
https://doi.org/10.1007/s00145-021-09395-y
J Cryptol (2022)35:12

Multiparty Generation of an RSA Modulus∗

Megan Chen · Jack Doerner · Yashvanth Kondi · Eysa Lee ·
Schuyler Rosefield · Abhi Shelat

Northeastern University, Boston, MA, USA
contact.meganchen@gmail.com

j@ckdoerner.net
ykondi@ccs.neu.edu

eysa@ccs.neu.edu
rosefield.s@northeastern.edu

abhi@neu.edu

Ran Cohen
Reichman University, Herzliya, Israel

cohenran@idc.ac.il

Communicated by Nigel Smart

Received 17 August 2020 / Revised 27 April 2021 / Accepted 27 April 2021
Online publication 16 March 2022

Abstract. We present a new multiparty protocol for the distributed generation of
biprime RSA moduli, with security against any subset of maliciously colluding par-
ties assuming oblivious transfer and the hardness of factoring. Our protocol is highly
modular, and its uppermost layer can be viewed as a template that generalizes the
structure of prior works and leads to a simpler security proof. We introduce a combined
sampling-and-sieving technique that eliminates both the inherent leakage in the approach
of Frederiksen et al. (Crypto’18) and the dependence upon additively homomorphic en-
cryption in the approach of Hazay et al. (JCrypt’19). We combine this technique with an
efficient, privacy-free check to detect malicious behavior retroactively when a sampled
candidate is not a biprime and thereby overcome covert rejection-sampling attacks and
achieve both asymptotic and concrete efficiency improvements over the previous state
of the art.

Keywords. Threshold cryptography, Multiparty computation, RSA, Biprime sam-
pling, Concrete efficiency.

Contents

1. Introduction . 2
1.1. Results and Contributions . 4
1.2. Overview of Techniques . 5

∗A preliminary version [9] of this work appeared in CRYPTO 2020

© International Association for Cryptologic Research 2022

http://crossmark.crossref.org/dialog/?doi=10.1007/s00145-021-09395-y&domain=pdf

12 Page 2 of 84 M. Chen et al.

1.3. Additional Related Work . 7
1.4. Organization . 8

2. Preliminaries . 9
3. Assumptions and Ideal Functionality . 10

3.1. Factoring Assumptions . 10
3.2. The Distributed Biprime-Sampling Functionality . 12

4. The Distributed Biprime-Sampling Protocol . 14
4.1. High-Level Overview . 14
4.2. Ideal Functionalities Used in the Protocol . 17
4.3. The Protocol Itself . 20
4.4. Security Sketches . 23

5. Distributed Biprimality Testing . 25
5.1. The Semi-Honest Setting . 25
5.2. The Malicious Setting . 26

6. Efficiency Analysis . 30
6.1. Per-Instance Success Probability . 31
6.2. The Cost of Instantiating FBiprime and FAugMul . 32
6.3. Putting It All Together . 36
6.4. Strictly Constant and Expected-Constant Rounds . 39
6.5. Comparison to Prior Work . 42

Appendix A. The UC Model and Useful Functionalities . 45
Appendix A.1. Universal Composability . 45
Appendix A.2. Useful Functionalities . 45

Appendix B. Instantiating Multiplication . 48
Appendix B.1. Delayed-Transmission Correlated Oblivious Transfer 48
B.2. Two-Party Reusable-Input Multiplier . 49
B.3. Multiparty Reusable-Input Multiplier . 62
B.4. Augmented Multiplication . 63

Appendix C. Proof of Security for Our Biprime-Sampling Protocol 69
References . 82

1. Introduction

A biprime is a number N of the form N = p · q where p and q are primes. Such
numbers are used as a component of the public key (i.e., the modulus) in the RSA
cryptosystem [46], with the factorization being a component of the secret key. A long line
of research has studied methods for sampling biprimes efficiently; in the early days, the
task required specialized hardware and was not considered generally practical [44,45].
In subsequent years, advances in computational power brought RSA into the realm of
practicality and then ubiquity. Given a security parameter κ , the de facto standard method
for sampling RSA biprimes involves choosing random κ-bit numbers and subjecting
them to the Miller–Rabin primality test [38,43] until two primes are found; these primes
are then multiplied to form a 2κ-bit modulus. This method suffices when a single party
wishes to generate a modulus, and is permitted to know the associated factorization.

Multiparty Generation of an RSA Modulus Page 3 of 84 12

Boneh and Franklin [4,5] initiated the study of distributed RSA modulus generation.1

This problem involves a set of parties who wish to jointly sample a biprime in such a
way that no corrupt and colluding subset (below some defined threshold size) can learn
the biprime’s factorization.

It is clear that applying generic multiparty computation (MPC) techniques to the
standard sampling algorithm yields an impractical solution: implementing the Miller–
Rabin primality test requires repeatedly computing a p−1 mod p, where p is (in this
case) secret, and so such an approach would require the generic protocol to evaluate
a circuit containing many modular exponentiations over κ bits each. Instead, Boneh
and Franklin [4,5] constructed a new biprimality test that generalizes Miller–Rabin and
avoids computing modular exponentiations with secret moduli. Their test carries out all
exponentiations modulo the public biprime N , and this allows the exponentiations to be
performed locally by the parties. Furthermore, they introduced a three-phase structure
for the overall sampling protocol, which subsequent works have embraced:

1. Prime Candidate Sieving: candidate values for p and q are sampled jointly in
secret-shared form, and a weak-but-cheap form of trial division sieves them, culling
candidates with small factors.

2. Modulus Reconstruction: N ..= p · q is securely computed and revealed.

3. Biprimality Testing: using a distributed protocol, N is tested for biprimality. If
N is not a biprime, then the process is repeated.

The seminal work of Boneh and Franklin considered the semi-honest n-party setting
with an honest majority of participants. Many extensions and improvements followed (as
detailed in Sect. 1.3), the most notable of which (for our purposes) are two recent works
that achieve malicious security against a dishonest majority. In the first, Hazay et al.
[28,29] proposed an n-party protocol in which both sieving and modulus reconstruction
are achieved via additively homomorphic encryption. Specifically, they rely upon both
ElGamal and Paillier encryption, and in order to achieve malicious security, they use
zero-knowledge proofs for a variety of relations over the ciphertexts. Thus, their protocol
represents a substantial advancement in terms of its security guarantee, but this comes at
the cost of additional assumptions and an intricate proof, and also at substantial concrete
cost, due to the use of many custom zero-knowledge proofs.

The subsequent protocol of Frederiksen et al. [23] (the second recent work of note)
relies mainly on oblivious transfer (OT), which they use to perform both sieving and, via
Gilboa’s classic multiplication protocol [24], modulus reconstruction. They achieved
malicious security using the folklore technique in which a “Proof of Honesty” is e-
valuated as the last step and demonstrated practicality by implementing their protocol;
however, it is not clear how to extend their approach to more than two parties in a s-
traightforward way. Moreover, their approach to sieving admits selective-failure attacks,
for which they account by including some leakage in the functionality. It also permits

1Prior works generally consider RSA key generation and include steps for generating shares of e and
d such that e · d ≡ 1 (mod ϕ(N)). This work focuses only on the task of sampling the RSA modulus N .
Prior techniques can be applied to sample (e, d) after sampling N , and the distributed generation of an RSA
modulus has standalone applications, such as for generating the trusted setup required by verifiable delay
functions [41,50]; consequently, we omit further discussion of e and d.

12 Page 4 of 84 M. Chen et al.

a malicious adversary to selectively and covertly induce false negatives (i.e., force the
rejection of true biprimes after the sieving stage), a property that is again modeled in their
functionality. In conjunction, these attributes degrade security, because the adversary can
rejection-sample biprimes based on the additional leaked information, and efficiency, be-
cause ruling out malicious false-negatives involves running sufficiently many instances
to make the probability of statistical failure in all instances negligible.

Thus, given the current state of the art, it remains unclear whether one can sample
an RSA modulus among two parties (one being malicious) without leaking additional
information or permitting covert rejection sampling, or whether one can sample an
RSA modulus among many parties (all but one being malicious) without involving
heavy cryptographic primitives such as additively homomorphic encryption, and their
associated performance penalties. In this work, we present a protocol which efficiently
achieves both tasks.

1.1. Results and Contributions

ACleanFunctionality.We defineFRSAGen, a simple, natural functionality for sampling
biprimes from the same well-known distribution used by prior works [5,23,29], with no
leakage or conflation of sampling failures with adversarial behavior.

A Modular Protocol, with Natural Assumptions. We present a protocol πRSAGen
in the (FAugMul,FBiprime)-hybrid model, where FAugMul is an augmented multiplier
functionality and FBiprime is a biprimality-testing functionality, and prove that it UC-
realizes FRSAGen in the malicious setting, assuming the hardness of factoring. More
specifically, we prove:

Theorem 1.1. (Main security theorem, informal) In the presence of a PPT malicious
adversary corrupting any subset of parties, FRSAGen can be securely computed with
abort in the (FAugMul,FBiprime)-hybrid model, assuming the hardness of factoring.

Additionally, because our security proof relies upon the hardness of factoring only
when the adversary cheats, we find to our surprise that our protocol achieves perfect
security against semi-honest adversaries.

Theorem 1.2. (Semi-honest security theorem, informal) In the presence of a compu-
tationally unbounded semi-honest adversary corrupting any subset of parties,FRSAGen
can be computed with perfect security in the (FAugMul,FBiprime)-hybrid model.

Supporting Functionalities and Protocols. We define FBiprime, a simple, natural func-
tionality for biprimality testing and show that it is UC-realized in the semi-honest setting
by a well-known protocol of Boneh and Franklin [5], and in the malicious setting by a
derivative of the protocol of Frederiksen et al. [23]. We believe this dramatically sim-
plifies the composition of these two protocols and, as a consequence, leads to a simpler
analysis. Either protocol can be based exclusively upon oblivious transfer.

We also define FAugMul, a functionality for sampling and multiplying secret-shared
values in a special form derived from the Chinese remainder theorem. In the context
of πRSAGen, this functionality allows us to efficiently sample numbers in a specific

Multiparty Generation of an RSA Modulus Page 5 of 84 12

range, with no small factors, and then compute their product. We prove that it can
be UC-realized exclusively from oblivious transfer, using derivatives of well-known
multiplication protocols [19,20].

Asymptotic Efficiency. We perform an asymptotic analysis of our composed protocols
and find that our semi-honest protocol is a factor of κ/ log κ more bandwidth-efficient
than that of Frederiksen et al. [23], where κ is the bit-length of the primes p and q. Our
malicious protocol is a factor of κ/s more efficient than theirs in the optimistic case
(when parties follow the protocol), where s is a statistical security parameter, and it is
a factor of κ more efficient when parties deviate from the protocol. Frederiksen et al.
claim in turn that their protocol is strictly superior to the protocol of Hazay et al. [29]
with respect to asymptotic bandwidth performance.

Concrete Efficiency. We perform a closed-form concrete communication cost analysis
of our protocol (with some optimizations, including the use of random oracles), and
compare our results to the protocol of Frederiksen et al. (the most efficient prior work).
For κ = 1024 (i.e., when sampling a 2048-bit biprime), our protocol outperforms theirs
by a factor of roughly five in the presence of worst-case malicious adversaries, and by
a factor of roughly eighty in the semi-honest setting. As the bitlength of the sampled
prime grows, so too does the concrete performance advantage of our protocol.

1.2. Overview of Techniques

Constructive Sampling and Efficient Modulus Reconstruction. Most prior works
use rejection sampling to generate a pair of candidate primes and then multiply those
primes together in a separate step. Specifically, they sample a shared value p ← [0, 2κ)

uniformly, and then run a trial-division protocol repeatedly, discarding both the value and
the work that has gone into testing it if trial division fails. This represents a substantial
amount of wasted work in expectation. Furthermore, Frederiksen et al. [23] report that
multiplication of candidates after sieving accounts for two thirds of their concrete cost.

We propose a different approach that leverages the Chinese remainder theorem (CRT)
to constructively sample a pair of candidate primes and multiply them together efficiently.
A similar sieving approach (in spirit) was initially formulated as an optimization in a
different setting by Malkin et al. [37]. The CRT implies an isomorphism between a set
of values, each in a field modulo a distinct prime, and a single value in a ring modulo the
product of those primes (i.e., Zm1 ×· · ·×Zm�

� Zm1·...·m�
). We refer to the set of values

as the CRT form or CRT representation of the single value to which they are isomorphic.
We formulate a sampling mechanism based on this isomorphism as follows: for each
of the first O(κ/ log κ) odd primes, the parties jointly (and efficiently) sample shares of
a value that is nonzero modulo that prime. These values are the shared CRT form of a
single κ-bit value that is guaranteed to be indivisible by any prime in the set sampled
against. For technical reasons, we sample two such candidates simultaneously.

