 1

(�
),
b2 3

b2 1
(�

)

On the Exact Round Complexity of Secure Three-Party Computation Page 47 of 77 40

information on x2 and can impact the round 2 messages of P1 is b1
2. However, since this

is a broadcast message, P3 holds this by the end of Round 1 itself. �

Lemma 25. A corrupt P3 violates the privacy property of π .

Proof. The adversary corrupting P3 participates in the protocol honestly by fixing
input x3 = 0. Since P3 can get the output from P2’s and P1’s round 1 communication
(Lemma 24), it must be true that P3 can evaluate the function f locally by plugging
in any value of x3. (Note that P2 and P1’s communication in round 1 are independent
of the communication of P3 in the same round.) Now a corrupt P3 can plug in x3 = 1
locally and learn x2 (via the output x2 ∧ x3). In the ideal world, corrupt P3 must learn
nothing beyond the output 0 as it has participated in the protocol with input 0. But in the
execution of π (in which P3 participated honestly with input x3 = 0), P3 has learnt x2.
This is a clear breach of privacy as P3 learns x2 regardless of his input. Hence, we have
arrived at a contradiction, completing the proof of Theorem 4. �

Before concluding the section, we point that the above lower bound holds even in
the presence of public setup (such as common reference string model). However, it
breaks down given access to private setup such as public-key infrastructure i.e PKI (as
demonstrated by [84,85]). Essentially, the argument breaks down because Lemma 24
does not hold in the presence of private setup for the following reason: If a setup such
as PKI is established, P1 may hold some private information unknown to P3 at the end
of Round 1, such as the decryption of P2’s Round 1 broadcast using its exclusive secret
key. This may aid in output computation by P3; thereby it cannot be claimed that P3
obtains the output at the end of Round 1 itself.

6.2. The Impossibility of 2-Round 3PC with Unanimous Abort

Theorem 5. There exist functions f such that no two-round 3PC protocol achieving
security with unanimous abort can compute f assuming access to pairwise-private
channels, even in the honest majority setting.

Proof. We prove the theorem by contradiction. We assume that there exists a two-
round 3PC protocol π achieving security with unanimous abort that can compute the
same function f (x1, x2, x3) considered in the proof of Theorem 4.

At a high level, we discuss three adversarial strategies A1,A2,A3 of A. We consider
party P1 launches A1 in execution Σ1, and P2 launches A2,A3 in executions Σ2,Σ3
of π , respectively. For the sake of simplicity, the executions are assumed to be run for
the same input tuple (x1, x2, x3) and the same random inputs (r1, r2, r3) (without loss of
generality) of the three parties. We use the notation V j

i to denote the view of party Pi at
the end of execution Σ j of π . The skeleton of the proof goes as follows: We first claim
that strategy A1 leads to honest P2 computing the output y = f (x1, x2, x3). Here, we
note that the value of f (x1, x2, x3) depends only on the inputs of honest P2, P3 (i.e input
values x2, x3) and is thus well-defined. We refer to f (x1, x2, x3) as the value determined
by this particular combination of inputs (x2, x3) henceforth. Since the protocol achieves
unanimous abort, honest P3’s view V1

3 at the end of Σ1 must lead to output computation

40 Page 48 of 77 A. Patra, D. Ravi

of y by P3. Next, strategy A2 executed by P2 during Σ2 results in P3 having the same
view as in Σ1 i.e V1

3 = V2
3. Thus, honest P3 computes the output and to preserve the

property of unanimous abort, honest P1 with view V2
1 must also compute the output.

Finally, we present a strategyA3 by P2 during Σ3 that results in P1 having the same view
as in Σ2 i.e V2

1 = V3
1. It follows that honest P1 computes the output and therefore honest

P3 with view V3
3 must be able to compute the output too. This results in a contradiction

as we conclude that if P3’s view V3
3 enables output computation, P3 must be able to

compute the output at the end of Round 1 itself which violates privacy as proved in
Lemma 25.

Let pri→ j denote the pairwise communication from Pi to Pj in round r , where r ∈
[2], {i, j} ∈ [3]. Below we describe the strategies A1,A2 and A3.

A1: P1 behaves honestly during Round 1 of the protocol. In Round 2, P1 behaves
honestly toward P2. P1’s communication to P3 in Round 2 is according to the
protocol specification for the scenario when P1 didn’t receive the expected message

(or nothing) from P2 in Round 1. In more detail, suppose p2
1→3 is the message that

should be sent by P1 to P3 according to the protocol incase P1 didn’t receive

anything from P2 in Round 1. Then as per A1, corrupt P1 sends p2
1→3 to P3 in

Round 2.
A2: P2 does not communicate at all to P1 but behaves honestly to P3 throughout π .
A3: In Round 1, P2 does not communicate to P1 but behaves honestly to P3. In Round

2, P2 does not communicate at all.

Next we present the views of the parties in Σ1, Σ2 and Σ3 in Table 3. Here, p2
1→3 is the

message that should be sent by P1 to P3 according to the protocol incase P1 didn’t receive
anything from P2 in Round 1. Besides this, the communications that could potentially
be different from the communications in an honest execution with the considered inputs
and random inputs of the parties are appended with � (e.g. p2

1→2(�)). We now prove a
sequence of lemmas to complete our proof.

Lemma 26. P3 computes the output y = f (x1, x2, x3) at the end of Σ1.

Proof. The proof follows easily. During Σ1, as per strategy A1, corrupt P1 behaved
honestly to P2 throughout π . Therefore P2 would compute the output y = f (x1, x2, x3).
Due to property of unanimous abort, honest P3 must learn the output as well. �

Lemma 27. P3 computes the output y = f (x1, x2, x3) at the end of Σ2.

Proof. We observe that the view of P3 during Σ1,Σ2 is same. As per both strategies
A1, and A2, P3 receives communication from P1, P2 as per honest execution in Round

1. In Round 2, according to A1, corrupt P1 sends p2
1→3 as per protocol specification for

case when P1 receives nothing from P2 in Round 1. A similar message would be sent by
honest P1 to P3 who did not receive anything from P2 in Round 1 (as per A2) during Σ2.
It is now easy to check (refer Table 3) that V1

3 = V2
3. Finally, since V1

3 leads to output
computation of y as per Lemma 26, P3’s view at the end of Σ2 i.e V2

3 must result in P3
computing the output y. �

On the Exact Round Complexity of Secure Three-Party Computation Page 49 of 77 40

Ta
bl
e
3.

V
ie

w
s

of
P 1

,
P 2

,
P 3

in
Σ

1
,Σ

2
,Σ

3
.

Σ
1

Σ
2

Σ
3

V
1

V
2

V
3

V
1

V
2

V
3

V
1

V
2

V
3

In
iti

al
in

pu
t

(x
1
,
r 1

)
(x

2
,
r 2

)
(x

3
,
r 3

)
(x

1
,
r 1

)
(x

2
,
r 2

)
(x

3
,
r 3

)
(x

1
,
r 1

)
(x

2
,
r 2

)
(x

3
,
r 3

)

R
ou

nd
1

p1 2→
1
,
p1 3→

1
p1 1→

2
,
p1 3→

2
,

p1 1→
3
,
p1 2→

3
,

–,
p1 3→

1
,

p1 1→
2
,
p1 3→

2
,

p1 1→
3
,
p1 2→

3
,

–,
p1 3→

1
,

p1 1→
2
,
p1 3→

2
,

p1 1→
3
,
p1 2→

3
,

R
ou

nd
2

p2 2→
1
,
p2 3→

1
,

p2 1→
2
,p

2 3→
2
,

p2 1→
3
,p

2 2→
3
,

–,
p2 3→

1
,

p2 1→
2
(�

),
p2 3→

2
,

p2 1→
3
,p

2 2→
3
,

–,
p2 3→

1
,

p2 1→
2
(�

),
p2 3→

2
,

p2 1→
3
,–

40 Page 50 of 77 A. Patra, D. Ravi

Lemma 28. P3 learns the output at the end of Σ3.

Proof. Firstly, it follows from lemma 27 and property of unanimous abort that honest
P1 must compute the output at the end of Σ2. Next, it is easy to check that V2

1 = V3
1

(refer Table 3). We can thus conclude that honest P1 computes the output at the end of
Σ3. Therefore, honest P3 must also be able to compute the output at the end of Σ3 (by
assumption that π achieves unanimous abort). �

Finally, we now prove that P3 learns the output at the end of Round 1 (similar to
Lemma 24).

Lemma 29. P3 in Σ3 should learn the output y by the end of Round 1.

Proof. According to Lemma 28, P3 should learn the function output in Σ3. First, we
note that as per strategy A3, corrupt P2 only communicates to P3 in Round 1. Second,
we argue that the second round communication from P1 does not impact P3’s output
computation as follows.

We observe that the function output depends only on (x2, x3). Clearly, the first round
messages {p1

1→3} of P1 does not depend on x2. Next, since there is no communication
to P1 from P2 as per strategy A3, round 2 messages of P1 hold no information about x2.
If P3 is able to compute output at the end of Round 1, we know that protocol π violates
privacy (proved in Lemma 25). We have thus arrived at a contradiction, concluding the
proof of Theorem 5. �

We observe that even if broadcast was allowed in the first round, all the above argu-
ments would still hold. We state this as a corollary below.

Corollary 1. There exist functions f such that no two-round 3PC protocol achieving
security with unanimous abort can compute f assuming access to pairwise-private and
broadcast channels in Round 1 and only pairwise-private channels in Round 2; even in
the honest majority setting.

Proof. We observe that the following minor tweaks to the proof of Theorem 5 imply

Corollary 1: We redefinep2
1→3 to be the message that should be sent by P1 to P3 in Round

2 according to the protocol incase P1 didn’t receive anything privately (over pairwise-
private channel) from P2 in Round 1 (if Round 1 includes broadcast communication
from P2, then we assume P1 has received P2’s broadcast communication). A1 remains
the same with p2

1→3 defined as above. We emphasize that there is no broadcast channel

available in Round 2 andp2
1→3 is communicated via pairwise-private channel between P1

and P3. Strategies A2 and A3 are tweaked to include honest behavior of P2 in broadcast
communication of Round 1. It is now easy to check that the arguments of Lemmas 26–28
hold. We can now conclude that P3 learns the output at the end of Σ3 where the only
communication from P2 throughout the protocol includes broadcast communication in
Round 1 and private communication to P3 in Round 1. Finally, similar to Lemma 29 we
can argue that P3 learns the output at the end of Round 1 itself which violates privacy.

On the Exact Round Complexity of Secure Three-Party Computation Page 51 of 77 40

We clarify that while the above argument holds for the plain model and public setup
(such as common reference string model), it does not hold in the presence of private
setup such as PKI. The argument breaks down for the same reason as demonstrated by
[84] in the context of our lower bound in Sect. 6.1 (elaborated at the end of Sect. 6.1).

�

7. Conclusion

In this paper, we settle exact round complexity of 3PC with selective abort, unanimous
abort, fairness and guaranteed output delivery in a setting with private pairwise channels
and with or without broadcast channel. Our lower bounds extend for any n and t with
3t ≥ n > 2t . Our protocols rely on injective OWF.

A. Primitives

A.1. Properties of Garbling Scheme

Definition 2. (Correctness) A garbling scheme G is correct if for all input lengths
n ≤ poly(κ), circuits C : {0, 1}n → {0, 1}m and inputs x ∈ {0, 1}n , the following
probability is negligible in κ:

Pr
(
De(Ev(C,En(e, x)), d) �= C(x) : (C, e, d) ← Gb(1κ ,C)

)
.

Definition 3. (Privacy) A garbling scheme G is private if for all input lengths n ≤
poly(κ), circuits C : {0, 1}n → {0, 1}m , there exists a PPT simulator Spriv such that for
all inputs x ∈ {0, 1}n , for all probabilistic polynomial-time adversaries A, the following
two distributions are computationally indistinguishable:

– Real(C, x) : run (C, e, d) ← Gb(1κ ,C), and output (C,En(x, e), d).
– IdealSpriv(C,C(x)): output (C′,X, d ′) ← Spriv(1κ ,C,C(x))

Definition 4. (Authenticity) A garbling scheme G is authentic if for all input lengths
n ≤ poly(κ), circuitsC : {0, 1}n → {0, 1}m , inputs x ∈ {0, 1}n , and allPPT adversaries
A, the following probability is negligible in κ:

Pr

(
Ŷ �= Ev(C,X)

∧De(Ŷ, d) �= ⊥ : X = En(x, e), (C, e, d) ← Gb(1κ ,C)

Ŷ ← A(C,X)

)
.

Definition 5. (Obliviousness) A garbling scheme G achieves obliviousness if for all
input lengths n ≤ poly(κ), circuits C : {0, 1}n → {0, 1}m , there exists a PPT simulator
Sobv such that for all inputs x ∈ {0, 1}n , for all probabilistic polynomial-time adversaries
A, the following two distributions are computationally indistinguishable:

– Real(C, x) : run (C, e, d) ← Gb(1κ ,C), and output (C,En(x, e)).
– IdealSobv(C): output (C′,X) ← Sobv(1κ ,C)

40 Page 52 of 77 A. Patra, D. Ravi

A.2. Non-interactive Commitment Schemes (NICOM)

Properties.

– Correctness: For all pp, x ∈ M and r ∈ R, if (c, o) ← Com(x; r) then
Open(c, o) = x .

– Binding: For all PPT adversaries A and all pp, it is with negligible probabil-
ity that A(pp) outputs (c, o, o′) such that Open(c, o) �= Open(c, o′) and ⊥ /∈
{Open(c, o),Open(c, o′)}

– Hiding: For all PPT adversaries A, the following difference is negligible (over
uniform choice of pp and the random coins of A) for all x, x ′ ∈ M:

∣
∣Pr(c,o)←Com(x)[A(c) = 1] − Pr(c,o)←Com(x ′)[A(c) = 1]∣∣

Instantiations. Here we present two instantiations of NICOM. In the random oracle
model, commitment is (c, o) = (H(x ||r), x ||r) = Com(x; r). The pp can in fact be
empty. In the standard model, we can use the following bit-commitment scheme from
any injective one-way function. Let f : {0, 1}n → {0, 1}n be a one-way permutation
and h : {0, 1}n → {0, 1} a hard core predicate for f (·). Then the commitment scheme
for a single bit x is:

– Com(x; r): set c = (f (r), x ⊕ h(r)); where r ∈R {0, 1}n ; set o = (r, x).
– Open(c, o = (r, x)): return x if c = (f (r), x ⊕ h(r)); otherwise return ⊥.

For commitment of multi-bit string, the Goldreich-Goldwasser-Micali [45] construction
from a one-way permutation f can be used. Recall the GGM construction: given one-
way permutation f : {0, 1}k → {0, 1}k with hard-core predicate h : {0, 1}k → {0, 1},
first construct a length-doubling pseudorandom generator G : {0, 1}k → {0, 1}k via:
G(s) = f k(s) h(f k−1(s)) . . . h(s). Let G0(s) denote the first k bits of G(s), and let
G1(s) denote the last k bits of G(s). For a binary string s, the commitment c can be
defined as c = F(s, 0) = G0(. . . (G0(G0(s))) . . .) with o = (s). It is shown in [45]
that the function family F = {Fκ} with Fκ = {F(s)}s∈{0,1}κ is pseudorandom. Now,
note that F(s, 0) = f 	.κ (s). Since f is a permutation, this means that the function
g(x) = F(s, 0) is a permutation, and hence the commitment scheme has the binding
property. Hiding follows from the property of PRF F [67].

A.3. Equivocal Non-interactive Commitment Schemes (eNICOM)

An eNICOM comprises of the following algorithms, apart from the ones needed in
NICOM:

– eGen(1κ) returns a public parameter and a corresponding trapdoor (epp, t), where
epp is used by both eCom and eOpen. The trapdoor t is used for equivocation.

– Equiv(c, o′, x, t) is invoked on a certain commitment c and its corresponding
opening o′, given message x and the trapdoor t and returns o such that x ←
eOpen(epp, c, o).

An eNICOM satisfies correctness, hiding and binding properties much like the NICOM
does. The hiding property of eNICOM is slightly changed compared to that of NICOM

On the Exact Round Complexity of Secure Three-Party Computation Page 53 of 77 40

taking the equivocation property into account. This new definition implies the usual
hiding definition.
Properties.

– Correctness: For all (epp, t) ← eGen(1κ), x ∈ M and r ∈ R, if (c, o) ←
eCom(x; r) then eOpen(c, o) = x .

– Binding: For all (epp, t) ← eGen(1κ) and for all PPT adversaries A, it is
with negligible probability that A(epp) outputs (c, o, o′) such that eOpen(c, o) �=
eOpen(c, o′) and ⊥ /∈ {eOpen(c, o),eOpen(c, o′)}

– Hiding: For all (epp, t) ← eGen(1κ) and for all PPT adversaries A, and all
x, x ′ ∈ M, the following difference is negligible:

∣∣Pr(c,o)←eCom(x)[A(c, o) = 1] − Pr(c,o)←eCom(x ′),o←Equiv(c,x,t)[A(c, o) = 1]∣∣

Instantiations. We first present the equivocal bit commitment scheme of [32], which is
based on Naor’s commitment scheme [81] for single bit message. This scheme avoids the
use of public-key primitives. Let G : {0, 1}n → {0, 1}4n be a pseudorandom generator.

– eGen(1κ): set (epp, t) = (σ, (r0, r1)), where σ = G(r0) ⊕ G(r1)

– eCom(x; r): set c = G(r) if x = 0, else c = G(r) ⊕ σ ; set o = (r, x)
– eOpen(c, o = (r, x)): return x if c = G(r)⊕x ·σ (where (·) denotes multiplication

by constant); otherwise return ⊥.
– Equiv(c = G(r0),⊥, x, t): return o = (r, x) where r = r0 if x = 0, else r = r1.

Next, we present the instantiation based on Pedersen commitment scheme [83]. Let p, q
denote large primes such that q divides (p − 1), Gq is the unique subgroup of Z∗

p of
order q and g is a generator of Gq .

– eGen(1κ): set (epp, t) = ((g, h), α) where α ∈ Zq ; h = gα

– eCom(x; r): set c = gxhr ; set o = (r, x).
– eOpen(c, o = (r, x)): return x if c = gxhr ; otherwise return ⊥.
– Equiv(

(
c = eCom(x ′; r ′)

)
, (x ′, r ′), x, t): return o = (r, x) where r = r ′ + x ′−x

t

While in Naor-based instantiation, a specific commitment c = G(r0) can be decom-
mitted to either 0 or 1, the Pedersen commitment scheme allows equivocation of any
commitment. For the purpose of our protocols, even the former weaker property suffices
and hence our protocols can be based on symmetric key operations alone.

A.4. Symmetric-Key Encryption with Special Correctness

Definition 6. A CPA-secure symmetric-key encryption schemeπ = (Gen,Enc,Dec)
satisfies special correctness if there is some negligible function ε such that for any mes-
sage m we have: Pr[Deck2(Enck1(m)) �= ⊥ : k1, k2 ← Gen(1κ)] ≤ ε(κ)

Instantiation. Here we present an instantiation borrowed from [65,75]. Let F = { fk} be
a family of pseudorandom functions where fk = {0, 1}κ → {0, 1}κ+s , for k ∈ {0, 1}κ
and s is a parameter denoting message length.

– Enck(m) = (r, fk(r) ⊕ m0κ) where m ∈ {0, 1}s, r ← {0, 1}κ and m0κ denotes
the concatenation of m with a string of 0s of length κ .

40 Page 54 of 77 A. Patra, D. Ravi

– Deck(c) which parses c = (r, z), computes w = z ⊕ fk(r) and if the last κ bits of
w are 0’s, it outputs the first s bits of w, else it outputs ⊥

B. The Security Model

We prove the security of our protocols based on the standard real/ideal world paradigm.
Essentially, the security of a protocol is analyzed by comparing what an adversary can
do in the real execution of the protocol to what it can do in an ideal execution, that is
considered secure by definition (in the presence of an incorruptible trusted party). In an
ideal execution, each party sends its input to the trusted party over a perfectly secure
channel, the trusted party computes the function based on these inputs and sends to each
party its respective output. Informally, a protocol is secure if whatever an adversary can
do in the real protocol (where no trusted party exists) can be done in the above described
ideal computation. We refer to [25,34,53,73] for further details regarding the security
model.
The “ideal” world execution involves parties P1, P2, P3, an ideal adversary S who may
corrupt one of the parties, and a functionality F . The “real” world execution involves
the PPT parties P1, P2, P3, and a real world adversary A who may corrupt one of the
parties. We let idealF ,S(1κ , z) denote the output pair of the honest parties and the
ideal-world adversary S from the ideal execution with respect to the security parameter
1κ and auxiliary input z. Similarly, let real�,A(1κ , z) denote the output pair of the
honest parties and the adversary A from the real execution with respect to the security
parameter 1κ and auxiliary input z.

Definition 7. For n ∈ N, let F be a functionality and let � be a 3-party protocol. We
say that � securely realizes F if for every PPT real world adversary A, there exists a
PPT ideal world adversary S, corrupting the same parties, such that the following two
distributions are computationally indistinguishable:

idealF ,S
c≈ real�,A.

Target Functionalities. Taking motivation from [34,50], we define ideal functionalities
Fsa, Fua, Ffair,Fgod in Figs. 12, 13, 14 and 15 for secure 3PC of a function f with
selective abort, unanimous abort, fairness and guaranteed output delivery, respectively.

C. Optimizations

In this section, we propose some optimizations to our protocols fair, ua and god that will
reduce their communication. To reduce total communication, the transmission of garbled
circuits should be kept minimal since they constitute the dominant part of communica-
tion. We note that the protocols already ensure that each distinct GC is communicated
only once to the evaluator, namely when a garbler sends the opening of the co-garbler’s
circuit. Next, a proposed optimization to reduce communication is that H of the GC
could be committed rather than the GC itself, where H denotes a collision-resistant

On the Exact Round Complexity of Secure Three-Party Computation Page 55 of 77 40

Fig. 12. Ideal functionality for selective abort .

Fig. 13. Ideal functionality for unanimous abort .

Fig. 14. Ideal functionality for fairness .