Rather than converting pairs of candidate primes from CRT form to standard form, and
then multiplying them, we instead multiply them component-wise in CRT form and then
convert the product to standard form to complete the protocol. This effectively replaces a
single “full-width” multiplication of size κ with O(κ/ log κ) individual multiplications,
each of size O(log κ). We intend to perform multiplication via an OT-based protocol, and
the computation and communication complexity of such protocols grows at least with the

12 Page 6 of 84 M. Chen et al.

square of their input length, even in the semi-honest case [24]. Thus, in the semi-honest
case, our approach yields an overall complexity of O(κ log κ), as compared to O(κ2)

for a single full-width multiplication. In the malicious case, combining the best known
multiplier construction [19,20] with the most efficient known OT extension scheme [6]
yields a complexity that also grows with the product of the input length and a statistical
parameter s, and so our approach achieves an overall complexity of O(κ log κ+κ ·s), as
compared to O(κ2 + κ · s) for a single full-width malicious multiplication. Via closed-
form analysis, we show that this asymptotic improvement is also reflected concretely.

Achieving Security with Abort Efficiently. The fact that we sample primes in CRT
form also plays a crucial role in our security analysis. Unlike the work of Frederiksen
et al. [23], our protocol achieves the standard, intuitive notion of security with abort:
the adversary can instruct the functionality to abort regardless of whether a biprime is
successfully sampled, and the honest parties are always made aware of such adversarial
aborts. There is, in other words, absolutely no conflation of sampling failures with
adversarial behavior. For the sake of efficiency, our protocol permits the adversary to
cheat prior to biprimality testing and then rules out such cheats retroactively using one of
two strategies. In the case that a biprime is successfully sampled, adversarial behavior is
ruled out, retroactively, in a privacy-preserving fashion using well-known but moderately
expensive techniques, which is tolerable only because it need not be done more than
once. In the case that a sampled value is not a biprime, however, the inputs to the sampling
protocol are revealed to all parties, and the retroactive check is carried out in the clear.
Proving the latter approach secure turns out to be surprisingly subtle.

The challenge arises from the fact that the simulator must simulate the protocol tran-
script for the OT-multipliers on behalf of the honest parties without knowing their inputs.
Later, if the sampling-protocol inputs are revealed, the simulator must “explain” how the
simulated transcript is consistent with the true inputs of the honest parties. Specifically, in
maliciously secure OT-multipliers of the sort we use [19,20], the OT receiver (Bob) uses
a high-entropy encoding of his input, and the sender (Alice) can, by cheating, learn a one-
bit predicate of this encoding. Before Bob’s true input is known to the simulator, it must
pick an encoding at random. When Bob’s input is revealed, the simulator must find an
encoding of his input which is consistent with the predicate on the random encoding that
Alice has learned. This task closely resembles solving a random instance of subset sum.

We are able to overcome this difficulty because our multiplications are performed
component-wise over CRT-form representations of their operands. Because each com-
ponent is of size O(log κ) bits, the simulator can simply guess random encodings until
it finds one that matches the required constraints. We show that this strategy succeeds in
strict polynomial time and that it induces a distribution statistically close to that of the
real execution.

This form of “privacy-free” malicious security (wherein honest behavior is verified
at the cost of sacrificing privacy) leads to considerable efficiency gains in our case: it
is up to a multiplicative factor of s (the statistical parameter) cheaper than the privacy-
preserving check used in the case that a candidate passes the biprimality test (and the
one used in prior OT-multipliers [19,20]). Since most candidates fail the biprimality
test, using the privacy-free check to verify that they were generated honestly results in
substantial savings.

Multiparty Generation of an RSA Modulus Page 7 of 84 12

Biprimality Testing as a Black Box. We specify a functionality for biprimality testing
and prove that it can be realized by a maliciously secure version of the Boneh–Franklin
biprimality test. Our functionality has a clean interface and does not, for example, require
its inputs to be authenticated to ensure that they were actually generated by the sampling
phase of the protocol. The key insight that allows us to achieve this level of modularity is
a reduction to factoring: if an adversary is able to cheat by supplying incorrect inputs to
the biprimality test, relative to a candidate biprime N , and the biprimality test succeeds,
then we show that the adversary can be used to factor biprimes. We are careful to rely on
this reduction only in the case that N is actually a biprime, and to prevent the adversary
from influencing the distribution of candidates.

The Benefits of Modularity. We claim as a contribution the fact that modularity has
yielded both a simpler protocol description and a reasonably simple proof of security.
We believe that this approach will lead to derivatives of our work with stronger security
properties or with security against stronger adversaries. As a first example, we prove
that a semi-honest version of our protocol (differing only in that it omits the retroactive
consistency check in the protocol’s final step) achieves perfect security. We furthermore
observe that in the malicious setting, instantiating FBiprime and FAugMul with security
against adaptive adversaries yields an RSA modulus sampling protocol that is adaptively
secure.

Similarly, only minor adjustments to the main protocol are required to achieve security
with identifiable abort [16,32]. If we assume that the underlying functionalities FAugMul
andFBiprime are instantiated with identifiable abort, then it remains only to ensure the use
of consistent inputs across these functionalities, and to detect which party has provided
inconsistent inputs if an abort occurs. This can be accomplished by augmenting FBiprime
with an additional interface for revealing the input values provided by all the parties upon
global request (e.g., when the candidate N is not a biprime). Given identifiable abort, it
is possible to guarantee output delivery in the presence of up to n − 1 corruptions via
standard techniques, although the functionality must be weakened to allow the adversary
to reject one biprime per corrupt party.2 A proof of this extension is beyond the scope
of this work; we focus instead on the advancements our framework yields in the setting
of security with abort.

1.3. Additional Related Work

Frankel, MacKenzie, and Yung [22] adjusted the protocol of Boneh and Franklin [4]
to achieve security against malicious adversaries in the honest-majority setting. Their
main contribution was the introduction of a method for robust distributed multiplication
over the integers. Cocks [11] proposed a method for multiparty RSA key generation
under heuristic assumptions, and later attacks by Coppersmith (see [12]) and Joye and
Pinch [33] suggested this method may be insecure. Poupard and Stern [42] presented a
maliciously secure two-party protocol based on oblivious transfer. Gilboa [24] improved

2The folklore technique involves invoking the protocol iteratively, each iteration eliminating one corrupt
party until a success occurs. For a constant fraction of corruptions, the implied linear round complexity
overhead can be reduced to super-constant (e.g., log∗ n) [15].

12 Page 8 of 84 M. Chen et al.

efficiency in the semi-honest two-party model, and introduced a novel method for mul-
tiplication from oblivious transfer, from which our own multipliers derive.

Malkin, Wu, and Boneh [37] implemented the protocol of Boneh and Franklin and
introduced an optimized sieving method similar in spirit to ours. In particular, their
protocol generates sharings of random values in Z

∗
M (where M is a primorial modulus)

during the sieving phase, instead of naïve random candidates for primes p and q. How-
ever, their method produces multiplicative sharings of p and q, which are converted into
additive sharings for biprimality testing via an honest-majority, semi-honest protocol.
This conversion requires rounds linear in the party count, and it is unclear how to adapt
it to tolerate a malicious majority of parties without a significant performance penalty.

Algesheimer, Camenish, and Shoup [1] described a method to compute a distributed
version of the Miller–Rabin test: they used secret-sharing conversion techniques reliant
on approximations of 1/p to compute exponentiations modulo a shared p. However, each
invocation of their Miller–Rabin test still has complexity in O(κ3) per party, and their
overall protocol has communication complexity in O(κ5/ log2 κ), with �(κ) rounds of
interaction. Concretely, Damgård and Mikkelsen [18] estimate that 10,000 rounds are
required to sample a 2000-bit biprime using this method. Damgård and Mikkelsen also
extended their work to improve both its communication and round complexity by several
orders of magnitude, and to achieve malicious security in the honest-majority setting.
Their protocol is at least a factor of O(κ) better than that of Algesheimer, Camenish, and
Shoup, but it still requires hundreds of rounds. We were not able to compute an explicit
complexity analysis of their approach. We give a summary of prior works in Table 1, for
ease of comparison.

In a follow-up work, Chen et al. [10] make use of our CRT-based biprime sampling
technique, but abandon our modular protocol and proof in favor of a monolithic con-
struction that leverages recent advancements in additively-homomorphic encryption and
zero-knowledge arguments. They focus on the setting wherein there is a powerful, semi-
honest aggregator, and many weak, malicious clients. This mixed security model yields
opportunities for optimization, and they show that their approach is sufficiently efficient
for real-world use, even with thousands of participants spread around the world.

Finally, we note that the manipulation of values in what we have referred to as CRT
form has long been studied under the guise of residue number systems [48]. Though
we take few pains to formalize the connection or to generalize beyond what is required
for this work, some of our techniques could be viewed as multiparty adaptations of
techniques from the RNS literature.

1.4. Organization

Basic notation and background information are given in Sect. 2. Our ideal biprime-
sampling functionality is defined in Sect. 3, and we give a protocol that realizes it in
Sect. 4. In Sect. 5, we present our biprimality-testing protocol. In Sect. 6, we give an
efficiency analysis. We defer full proofs of security and the details of our multiplication
protocol to the appendices.

Multiparty Generation of an RSA Modulus Page 9 of 84 12

Table 1. Comparison of prior works.

Protocol Parties Corruptions Security Channels Assumptions

[4] n ≥ 3 t < n/2 Semi-honest Priv None
[22] n ≥ 3 t < n/2 Malicious Priv, BC DL
[42] n = 2 t = 1 Malicious Auth OT
[24] n = 2 t = 1 Semi-honest Auth OT
[1] n ≥ 3 t < n/2 Semi-honest Priv None
[18] n = 3 t = 1 Malicious Priv, BC CRS, SRSA
[29] n ≥ 2 t < n Malicious Auth, BC DCR, DDH
[23] n = 2 t = 1 Malicious Auth OT
This work n ≥ 2 t < n Malicious Auth, BC OT, factoring

Priv,Auth, andBC stand for private, authenticated, and broadcast channels, respectively.DL stands for discrete
log, OT for oblivious transfer, CRS for a common reference string, SRSA for Strong RSA, DCR for decisional
composite residuosity, and DDH for decisional Diffie–Hellman

2. Preliminaries

Notation. We use = for equality, ..= for assignment, ← for sampling from a distribu-
tion, ≡ for congruence, ≈c for computational indistinguishability, and ≈s for statistical
indistinguishability. In general, single-letter variables are set in italic font, multiletter
variables and function names are set in sans-serif font, and string literals are set in
slab-serif font. We use mod to indicate the modulus operator, while (mod m) at
the end of a line indicates that all equivalence relations on that line are to be taken over
the integers modulo m. By convention, we parameterize computational security by the
bit-length of each prime in an RSA biprime; we denote this length by κ throughout. We
use s to represent the statistical parameter. Where concrete efficiency is concerned, we
introduce a second computational security parameter, λ, which represents the length of
a symmetric key of equivalent strength to a biprime of length 2κ .3 κ and λ must vary
together, and a recommendation for the relationship between them has been laid down
by NIST [2].

Vectors and arrays are given in bold and indexed by subscripts; thus, xi is the i th

element of the vector x, which is distinct from the scalar variable x . When we wish to
select a row or column from a two-dimensional array, we place a ∗ in the dimension
along which we are not selecting. Thus, y∗, j is the j th column of matrix y, and y j,∗ is
the j th row. We use Pi to denote the party with index i , and when only two parties are
present, we refer to them as Alice and Bob. Variables may often be subscripted with
an index to indicate that they belong to a particular party. When arrays are owned by a
party, the party index always comes first. We use |x | to denote the bit-length of x and
|y| to denote the number of elements in the vector y.

Universal Composability.We prove our protocols secure in the universal composability
(UC) framework and use standard UC notation. In Appendix A, we give a high-level
overview and refer the reader to Canetti [7] for further details. In functionality descrip-
tions, we leave some standard bookkeeping elements implicit. For example, we assume

3In other words, a biprime of length 2κ provides λ bits of security.

12 Page 10 of 84 M. Chen et al.

that the functionality aborts if a party tries to reuse a session identifier inappropriately,
send messages out of order, etc. For convenience, we provide a functionGenSID, which
takes any number of arguments and deterministically derives a unique Session ID from
those arguments. For example, GenSID(sid, x,x) derives a new Session ID from the
variables sid and x , and the string literal “x”.

Chinese Remainder Theorem. The Chinese remainder theorem (CRT) defines an iso-
morphism between a set of residues modulo a set of respective pairwise-coprime values
and a single value modulo the product of the same set of pairwise-coprime values. This
forms the basis of our sampling procedure.

Theorem 2.1. (CRT) Let m be a vector of pairwise-coprime positive integers and let
x be a vector of numbers such that |m| = |x| = � and 0 ≤ x j < m j for all j ∈ [�], and
finally let M ..= ∏

j∈[�] m j . Under these conditions, there exists a unique value y such
that 0 ≤ y < M and y ≡ x j (mod m j) for every j ∈ [�].

We refer to x as the CRT form of y with respect to m. For completeness, we give the
CRTRecon algorithm, which finds the unique y given m and x.

Algorithm 2.2. CRTRecon(m, x)

1. With � ..= |m|, compute M =∏
j∈[�] m j .

2. For j ∈ [�], compute a j
..= M/m j and find b j satisfying a j ·b j ≡ 1 (mod m j)

using the Extended Euclidean Algorithm (see Knuth [36]).
3. Output y ..=∑

j∈[�] a j · b j · x j mod M .

3. Assumptions and Ideal Functionality

We begin this section by discussing the distribution of biprimes from which we sample
and thus the precise factoring assumption that we make, and then we give an efficient
sampling algorithm and an ideal functionality that computes it.

3.1. Factoring Assumptions

The standard factoring experiment (Experiment 3.1) as formalized by Katz and Lindel-
l [34] is parametrized by an adversary A and a biprime-sampling algorithm
GenModulus. On input 1κ , this algorithm returns (N , p, q), where N = p · q, and
p and q are κ-bit primes.4

Experiment 3.1. FactorA,GenModulus(κ)

1. Run (N , p, q) ← GenModulus(1κ).
2. Send N to A, and receive p′, q ′ > 1 in return.
3. Output 1 if and only if p′ · q ′ = N .

4Technically, Katz and Lindell specify that sampling failures are permitted with negligible probability,
and require GenModulus to run in strict polynomial time. We elide this detail.

Multiparty Generation of an RSA Modulus Page 11 of 84 12

In many cryptographic applications, GenModulus(1κ) is defined to sample p and
q uniformly from the set of primes in the range [2κ−1, 2κ) [25], and the factoring as-
sumption with respect to this common GenModulus function states that for every PPT
adversary A there exists a negligible function negl such that

Pr
[
FactorA,GenModulus(κ) = 1

] ≤ negl(κ).

Because efficiently sampling according to this uniform biprime distribution is difficult
in a multiparty context, most prior works sample according to a different distribution,
and thus using the moduli they produce requires a slightly different factoring assumption
than the traditional one. In particular, several recent works use a distribution originally
proposed by Boneh and Franklin [5], which is well adapted to multiparty sampling. Our
work follows this pattern.

Boneh and Franklin’s distribution is defined by the sampling algorithmBFGM, which
takes as an additional parameter the number of parties n. The algorithm samples n
integer shares, each in the range [0, 2κ−log n),5 and sums these shares to arrive at a
candidate prime. This does not induce a uniform distribution on the set of κ-bit primes.
Furthermore, BFGM only samples individual primes p or q that have p ≡ q ≡ 3
(mod 4), in order to facilitate efficient distributed primality testing, and it filters out
the subset of otherwise-valid moduli N = p · q that have p ≡ 1 (mod q) or q ≡ 1
(mod p).6

Algorithm 3.2. BFGM(κ, n)

1. For i ∈ [n], sample pi ← [
0, 2κ−log n

)
and qi ← [

0, 2κ−log n
)

subject to
p1 ≡ q1 ≡ 3 (mod 4) and p j ≡ q j ≡ 0 (mod 4) for j ∈ [2, n].

2. Compute

p ..=
∑

i∈[n]
pi and q ..=

∑

i∈[n]
qi and N ..= p · q

3. If gcd(N , p + q − 1) = 1, and both p and q are primes, then output (N ,

{(pi , qi)}i∈[n]). Otherwise, repeat this procedure from Step 1.

Any protocol whose security depends upon the hardness of factoring moduli output
by our protocol (including our protocol itself) must rely upon the assumption that for
every PPT adversary A,

Pr
[
FactorA,BFGM(κ, n) = 1

]
≤ negl(κ)

5Boneh and Franklin [5] are somewhat ambiguous as to whether the lower bound on each share is
2κ−log n−1 or 0. We take the latter interpretation, as have prior works [23,29]. We do not believe the dif-
ference to be important.

6Boneh and Franklin actually propose two variations, one of which has no false negatives; we choose the
other variation, as it leads to a more efficient sampling protocol.

12 Page 12 of 84 M. Chen et al.

3.2. The Distributed Biprime-Sampling Functionality

Unfortunately, our ideal modulus-sampling functionality cannot merely call BFGM;
we wish our functionality to run in strict polynomial time, whereas the running time
of BFGM is only expected polynomial. Thus, we define a new sampling algorithm,
CRTSample, which might fail, but conditioned on success outputs a distribution sta-
tistically indistinguishable from that of BFGM. Specifically, a coprimality constrain-
t implies that there exists some concrete lower bound in O(κ) on the factors of the
biprimes produced by CRTSample, whereas with probability negligible in κ , BFGM
outputs biprimes with factors below this bound. Otherwise, for the appropriate (possibly
non-integer) value of κ , the two output identical distributions, conditioned on success.
However, we giveCRTSample a specific distribution of failures that is tied to the design
of our protocol. As a second concession to our protocol design (and following Hazay et
al. [29]), CRTSample takes as input up to n − 1 integer shares of p and q, arbitrarily
determined by the adversary, while the remaining shares are sampled randomly. We
begin with a few useful notions.

Definition 3.3. (Primorial Number) The i th primorial number is defined to be the
product of the first i prime numbers.

Definition 3.4. ((κ, n)-Near-Primorial Vector) Let � be the largest number such that
the �th primorial number is less than 2κ−log n−1, and letm be a vector of length � such that
m1 = 4 and m2, . . . ,m� are the odd factors of the �th primorial number, in ascending
order. m is the unique (κ, n)-near-primorial vector.

Definition 3.5. (m-Coprimality) Let m be a vector of integers. An integer x is m-
coprime if and only if it is not divisible by any mi for i ∈ [|m|].

Algorithm 3.6. CRTSample(κ, n, {(pi , qi)}i∈P∗)
1. Letm be the (κ, n)-near-primorial vector, with length �, and let M be the product

of m.
2. For i ∈ [n] \ P∗, sample pi ← [0, M) and qi ← [0, M) subject to

pi ≡ qi ≡
{

3 (mod 4) if i = 1

0 (mod 4) if i �= 1

and subject to p and q being m-coprime, where

p ..=
∑

i∈[n]
pi and q ..=

∑

i∈[n]
qi

are computed over the integers.
3. If gcd(p · q, p+ q − 1) = 1, and if both p and q are primes, and if p ≡ q ≡ 3

(mod 4), then output (success, p, q); otherwise, output (failure, p, q).

Multiparty Generation of an RSA Modulus Page 13 of 84 12

Boneh and Franklin [5, Lemma 2.1] showed that knowledge of n − 1 integer shares
of the factors p and q does not give the adversary any meaningful advantage in factor-
ing biprimes from the distribution produced by BFGM. Hazay et al. [29, Lemma 4.1]
extended this argument to the malicious setting, wherein the adversary is allowed to
choose its own shares. A similar lemma must hold for CRTSample, as a corollary of
the fact that its output distribution differs only negligibly from that of BFGM.

Lemma 3.7. ([5,29]) Let n < κ and let (A1,A2) be a pair of PPT algorithm-
s. For (state, {(pi , qi)}i∈[n−1]) ← A1(1κ , 1n), let N be a biprime sampled by run-
ning CRTSample(κ, n, {(pi , qi)}i∈[n−1]). If A2(state, N) outputs the factors of N
with probability at least 1/κd , then there exists an expected-polynomial-time algorith-
m B that succeeds with probability at least 1/24n3κd − negl(κ) in the experiment
FactorB,BFGM(κ, n).

Multiparty functionality. Our ideal functionality FRSAGen is a natural embedding of
CRTSample in a multiparty functionality: it receives inputs {(pi , qi)}i∈P∗ from the
adversary and runs a single iteration of CRTSample with these inputs when invoked.
It either outputs the corresponding modulus N ..= p · q if it is valid, or indicates that a
sampling failure has occurred. Running a single iteration ofCRTSample per invocation
of FRSAGen enables significant freedom in the use of FRSAGen, because it can be com-
posed in different ways to tune the trade-off between resource usage and execution time.
It also simplifies the analysis of the protocol πRSAGen that realizes FRSAGen, because
the analysis is made independent of the success rate of the sampling procedure.

The functionality may not deliver N to the honest parties for one of two reasons:
either CRTSample failed to sample a biprime, or the adversary caused the computation
to abort. In either case, the honest parties are informed of the cause of the failure, and
consequently the adversary is unable to conflate the two cases. This is essentially the
standard notion of security with abort, applied to the multiparty computation of the
CRTSample algorithm. In both cases, the p and q output by CRTSample are given to
the adversary. This leakage simplifies our proof considerably, and we consider it benign,
since the honest parties never receive (and therefore cannot possibly use) N .

12 Page 14 of 84 M. Chen et al.

Functionality 3.8. FRSAGen(κ, n). Distributed Biprime Sampling
This n-party functionality attempts to sample an RSA modulus with prime length
κ , and interacts directly with an ideal adversary S who corrupts the parties indexed
by P∗. Let M be the largest number such that M/2 is a primorial number and
M < 2κ−log n .

Sampling: On receiving (sample, sid) from each party Pi for i ∈ [n] \ P∗ and
(adv-sample, sid, i, pi , qi) from S for i ∈ P∗, if 0 ≤ pi < M and 0 ≤ qi < M
for all i ∈ P∗, then run CRTSample(κ, n, {(pi , qi)}i∈P∗), and receive as a result
either (success, p, q) or (failure, p, q).

• If p �≡ 3 (mod 4) or q �≡ 3 (mod 4), then send (factors, sid, p, q) to S
and abort, informing all parties in an adversarially delayed fashion.

• If p ≡ q ≡ 3 (mod 4), and the result was failure, then store
(non-biprime, sid, p, q) in memory and send (factors, sid, p, q) to
S.

• If p ≡ q ≡ 3 (mod 4), and the result wassuccess, then compute N ..= p · q ,
store (biprime, sid, N , p, q) in memory, and send (biprime, sid, N) to
S.

Output: On receiving either (proceed, sid) or (cheat, sid) from S, if
(biprime, sid, N , p, q) or (non-biprime, sid, p, q) exists in memory,

• If proceed was received, then send either (biprime, sid, N) or
(non-biprime, sid) to all parties as adversarially delayed output, as ap-
propriate. Terminate successfully.

• If cheat was received, then abort, notifying all parties in an adversarially
delayed fashion, and send (factors, sid, p, q) directly to S.

Regardless, ignore all further instructions with this sid.

4. The Distributed Biprime-Sampling Protocol

In this section, we present the distributed biprime-sampling protocol πRSAGen, with
which we realize FRSAGen. We begin with a high-level overview, and then in Sect. 4.2,
we formally define the two ideal functionalities on which our protocol relies, after which
in Sect. 4.3 we give the protocol itself. In Sect. 4.4, we present proof sketches of semi-
honest and malicious security.

4.1. High-Level Overview

As described in the Introduction, our protocol derives from that of Boneh and Franklin [5],
the main technical differences relative to other recent Boneh–Franklin derivatives [23,29]
being the modularity with which it is described and proven, and the use of CRT-based
sampling. Our protocol has three main phases, which we now describe in sequence.

Multiparty Generation of an RSA Modulus Page 15 of 84 12

Candidate Sieving. In the first phase of our protocol, the parties jointly sample two
κ-bit candidate primes p and q without any small factors, and multiply them to learn
their product N . Our protocol achieves these two tasks in an integrated way, thanks to
the Chinese remainder theorem.

Consider a prime m and a set of shares xi for i ∈ [n] over the field Zm . As in the
description of CRTRecon, let a and b be defined such that a · b ≡ 1 (mod m), and let
M be an integer. Observe that if m divides M , then

∑

i∈[n]
xi �≡ 0 (mod m) �⇒

∑

i∈[n]
a · b · xi mod M �≡ 0 (mod m) (1)

Now consider a vector of coprime integers m of length �, and let M be their product. Let
x be a vector, each element secret shared over the fields defined by the corresponding
element of m, and let a and b be defined as in CRTRecon (i.e., a j

..= M/m j and
a j · b j ≡ 1 (mod m j)). We can see that for any k, j ∈ [�] such that k �= j ,

a j ≡ 0 (mod mk) �⇒
∑

i∈[n]
a j · b j · xi, j mod M ≡ 0 (mod mk) (2)

and the conjunction of Eqs. 1 and 2 gives us

∑

j∈[�]

∑

i∈[n]
a j · b j · xi, j mod M ≡

∑

i∈[n]
xi,k (mod mk)

for all k ∈ [�]. Observe that this holds regardless of which order we perform the sums
in, and regardless of whether the mod M operation is done at the end, or between the
two sums, or not at all.