40 Page 56 of 77 A. Patra, D. Ravi

Fig. 15. Ideal functionality for guaranteed output delivery .

hash function. Infact since broadcast communication is considered more expensive than
private communication, corresponding to broadcast of a message, say m, let H(m) be
the message broadcast by the sender while m is sent privately over pairwise channels.
The same trick can be applied on the redundant common messages sent over pairwise
channels as well i.e if both P1, P2 are supposed to send m to P3, then have P1 send m and
P2 send H(m). P3 can locally compute the hash of the message which would suffice to
verify if P1 and P2 agree on a common m. The above techniques reduce total communi-
cation and makes the broadcast communication complexity of the protocol independent
of the circuit size. Lastly, an optimization with respect to protocol fair is that the inputs
to the subprotocol certi can be modified to hash of the relevant inputs instead, reducing
considerably the size of the equality-checking circuit in certi .

D. Proof of Security for Protocol fair

In this section, we present the proof of security of fair relative to the ideal functionality
for fairness shown in Appendix B. For better clarity, we assume without loss of generality
that P1 is corrupt (denoted as P∗

1) and describe the simulator Sfair. Since the roles of
the parties are symmetric in fair, similar proof would hold in case of corrupt P2, P3 as
well. The simulator plays the role of the honest parties P2, P3 and simulates each step of
the protocol fair. Recall that during the first two rounds of fair, the two round protocols
fairi (i ∈ [3]) and certi (i ∈ [3]) run in parallel. We divide the description of Sfair as
follows: We describeSfair during fair1, cert1 where corrupt P∗

1 is the evaluator and during
fair2, cert2 when corrupt P∗

1 acts as a garbler. The steps corresponding to fair3, and cert3
would follow symmetrically from that described corresponding to fair2, cert2. Finally,
we describe the steps corresponding to the third round. The simulator Sfair appears in
Fig. 16 withR1/R2/R3 indicating simulation for round 1, 2 and 3, respectively, and f/c/F
denoting the steps corresponding to subprotocol fairi , certi , fair, respectively.
When simulating fair1, the simulator does not have access to the inputs of the honest
parties. Further, it does not know if and what P1 commits as its input in Round 1, when
simulating and sending the commitments for GC and encoding information in parallel
in Round 1. Nor does it know if all the parties will get the output (relative to corrupt
P1’s committed input from Round 1) or not, when it opens the encoded input and GC in
Round 2. The decision comes from P1’s behavior in Round 2. A privacy simulator Sprv
cannot be invoked for emulating Round 2 message, as Ffair cannot be invoked yet and

On the Exact Round Complexity of Secure Three-Party Computation Page 57 of 77 40

so y is not available. Instead oblivious simulator Sobv is invoked that works without y.
Later if and when Ffair is invoked and y is known, Sprv is invoked which simply returns
the decoding information that makes the fake GC returned by Sobv output y.

We now argue that idealFfair,Sfair

c≈ realfair,A, when A corrupts P1. The views are
shown to be indistinguishable via a series of intermediate hybrids.

– hyb0: Same as realfair,A.
– hyb1: Same as hyb0, except that P2, P3 in fair1 use uniform randomness rather

than pseudo-randomness for the garbled circuit construction.
– hyb2: Same ashyb1, except that some of the commitments of encoded inputs which

will not be sent to P1 during fair1 are replaced with commitments on dummy values.
Specifically, these are corresponding to indices not equal to m22,m23, x12, x13 for
C2 and not equal to m32,m33, x12, x13 for C3.

– hyb3 : Same as hyb2, except the following:

· hyb3.1: When the execution results in P1 evaluating GCs during fair1 but results

in abort, C2 is created as C′
2 ← Sobv(1κ ,C,X2 = {emα

22
2α , e

mα
23

2(+α), e
xα

12
2(2	+α),

e
xα

13
2(3	+α)}α∈[]). The commitment c2 is later equivocated to C′

2 using o2 comput-
ed via o2 ← Equiv(c2,C′

2, t2). The commitment to the decoding information
is created for a dummy value. Since the encoding information are committed in
round 1 using committing commitments that cannot be equivocated, we invoke
Sobv using an X that corresponds to the correct shares of P1 and it returns a fake
GC (consistent with the labels in X) such that indistinguishability holds. We
note that most of the known garbling schemes based on Yao and optimizations
[69,89,90] have simulators that comply with the above.

· hyb3.2: When the execution results in P1 evaluating GCs during fair1 and output

y, the GC is created as (C′
2, d2) ← Sprv(1κ ,C, y,X2 = {emα

22
2α , e

mα
23

2(+α), e
xα

12
2(2	+α),

e
xα

13
2(3	+α)}α∈[]). The commitment c2 is later equivocated to C′

2 using o2 com-

puted via o2 ← Equiv(c2,C′
2, t2). The commitment cdec2 to the decoding in-

formation is created for a dummy value and later equivocated to d2 using od2

computed via od2 ← Equiv(cdec2 , d2, t2). The set of ciphertexts ct and z1 (if)
generated use d2 .

– hyb4 : Same as hyb2, except the following:

· hyb4.1: When the execution results in P1 evaluating GCs during fair1 but re-

sults in abort, C3 is created as C′
3 ← Sobv(1κ ,C,X3 = {emα

32
3α , e

mα
33

3(+α),

e
xα

12
3(2	+α), e

xα
13

3(3	+α)}α∈[]). The commitment c3 is later equivocated to C′
3 using

o3 computed via o3 ← Equiv(c3,C′
3, t3). The commitment to the decoding

information is created for a dummy value.
· hyb4.2: When the execution results in P1 evaluating GCs during fair1 and output

y, the GC is created as (C′
3, d3) ← Sprv(1κ ,C, y,X3 = {emα

32
3α , e

mα
33

3(+α), e
xα

12
3(2	+α),

e
xα

13
3(3	+α)}α∈[]). The commitment c3 is later equivocated to C′

3 using o3 com-

puted via o3 ← Equiv(c3,C′
3, t3). The commitment cdec3 to the decoding in-

40 Page 58 of 77 A. Patra, D. Ravi

Fig. 16. Description of Sfair .

On the Exact Round Complexity of Secure Three-Party Computation Page 59 of 77 40

Fig. 16. continued.

40 Page 60 of 77 A. Patra, D. Ravi

formation is created for a dummy value and later equivocated to d3 using od3

computed via od3 ← Equiv(cdec3 , d3, t3). The set of ciphertexts ct and z1 (if)
generated uses d3.

– hyb5: Same as hyb4, except that during fair2, C2 is set to P1 if P2 receives o3 that
opens to a value other than the originally committed C3.

– hyb6: Same as hyb5, except that during fair3, C3 is set to P1 if P3 receives o2 that
opens to a value other than the originally committed C2.

– hyb7: Same as hyb6, except that during fair2, C2 is set to P1 if P2 accepts any
encoded input not consistent with C1,C3

– hyb8: Same as hyb7, except that during fair3, C3 is set to P1 if P3 accepts any
encoded input not consistent with C1,C2

– hyb9: Same as hyb8, except that when the execution does not result in P1 getting
access to the opening of commitment c23 (corresponding to x23) sent by P2 during
fair2, the commitment is replaced with commitment of dummy value.

– hyb10: Same as hyb9, except that when the execution does not result in P1 getting
access to the opening of commitment c32 (corresponding to x32) sent by P3 during
fair3, the commitment is replaced with commitment of dummy value.

– hyb11: Same as hyb10, except that when the execution fair1 does not result in
P1 getting encoded inputs corresponding to mismatched input bit across the two
garbled circuits corresponding to any garbler, the set of ct is replaced by encryption
of a dummy message.

– hyb12: Same as hyb11, except that during cert2, P2 (with flag1 = 0) adds P1 to
C2 if (opening of) encoded input sent by P1 corresponding to C2 is anything other
than the opening of the originally committed encoded information corresponding
to value γ = {D1

2,D3
2,W3, (pp2, c21, c23)} sent by P2 in Round 1.

– hyb13: Same as hyb12, except that during cert3, P3 (with flag2 = 0) adds P1 to
C3 if (opening of) encoded input sent by P1 corresponding to C3 is anything other
than the opening of the originally committed encoded information corresponding
to value γ = {D1

3,D2
3,W1, (pp3, c31, c32)} sent by P3 in Round 1.

– hyb14: Same as hyb13, except that during cert1, when P1’s evaluation of C1 does
not result in output 1, z1 (if) sent to P1 is replaced with encryption of dummy
message.

– hyb15: Same as hyb14, except that Y1
2,Y

3
2 is computed via De(Y1

2, d1) = y,
De(Y3

2, d3) = y, (where d1, d3 correspond to decoding information of C1,C3
during fair2) rather than Y1

2 = Ev(C1,X), Y3
2 = Ev(C3,X).

– hyb16: Same as hyb15, except that Y1
3,Y

2
3 is computed via De(Y1

3, d1) = y,
De(Y2

3, d2) = y (where d1, d2 correspond to decoding information of C1,C2 dur-
ing fair3) rather than Y1

3 = Ev(C1,X), Y2
3 = Ev(C2,X).

– hyb17: Same as hyb16, except that during cert2, if P2 gets access to Y2 ← (C2,X)

such that sDe(Y2) = 1, cert2 = Y2 is computed via De(Y2, d2) = 1 (where
d2 corresponds to decoding information of C2 during cert2) rather than Y2 =
Ev(C2,X)

– hyb18: Same as hyb17, except that during cert3, if P3 gets access to Y3 ← (C3,X)

such that sDe(Y3) = 1, cert3 = Y3 is computed via De(Y3, d3) = 1 (where

On the Exact Round Complexity of Secure Three-Party Computation Page 61 of 77 40

d3 corresponds to decoding information of C3 during cert3) rather than Y3 =
Ev(C3,X)

– hyb19: Same as hyb18, except that P2 sends (y, o13) to P1 if decryption of ct sent
by P1 during fair2 is successful (and includes openings of x13, x31 corresponding
to original commitments) using P3’s encoding corresponding to random input.

– hyb20: Same as hyb19, except that P3 sends (y, o12) to P1 if decryption of ct sent
by P1 during fair3 is successful (and includes openings of x12, x21 corresponding
to original commitments) using P2’s encoding corresponding to random input.

Since hyb20 := idealFfair,Sfair , we show that every two consecutive hybrids are compu-
tationally indistinguishable which concludes the proof.

hyb0
c≈ hyb1: The difference between the hybrids is that P2, P3 in fair1 use uniform

randomness in hyb1 rather than pseudorandomness as in hyb0. The indistinguishability
follows via reduction to the security of the PRG G.

hyb1
c≈ hyb2: The difference between the hybrids is some of the commitments of

encoded inputs which will not be sent to P1 during fair1 are replaced with commitments
on dummy values. The indistinguishability between the hybrids follows from the hiding
property of NICOM.

hyb2
c≈ hyb3.1: The difference between the hybrids is in the way (C2,X) is gener-

ated when the execution results in abort. In hyb2, (C2, e, d) ← Gb(1κ ,C) is run,
which gives (C2,En(x, e)). In hyb3.1, it is generated as C′

2 ← Sobv(1κ ,C,X2 =
{emα

22
2α , e

mα
23

2(+α), e
xα

12
2(2	+α), e

xα
13

2(3	+α)}α∈[]). The commitment to the garbled circuit is later
equivocated to C′

2 using o2 computed via o2 ← Equiv(c2,C′
2, t2). Additionally, the

commitment to the decoding information is created for a dummy value in hyb3.1. The
indistinguishability follows via reduction to the obliviousness of the garbling scheme
and the usual hiding property of commitment schemes which is implied by the hiding
property of eCom.

hyb2
c≈ hyb3.2: The difference between the hybrids is in the way (C2,X, d) is generated.

In hyb2, (C2, e, d) ← Gb(1κ ,C) is run, which gives (C2,En(x, e), d). In hyb3.2, it is

generated as (C′
2, d

1
2) ← Sprv(1κ ,C, y,X2 = {emα

22
2α , e

mα
23

2(+α), e
xα

12
2(2	+α), e

xα
13

2(3	+α)}α∈[]).
The commitment to the garbled circuit is later equivocated to C′

2 using o2 computed via
o2 ← Equiv(c2,C′

2, t2). Additionally, the commitment to the decoding information is
created for a dummy value and later equivocated to d1

2 using odec2 computed via odec2 ←
Equiv(cdec2 , d1

2 , t2). The indistinguishability follows via reduction to the privacy of the
garbling scheme and the hiding property of eCom.

hyb3
c≈ hyb4: Similar argument as above with respect to C3.

hyb4
c≈ hyb5: The difference between the hybrids is that in hyb4, P2 sets C2 = P1 if the

o3 sent by P1 in fair2 output ⊥ while in hyb5, P2 sets C2 = P1 if o3 sent by P1 in fair2
opens to any value other than C3. Since the commitment scheme eCom is binding, in
hyb4, P1 could have decommitted successfully to a different garbled circuit than what
was originally committed, only with negligible probability. Therefore, the hybrids are
indistinguishable.

hyb5
c≈ hyb6: Similar argument as above with respect to P3 in fair3.

40 Page 62 of 77 A. Patra, D. Ravi

hyb6
c≈ hyb7: The difference between the hybrids is that in hyb6, P2 sets C2 = P1 if the

encoded inputs sent by P1 in fair2 is inconsistent with D1, D3, while in hyb7 C2 is set to
P1 if P2 accepts any encoded input not consistent withC1,C3. It follows from the biding
property of NICOM that in hyb6, P1 could have sent an encoded input not consistent
with C1,C3 but consistent with D1, D3, only with negligible probability. Therefore, the
hybrids are indistinguishable.

hyb7
c≈ hyb8: Similar argument as above with respect to P3 in fair3.

hyb8
c≈ hyb9: The difference between the hybrids is that when the execution does not

result in P1 getting access to the opening of commitment c23 (corresponding to x23)
sent by P2, c23 corresponds to the actual input share x23 in hyb8 while it corresponds
to dummy value in hyb9. The indistinguishability follows from the hiding property of
NICOM.
hyb9

c≈ hyb10: Similar argument as above with respect to commitment c32 sent by P3.

hyb10
c≈ hyb11: The difference between the hybrids is that when the execution fair1

does not result in P1 getting encoded inputs corresponding to mismatched input bits
of any garbler on two garbled circuits, in hyb10, the set of ct is the encryption of
a opening of input shares while in hyb11, it is replaced with encryption of dummy
message. Assuming the encryption key is unknown to P1 (holds except with negligible
probability due to privacy of garbling scheme), indistinguishability follows from the
security of the encryption scheme with special correctness.

hyb11
c≈ hyb12: The difference between the hybrids is that while inhyb11, during cert2,

P2 adds P1 to C2 if opening of encoded input sent by P1 results in ⊥ or C2 evaluates to 0
revealing P1’s input being not equal to γ = {D1

2,D3
2,W3,pp2, c21, c23}; while in hyb12

P1 is added to C2 if he sends anything other than opening of the originally committed
encoded information of C2 corresponding to value γ = {D1

2,D3
2,W3,pp2, c21, c23}.

The indistinguishability follows from the binding of NICOM and the correctness of the
privacy-free garbling scheme (used during cert2).

hyb12
c≈ hyb13: Similar argument as above with respect to P3 during cert3.

hyb13
c≈ hyb14: The difference between the hybrids is that in hyb12, z1 is set as

encryption of the decoding information of fair1 while in hyb13, z1 is replaced with
encryption of a dummy message when P1’s evaluation of C1 during cert1 does not
lead to output 1. Assuming the encryption key is unknown to P1 (holds except with
negligible probability due to authenticity of privacy-free garbling scheme used in cert1),
indistinguishability follows from the security of the encryption scheme.

hyb14
c≈ hyb15: The difference between the hybrids is that in hyb14, P2 computes

Y2 = (Y1
2,Y

3
2) via Ev(C1,X), Y3

2 = Ev(C3,X), while in hyb15, Y1
2,Y

3
2 is computed

such that De(Y1
2, d1) = y, De(Y3

2, d3) = y (where d1, d3 is the decoding information
corresponding toC1,C3 during fair2). Due to the correctness of the garbling scheme, the
equivalence of Y1

2,Y
3
2 computed via Ev(C1,X), Ev(C3,X) or such that De(Y1

2, d1) =
y, De(Y3

2, d3) = y holds.

hyb15
c≈ hyb16: Similar argument as above with respect to Y3 computed by P3 during

fair3.

On the Exact Round Complexity of Secure Three-Party Computation Page 63 of 77 40

hyb16
c≈ hyb17: The difference between the hybrids is that in hyb16, if P2 obtains

Y2 ← Ev(C2,X) such that sDe(Y) = 1, then P2 sets cert2 = Y2 while in hyb15,
in this case cert2 is set to Y2 computed such that De(Y2, d2) = 1 (where d2 is the
decoding information corresponding to C2 during cert2). Due to the correctness of the
privacy-free garbling scheme, the equivalence of Y2 computed via Ev(C2,X) or such
that De(Y2, d2) = y holds.

hyb17
c≈ hyb18: Similar argument as above with respect to cert3 computed by P3 during

cert3.

hyb18
c≈ hyb19: The difference between the hybrids is that in hyb18, P2 sends (y, o13)

to P1 if decryption of ct sent by P1 during fair2 is successful using keys based on P3’s
encoding of actual input, whereas in hyb19, P2 sends (y, o13) to P1 if decryption of
ct sent by P1 during fair2 is successful using keys based on P3’s encoding of random
input. The indistinguishability between the hybrids follows from the following claim:
Consider single bit input for simplicity. For any two different inputs x and x ′ of P3, the
difference between the probability that P2 sends (y, o13) to P1 when P3’s input is x and
when P3’s input is x ′ is at most 2−s+1. The argument can be divided into three cases
(similar to [74]). (1) Suppose for some α ∈ [s], P1 replaces both ciphertexts ct01α, ct11α

: one based on consistent input 0 of P3 and other based on consistent input 1 of P3 (say,
sk0

α = X0
1(s+α)⊕X0

3(s+α) and sk1
α = X1

1(s+α)⊕X1
3(s+α)). In this case, P2 would be able to

decrypt the ciphertext successfully regardless of P3’s input with probability 1 and would
send (y, o13) to P2. (2) Suppose P1 replaces exactly one of the two ciphertexts with
consistent input corresponding to 1 ≤ j < s. Since the values assigned (in encoding)
by P3 to any proper subset of the s bits are independent of P3’s actual input, P2 would
be able to decrypt the ciphertext successfully with probability 1 − 2− j regardless of
the actual value of its original input. (3) Suppose P1 replaces one ciphertext based on
consistent input for each of the α ∈ [s] (say all based on consistent value ‘1’). Then
if x had encoding with any one such value (‘1’ in the example), the ciphertext would
be decrypted successfully with probability 1, whereas decryption would be successful
with probability 1 − 2−s+1 if x ′ had the other value (in the example, P2 will be unable
to decrypt if x ′ = 0 and the encoding of x ′ = 0 was chosen as x ′

α = 0 for all α ∈ [s]
(where x ′ = ⊕s

α=1xα) which occurs with probability 2−s+1).

hyb19
c≈ hyb20: Similar argument as above with respect to ct received by P3 during

fair3.

E. Proof of Security for Protocol ua

In this section, we present the proof of security of ua relative to the ideal functionality
for unanimous abort (Fig. 13) shown in Appendix B. For clarity, we assume without loss
of generality that P1 is corrupt (denoted as P∗

1) and describe the simulator Sua. Since
the roles of the parties are symmetric in ua, similar proof would hold in case of corrupt
P2, P3 as well. The simulator plays the role of the honest parties P2, P3 and simulates
each step of the protocol ua.
We divide the description of Sua as follows: We describe Sua during ua1 where corrupt
P∗

1 is the evaluator and during ua2 when corrupt P∗
1 acts as a garbler. The steps cor-

40 Page 64 of 77 A. Patra, D. Ravi

responding to ua3, would follow symmetrically from that described corresponding to
ua2.
The simulator Sua appears in Fig. 17 with R1/R2 indicating simulation for round 1
and 2, respectively, and a/A denoting the steps corresponding to subprotocol uai ,ua,
respectively. When simulating ua1, the commitments for GC and encoding information
need to be simulated and sent in Round 1 itself, while the privacy simulator Sprv can
only be invoked on noting the adversary’s behavior in Round 1 that decides what input
it commits and whether it obtains output or ⊥. Using equivocality of the commitment of
GC, we can equivocate the GC as returned by the simulator. But since commitments on
the encoding information are committing and the simulator didn’t have access toX during
simulation of Round 1, the encoded input X returned by Sprv cannot be explained. So
we use a slightly modified version of Sprv which takes an encoded input (correspond to
what will be opened to corrupt P1) as parameter and returns just the fake GC compatible
with it. Yao’s privacy simulator can be made to work as above for any encoded input and
the indistinguishability will hold with respect to the fake GC and given encoded input.

We now argue that idealFua,Sua

c≈ realua,A, whenA corrupts P1. The views are shown
to be indistinguishable via a series of intermediate hybrids.

– hyb0: Same as realua,A.
– hyb1: Same as hyb0, except that P2, P3 in ua1 use uniform randomness rather than

pseudo-randomness for the garbled circuit construction.
– hyb2: Same ashyb1, except that some of the commitments of encoded inputs which

will not be sent to P1 during ua1 are replaced with commitment on dummy values.
Specifically, these are corresponding to indices not equal to m22,m23, r2, r3, z2, z3
for C2 and not equal to m32,m33, r2, r3, z2, z3 for C3.

– hyb3 : Same as hyb2, except that when the execution results in P1 evaluat-
ing GCs during ua1, the GC C2 is created as (C′

2, d2) ← Sprv(1κ ,C, y,X2 =
{emα

22
2α , e

mα
23

2(+α), e
rα

2
2(2	+α),

e
rα

3
2(3	+α), e

zα2
2(4	+α), e

zα3
2(5	+α)}α∈[]). The commitment c2 is later equivocated to C′

2
using o2 computed via o2 ← Equiv(c2,C′

2, t2). The set of ciphertexts ct generated
uses d2 in their keys.

– hyb4 : Same as hyb3, except that when the execution results in P1 evaluat-
ing GCs during ua1, the GC C3 is created as (C′

3, d3) ← Sprv(1κ ,C, y,X3 =
{emα

32
3α , e

mα
33

3(+α), e
rα

2
3(2	+α), e

rα
3

3(3	+α), e
zα2
3(4	+α), e

zα3
3(5	+α)}α∈[]). The commitment c3 is

later equivocated to C′
3 using o3 computed via o3 ← Equiv(c3,C′

3, t3). The set of
ciphertexts ct generated uses d3 in their keys.