It follows then that we can sample n shares for an additive secret sharing over the
integers of a κ-bit value x (distributed between 0 and n · M) by choosing m to be the
(κ, n)-near-primorial vector (per Definition 3.4), instructing each party Pi for i ∈ [n]
to pick xi, j locally for j ∈ [�] such that 0 ≤ xi, j < m j , and then instructing each party
to locally reconstruct xi ..= CRTRecon(m, xi,∗), its share of x . It furthermore follows
that if the parties can contrive to ensure that

∑

i∈[n]
xi, j �≡ 0 (mod m j) (3)

for j ∈ [�], then x will not be divisible by any prime in m.
Observe next that if the parties sample two shared vectors p and q as above (corre-

sponding to the candidate primes p and q) and compute a shared vector N of identical
dimension such that

∑

i∈[n]
pi, j ·

∑

i∈[n]
qi, j ≡

∑

i∈[n]
Ni, j (mod m j) (4)

12 Page 16 of 84 M. Chen et al.

for all j ∈ [�], then it follows that

∑

i∈[n]
CRTRecon(m,pi,∗) ·

∑

i∈[n]
CRTRecon(m,qi,∗)

=
∑

i∈[n]
CRTRecon(m,Ni,∗)

and from this it follows that the parties can calculate integer shares of N = p · q by
multiplying p and q together element-wise using a modular-multiplication protocol for
linear secret shares, and then locally running CRTRecon on the output to reconstruct
N . In fact, our sampling protocol makes use of a special functionality FAugMul, which
samples p, q, and N simultaneously such that the conditions in Eqs. 3 and 4 hold.

There remains one problem: our vector m was chosen for sampling integer-shared
values between 0 and n · M (with each share no larger than M), but N might be as large
as n2 · M2. In order to avoid wrapping during reconstruction of N , we must reconstruct
with respect to a larger vector of primes (while continuing to sample with respect to
a smaller one). Let m now be of length �′, and let � continue to denote the length of
the prefix of m with respect to which sampling is performed. After sampling the initial
vectors p, q, and N, each party Pi for i ∈ [n] must extend pi,∗ locally to �′ elements, by
computing

pi, j ..= CRTRecon
({

m j ′
}
j ′∈[�] ,

{
p j ′
}
j ′∈[�]

)
mod m j

for j ∈ [� + 1, �′], and then likewise for qi,∗.7 Finally, the parties must use a modular-
multiplication protocol to compute the appropriate extension of N; from this extended
N, they can reconstruct shares of N = p · q. They swap these shares, and thus, each
party ends the sieving phase of our protocol with a candidate biprime N and an integer
share of each of its factors, pi and qi .

Each party completes the first phase by performing a local trial division to check if
N is divisible by any prime smaller than some bound B (which is a parameter of the
protocol). The purpose of this step is to reduce the number of calls to FBiprime and thus
improve efficiency.

Biprimality Test. The parties jointly execute a biprimality test, where every party inputs
the candidate N and its shares pi and qi , and receives back a biprimality indicator. This
phase essentially comprises a single call to a functionality FBiprime, which allows an
adversary to force spurious negative results, but never returns false positive results.
Though this phase is simple, much of the subtlety of our proof concentrates here: we
show via a reduction to factoring that cheating parties have a negligible chance to pass
the biprimality test if they provide wrong inputs. This eliminates the need to authenticate
the inputs in any way.

7This technique is known in the literature of residue number systems as the Szabo–Tanaka method for
RNS base extension [48].

Multiparty Generation of an RSA Modulus Page 17 of 84 12

Consistency Check. To achieve malicious security, the parties must ensure that none
among them cheated during the previous stages in a way that might influence the result
of the computation. This is what we have previously termed the retroactive consistency
check. If the biprimality test indicated that N is not a biprime, then the parties use
a special interface of FAugMul to reveal the shares they used during the protocol, and
then they verify locally and independently that p and q are not both primes. If the
biprimality test indicated that N is a biprime, then the parties run a secure test (again
via a special interface of FAugMul) to ensure that length extensions of p and q were
performed honestly. To achieve semi-honest security, this phase is unnecessary, and the
protocol can end with the biprimality test.

4.2. Ideal Functionalities Used in the Protocol

Augmented Multiparty Multiplier. The augmented multiplier functionality FAugMul
(Functionality 4.1) is a reactive functionality that operates in multiple phases and stores
internal state across calls. It is meant to help in manipulating CRT-form secret shares,
and to enforce correct reuse of a set of shares across multiple operations. It contains five
basic interfaces.

• The sample interface allows the parties to sample shares of nonzero multiplication
triplets over small primes. That is, given a prime m, the functionality receives a triplet
(xi , yi , zi) from every corrupted party Pi , and then samples a triplet (x j , y j , z j) ←
Z

3
m for every honest P j conditioned on

∑

i∈[n]
zi ≡

∑

i∈[n]
xi ·

∑

i∈[n]
yi �≡ 0 (mod m)

In the context of πRSAGen, this is used to sample CRT-shares of p and q.
• Theinput andmultiply interfaces, taken together, allow the parties to load shares

(with respect to some small prime modulus m) into the functionality’s memory, and
later perform modular multiplication on two sets of shares that are associated with the
same modulus. That is, given a prime m, each party Pi inputs xi and, independently,
yi , and when the parties request a product, the functionality samples a share of z from
Zm for each party subject to

∑

i∈[n]
zi ≡

∑

i∈[n]
xi ·

∑

i∈[n]
yi (mod m)

In the context of πRSAGen, this interface is used to perform length-extension on CRT-
shares of p and q.

• The check interface allows the parties to securely compute a predicate over the set
of stored values. In the context of πRSAGen, this is used to check that the CRT-share
extension of p and q has been performed correctly, when N is a biprime.

• Theopen interface allows the parties to retroactively reveal their inputs to one another.
In the context of πRSAGen, this is used to verify the sampling procedure and biprimality
test when N is not a biprime.

12 Page 18 of 84 M. Chen et al.

These five interfaces suffice for the malicious version of the protocol, and the first three
alone suffice for the semi-honest version. We make a final adjustment, which leads to
a substantial efficiency improvement in the protocol with which we realize FAugMul
(which we describe in Appendix B). Specifically, we give the adversary an interface
by which it can request that any stored value be leaked to itself, and by which it can
(arbitrarily) determine the output of any call to the sample or multiply interfaces.
However, if the adversary uses this interface, the functionality remembers, and informs
the honest parties by aborting when the check or open interfaces is used.

Functionality 4.1. FAugMul(n). Augmented n-Party Multiplication
This functionality is parametrized by the party count n. In addition to the parties
it interacts with an ideal adversary S who corrupts the parties indexed by P∗. The
remaining honest parties are indexed by P* ..= [n] \ P∗.

Cheater Activation: Upon receiving (cheat, sid) from S, store (cheater, sid)

in memory and send every record of the form (value, sid, i, xi ,m) to S. For the
purposes of this functionality, we will consider session IDs to be fresh even when
a cheater record already exists in memory.

Sampling: Upon receiving (sample, sid1, sid2,m) from each partyPi for i ∈ [n],
if sid1 and sid2 are fresh, agreed-upon values and ifm is an agreed-upon prime, and
if neither (cheater, sid1) nor (cheater, sid2) exists in memory, then sample
(xi , yi , zi) ← Z

3
m uniformly for each i ∈ [n] subject to

∑

i∈[n]
zi ≡

∑

i∈[n]
xi ·

∑

i∈[n]
yi �≡ 0 (mod m)

If the previous conditions hold, but (cheater, sid1) or (cheater, sid2) exists
in memory, then send (cheat-sample, sid1, sid2) to S and in response receive
(cheat-samples, sid1, sid2, {(xi , yi , zi)}i∈[n]) where 0 ≤ xi , yi , zi < m for
all i and where

∑

i∈[n]
zi �≡ 0 (mod m)

(if these conditions are violated, then ignore the response from S). Regardless,
store (value, sid1, i, xi ,m) and (value, sid2, i, yi ,m) in memory for i ∈ [n],
and then send (sampled-product, sid1, sid2, xi , yi , zi) to each party Pi as
adversarially delayed private output.

Input: Upon receiving (input, sid, xi ,m) from each party Pi , where i ∈ [n]:
if sid is a fresh, agreed-upon value and if m is an agreed-upon prime, and if
0 ≤ xi < m for all i ∈ [n], then store (value, sid, i, xi ,m) in memory for each
i ∈ [n] and send (value-loaded, sid) to all parties. If (cheater, sid) exists
in memory, then send (value, sid, i, xi ,m) to S for each i ∈ [n].

Multiparty Generation of an RSA Modulus Page 19 of 84 12

Multiplication: Upon receiving (multiply, sid1, sid2, sid3) from each party
Pi for i ∈ [n], if all three session IDs are agreed upon and sid3 is fresh, and if no
record of the form (cheater, sid1) or (cheater, sid2) exists in memory, and
if records of the form (value, sid1, i, xi ,m1) and (value, sid2, i, yi ,m2) exist
in memory for all i ∈ [n] such that m1 = m2, then sample zi ← Zm1 for i ∈ [n]
subject to

∑

i∈[n]
zi ≡

∑

i∈[n]
xi ·

∑

i∈[n]
yi (mod m1)

If the previous conditions hold, but (cheater, sid1) or (cheater, sid2) exists
in memory, then send (cheat-multiply, sid1, sid2, sid3) to S and in response
receive (cheat-product, sid3, {zi }i∈[n]) where 0 ≤ zi < m1 for all i . Re-
gardless, send (product, sid3, zi) to each party Pi for i ∈ [n] as adversarially
delayed private output. Note that this procedure only permits multiplications of
values associated with the same modulus.

Predicate Cheater Check: Upon receiving (check, sids, f) from all parties,
where f is the description of a predicate over the set of stored values associated
with the vector of session IDs sids, if f is not agreed upon, or if any record
(cheater, sid) exists in memory such that sid ∈ sids, then abort, informing all
parties in an adversarially delayed fashion. Otherwise, let x be the vector of stored
values associated with sids, or in other words, let it be a vector such that for all
j ∈ [|x|] and i ∈ [n], records of the form (value, sids j , i, yi ,m) exist in memory
such that

0 ≤ x j < m and x j ≡
∑

i∈[n]
yi (mod m)

Send (predicate-result, sids, f (x)) to all parties as adversarially delayed
private output, and refuse all future messages with any session ID in sids.

Input Revelation: Upon receiving (open, sid) from all parties, if a record of
the form (cheater, sid) exists in memory, then abort, informing all parties in an
adversarially delayed fashion. Otherwise, for each record of the form (value, sid,

i, xi) in memory, send (opening, sid, i, xi) to all parties as adversarially delayed
output. Refuse all future messages with this sid.

Biprimality Test. The biprimality-test functionality FBiprime (Functionality 4.2)

abstracts the behavior of the biprimality test of Boneh and Franklin [5]. The functionality
receives from each party a candidate biprime N , along with shares of its factors p and
q. It checks whether p and q are primes and whether N = p · q. The adversary is given
an additional interface, by which it can ask the functionality to leak the honest parties’
inputs, but when this interface is used then the functionality reports to the honest parties
that N is not a biprime, even if it is one.

12 Page 20 of 84 M. Chen et al.

Functionality 4.2. FBiprime(M, n). Distributed Biprimality Test
This functionality is parametrized by the integer M and the party-count n. In addi-
tion to the parties it interacts with an ideal adversary S.

Biprimality Test:
1. Wait to receive (check-biprimality, sid, N , pi , qi) from each party Pi

for i ∈ [n], where sid is a fresh, agreed-upon value.
2. Over the integers, compute

p ..=
∑

i∈[n]
pi and q ..=

∑

i∈[n]
qi and N ′ ..= p · q

3. If all parties agreed on the value of N in Step 1, and N = N ′, and both p and
q are primes, and p �≡ 1 (mod q), and q �≡ 1 (mod p), and 0 ≤ p < M and
0 ≤ q < M , then send a message (biprime, sid) to S. If S responds with
(proceed, sid), then output (biprime, sid) to all parties as adversarially
delayed output. If S responds with (cheat, sid)a, or if any of the previous
predicates is false, then output (leaked-shares, sid, {(pi , qi)}i∈[n]) directly
to S, and output (not-biprime, sid) to all parties as adversarially delayed
output.

aSemi-honest adversaries are forbidden to send the cheat instruction.

Realizations. In Appendix B, we discuss a protocol to realize FAugMul, and in Sect. 5,
we propose a protocol to realize FBiprime. Both make use of generic MPC, but in such
a way that no generic MPC is required unless N is a biprime.

4.3. The Protocol Itself

We refer the reader back to Sect. 4.1 for an overview of our protocol. We have mentioned
that it requires a vector of coprime values, which is prefixed by the (κ, n)-near-primorial
vector. We now give this vector a precise definition. Note that the efficiency of our
protocol relies upon this vector, because we use its contents to sieve candidate primes.
Since smaller numbers are more likely to be factors for the candidate primes, we choose
the largest allowable set of the smallest sequential primes.

Definition 4.3. ((κ, n)-Compatible Parameter Set) Let �′ be the smallest number such
that the �′th primorial number is greater than 22κ−1, and let m be a vector of length �′
such that m1 = 4 and m2, . . . ,m�′ are the odd factors of the �′th primorial number, in
ascending order. (m, �′, �, M) is the (κ, n)-compatible parameter set if � < �′ and the
prefix of m of length � is the (κ, n)-near-primorial vector per Definition 3.4, and if M is
the product of this prefix.