– hyb5: Same as hyb4, except that during ua2, flag2 is set to 1 if W1 broadcast by
P1 has anything other than (opening of) encoded input corresponding to z1 in C1.

– hyb6: Same as hyb5, except that during ua3, flag3 is set to 1 if W1 broadcast by
P1 has anything other than (opening of) encoded input corresponding to z1 in C1.

– hyb7: Same as hyb6, except that when the execution does not result in P1 getting
access to the opening of commitment c23 (corresponding to x23) broadcast by P2
during ua2, the commitment is replaced with commitment of dummy value.

On the Exact Round Complexity of Secure Three-Party Computation Page 65 of 77 40

Fig. 17. Simulator Sua .

40 Page 66 of 77 A. Patra, D. Ravi

Fig. 17. continued.

– hyb8: Same as hyb7, except that when the execution does not result in P1 getting
access to the opening of commitment c32 (corresponding to x32) broadcast by P3
during ua3, the commitment is replaced with commitment of dummy value.

– hyb9: Same ashyb8, except that when the executionua1 does not result in P1 getting
conflicting output on two garbled circuits, the set of ct is replaced by encryption of
a dummy message.

Since hyb9 := idealFua,Sua , we show that every two consecutive hybrids are compu-
tationally indistinguishable which concludes the proof.

hyb0
c≈ hyb1: The difference between the hybrids is that P2, P3 in ua1 use uniform

randomness in hyb1 rather than pseudorandomness as in hyb0. The indistinguishability
follows via reduction to the security of the PRG G.

hyb1
c≈ hyb2: The difference between the hybrids is some of the commitments of

encoded inputs which will not be sent to P1 during ua1 are replaced with commitment on
dummy messages. The indistinguishability follows from the hiding property of NICOM.

hyb2
c≈ hyb3: The difference between the hybrids is in the way (C2,X, d2) is gen-

erated. In hyb2, (C2, e2, d2) ← Gb(1κ ,C) is run, which gives (C2,En(x, e), d2).

In hyb3, it is generated as (C′
2, d2) ← Sprv(1κ ,C, y,X2 = {emα

22
2α , e

mα
23

2(+α), e
rα

2
2(2	+α),

e
rα

3
2(3	+α), e

zα2
2(4	+α), e

zα3
2(5	+α)}α∈[]). The commitment to the garbled circuit is later equiv-

ocated to C′
2 using o2 computed via o2 ← Equiv(c2,C′

2, t2). The indistinguishability
follows via reduction to the privacy of the garbling scheme and the hiding property of
eCom.
hyb3

c≈ hyb4: Similar argument as above with respect to C3.

hyb4
c≈ hyb5: The difference between the hybrids is that in hyb4, flag2 is set to 1 if

W1 broadcast by P1 during ua2 has (opening of) encoded input that is inconsistent with
commitment corresponding to z1 in D1, while in hyb5, flag2 is set to 1 if W1 broadcast
by P1 has (opening of) encoded input anything other than encoding of z1 corresponding
toC1. It follows from the binding property of NICOM that P1 could have sent an encoded
input not consistent with C1 but consistent with D1, only with negligible probability.
Therefore, the hybrids are indistinguishable.

On the Exact Round Complexity of Secure Three-Party Computation Page 67 of 77 40

hyb5
c≈ hyb6: Similar argument as above with respect to W1 broadcast by P1 during

ua3.

hyb6
c≈ hyb7: The difference between the hybrids is that when the execution does not

result in P1 getting access to the opening of commitment c23 (corresponding to x23)
broadcast by P2 during ua2, c23 corresponds to the actual input share x23 in hyb8 while
it corresponds to dummy value in hyb9. The indistinguishability follows from the hiding
property of NICOM Com.

hyb7
c≈ hyb8: Similar argument as above with respect to commitment c32 broadcast by

P3 during ua3.

hyb8
c≈ hyb9: The difference between the hybrids is that when the execution ua1 does

not result in P1 getting conflicting output on two garbled circuits, in hyb8, the set of ct is
the encryption of opening of shares of input while in hyb9, it is replaced with encryption
of dummy message. Assuming the encryption key is unknown to P1 (holds except with
negligible probability due to authenticity), indistinguishability follows from the CPA
security of the encryption scheme.

F. Proof of Security for Protocol god

In this section, we present the proof of security of god relative to the ideal functionality
for guaranteed output delivery shown in Appendix B. For better clarity, we assume
without loss of generality that P1 is corrupt (denoted as P∗

1) and describe the simulator
Sgod. Since the roles of the parties are symmetric in god, similar proof would hold in
case of corrupt P2, P3 as well. The simulator plays the role of the honest parties P2, P3
and simulates each step of the protocol god.
Similar to Sua, we divide the description of Sgod as follows: We describe Sgod during
god1 where corrupt P∗

1 is the evaluator and during god2 when corrupt P∗
1 acts as a gar-

bler. The steps corresponding to god3, would follow symmetrically from that described
corresponding to god2. We then describe the steps of the simulator Sgod correspond-
ing to the third round. In the protocol god, the behavior of corrupt P1 in Round 1, 2
determines his committed input. Hence, the privacy simulator can only be invoked ear-
liest after the simulation of the first round. Similar to Sua, since the commitments on
encoding information is sent in the first round itself, we use a modified version of the
privacy simulator of the garbling scheme which additionally takes an encoded input as
parameter (see Sect. E). The simulator Sgod appears in Fig. 18 with R1/R2/R3 indicat-
ing simulation for round 1, 2 and 3 and and g/G denoting the steps corresponding to
subprotocol godi ,god, respectively.

We now argue that idealFgod,Sgod

c≈ realgod,A, when A corrupts P1. The views are
shown to be indistinguishable via a series of intermediate hybrids.

– hyb0: Same as realgod,A.
– hyb1: Same as hyb0, except that P2, P3 in god1 use uniform randomness rather

than pseudo-randomness for the garbled circuit construction.
– hyb2: Same as hyb1, except that some of the commitments that will not be opened

by P1 during god1 are replaced with commitment on dummy values. Specifically,

40 Page 68 of 77 A. Patra, D. Ravi

Fig. 18. Description of Sgod .

On the Exact Round Complexity of Secure Three-Party Computation Page 69 of 77 40

these are corresponding to indices not equal to m22,m23, x12, x13 for C2 and not
equal to m32,m33, x12, x13 for C3.

– hyb3 : Same as hyb2, except that when the execution results in P1 evaluating
GCs during god1, the GC C2 is created as (C′

2, d2) ← Sprv(1κ ,C, y,X2 =
{emα

22
2α , e

mα
23

2(+α), e
xα

12
2(2	+α), e

xα
13

2(3	+α)}α∈[]). The commitment c2 is later equivocated
to C′

2 using o2 computed via o2 ← Equiv(c2,C′
2, t2). The set of ciphertexts ct

generated uses d2 in their keys.
– hyb4 : Same as hyb3, except that when the execution results in P1 evaluating

GCs during god1, the GC C3 is created as (C′
3, d3) ← Sprv(1κ ,C, y,X3 =

{emα
32

3α , e
mα

33
3(+α), e

xα
12

3(2	+α), e
xα

13
3(3	+α)}α∈[]). The commitment c3 is later equivocated

to C′
3 using o3 computed via o3 ← Equiv(c3,C′

3, t3). The set of ciphertexts ct
generated uses d3 in their keys.

– hyb5: Same as hyb4, except that during god2, C2 is set to P1 if P2 receives o3 that
opens to a value other than the originally committed C3.

– hyb6: Same as hyb5, except that during god3, C3 is set to P1 if P3 receives o2 that
opens to a value other than the originally committed C2.

– hyb7: Same as hyb6, except that during god2, C2 is set to P1 if P2 accepts any
encoded input not consistent with C1,C3

– hyb8: Same as hyb7, except that during god3, C3 is set to P1 if P3 accepts any
encoded input not consistent with C1,C2

– hyb9: Same as hyb8, except that when the execution does not result in P1 getting
access to the opening of commitment c23 (corresponding to x23) broadcast by P2
during god2, the commitment is replaced with commitment of dummy value.

– hyb10: Same as hyb9, except that when the execution does not result in P1 getting
access to the opening of commitment c32 (corresponding to x32) broadcast by P3
during god3, the commitment is replaced with commitment of dummy value.

– hyb11: Same as hyb10, except that when the execution god1 does not result in
P1 getting conflicting output on two garbled circuits, the set of ct is replaced by
encryption of a dummy message.

Since hyb11 := idealFgod,Sgod , we show that every two consecutive hybrids are com-
putationally indistinguishable which concludes the proof.

hyb0
c≈ hyb1: The difference between the hybrids is that P2, P3 in god1 use uniform

randomness in hyb1 rather than pseudorandomness as in hyb0. The indistinguishability
follows via reduction to the security of the PRG G.

hyb1
c≈ hyb2: The difference between the hybrids is some of the commitments that will

not be opened by P1 during god1 are replaced with commitments on dummy values.
The indistinguishability follows from the hiding property of the commitment scheme.

hyb2
c≈ hyb3: The difference between the hybrids is in the way (C2,X, d2) is generated.

In hyb2, (C2, e2, d2) ← Gb(1κ ,C) is run, which gives (C2,En(x, e), d2). In hyb3, it is

generated as (C′
2, d2) ← Sprv(1κ ,C, y,X2 = {emα

22
2α , e

mα
23

2(+α), e
xα

12
2(2	+α), e

xα
13

2(3	+α)}α∈[]).
The commitment to the garbled circuit is later equivocated to C′

2 using o2 computed via
o2 ← Equiv(c2,C′

2, t2). The indistinguishability follows via reduction to the privacy
of the garbling scheme and the hiding property of eCom.

40 Page 70 of 77 A. Patra, D. Ravi

hyb3
c≈ hyb4: Similar argument as above with respect to C3.

hyb4
c≈ hyb5: The difference between the hybrids is that in hyb4, P2 sets C2 = P1 if

the o3 sent by P1 in god2 output ⊥ while in hyb5, P2 sets C2 = P1 if o3 sent by P1 in
god2 opens to any value other than C3. Since the commitment scheme eCom is binding
and epp was chosen uniformly at random by P3, in hyb4, P1 could have decommitted
successfully to a different garbled circuit than what was originally committed, only with
negligible probability. Therefore, the hybrids are indistinguishable.

hyb5
c≈ hyb6: Similar argument as above with respect to P3 in god3.

hyb6
c≈ hyb7: The difference between the hybrids is that in hyb6, P2 sets C2 = P1 if

opening of commitment on the encoded inputs sent by P1 in god2 results in ⊥ while in
hyb7, C2 is set to P1 if P2 accepts the opening of any commitment to a value other than
what was originally committed. The indistinguishability between the hybrids follows
from the binding property of NICOM.

hyb7
c≈ hyb8: Similar argument as above with respect to P3 in god3.

hyb8
c≈ hyb9: The difference between the hybrids is that when the execution does not

result in P1 getting access to the opening of commitment c23 (corresponding to x23)
broadcast by P2 during god2, c23 corresponds to the actual input share x23 in hyb8
while it corresponds to dummy value in hyb9. The indistinguishability follows from the
hiding property of Com.

hyb9
c≈ hyb10: Similar argument as above with respect to commitment c32 broadcast

by P3 during god3.

hyb10
c≈ hyb11: The difference between the hybrids is that when the execution god1

does not result in P1 getting conflicting output on two garbled circuits, in hyb10, the set
of ct is the encryption of an input and a share of input while in hyb11, it is replaced with
encryption of dummy message. Assuming the encryption key is unknown to P1 (holds
except with negligible probability due to authenticity), indistinguishability follows from
the CPA security of the encryption scheme.

G. Authenticated Conditional Disclosure of Secret

The subprotocol certi (Fig. 2) used in our protocol fair is reminiscent of the notion of
‘conditional disclosure of secrets (CDS)’ which was first introduced in [46]. Informally,
the problem of conditional disclosure of secrets involves two parties Alice and Bob,
who hold inputs x and y, respectively, and wish to release a common secret s to Carol
(who knows both x and y) if only if the input (x, y) satisfies some predefined predicate
f . The model allows Alice and Bob to have access to shared random string (hidden
from Carol) and the only communication allowed is a single unidirectional message sent
from each player (Alice and Bob) to Carol. Traditionally, CDS involves two properties,
namely correctness (if f (x, y) is true, then Carol is always able to reconstruct s from
her input and the messages she receives) and privacy (if f (x, y) is false, Carol obtains
no information about the secret s). Formally,

On the Exact Round Complexity of Secure Three-Party Computation Page 71 of 77 40

Definition 8. (Conditional Disclosure of Secret) [1] Let f : X × Y → {0, 1} be a
predicate. Let F1 : X × S × R → T1 and F2 : Y × S × R → T2 be deterministic
encoding algorithms, where S is the secret domain. Then, the pair (F1, F2) is a CDS
scheme for f if the function F(x, y, s, r) = (F1(x, s, r), F2(y, s, r)) that corresponds
to the joint computation of F1 and F2 on a common s and r , satisfies the following:

– δ-correctness: There exists a deterministic algorithm Dec, called a decoder, such
that for every 1-input (x, y) of f and any secret s ∈ S, the following holds:
Prr←R[Dec(x, y, F(x, y, s, r)) �= s] ≤ δ

– ε-privacy: There exists a simulator S such that for every 0-input (x, y) of f and any
secret s ∈ S, it holds that |Pr [D(S(x, y) = 1)] − Pr [D(F(x, y, s, r)) = 1]| ≤
ε for every distinguisher D. (S, D assumed to be poly-time or computationally
unbounded depending on computational/information-theoretic setting).

Interestingly, we find that the functionality realized by subprotocol certi subsumes the
above properties under computational variant adapted to tolerate active corruption of
single party and gives some stronger guarantees. We thus formally define a variant
of CDS known as ‘Authenticated Conditional Disclosure of Secret’ below and show
realization of the same by certi .

Definition 9. (Authenticated Conditional Disclosure of Secret) Let A, B denote two
parties holding inputs x ∈ X and y ∈ Y , respectively, and having access to common
secret s ∈ S and C denote an external party. We assume a PPT adversary A who can
actively corrupt at most 1 party among A, B and C. An authenticated CDS protocol is
secure against A if the following properties hold:

– δ-correctness holds for honest A, B, and C where δ = negl(κ).
– ε-privacy holds against A corrupt C, where ε = negl(κ).
– Authenticity: For 1-input (x, y) of f and any secret s, Dec may result in ⊥ when

either A or B is corrupt, in which case C either identifies a corrupt party or a pair
of parties in conflict that includes the corrupt party.

Our certi gives an authenticated CDS as follows. The garblers Pj , Pk take the role of A
and B and the evaluator takes the role of C . The common randomness r is the seed for
the PRG used for generating the entire randomness for GC generation etc. The secret s
is the key corresponding to 1 in the circuit. The predicate is the circuit that we garble
in certi . While for the purpose of our 3-round fair protocol, the predicate is equality
checking, in theory, we can garble any predicate. F1 and F2 are the codes of Pj and Pk ,
respectively. Dec is the code that Pi executes. The correctness and privacy follow from
the correctness and authenticity of the garbling scheme. The authenticity follows from
the fact that Pi either receives the correct secret or detects a conflict or corrupt.

Acknowledgements

Arpita Patra would like to acknowledge financial support from SERB MATRICS (Theo-
retical Sciences) Grant 2020, Google India AI/ML Research Award 2020, DST National
Mission on Interdisciplinary Cyber-Physical Systems (NMCPS) 2020.

40 Page 72 of 77 A. Patra, D. Ravi

References

[1] B. Applebaum, B. Arkis, P. Raykov, P.N Vasudevan, Conditional disclosure of secrets: amplifica-
tion, closure, amortization, lower-bounds, and separations, inAdvances inCryptology—CRYPTO
2017—37th Annual International Cryptology Conference, Santa Barbara, CA, USA, August 20–
24, 2017, Proceedings, Part I (2017), pp. 727–757

[2] B. Applebaum, Z. Brakerski, R Tsabary, Degree 2 is complete for the round-complexity of mali-
cious MPC, in Y. Ishai, V. Rijmen, editors, Advances in Cryptology—EUROCRYPT 2019—38th
Annual International Conference on the Theory and Applications of Cryptographic Techniques,
Darmstadt, Germany, May 19–23, 2019, Proceedings, Part II, vol 11477 of Lecture Notes in
Computer Science (Springer, 2019), pp. 504–531

[3] P. Ananth, A.R. Choudhuri, A Goel, A. Jain, Round-optimal secure multiparty computation
with honest majority, in Advances in Cryptology—CRYPTO 2018—38th Annual International
Cryptology Conference, Santa Barbara, CA, USA, August 19–23, 2018, Proceedings, Part II
(2018), pp. 395–424

[4] P. Ananth, A.R. Choudhuri, A Goel, A. Jain, Two round information-theoretic MPC with mali-
cious security, in Y. Ishai, V. Rijmen, editors, Advances in Cryptology—EUROCRYPT 2019—
38th Annual International Conference on the Theory and Applications of Cryptographic Tech-
niques, Darmstadt, Germany, May 19–23, 2019, Proceedings, Part II, vol. 11477 of Lecture
Notes in Computer Science (Springer, 2019), pp. 532–561

[5] P. Ananth, A.R. Choudhuri, A. Jain, A new approach to round-optimal secure multiparty com-
putation, in Advances in Cryptology—CRYPTO 2017—37th Annual International Cryptology
Conference, Santa Barbara, CA, USA, August 20–24, 2017, Proceedings, Part I (2017), pp.
468–499

[6] T. Araki, J. Furukawa, Y. Lindell, A. Nof, K. Ohara, High-throughput semi-honest secure three-
party computation with an honest majority, inProceedings of the 2016 ACMSIGSACConference
on Computer and Communications Security, Vienna, Austria, October 24–28, 2016 (2016), pp.
805–817

[7] G. Asharov, A. Jain, A López-Alt, E. Tromer, V. Vaikuntanathan, D. Wichs, Multiparty com-
putation with low communication, computation and interaction via threshold FHE, in Advances
in Cryptology—EUROCRYPT 2012—31st Annual International Conference on the Theory and
Applications of Cryptographic Techniques, Cambridge, UK, April 15–19, 2012. Proceedings
(2012), pp. 483–501

[8] B. Applebaum, E. Kachlon, A. Patra, Round-optimal honest-majority mpc in minicrypt and with
everlasting security. Cryptology ePrint Archive, Report 2021/346 (2021). https://eprint.iacr.org/
2021/346

[9] A. Afshar, P. Mohassel, B. Pinkas, B. Riva, Non-interactive secure computation based on cut-
and-choose, in Advances in Cryptology—EUROCRYPT 2014—33rd Annual International Con-
ference on the Theory and Applications of Cryptographic Techniques, Copenhagen, Denmark,
May 11–15, 2014. Proceedings (2014), pp. 387–404

[10] P. Bogetoft, D.L Christensen, I. Damgård, M. Geisler, T.P. Jakobsen, M. Krøigaard, J.D. Nielsen,
J.B. Nielsen, K Nielsen, J. Pagter, M.I. Schwartzbach, T. Toft, Secure multiparty computation
goes live, inFinancial Cryptography andData Security, 13th InternationalConference, FC2009,
Accra Beach, Barbados, February 23–26, 2009. Revised Selected Papers (2009), pp. 325–343

[11] R. Bendlin, I. Damgård, C Orlandi, S. Zakarias, Semi-homomorphic encryption and multipar-
ty computation, in Advances in Cryptology—EUROCRYPT 2011—30th Annual International
Conference on the Theory and Applications of Cryptographic Techniques, Tallinn, Estonia, May
15–19, 2011. Proceedings (2011), pp. 169–188

[12] D. Beaver, Efficient multiparty protocols using circuit randomization, in Advances in
Cryptology—CRYPTO ’91, 11th Annual International Cryptology Conference, Santa Barbara,
California, USA, August 11–15, 1991, Proceedings (1991), pp. 420–432

[13] E. Ben-Sasson, S. Fehr, R Ostrovsky, Near-linear unconditionally-secure multiparty computation
with a dishonest minority, inAdvances inCryptology—CRYPTO2012—32ndAnnual Cryptology
Conference, Santa Barbara, CA, USA, August 19–23, 2012. Proceedings (2012), pp. 663–680

https://eprint.iacr.org/2021/346
https://eprint.iacr.org/2021/346

On the Exact Round Complexity of Secure Three-Party Computation Page 73 of 77 40

[14] S. Badrinarayanan, V. Goyal, A. Jain, Y.T. Kalai, D. Khurana, A. Sahai, Promise zero knowledge
and its applications to round optimal MPC, in Advances in Cryptology—CRYPTO 2018—38th
Annual International Cryptology Conference, Santa Barbara, CA, USA, August 19–23, 2018,
Proceedings, Part II (2018), pp. 459–487

[15] M. Ben-Or, S. Goldwasser, A. Wigderson, Completeness theorems for non-cryptographic fault-
tolerant distributed computation (extended abstract), in Proceedings of the 20th Annual ACM
Symposium on Theory of Computing, May 2–4, 1988, Chicago, Illinois, USA (1988), pp. 1–10

[16] Z. Beerliová-Trubíniová, M. Hirt, Efficient multi-party computation with dispute control, in
Theory of Cryptography, Third Theory of Cryptography Conference, TCC 2006, New York, NY,
USA, March 4–7, 2006, Proceedings (2006), pp. 305–328

[17] Z. Brakerski, S. Halevi, A. Polychroniadou, Four round secure computation without setup, inThe-
ory of Cryptography—15th International Conference, TCC 2017, Baltimore, MD, USA, Novem-
ber 12–15, 2017, Proceedings, Part I (2017), pp. 645–677

[18] M. Bellare, V.T. Hoang, P. Rogaway, Foundations of garbled circuits, in the ACM Conference
on Computer and Communications Security, CCS’12, Raleigh, NC, USA, October 16–18, 2012
(2012), pp. 784–796