Multiparty Generation of an RSA Modulus Page 21 of 84 12

Protocol 4.4. πRSAGen(κ, n, B). Distributed Biprime Sampling
This protocol is parametrized by the RSA prime length κ , the number of parties n,
and the trial-division bound B. Let (m, �′, �, M) be the (κ, n)-compatible parameter
set, per Definition 4.3. In this protocol the parties have access to the functionalities
FAugMul and FBiprime.

Candidate Sieving:
1. Upon receiving input (sample, sid) from the environment, the parties begin the

protocol. Every party Pi for i ∈ [n] computes three vectors of session IDs

psids ..= {GenSID(sid, j,p)} j∈[�′]
qsids ..= {GenSID(sid, j,q)} j∈[�′]
Nsids ..= {GenSID(sid, j,N)} j∈[�′]

and sends (sample,psids j ,qsids j ,m j) toFAugMul(n) for every j ∈ [2, �], and
receives (sampled-product,psids j ,qsids j ,pi, j ,qi, j ,Ni, j) in response.
The parties also set p1,1

..= q1,1
..= 3 and pi ′,1 ..= qi ′,1 ..= 0 for i ′ ∈ [2, n].

2. Each party Pi for i ∈ [n] computes

pi ..= CRTRecon
({

m j
}
j∈[�] ,

{
pi, j

}
j∈[�]

)

qi ..= CRTRecon
({

m j
}
j∈[�] ,

{
qi, j

}
j∈[�]

)

and then, for j ∈ [� + 1, �′], Pi computes

pi, j ..= pi mod m j and qi, j ..= qi mod m j

Note that each party Pi is now in possession of a pair of vectors

pi,∗ ∈ Zm1 × . . . × Zm�′ and qi,∗ ∈ Zm1 × . . . × Zm�′

3. For j ∈ [� + 1, �′], every party Pi for i ∈ [n] sends the following sequence of
messages to FAugMul(n), waiting for confirmation after each:

(a) (input,psids j ,pi, j ,m j)

(b) (input,qsids j ,qi, j ,m j)

(c) (multiply,psids j ,qsids j ,Nsids j)

and at the end of this sequence, each party Pi receives (product,Nsids j ,

Ni, j) from FAugMul(n) in response. Note that each party Pi is now in possession
of a vector Ni,∗ ∈ Zm1 × . . . × Zm�′ .

a

12 Page 22 of 84 M. Chen et al.

4. For j ∈ [2, �′], each party Pi for i ∈ [n] broadcasts Ni, j . Once all parties have
received shares from all other parties, they compute

N ..= CRTRecon

⎛

⎝m,

⎧
⎨

⎩

∑

i ′∈[n]
Ni ′, j mod m j

⎫
⎬

⎭
j∈[�′]

⎞

⎠

5. Each party Pi performs a local trial division on N by all primes less than B. If N
is divisible by some prime, then the parties skip directly to Step 7, and take the
privacy-free branch (as though not-biprime were received from FBiprime).

Biprimality Test:

6. Each party Pi for i ∈ [n] sends (check-biprimality, sid, N , pi , qi) to
FBiprime(M, n) and waits for either (biprime, sid) or (not-biprime, sid)

in response.

Consistency Check:b

7. Let f be the predicate that is defined to compute

pi ′ ..= CRTRecon
(
m,pi ′,∗

)
and qi ′ ..= CRTRecon

(
m,qi ′,∗

)

for all i ′ ∈ [n] and to return 1 if and only if

N =
∑

i ′∈[n]
pi ′ ·

∑

i ′∈[n]
qi ′

∧ 0 ≤ pi ′ < M ∧ 0 ≤ qi ′ < M for all i ′ ∈ [n]

where the sums and product are taken over the integers.c

• Ifbiprime is received fromFBiprime(M, n), then N is a biprime, and a privacy-
preserving check must be performed. Each party sends (check,

psids‖qsids, f) to FAugMul(n). If FAugMul returns (predicate-result,

psids‖qsids, 1) then the parties halt successfully and output (biprime, sid,

N) to the environment; otherwise, they abort.
• Ifnot-biprime is received fromFBiprime(M, n), then either N is not a biprime

or some party has cheated; consequently, a privacy-free check is performed.

(a) For j ∈ [2, �′], each party Pi for i ∈ [n] sends (open,psids j) and (open,

qsids j) to FAugMul(n). If Pi observes FAugMul(n) to abort in response to any
of these queries, then Pi itself aborts. Otherwise, Pi receives (opening,

psids j ,pi ′, j) and (opening,qsids j ,qi ′, j) for each i ′ ∈ [n] and j ∈ [2, �′].

Multiparty Generation of an RSA Modulus Page 23 of 84 12

(b) The parties individually check that the predicate f holds over the vectors of
shares which they now all possess. If this predicate holds and p and q are not
both prime,d then all parties halt successfully and output (non-biprime, sid)

to the environment. Otherwise, a party has cheated, and they abort.

aNote that the first � elements of N were computed as a side-effect of sampling in Step 1, and Step 2
implements a distributed version of Szabo-Tanaka extension as previously discussed. Thus this step
simply computes extended shares of the product from extended shares of the factors.

bIf only security against semi-honest adversaries is required, the protocol can terminate after the
Biprimality-Test phase, and these checks are unnecessary.

cNote that computations over the (unbounded) integers are technically inexpressible as circuits, as
in practice this predicate must be expressed. Thus, in practice, the predicate must instead use a modulus
sufficiently large to make overflow impossible, given the input-size constraints.

dAny ordinary primality test can be used here; e.g. the Miller-Rabin test.

4.4. Security Sketches

We now informally argue that πRSAGen realizes FRSAGen in the semi-honest and mali-
cious settings. We give a full proof for the malicious setting in Appendix C.

Theorem 4.5. The protocol πRSAGen perfectly UC-realizesFRSAGen in the (FAugMul,
FBiprime)-hybrid model against a semi-honest adversary that statically corrupts up to
n − 1 parties.

Proof Sketch. In lieu of arguing for the correctness of our protocol, we refer the reader
to the explanation in Sect. 4.1 and focus here on the strategy of a simulator S against
a semi-honest adversary A who corrupts the parties indexed by P∗. S forwards all
messages between A and the environment faithfully.

In Step 1 of πRSAGen, for each j ∈ [2, �], S receives the sample instruction with
modulus m j on behalf of FAugMul from all parties indexed by P∗. For each j , it then
samples (pi, j ,qi, j ,Ni, j) ← Z

3
m j

uniformly for i ∈ P∗, and returns each triple to the
appropriate party.

Step 2 involves no interaction on the part of the parties, but it is at this point that S
computes pi and qi for i ∈ P∗, in the same way that the parties themselves do. Note
that since p∗,1 and q∗,1 are deterministically chosen, they are known to S. The simulator
then sends these shares to FRSAGen via the functionality’s adv-input interface and
receives in return either a biprime N , or two factors p and q such that N ..= p · q is not
a biprime. Regardless, it instructs FRSAGen to proceed.

In Step 3 of πRSAGen, S receives two input instructions from each corrupted party
for each j ∈ [� + 1, �′] on behalf of FAugMul, and confirms receipt as FAugMul would.
Subsequently, for each j ∈ [�+1, �′], the corrupt parties all send a multiply instruc-
tion, and then S samples Ni, j ← Zm j for i ∈ [n] subject to

∑

i∈[n]
Ni, j ≡ N (mod m j)

and returns each share to the matching corrupt party.

12 Page 24 of 84 M. Chen et al.

In Step 4 of πRSAGen, for every j ∈ [�′], every corrupt party Pi ′ for i ′ ∈ P∗, and
every honest party Pi for i ∈ [n]\P∗, S sends Ni, j to Pi ′ on behalf of Pi , and receives
Ni ′, j (which it already knows) in reply.

To simulate the final steps of πRSAGen, S tries to divide N by all primes smaller
than B. If it succeeds, then the protocol is complete. Otherwise, it receives check-
biprimality from all of the corrupt parties on behalf of FBiprime, and replies with
biprime or not-biprime as appropriate. It can be verified by inspection that the
view of the environment is identically distributed in the ideal-world experiment con-
taining S and honest parties that interact with FRSAGen, and the real-world experiment
containing A and parties running πRSAGen.

Theorem 4.6. If factoring biprimes sampled by BFGM is hard, then πRSAGen UC-
realizes FRSAGen in the (FAugMul,FBiprime)-hybrid model against a malicious PPT
adversary that statically corrupts up to n − 1 parties.

Proof Sketch. We observe that if the adversary simply follows the specification of the
protocol and does not cheat in its inputs to FAugMul or FBiprime, then the simulator can
follow the same strategy as in the semi-honest case. At any point, if the adversary deviates
from the protocol, the simulator requests FRSAGen to reveal all honest parties’ shares,
and thereafter the simulator uses them by effectively running the code of the honest
parties. This matches the adversary’s view in the real protocol as far as the distribution
of the honest parties’ shares is concerned.

It remains to be argued that any deviation from the protocol specification will also
result in an abort in the real world with honest parties and will additionally be recog-
nized by the honest parties as an adversarially induced cheat (as opposed to a statistical
sampling failure). Note that the honest parties must only detect cheating when N is
truly a biprime and the adversary has sabotaged a successful candidate; if N is not a
biprime and would have been rejected anyway, then cheat detection is unimportant. We
analyze all possible cases where the adversary deviates from the protocol below. Let N
be defined as the value implied by parties’ sampled shares in Step 1 of πRSAGen.
Case 1: N is a non-biprime and reconstructed correctly. In this case, FBiprime will
always reject N as there exist no satisfying inputs (i.e., there are no two prime factors
p, q such that p · q = N).
Case 2: N is a non-biprime and reconstructed incorrectly as N ′. If by fluke N ′
happens to be a biprime, then the incorrect reconstruction will be caught by the explicit
secure predicate check during the consistency-check phase. If N ′ is a non-biprime, then
the argument from the previous case applies.
Case 3: N is a biprime and reconstructed correctly. If consistent inputs are used for
the biprimality test and nobody cheats, the candidate N is successfully accepted (this
case essentially corresponds to the semi-honest case). Otherwise, if inconsistent inputs
are used for the biprimality test, one of the following events will occur:

• FBiprime rejects this candidate. In this case, all parties reveal their shares of p and
q to one another (with guaranteed correctness via FAugMul) and locally test their
primality. This will reveal that N was a biprime and that FBiprime must have been
supplied with inconsistent inputs, implying that some party has cheated.

Multiparty Generation of an RSA Modulus Page 25 of 84 12

• FBiprime accepts this candidate. This case occurs with negligible probability (assum-
ing factoring is hard). Because N only has two factors, there is exactly one pair of
inputs that the adversary can supply to FBiprime to induce this scenario, apart from
the pair specified by the protocol. In our full proof (see Appendix C) we show that
finding this alternative pair of satisfying inputs implies factoring N . We are careful
to rely on the hardness of factoring only in this case, where by premise N is a biprime
with κ-bit factors (i.e., an instance of the factoring problem).

Case 4: N is a biprime and reconstructed incorrectly as N ′. If N ′ is a biprime then
the incorrect reconstruction will be caught during the consistency-check phase, just as
when N is a biprime. If N ′ is a non-biprime, then it will be rejected byFBiprime, inducing
all parties to reveal their shares and find that their shares do not in fact reconstruct to N ′,
with the implication that some party has cheated.

Thus, the adversary is always caught when trying to sabotage a true biprime, and it can
never sneak a non-biprime past the consistency check. Because the real-world protocol
always aborts in the case of cheating, it is indistinguishable from the simulation described
above, assuming that factoring is hard.

5. Distributed Biprimality Testing

In this section, we present protocols realizing FBiprime. In Sect. 5.1, we discuss the
semi-honest setting, and in Sect. 5.2, the malicious setting.

5.1. The Semi-Honest Setting

In the semi-honest setting, FBiprime can be realized by the biprimality-testing protocol
of Boneh and Franklin [5]. Loosely speaking, the Boneh–Franklin protocol is a variant
of the Miller–Rabin test: for a randomly chosen γ ∈ Z

∗
N with Jacobi symbol 1, it checks

whether γ (N−p−q+1)/4 ≡ ±1 (mod N) (recall that ϕ(N) = N − p−q+1). A biprime
will always pass this test, but non-biprimes may yield a false positive with probability
1/2. The test is repeated s times (either sequentially or concurrently) in order to bound
the probability of proceeding with a false positive to 2−s (where s is the statistical
security parameter).

The above test filters out all non-biprimes except those with factors of the form p = ab1
1

and q = ab2
2 , with q ≡ 1 (mod ab1−1

1). This final class of non-biprimes is filtered by
securely sampling r ← ZN , computing z ..= r · (p + q − 1), and then testing whether
gcd(z, N) = 1.8 Boneh and Franklin suggest that the secure sampling of r and the
computation of z can be done via generic MPC; we provide a functionalityFComCompute
(see Appendix A.2) that is adequate for the task, but note that other strategies exist: for
example, Frederiksen et al. use a bespoke protocol, which could be further optimized by
performing its multiparty multiplication operations in CRT form, as we have outlined
in this work. As we report in Sect. 6, this final GCD test does not represent a substantial
fraction of the overall cost in the semi-honest setting, even if it is instantiated generically,

8This is accomplished by testing gcd(z mod N , N) = 1, which is equivalent as any factor of z and N also
divides z mod N .

12 Page 26 of 84 M. Chen et al.

and so the impact of such optimizations would be minimal. Regardless, we note that the
GCD test does induce some false negatives (modeled by BFGM) and refer the reader to
Boneh and Franklin [5, Section 4.1] for a more comprehensive discussion. The following
lemma is immediately implied by their work.

Lemma 5.1. The biprimality-testing protocol described by Boneh and Franklin [5]
UC-realizes FBiprime with statistical security in the FComCompute-hybrid model against
a static, semi-honest adversary who corrupts up to n − 1 parties.

5.2. The Malicious Setting

Unlike a semi-honest adversary, we permit a malicious adversary to force a true biprime
to fail our biprimality test and detect such behavior using independent mechanisms in
the πRSAGen protocol. However, we must ensure that a non-biprime can never pass the
test with more than negligible probability. To achieve this, we use a derivative of the
biprimality-testing protocol of Frederiksen et al. [23]. Our protocol takes essentially the
same high-level approach as theirs, but the complexity of our protocol is reduced because
we consider multiple soundness errors jointly instead of independently. Furthermore, by
careful reordering and the right choice of functionalities, we eliminate the non-black-box
use of commitments, as well as an expensive, redundant multiparty multiplication over
2κ-bit inputs.

Our protocol essentially comprises a randomized version of the semi-honest Boneh–
Franklin test described previously, followed by a Schnorr-like protocol to verify that the
test was performed correctly. The soundness error of the underlying biprimality test is
compounded by the Schnorr-like protocol’s soundness error to yield a combined error
of 3/4, which implies that the test must repeated s · log4/3(2) < 2.5s times in order to
achieve a soundness error no greater than 2−s overall. While this is sufficient to ensure
the test itself is carried out honestly, it does not ensure the correct inputs are used.
Consequently, generic MPC is used to verify the relationship between the messages
involved in the Schnorr-like protocol and the true candidate given by N and shares
of its factors. As a side effect, this generic computation samples r ← ZN and outputs
z = r ·(p+q−1) mod N so that the GCD test can afterward be run locally by each party.

Our protocol makes use of a number of subfunctionalities, all of which are standard
and described in Appendix A.2. Namely, we use a coin-tossing functionality FCT to
uniformly sample an element from some set, the one-to-many commitment functionality
FCom, the generic MPC functionality over committed inputs FComCompute, and the
integer-sharing-of-zero functionality FZero. In addition, the protocol uses the algorithm
VerifyBiprime (Algorithm 5.3).

Protocol 5.2. πBiprime(M, n). Distributed Biprimality Testing
This protocol is parametrized by an integer M and the number of parties n. In
addition, there is a statistical parameter s. The parties have access to the FCT,
FCom, FComCompute, and FZero functionalities.

Multiparty Generation of an RSA Modulus Page 27 of 84 12

Input Commitment:
1. Upon receiving input (check-biprimality, sid, N , pi , qi) from the envi-

ronment, each party Pi for i ∈ [n] samples τ i, j ← ZM ·2s+1 for j ∈ [2.5s]
and commits to these values, along with its shares of p and q, by sending
(commit,GenSID(sid, i), (pi , qi , τ i,∗)) to FComCompute(n).

Boneh-Franklin Test:
2. Each party Pi for i ∈ [n] sends (sample, sid) to FZero(n, 22κ+s) and receives

(zero-share, sid, ri) in response.
3. For j ∈ [2.5s], the parties invoke FCT(n, JN), where JN is the subdomain of

Z
∗
N that contains only values with Jacobi symbol 1. The parties define vector γ

that contains the 2.5s sampled values.
4. For every j ∈ [2.5s], party P1 computesa

χ1, j
..= γ

r1−(p1+q1−6)/4
j mod N

and every other party Pi for i ∈ [2, n] computes

χ i, j
..= γ

ri−(pi+qi)/4
j mod N

5. Every Pi for i ∈ [n] sends (commit,GenSID(sid, i),χ i,∗, [n]) to FCom(n).
6. After being notified that all other parties are committed, each partyPi for i ∈ [n]

sends (decommit,GenSID(sid, i)) toFCom(n), and in response receives χ i ′,∗
from FCom(n) for i ′ ∈ [n] \ {i}.

7. The parties output (not-biprime, sid) to the environment and halt if there
exists j ∈ [2.5s] such that

γ
(N−5)/4
j ·

∏

i∈[n]
χ i, j �≡ ±1 (mod N)

Consistency Check and GCD Test:
8. For j ∈ [2.5s], each party Pi for i ∈ [n] computes αi, j

..= γ
τ i, j
j mod N . The

parties all broadcast the values they have computed to one another.
9. The parties all send (flip, sid) to FCT(n, {0, 1}2.5s) to obtain an agreed-upon

random bit vector c of length 2.5s.
10. For j ∈ [2.5s], party P1 computes ζ 1, j

..= τ 1, j − c j · (p1 + q1)/4, and every
other party Pi for i ∈ [2, n] computes ζ i, j

..= τ i, j − c j · (pi + qi − 6)/4. They
all broadcast the values they have computed to one another.

11. The parties halt and output (not-biprime, sid) if there exists any j ∈ [2.5s]
such that

∏

i∈[n]
γ

ζ i, j
j �≡

∏

i∈[n]
αi, j · χc j

i, j (mod N)

12 Page 28 of 84 M. Chen et al.

12. Let C be a circuit computing VerifyBiprime(N , M, c, {·, ·, ·, ζ i,∗}i∈[n]); that is,
let it be a circuit representation of Algorithm 5.3 with the public values N , M , c,
and ζ hardcoded. The parties send (compute, sid,

{GenSID(sid, i)}i∈[n],C) to FComCompute(n), and in response they all receive
(result, sid, z). If z = ⊥, or if FComCompute(n) aborts, then the parties halt
and output (not-biprime, sid).

13. The parties halt and output (biprime, sid) to the environment if gcd(z, N) =
1, or halt and output (not-biprime, sid) otherwise.

aRecall that p1 ≡ q1 ≡ 3 (mod 4), and so subtracting 6 from their sum ensures that division by 4
can be performed without computing a modular multiplicative inverse in Z

∗
N . We compensate for this

offset using another offset in Step 7.

Below we present the algorithm VerifyBiprime that is used for the GCD test. The
inputs are the candidate biprime N , an integer M (the bound on the shares’ size), a
bit-vector c of length 2.5s, and for each i ∈ [n] a tuple consisting of the shares pi and
qi with the Schnorr-like messages τ i,∗ and ζ i,∗ generated by Pi . The algorithm verifies
that all input values are compatible and returns z = r · (p+q− 1) mod N for a random
r .

Algorithm 5.3. VerifyBiprime(N , M, c, {(pi , qi , τ i,∗, ζ i,∗)}i∈[n])
1. Sample r ← ZN and compute

z ..= r ·
(

− 1 +
∑

i∈[n]
(pi + qi)

)

mod N

2. Return z if and only if it holds that

N =
∑

i∈[n]
pi ·

∑

i∈[n]
qi

∧ 0 ≤ pi < M ∧ 0 ≤ qi < M for all i ∈ [n]
∧ τ 1, j = ζ 1, j + c j · (p1 + q1 − 6)/4 for all j ∈ [2.5s]
∧ τ i, j = ζ i, j + c j · (pi + qi)/4 for alli ∈ [2, n]and j ∈ [2.5s]

If any part of the above predicate does not hold, output ⊥.

Theorem 5.4. The protocol πBiprime statistically UC-realizes FBiprime in the

(FCom,FComCompute,FCT,FZero)-hybrid model against a malicious adversary that
statically corrupts up to n − 1 parties.

Proof Sketch. Our simulator S for FBiprime receives N as common input. Let P∗ and
P* be vectors indexing the corrupt and honest parties, respectively. To simulate Steps 1

Multiparty Generation of an RSA Modulus Page 29 of 84 12

through 3 of πBiprime, S simply behaves as FCT, FZero, and FComCompute would in its
interactions with the corrupt parties on their behalf, remembering the values received
and transmitted. Before continuing, S submits the corrupted parties’ shares of p and q
to FBiprime on their behalf. In response, FBiprime either informs S that N is a biprime
or leaks the honest parties’ shares. In Step 4, S again behaves exactly as FCom would.
During the remainder of the protocol, the simulator must follow one of two different
strategies, conditioned on whether or not N is a biprime. We will show that both strategies
lead to a simulation that is statistically indistinguishable from the real-world experiment.

• IfFBiprime reported that N is a biprime, then we know by the specification ofFBiprime
that the corrupt parties committed to correct shares of p and q in Step 1 of πBiprime.
Boneh and Franklin [5, Proof of Lemma 4.2] showed that the value (i.e., sign) of the
right-hand side of the equality in Step 7 is predictable and related to the value of γ j .
We refer to them for a precise description and proof. If without loss of generality we
take that value to be 1, then S can simulate iteration j of Steps 6 and 7 as follows.
First, S computes χ̂ i, j for i ∈ P∗ to be the corrupt parties’ ideal values of χ i, j as

defined in Step 4 of πBiprime. Then, S samples χ i, j ← Z
∗
N uniformly for i ∈ P*

subject to

∏

i∈P*

χ i, j ≡
γ

(5−N)/4
j
∏

i∈P∗
χ̂ i, j

(mod N)

and simulates Step 6 by releasing χ i, j for i ∈ P* to the corrupt parties on behalf of
FCom. These values are statistically close to their counterparts in the real protocol.
Finally, S simulates Step 7 by running the test for itself and sending the cheat
command to FBiprime on failure.
Given the information now known to S, Steps 8 through 11 of πBiprime can be
simulated in a manner similar to the simulation of a common Schnorr protocol: S
simply chooses ζ i,∗ ← Z

2.5s
M ·2s+1 uniformly for i ∈ P*, fixes c ← {0, 1}2.5s ahead of

time, and then works backward via the equation in Step 11 to compute the values
of αi,∗ for i ∈ P* that it must send on behalf of the honest parties in Step 8. These
values are statistically close to their counterparts in the real protocol.
S finally simulates the remaining steps of πBiprime by checking the VerifyBiprime
predicate itself (since the final GCD test is purely local, no action need be taken byS).
If at any point after Step 4 the corrupt parties have cheated (i.e., sent an unexpected
value or violated the VerifyBiprime predicate), then S sends the cheat command
to FBiprime. Otherwise, it sends the proceed command to FBiprime, completing the
simulation.

• If FBiprime reported that N is not a biprime (which may indicate that the corrupt
parties supplied incorrect shares of p or q), then it also leaked the honest parties’
shares of p and q to S. Thus, S can simulate Steps 4 through 13 of πBiprime by
running the honest parties’ code on their behalf. In all instances of the ideal-world
experiment, the honest parties report to the environment that N is a non-biprime.
Thus, we need only prove that there is no strategy by which the corrupt parties can
successfully convince the honest parties that N is a biprime in the real world.

12 Page 30 of 84 M. Chen et al.

In order to get away with such a real-world cheat, the adversary must cheat in every
iteration j of Steps 4 through 6 for which

γ
(N−p−q)/4
j �≡ ±1 (mod N)

Specifically, in every such iteration j , the corrupt parties must contrive to send values
χ i, j for i ∈ P∗ such that

γ
(N−5)/4
j ·

∏

i∈[n]
χ i, j ≡ γ

(N−p−q)/4+�1, j
j ≡ ±1 (mod N)

for some nonzero offset value �1, j . We can define a similar offset �2, j for the
corrupt parties’ transmitted values of αi, j , relative to the values of τ i, j committed
in Step 1:

γ
�2, j
j ·

∏

i∈[n]
αi, j ≡

∏

i∈[n]
γ

τ i, j
j (mod N)

Since we have presupposed that the protocol outputs biprime, we know that the
corrupt partiesmust transmit correctly calculated values of ζ i,∗ in Step 10 of πBiprime,
or else Step 12 would output non-biprime when these values are checked by the
VerifyBiprime predicate. It follows from this fact and from the equation in Step 11
that �2, j ≡ c j ·�1, j (mod ϕ(N)), where ϕ(·) is Euler’s totient function. However,
both �1,∗ and �2,∗ are fixed before c is revealed to the corrupt parties, and so the
adversary can succeed in this cheat with probability at most 1/2 for any individual
iteration j .
Per Boneh and Franklin [5, Lemma 4.1], a particular iteration j of Steps 4 through 6 of
πBiprime produces a false positive result with probability at most 1/2 if the adversary
behaves honestly. If we assume that the adversary cheats always and only when
a false positive would not have been produced by honest behavior, then the total
probability of an adversary producing a positive outcome in the j th iteration of Steps 4
through 6 is upper-bounded by 3/4. The probability that an adversary succeeds over
all 2.5s iterations is therefore at most (3/4)2.5s < 2−s . Thus, the adversary has a
negligible chance to force the acceptance of a non-biprime in the real world, and the
distribution of outcomes produced by S is statistically indistinguishable from the
real-world distribution.