[19] S. Badrinarayanan, A. Jain, N. Manohar, A. Sahai, Secure MPC: laziness leads to GOD, in
Shiho Moriai and Huaxiong Wang, editors, Advances in Cryptology—ASIACRYPT 2020—26th
International Conference on the Theory and Application of Cryptology and Information Security,
Daejeon, South Korea, December 7–11, 2020, Proceedings, Part III, vol. 12493 of Lecture Notes
in Computer Science (Springer, 2020), pp. 120–150

[20] M. Backes, A. Kate, A. Patra, Computational verifiable secret sharing revisited, in Advances in
Cryptology—ASIACRYPT 2011—17th International Conference on the Theory and Application
of Cryptology and Information Security, Seoul, South Korea, December 4–8, 2011 Proceedings
(2011), pp. 590–609

[21] F. Benhamouda, H. Lin, k-round multiparty computation from k-round oblivious transfer via
garbled interactive circuits, in Advances in Cryptology—EUROCRYPT 2018—37th Annual In-
ternational Conference on the Theory and Applications of Cryptographic Techniques, Tel Aviv,
Israel, April 29 —May 3, 2018 Proceedings, Part II (2018), pp. 500–532

[22] D. Bogdanov, S. Laur, J. Willemson, Sharemind: a framework for fast privacy-preserving com-
putations, in Computer Security—ESORICS 2008, 13th European Symposium on Research in
Computer Security, Málaga, Spain, October 6–8, 2008 Proceedings (2008), pp. 192–206

[23] D. Beaver, S. Micali, P. Rogaway, The round complexity of secure protocols (extended abstract),
in Proceedings of the 22nd Annual ACM Symposium on Theory of Computing, May 13–17, 1990,
Baltimore, Maryland, USA (1990), pp. 503–513

[24] D. Bogdanov, R. Talviste, J. Willemson, Deploying secure multi-party computation for financial
data analysis—(short paper), in Financial Cryptography and Data Security—16th International
Conference, FC 2012, Kralendijk, Bonaire, Februray 27-March 2, 2012, Revised Selected Papers
(2012), pp. 57–64

[25] R. Canetti, Security and composition of multiparty cryptographic protocols. J. Cryptol.,
13(1):143–202 (2000)

[26] D. Chaum, C. Crépeau, I. Damgård, Multiparty unconditionally secure protocols (extended
abstract), in Proceedings of the 20th Annual ACM Symposium on Theory of Computing, May
2–4, 1988, Chicago, Illinois, USA (1988), pp. 11–19

[27] A.R. Choudhuri, M. Ciampi, V. Goyal, A. Jain, R. Ostrovsky, Round optimal secure multiparty
computation from minimal assumptions, in Rafael Pass and Krzysztof Pietrzak, editors, Theory
of Cryptography—18th International Conference, TCC 2020, Durham, NC, USA, November
16–19, 2020, Proceedings, Part II, vol. 12551 of Lecture Notes in Computer Science (Springer,
2020), pp. 291–319

[28] R. Cramer, I. Damgård, S. Dziembowski, M. Hirt, T. Rabin, Efficient multiparty computations
secure against an adaptive adversary, in Advances in Cryptology—EUROCRYPT ’99, Interna-
tional Conference on the Theory and Application of Cryptographic Techniques, Prague, Czech
Republic, May 2–6, 1999, Proceeding (1999), pp. 311–326

[29] D. Chaum, I. Damgård, J. van de Graaf, Multiparty computations ensuring privacy of each party’s
input and correctness of the result, in Advances in Cryptology—CRYPTO ’87, A Conference on

40 Page 74 of 77 A. Patra, D. Ravi

the Theory and Applications of Cryptographic Techniques, Santa Barbara, California, USA,
August 16-20, 1987, Proceedings (1987), pp. 87–119

[30] N. Chandran, J.A. Garay, P. Mohassel, S. Vusirikala, Efficient, constant-round and actively secure
MPC: beyond the three-party case, in Proceedings of the 2017 ACM SIGSAC Conference on
Computer and Communications Security, CCS 2017, Dallas, TX, USA, October 30—November
03, 2017 (2017), pp. 277–294

[31] R. Cohen, I. Haitner, E. Omri, L. Rotem, Characterization of secure multiparty computation
without broadcast, in Theory of Cryptography—13th International Conference, TCC 2016-A,
Tel Aviv, Israel, January 10–13, 2016, Proceedings, Part I (2016), pp. 596–616

[32] G. Di Crescenzo, Y. Ishai, R. Ostrovsky, Non-interactive and non-malleable commitment, in
Proceedings of the Thirtieth Annual ACM Symposium on the Theory of Computing, Dallas,
Texas, USA, May 23–26, 1998 (1998), pp. 141–150

[33] S.G. Choi, J. Katz, A.J. Malozemoff, V. Zikas, Efficient three-party computation from cut-and-
choose, inAdvances inCryptology—CRYPTO2014—34thAnnualCryptologyConference, Santa
Barbara, CA, USA, August 17–21, 2014, Proceedings, Part II (2014), pp. 513–530

[34] R. Cohen, Y. Lindell, Fairness versus guaranteed output delivery in secure multiparty compu-
tation, in Advances in Cryptology—ASIACRYPT 2014—20th International Conference on the
Theory and Application of Cryptology and Information Security, Kaoshiung, Taiwan, R.O.C.,
December 7–11, 2014, Proceedings, Part II (2014), pp. 466–485

[35] R. Cleve, Limits on the security of coin flips when half the processors are faulty (extended
abstract), in Proceedings of the 18th Annual ACM Symposium on Theory of Computing, May
28–30, 1986, Berkeley, California, USA (1986), pp. 364–369

[36] K. Chida, G. Morohashi, H. Fuji, F. Magata, A. Fujimura, K. Hamada, D. Ikarashi, R. Yamamoto,
Implementation and evaluation of an efficient secure computation system using ‘R’ for healthcare
statistics. J. Am. Med. Informat. Assoc. (2014)

[37] M. Ciampi, R. Ostrovsky, Four-round secure multiparty computation from general assumptions
Cryptology ePrint Archive, Report 2019/214 (2019)

[38] I. Damgård, J.B. Nielsen, Scalable and unconditionally secure multiparty computation, in Ad-
vances in Cryptology—CRYPTO 2007, 27th Annual International Cryptology Conference, Santa
Barbara, CA, USA, August 19–23, 2007, Proceedings (2007), pp. 572–590

[39] I. Damgård, C. Orlandi, Multiparty computation for dishonest majority: From passive to ac-
tive security at low cost, in Advances in Cryptology—CRYPTO 2010, 30th Annual Cryptology
Conference, Santa Barbara, CA, USA, August 15–19, 2010. Proceedings (2010), pp. 558–576

[40] I. Damgård, V. Pastro, N.P. Smart, S. Zakarias, Multiparty computation from somewhat ho-
momorphic encryption, in Advances in Cryptology—CRYPTO 2012—32nd Annual Cryptology
Conference, Santa Barbara, CA, USA, August 19–23, 2012. Proceedings (2012), pp. 643–662

[41] J. Furukawa, Y. Lindell, A. Nof, O. Weinstein, High-throughput secure three-party computation
for malicious adversaries and an honest majority, in Advances in Cryptology—EUROCRYPT
2017—36th Annual International Conference on the Theory and Applications of Cryptographic
Techniques, Paris, France, April 30—May 4, 2017, Proceedings, Part II (2017), pp. 225–255

[42] T.K. Frederiksen, J.B. Nielsen, C. Orlandi, Privacy-free garbled circuits with applications to
efficient zero-knowledge, in Advances in Cryptology—EUROCRYPT 2015—34th Annual In-
ternational Conference on the Theory and Applications of Cryptographic Techniques, Sofia,
Bulgaria, April 26–30, 2015, Proceedings, Part II (2015), pp. 191–219

[43] M. Geisler, Viff: virtual ideal functionality framework (2007)
[44] S. Garg, C. Gentry, S. Halevi, M. Raykova, Two-round secure MPC from indistinguishability

obfuscation, in Theory of Cryptography—11th Theory of Cryptography Conference, TCC 2014,
San Diego, CA, USA, February 24–26, 2014. Proceedings (2014), pp. 74–94

[45] O. Goldreich, S. Goldwasser, S. Micali, How to construct random functions. J. ACM, 33(4):792–
807 (1986)

[46] Y. Gertner, Y. Ishai, E. Kushilevitz, T. Malkin, Protecting data privacy in private information
retrieval schemes. J. Comput. Syst. Sci., 60(3):592–629 (2000)

[47] R. Gennaro, Y. Ishai, E. Kushilevitz, T. Rabin, The round complexity of verifiable secret sharing
and secure multicast, in Proceedings on 33rd Annual ACM Symposium on Theory of Computing,
July 6–8, 2001, Heraklion, Crete, Greece (2001), pp. 580–589

On the Exact Round Complexity of Secure Three-Party Computation Page 75 of 77 40

[48] R. Gennaro, Y. Ishai, E. Kushilevitz, T. Rabin, On 2-round secure multiparty computation, in
Advances in Cryptology—CRYPTO 2002, 22nd Annual International Cryptology Conference,
Santa Barbara, California, USA, August 18–22, 2002, Proceedings (2002), pp. 178–193

[49] S. Goldwasser, Y. Lindell, Secure computation without agreement, in Distributed Computing,
16th International Conference, DISC 2002, Toulouse, France, October 28–30, 2002 Proceedings
(2002), pp. 17–32

[50] S.D. Gordon, F.-H. Liu, E. Shi, Constant-round MPC with fairness and guarantee of output
delivery, in Advances in Cryptology—CRYPTO 2015—35th Annual Cryptology Conference,
Santa Barbara, CA, USA, August 16–20, 2015, Proceedings, Part II (2015), pp. 63–82

[51] S. Garg, P. Mukherjee, O. Pandey, Antigoni Polychroniadou. The exact round complexity of se-
cure computation, in Advances in Cryptology—EUROCRYPT 2016—35th Annual International
Conference on the Theory and Applications of Cryptographic Techniques, Vienna, Austria, May
8–12, 2016, Proceedings, Part II (2016), pp. 448–476

[52] O. Goldreich, S. Micali, A. Wigderson, How to play any mental game or A completeness theorem
for protocols with honest majority, inProceedings of the 19th Annual ACMSymposiumon Theory
of Computing, 1987, New York, New York, USA (1987), pp. 218–229

[53] O. Goldreich, The Foundations of Cryptography—vol. 1, Basic Techniques. Cambridge Univer-
sity Press (2001)

[54] S. Garg, A. Srinivasan, Garbled protocols and two-round MPC from bilinear maps, in 58th IEEE
Annual Symposium on Foundations of Computer Science, FOCS 2017, Berkeley, CA, USA,
October 15–17, 2017 (2017), pp. 588–599

[55] S. Garg, A. Srinivasan, Two-round multiparty secure computation from minimal assumptions,
in Advances in Cryptology—EUROCRYPT 2018—37th Annual International Conference on the
Theory and Applications of Cryptographic Techniques, Tel Aviv, Israel, April 29—May 3, 2018
Proceedings, Part II (2018), pp. 468–499

[56] S. Halevi, C. Hazay, A. Polychroniadou, M. Venkitasubramaniam, Round-optimal secure multi-
party computation, in Advances in Cryptology—CRYPTO 2018—38th Annual International
Cryptology Conference, Santa Barbara, CA, USA, August 19–23, 2018, Proceedings, Part II
(2018), pp. 488–520