6. Efficiency Analysis

In this section, we give both an asymptotic and a closed-form concrete cost analysis
of our protocol, with both semi-honest and malicious security. We begin by addressing
the success probability of our ideal functionality FRSAGen, as determined by analysis
of the sampling function CRTSample that it uses. We also discuss various strategies
for composing invocations of FRSAGen to amplify the probability that a biprime is
successfully produced. After this, we analyze the costs of the protocols realizingFAugMul

Multiparty Generation of an RSA Modulus Page 31 of 84 12

and FBiprime in Sect. 6.2, and in Sect. 6.3, we compose those costs to give an overall cost
for each invocation of πRSAGen. In Sect. 6.4, we discuss a compositional strategy that
leads to constant or expected-constant rounds overall, and calculate the precise number
of rounds required. Finally, in Sect. 6.5, we provide a performance comparison to the
protocol of Frederiksen et al. [23].

6.1. Per-Instance Success Probability

By construction, the success probability of FRSAGen is identical to that of CRTSample.
To bound the success probability ofCRTSample, it suffices to determine the probability
that a randomly chosen value is prime, conditioned on that value having m-coprimality
(per Definition 3.5) relative to the (κ, n)-near-primorial vector m of length �. We begin
by bounding the probability of finding a prime from below, relative to max(m), the
largest value in m.

Lemma 6.1. ([5]) Given a (κ, n)-near-primorial vector m,

Pr
[
p is prime | p ← Z2κ s.t. p ism-coprime

] ≥ 2.57 · ln max(m)

κ

Observe that this is a concrete lower bound. Next, in the interest of asymptotic analysis,
we bound the value of the maximum element in m. We first adapt a lemma from Rosser
and Schoenfeld [47] to bound max(m) with respect to the product of the elements of m,
and we then use this to construct a bound with respect to κ .

Lemma 6.2. ([47], Theorem 4)Given a (κ, n)-near-primorial vectorm and its product
M, it holds that max(m) ∈ �(log M).

Lemma 6.3. Given a (κ, n)-near-primorial vector m, it holds that max(m) ∈ 	(κ).

Proof. Let M be the product of m. By Definition 3.4, M is the largest integer such
that M/2 is a primorial and M < 2κ−log n . From these facts, the prime number theorem
gives us M ∈ 	(2κ−log n−log κ). Combining this with Lemma 6.2 yields max(m) ∈
	(κ − log n − log κ) and finally, Lemma 3.7 constrains 2 ≤ n < κ , which yields
max(m) ∈ 	(κ).

Combining Lemmas 6.1 and 6.3 and considering that CRTSample must sample two
primes simultaneously (but independently) yields an asymptotic figure for the success
probability of CRTSample. Since this governs the number of times FRSAGen must be
invoked in order to generate a biprime, we refer to it as our sampling-efficiency theorem.

Theorem 6.4. (Sampling-efficiency theorem) For any strict subset P∗ ⊂ [n] and any
(pi , qi) ∈ Z

2
2κ for i ∈ P∗, CRTSample(κ, n, {(pi , qi)}i∈P∗) samples a biprime with

probability 	(log2 κ/κ2).

In order to understand the concrete efficiency of our approach, we determined the
unique (κ, n)-near-primorial vectors corresponding to several common RSA security

12 Page 32 of 84 M. Chen et al.

Table 2. CRT-form Sampling Parameters, along with per-iteration success probabilities. Recall that biprimes
produced are of size 2κ . m is the (κ, n)-near-primorial vector, with � = |m|. �′ is the length of the extended
vector required by our protocol, as described in Definition 4.3. Note that the number of parties n has no
concrete effect on these values.

κ � �′ max(m) Pr[Success]

Asymptotic O(κ/ log κ) O(κ/ log κ) 	(κ) 	(log2 κ/κ2)

1024 130 233 739 ≥ 1/3607
1536 182 327 1093 ≥ 1/7250
2048 231 418 1459 ≥ 1/11,832

parameter values and then used Lemma 6.1 to derive concrete success probabilities.
These are reported in Table 2. For completeness, we also report the asymptotic size of
the (κ, n)-near-primorial vector; this can be derived by combining Lemma 6.2 with the
following lemma:

Lemma 6.5. ([47], Theorem 2) Given a (κ, n)-near-primorial vectorm of length �, it
holds that � ∈ �(max(m)/ log max(m)).

Compositional Strategies. As an immediate corollary to Theorem 6.4, the expected
number of invocations of FRSAGen required to produce a biprime is in O(κ2/ log2 κ).
Concretely, this corresponds to 3607 invocations when κ = 1024, or 11,832 invocations
when κ = 2048. As an alternative to sequential invocation, FRSAGen can be invoked
concurrently in batches tuned for a desired probability of success. O(ρ/(log κ−log(κ2−
log2 κ))) concurrent invocations are required to sample a biprime with probability at least
1 − 2−ρ . Concretely, with ρ = 40, this corresponds to roughly 100,000 invocations for
κ = 1024, or 330,000 invocations for κ = 2048. Two sequential batches of concurrent
invocations are required in expectation if ρ = 1, with roughly 2500 invocations of
FRSAGen per batch for κ = 1024, or 8200 invocations per batch for κ = 2048.

6.2. The Cost of Instantiating FBiprime and FAugMul

Before we can discuss the concrete costs of our main sampling protocol, we must deter-
mine the costs of instantiating the functionalities it uses. Since FBiprime was specifically
formulated to model the biprimality-testing protocol of Boneh and Franklin [5], it is
natural to assume we use that protocol (or our malicious-secure extension) to instantiate
it. On the other hand, in both the semi-honest and malicious settings, many sensible ap-
proaches exist for instantiatingFAugMul. We choose to base our instantiation on oblivious
transfer in both settings. Although OT-based multiplication is not the most bandwidth-
efficient option, it compares favorably to alternatives in the real world [19,20], and OT
can be built assuming only the hardness of factoring, if desired [21]. We also assume cer-
tain reasonable practical concessions are made. For example, we assume that FCom and
FCT are both implemented via a Random Oracle. We note that under these instantiations,
committing a value requires 2λ bits to be broadcast,9 and FCT requires no communi-
cation at all. We also assume FZero requires no communication: a trivial modification

9Where λ is a computational security parameter as described in Sect. 2.

Multiparty Generation of an RSA Modulus Page 33 of 84 12

of the Pseudorandom Zero-Sharing protocol of Cramer et al. [17] yields a protocol that
realizes FZero against active adversaries with no interaction in the FCT-hybrid model.

Broadcast. It is standard practice in the implementation of MPC protocols (e.g., [30,49,
51]) to use the simple echo broadcast of Goldwasser and Lindell [27] for instantiating
broadcast channels. This approach preserves all correctness and privacy guarantees, but
only guarantees non-unanimous abort (i.e., each honest party either obtains the correct
output or locally aborts, but there is no global agreement on abort). Echo broadcast
doubles the round count and adds (n − 1) · λ bits per party per original round to the
communication cost, because each party is required to send a hash of the broadcast
messages received in one round to all other parties before the next round.

In our setting, we can take the even simpler approach of running the protocol optimisti-
cally over point-to-point channels. At the end, every party hashes the entire transcript of
broadcast-messages and sends the digest to all other parties. If the digests do not agree,
the parties abort; otherwise, they terminate with the output value of the protocol. There-
fore, for the sake of calculating concrete costs, we consider the cost of broadcasting a
bit to be the same as the cost of transmitting it to all parties (apart from the sender)
individually.

Oblivious Transfer. We give concrete efficiency figures assuming that Correlated OT
(i.e., OT in which the sender chooses a correlation between two messages, instead of
two independent messages) is used in place of standard OT, and assuming that it is
instantiated via one of two specific OT-extension protocols. The more efficient of the
two is the recently introduced Silent OT-extension protocol of Boyle et al. [6]. When
used as a Correlated OT-extension on a correlation from the field Zm , it incurs a cost
of (|m| + 1)/2 bits transmitted per party (averaged over the sender and receiver), over
two rounds. However, it requires a variant of the Learning Parity with Noise (LPN)
assumption, and it has a large one-time setup cost.

As an alternative, the OT-extension protocol of Keller et al. [35] (hereafter referred to
as “KOS OT”) assumes only a base OT functionality, and has a much cheaper one-time
setup. When used as a Correlated OT-extension on a correlation from the field Zm , this
protocol incurs a cost of (|m|+λ)/2 bits transmitted per party (averaged over the sender
and receiver) over two rounds. In addition to this cost, the sender must pay an overhead
cost for each batch of OTs performed, where a batch may comprise polynomially many
individual OTs with an arbitrary mixture of correlation lengths. Since this overhead does
not depend on the total number of OTs or the correlation lengths, it can be amortized into
irrelevance if the OTs in our protocol can be arranged into a small number of batches.
Since this is indeed the case, we ignore the overhead cost for the remainder of our cost
analysis. For the sake of analyzing concrete efficiency, we also ignore the one-time setup
costs of both OT-extension protocols.

Both OT-extension protocols attain malicious security, but KOS OT has little overhead
relative to the best semi-honest protocols, and Silent OT is the most efficient currently
known OT protocol of any kind. Consequently, we use them in the semi-honest setting
as well.

FAugMul in the Semi-Honest Setting. In the semi-honest setting, parties can be trusted
to reuse inputs when instructed to do so, and the predicate check and input-revelation

12 Page 34 of 84 M. Chen et al.

interfaces of FAugMul need not be implemented, since πRSAGen will never call them in
the semi-honest setting. Consequently, an extremely simple protocol suffices to realize
FAugMul against semi-honest adversaries. When the parties wish to use the multiply
interface with a modulus m, they simply engage in instances of Gilboa’s classic OT-
multiplication protocol [24], arranged as per the GMW multiplication paradigm [26] to
form a multiparty multiplier. This implies 2|m| oblivious transfers per pair of parties, all
with |m|-bit messages. If Silent OT is used, the total cost is (n− 1) · |m| · (|m| + 1) bits
transmitted per party (averaged over all parties), over two rounds. If KOS OT is used,
the total cost is instead (n− 1) · |m| · (|m| + λ) bits. Note that this is substantially worse
if |m| is small.

The sample interface of FAugMul can be realized using the same multiplication
protocol in a natural way: the parties simply choose random shares of two values and
multiply those values together. They multiply their output shares together with another
randomly sampled set of shares and then broadcast their shares of this second product.
They repeat the whole process if the second product is found to be zero, or otherwise take
their shares of the first product as their outputs. Each iteration of this sampling procedure
succeeds with probability (m − 1)3/m3. If iterations are run concurrently in batches of
size c, then the expected number of batches is b = m3/(m3−3c ·m2+3c ·m−c). Given
this value b, the expected total cost is (n − 1) · b · c · |m| · (2|m| + 3) bits transmitted
per party (on average) if Silent OT is used, or (n − 1) · b · c · |m| · (2|m| + 2λ + 1) bits
if KOS OT is used. The number of rounds is 5b in expectation.

FBiprime in the Semi-Honest Setting. To realize FBiprime in the semi-honest setting,
we use the Boneh–Franklin biprimality test [5]. In this protocol, the parties begin by
participating in up to s iterations of a test in which they each broadcast a value of size
2κ to all other parties. In the bandwidth-optimal protocol variant, these iterations are
sequential. Each has a soundness error of 1/2, and so the expected number of iterations
is two if N is not a biprime, yielding a concrete bandwidth cost for this first step of
2(n−1) · s ·κ bits per party if N is a biprime, or 4(n−1) ·κ bits per party in expectation
otherwise. In the round-optimal protocol variant, these iterations are concurrent, and the
cost is always 2(n − 1) · s · κ bits per party, over one round.

If all iterations of the previous test succeed, then the parties perform the GCD test: they
securely multiply two shared values modulo N , and reveal the output. Whereas Boneh
and Franklin recommend the BGW generic MPC protocol for this task, we will instead
assume that Gilboa’s OT-multiplication protocol is used, in a GMW-like arrangement
as previously described, followed by an exchanging of output shares. All shares in one
of the two input sets are guaranteed to be smaller than 2k+1; if we ensure that parties
always play the OT-receiver when using shares from this set as input, then the concrete
bandwidth cost for this second step is (n − 1) · (κ + 1) · (2κ + 1) + 2(n − 1) · κ bits
transmitted per party, assuming Silent OT is used, or (n−1)·(κ+1)·(2κ+λ)+2(n−1)·κ
bits if KOS OT is used. In either case, three additional rounds are required.

Instantiating FComCompute. In the malicious settings, the πBiprime and πRSAGen pro-
tocols both require access to a generic MPC functionality with reusable inputs, which
we give as FComCompute. For the sake of concrete-efficiency figures, we will assume
FComCompute is realized via the Authenticated Garbling protocol of Yang et al. [51].
We make no optimizations, and in particular, do not replace the OT that they use, even

Multiparty Generation of an RSA Modulus Page 35 of 84 12

Table 3. Operation costs in AND gates.