[57] Y. Huang, J. Katz, V. Kolesnikov, R. Kumaresan, A.J. Malozemoff, Amortizing garbled cir-
cuits, in Advances in Cryptology—CRYPTO 2014—34th Annual Cryptology Conference, Santa
Barbara, CA, USA, August 17–21, 2014, Proceedings, Part II (2014), pp. 458–475

[58] S. Halevi, Y. Lindell, B. Pinkas, Secure computation on the web: Computing without simultane-
ous interaction, in Advances in Cryptology—CRYPTO 2011—31st Annual Cryptology Confer-
ence, Santa Barbara, CA, USA, August 14–18, 2011. Proceedings (2011), pp. 132–150

[59] Y. Ishai, R. Kumaresan, E. Kushilevitz, A. Paskin-Cherniavsky, Secure computation with minimal
interaction, revisited, in Advances in Cryptology—CRYPTO 2015—35th Annual Cryptology
Conference, Santa Barbara, CA, USA, August 16–20, 2015, Proceedings, Part II (2015), pp.
359–378

[60] Y. Ishai, E. Kushilevitz, A. Paskin, Secure multiparty computation with minimal interaction, in
Advances in Cryptology—CRYPTO 2010, 30th Annual Cryptology Conference, Santa Barbara,
CA, USA, August 15–19, 2010 Proceedings (2010), pp. 577–594

[61] Y. Ishai, E. Kushilevitz, M. Prabhakaran, A. Sahai, C.-H. Yu, Secure protocol transformations, in
Advances in Cryptology—CRYPTO 2016—36th Annual International Cryptology Conference,
Santa Barbara, CA, USA, August 14–18, 2016, Proceedings, Part II (2016), pp. 430–458

[62] Y. Ishai, M. Prabhakaran, A. Sahai, Founding cryptography on oblivious transfer—efficiently,
in Advances in Cryptology—CRYPTO 2008, 28th Annual International Cryptology Conference,
Santa Barbara, CA, USA, August 17–21, 2008. Proceedings (2008), pp. 572–591

[63] Y. Ishai, H. Wee, Partial garbling schemes and their applications, in Automata, Languages,
Programming—41st International Colloquium, ICALP 2014, Copenhagen, Denmark, July 8–
11, 2014, Proceedings, Part I (2014), pp. 650–662

[64] M. Jawurek, F. Kerschbaum, C. Orlandi, Zero-knowledge using garbled circuits: how to prove
non-algebraic statements efficiently, in 2013 ACM SIGSAC Conference on Computer and Com-
munications Security, CCS’13, Berlin, Germany, November 4–8, 2013 (2013), pp. 955–966

40 Page 76 of 77 A. Patra, D. Ravi

[65] Z. Jafargholi, D. Wichs, Adaptive security of yao’s garbled circuits, in Theory of Cryptography—
14th International Conference, TCC 2016-B, Beijing, China, October 31—November 3, 2016,
Proceedings, Part I (2016), pp. 433–458

[66] J. Katz, R. Ostrovsky, Round-optimal secure two-party computation, in Advances in
Cryptology—CRYPTO 2004, 24th Annual International Cryptology Conference, Santa Barbara,
California, USA, August 15–19, 2004, Proceedings (2004), pp. 335–354

[67] J. Katz, J.S. Shin, Modeling insider attacks on group key-exchange protocols, in Proceedings of
the 12th ACM Conference on Computer and Communications Security, CCS 2005, Alexandria,
VA, USA, November 7–11, 2005 (2005), pp. 180–189

[68] M.S. Kiraz, B. Schoenmakers, A protocol issue for the malicious case of yao’s garbled circuit
construction, in 27th Symposium on Information Theory in the Benelux (2006)

[69] V. Kolesnikov, T. Schneider, Improved garbled circuit: Free XOR gates and applications, in
Automata, Languages and Programming, 35th International Colloquium, ICALP 2008, Reyk-
javik, Iceland, July 7–11, 2008, Proceedings, Part II—Track B: Logic, Semantics, Theory of
Programming & Track C: Security and Cryptography Foundations (2008), pp. 486–498

[70] J. Launchbury, D. Archer, T. DuBuisson, E. Mertens, Application-scale secure multiparty compu-
tation, in Programming Languages and Systems—23rd European Symposium on Programming,
ESOP 2014, Held as Part of the European Joint Conferences on Theory and Practice of Software,
ETAPS 2014, Grenoble, France, April 5–13, 2014, Proceedings (2014), pp. 8–26

[71] J. Launchbury, I.S. Diatchki, T. DuBuisson, A. Adams-Moran, Efficient lookup-table protocol
in secure multiparty computation, in ACM SIGPLAN International Conference on Functional
Programming, ICFP’12, Copenhagen, Denmark, September 9–15, 2012 (2012), pp. 189–200

[72] Y. Lindell, Fast cut-and-choose based protocols for malicious and covert adversaries, inAdvances
in Cryptology—CRYPTO 2013—33rd Annual Cryptology Conference, Santa Barbara, CA, USA,
August 18–22, 2013. Proceedings, Part II (2013), pp. 1–17

[73] Y. Lindell, How to simulate it—A tutorial on the simulation proof technique, in Tutorials on the
Foundations of Cryptography. 2017), pp. 277–346

[74] Y. Lindell, B. Pinkas, An efficient protocol for secure two-party computation in the presence
of malicious adversaries, in Advances in Cryptology—EUROCRYPT 2007, 26th Annual Inter-
national Conference on the Theory and Applications of Cryptographic Techniques, Barcelona,
Spain, May 20–24, 2007, Proceedings (2007), pp. 52–78

[75] Y. Lindell, B. Pinkas, Secure multiparty computation for privacy-preserving data mining J. Priv.
Confidentiality, 1(1) (2009)

[76] N.A. Lynch, Distributed Algorithms (Morgan Kaufmann, 1996)
[77] P. Mohassel, M.K. Franklin, Efficiency tradeoffs for malicious two-party computation, in Public

Key Cryptography—PKC 2006, 9th International Conference on Theory and Practice of Public-
Key Cryptography, New York, NY, USA, April 24–26, 2006, Proceedings (2006), pp. 458–473

[78] P. Mohassel, M. Rosulek, Non-interactive secure 2pc in the offline/online and batch settings,
in Advances in Cryptology—EUROCRYPT 2017—36th Annual International Conference on the
Theory and Applications of Cryptographic Techniques, Paris, France, April 30—May 4, 2017,
Proceedings, Part III (2017), pp. 425–455

[79] P. Mohassel, M. Rosulek, Y. Zhang, Fast and secure three-party computation: The garbled circuit
approach, in Proceedings of the 22nd ACM SIGSAC Conference on Computer and Communica-
tions Security, Denver, CO, USA, October 12–16, 2015 (2015), pp. 591–602

[80] P. Mukherjee, D. Wichs, Two round multiparty computation via multi-key FHE, in Advances
in Cryptology—EUROCRYPT 2016—35th Annual International Conference on the Theory and
Applications of Cryptographic Techniques, Vienna, Austria, May 8–12, 2016, Proceedings, Part
II (2016), pp. 735–763

[81] M. Naor, Bit commitment using pseudorandomness J. Cryptol., 4(2):151–158 (1991)
[82] A. Patra, A. Choudhary, T. Rabin, C. Pandu Rangan, The round complexity of verifiable se-

cret sharing revisited, in Advances in Cryptology—CRYPTO 2009, 29th Annual International
Cryptology Conference, Santa Barbara, CA, USA, August 16–20, 2009. Proceedings (2009), pp.
487–504

On the Exact Round Complexity of Secure Three-Party Computation Page 77 of 77 40

[83] T.P. Pedersen, Non-interactive and information-theoretic secure verifiable secret sharing, in Ad-
vances in Cryptology—CRYPTO ’91, 11th Annual International Cryptology Conference, Santa
Barbara, California, USA, August 11–15, 1991, Proceedings (1991), pp. 129–140

[84] A. Patra, D. Ravi, Beyond honest majority: The round complexity of fair and robust multi-party
computation. Cryptology ePrint Archive, Report 2019/998 (2019)

[85] A. Patra, D. Ravi, Beyond honest majority: The round complexity of fair and robust multi-party
computation, in Advances in Cryptology—ASIACRYPT 2019—25th International Conference
on the Theory and Application of Cryptology and Information Security, Kobe, Japan, December
8–12, 2019, Proceedings, Part I, vol. 11921 of Lecture Notes in Computer Science (Springer,
2019), pp. 456–487

[86] T. Rabin, M. Ben-Or, Verifiable secret sharing and multiparty protocols with honest majority
(extended abstract), inProceedings of the 21st Annual ACMSymposium on Theory of Computing,
May 14–17, 1989, Seattle, Washigton, USA (1989), pp. 73–85

[87] P. Rindal, M. Rosulek, Faster malicious 2-party secure computation with online/offline dual
execution, in 25th USENIX Security Symposium, USENIX Security 16, Austin, TX, USA, August
10–12, 2016 (2016), pp. 297–314

[88] A. Shelat, C.-H. Shen, Fast two-party secure computation with minimal assumptions, in 2013
ACM SIGSAC Conference on Computer and Communications Security, CCS’13, Berlin, Ger-
many, November 4–8, 2013 (2013), pp. 523–534

[89] A.C.-C. Yao, Protocols for secure computations (extended abstract), in 23rd Annual Symposium
on Foundations of Computer Science, Chicago, Illinois, USA, 3–5 November 1982 (1982), pp.
160–164

[90] S. Zahur, M. Rosulek, D. Evans, Two halves make a whole—reducing data transfer in garbled
circuits using half gates, inAdvances in Cryptology—EUROCRYPT 2015—34th Annual Interna-
tional Conference on the Theory and Applications of Cryptographic Techniques, Sofia, Bulgaria,
April 26–30, 2015, Proceedings, Part II (2015), pp. 220–250

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

	On the Exact Round Complexity of Secure Three-Party Computation
	1. Introduction
	1.1. Our Results
	1.2. Techniques
	1.3. Roadmap
	2. Preliminaries
	2.1. Model
	2.2. Primitives

	3. 3-Round 3PC with Fairness
	3.1. Protocol fairi
	3.2. Protocol certi
	3.3. Protocol fair

	4. 2-Round 3PC with Unanimous Abort
	4.1. Protocol uai
	4.2. Protocol ua

	5. 3-Round 3PC with Guaranteed Output Delivery
	5.1. Protocol godi
	5.2. Protocol god

	6. Lower Bounds
	6.1. The Impossibility of 2-Round Fair 3PC
	6.2. The Impossibility of 2-Round 3PC with Unanimous Abort

	7. Conclusion
	A. Primitives
	A.1. Properties of Garbling Scheme
	A.2. Non-interactive Commitment Schemes (NICOM)
	A.3. Equivocal Non-interactive Commitment Schemes (eNICOM)
	A.4. Symmetric-Key Encryption with Special Correctness
	B. The Security Model
	C. Optimizations
	D. Proof of Security for Protocol fair
	E. Proof of Security for Protocol ua
	F. Proof of Security for Protocol god
	G. Authenticated Conditional Disclosure of Secret
	Acknowledgements

	References