Operator Cost Function Notes

modadd 4L + 2 Symmetric; conditional subtraction

intmul1
2 intmul(L/2) + 13L/2 + 6
+ intmul(L/2 + 1)

Symmetric; Karatsuba multiplication

intmul2 2L1 · L2 − L1 + (L2
2 − L2)/2 Asymmetric multiplication

modred 2 intmul(L) + 10L + 13 Barrett reduction; input length 2L
modmul1 intmul(L) +modred(L) Symmetric modular multiplication
modmul2 5L1 · L2 + 2L2 Asymmetric; conditional subtraction

For symmetric operations, both inputs and (if relevant) the modulus are of length L . For asymmetric operations,
the first input and the modulus are of length L1, and the second input is of length L2 such that L2 ≤
L1. We assume that moduli are public and that inputs to modular operations are positive and less than the
modulus, except in the case of reduction. The intmul operation calls whichever multiplication method is more
(concretely) efficient

though Silent OT might yield a substantial improvement. This protocol has a total cost
including preprocessing of

(9n − 11 + (4n − 4) · s/(logC + 1)) · C · λ
+ (1 − 1/n) · I · λ + (2n − 1) · C + max(I · λ,C) + I/n + O

bits transmitted per party, on average, where C is the number of AND gates, I is the
number of input wires, and O is the number of output wires. Since this equation is
quite complicated and gives little insight, we report costs associated with FComCompute
simply in terms of gates and input/output wires, and convert them into bit costs only
when calculating the overall total bandwidth cost for πRSAGen. We note that supplying an
input (i.e., calling the commit command of FComCompute) to the protocol of Yang et al.
requires two rounds, and reconstructing an output (i.e., calling the compute command)
also requires two. We assume that all preprocessing can be run concurrently with other
tasks, and thus, it does not contribute any additional rounds.

Using FComCompute involves converting functions into circuits. The functions we use
are easily reduced to a handful of arithmetic operations. We list all non-trivial operations,
with costs, in Table 3.

FAugMul in the Malicious Setting. The protocol πAugMul that realizes FAugMul is com-
plex and involves a number of sub-functionalities that we have not yet introduced.
Consequently, we defer our full cost analysis to Appendix B, in which we also describe
πAugMul itself. We note here that the cost of the FAugMul multiply command with
modulus m is in O(n · (|m|2 + |m| · s + 2λ)) transmitted bits per party if Silent OT
is used, or O(n · (|m|2 + |m| · s + (|m| + 2) · λ)) if KOS OT is used, and that the
input command is free if it is not called until immediately before the first associated
multiplication. The cost of the open command is in O(n · (|m|2 + |m| · s)) transmitted
bits per party. The sample command has the same expected bandwidth complexity as
multiplication. Finally, the complexity of the check command depends upon the inputs
it is given, but broadly, for each input with an associated modulus m, one must pay
s/|m| times the cost of multiplication, plus a bandwidth cost in O(n · s2/|m| + n · s · c),
where c is the number of times the input was used in a multiplication, plus the cost of

12 Page 36 of 84 M. Chen et al.

using FComCompute to evaluate a circuit of size O(n · s + s · modmul(|m|)/|m|) with
O(s + |m|) input wires. In addition to these per input costs, check uses FComCompute
to evaluate an arbitrary circuit (with no additional inputs), and so costs must be paid
proportionate to that circuit’s size.

FBiprime in theMalicious Setting. In Sect. 5.2, we described a protocol πBiprime realizing
FBiprime. We now analyze its costs. The Boneh–Franklin Test phase is similar to the first
phase of the semi-honest biprimality test, except that messages are committed before they
are revealed, they are always decommitted concurrently, and 2.5s iterations are required,
as opposed to s. Consequently, this step incurs a cost of 5(n − 1) · s · κ + 2(n − 1) · λ
bits transmitted per party, over two rounds.

This leaves input commitment and consistency check/GCD test phases. The former
phase involves only a single commitment by each party. The latter phase is only evaluated
if the above test passes, and therefore does not contribute to the cost when N is not a
biprime. To perform the GCD test, the parties each transmit 2.5s ·(n−1) ·(3κ− log2 n+
s+1) bits over two rounds, and in addition, they use FComCompute to compute a circuit,
which is specified by Algorithm 5.3. If for clarity and simplicity we represent the cost
of multiplication using the functions from Table 3, then the size of this circuit in AND
gates is

modmul(2κ) + intmul(κ) + (10n · s + 4n + 2.5s) · (κ − log2 n)

+ 5n · s2 + 5n · s + 4n + 2κ − 2

and furthermore, it has n · (2.5s + 2) · (κ − log2 n) + n · 2.5s · (s + 1) + 2n · κ input
wires10 and 2n · κ output wires.

6.3. Putting It All Together

In this section, we will break down the cost of our main protocol πRSAGen in terms of
calls to FAugMul and FBiprime, and also give the costs associated with the few protocol
components that are not interactions with these functionalities. This breakdown (except-
ing the functionality calls in the consistency check phase) is identical in the malicious
and semi-honest settings. We subsequently plug in the individual component costs that
we derived in Sect. 6.2 and arrive at predicted concrete cost figures for one instance
of our complete protocol. We then use the analysis in Sect. 6.1 to determine the con-
crete cost of sampling a biprime when our sampling protocol is called sequentially. We
discuss alternative composition strategies for achieving constant or expected-constant
round counts (and provide an exact round count) in the next section. We begin with a
cost breakdown.

1. Candidate Sieving. For each j ∈ [2, �], the parties invoke the sample instruction
of FAugMul using modulus m j . These invocations are concurrent. Following this, for
j ∈ [� + 1, �′], the parties invoke the input instruction of FAugMul with modulus
m j twice, and then the multiply instruction with modulus m j . As discussed in
Appendix B.3, the input instructions are free under this pattern of invocations if

10Including the wires required to input the randomness for the GCD test.

Multiparty Generation of an RSA Modulus Page 37 of 84 12

we use πAugMul (Protocol B.7) to realize FAugMul. We assume the multiplications
are done concurrently as well. In addition, every party broadcasts a value in Zm j for
j ∈ [2, �′]. This incurs a cost of

(n − 1) ·
∑

j∈[2,�′]
|m j |

transmitted bits per party, and one additional round.
2. Biprimality Test. The parties send check-biprimality to FBiprime at most

once. Since our protocol includes local trial division (see Step 5 of πRSAGen), some
protocol instances will skip the biprimality test entirely. However, for the sake of
calculating concrete costs, we will assume that this local trial division is not exe-
cuted. In other words, we assume that the biprimality test is run exactly once per
protocol instance, and if local trial division would have rejected a candidate, then the
biprimality test certainly fails.

3. Consistency Check. This phase has no cost in the semi-honest setting. In the mali-
cious setting, its cost differs depending on whether the candidate biprime has passed
the biprimality test (and local trial division), or failed. In the failure case, the parties
send open to FAugMul twice with modulus m j for each j ∈ [2, �′]. In the passing
case, they instead send (check, sids, f), where sids is the vector of session IDs
associated with values sampled by or loaded into FAugMul in the sieving phase, and f
is a predicate specified in our protocol. This circuit representation of f comprises 2n
invocations of CRTRecon over the extended vector m of small moduli, 2n compar-
isons on inputs of size 2κ , two integer sums, each over n elements of κ − log2 n bits,
one integer multiplication with inputs of length κ , and one equality check over values
of length 2κ . We observe that the CRTRecon algorithm can be implemented in the
following way: all intermediate operations can be performed over the integers, with
a single modular reduction at the end. Because each intermediate product has one
multiplicand that is much shorter than the other, we can use the asymmetric modular
multiplication method previously described in Sect. 6.2. This circuit requires no ad-
ditional inputs, relative to the ones supplied by πAugMul, and its overall gate count11

is

2n ·
⎛

⎜
⎝

(�′ − 1) · (2κ + |max(m)|) + �′ − log2 �′

+ 3κ − log2 n +
∑

j∈[�′]
intmul2(2κ, |m j |) +modred(2κ)

⎞

⎟
⎠

+intmul(κ) − 2

Communication Complexity. In order to explore the asymptotic network costs of our
protocol in terms of κ , s, and n, we consider λ to be in O(s) for the purposes of this
analysis. We also assume s ∈ O(κ) ∩ ω(log κ). We give all our asymptotic figures in
terms of data transmitted per party.

11Assuming the intermediate products inside each invocation of CRTRecon are taken to be of length
2κ + |max(m)|, and that each party’s shares of p and q are taken to be κ − log2 n bits after their lengths are
checked.

12 Page 38 of 84 M. Chen et al.

Combining the cost breakdown in this section with the asymptotic analysis of CRT
sampling parameters in Sect. 6.1, we find that O(κ/ log κ) invocations of the sample
andmultiply interfaces ofFAugMul are performed during the Candidate Sieving phase
of πBiprime. Let (m, �′, �, M) be the (κ, n)-compatible parameter set of πBiprime, as
specified by Definition 4.3. Eachsample andmultiply operation involves a modulus
from m. Per Lemma 6.2, max(m) ∈ O(log M), and we have from Definition 3.4 that
M ∈ O(2κ); thus max(m) ∈ O(κ). Via Sect. 6.2, this implies that all multiply and
sample operations have a complexity of O(n · log2 κ) bits transmitted per party in the
semi-honest setting, or O(n · log2 κ + n · s · log κ) in the malicious setting (assuming
Silent OT in both cases). The total per-party communication cost of the Sieving phase
is therefore O(n · κ · log κ) in the semi-honest setting, or O(n · κ · s) in the malicious
setting.

In both the semi-honest and the malicious settings, the communication complexity
of a successful biprimality test is dominated by the GCD Test. In the semi-honest case,
this check comprises a secure multiplication over κ bits, so the cost is in O(n · κ2) bit
transmitted per party. In the malicious case, per Sect. 6.2, this check is performed via a
circuit with O(n · s ·κ +κ log2 3) gates,12 and per Yang et al. [51], the dominant per-party
asymptotic cost of their protocol is in O(n · s · C/ logC), where C is the gate count.
Thus, the per-party complexity of a successful biprimality test is

O

(
n2 · s2 · κ + n · s · κ log2 3

log(n · s · κ + κ log2 3)

)

in the malicious case. In both the semi-honest and the malicious settings, failed bipri-
mality tests are unlikely to perform the GCD check,13 leaving only the initial testing
phase. If we choose the bandwidth-optimal protocol variant in the semi-honest setting,
then we can take the communication complexity of a failed biprimality test to be in
O(n · κ). In the malicious setting, it is in O(n · s · κ).

Finally, in the malicious setting only, the consistency check phase is performed. For
presumptive biprimes, the cost of this phase is dominated by its generic MPC component,
which has O(n · κ2) gates and, if we assume that Yang et al.’s protocol is used, a total
complexity of

O

(
n2 · s · κ2

log n + log κ

)

per party. For presumptive non-biprimes, the parties invoke the open interface of
FAugMul a constant number of times for each element of m. Reusing our analysis of the
sieving phase, we find that the per-party network complexity of this case is O(n · s · κ).

In the case that a biprime is sampled by iterating πRSAGen sequentially until a success-
ful sampling occurs, we know (via Sect. 6.1) that O(κ2/ log2 κ) iterations are required

12O(κ log2 3) is the cost of Karatsuba multiplication on κ-bit inputs.
13We do not know the precise probability, nor does any prior work, including that of Boneh and Franklin [5]

themselves, make a statement about it. It seems empirically that the probability is very low indeed. For analysis
purposes we take it to be zero.

Multiparty Generation of an RSA Modulus Page 39 of 84 12

Table 4. Communication per party in kilobits: semi-honest.

κ 1024 1024 1536 1536 2048 2048
n 2 16 2 16 2 16

Per-phase costs for one instance of πRSAGen
Sieving (S) 25 368 38 569 53 790
Sieving (K) 306 4582 453 6793 607 9097
BP Test (N) 4 61 6 92 8 123
BP Test (BS) 2266 33,992 4972 74,580 8727 130,898
BP Test (BK) 2396 35,944 5167 77,508 8987 134,801
Expected costs to sample a biprime via sequential iteration of πRSAGen
E[Iterations] 3607 3607 7251 7251 11,832 11,832
E[Total] (S) 105,693 1,582,621 325,243 4,869,944 730,494 10,937,722
E[Total] (K) 1,118,849 16,779,417 3,333,869 49,998,228 7,282,703 109,220,287

Recall that biprimes produced are of size 2κ . Values are rounded to the nearest 1 Kilobit, and s = 80 and
λ = 128 for all calculations. Rows marked with S orK correspond to costs when Silent OT [6] or KOS OT [35]
is used to instantiate oblivious transfer, respectively. Rows marked with B or N correspond to costs when a
biprime or a non-biprime is sampled, respectively

in expectation. All but one of these iterations are failures, and in the one successful case
in the malicious setting, the size of the consistency check circuit dominates that of the
biprimality test circuit. Thus, the overall per-party communication complexity to sample
a biprime using this composition strategy is in

O

(
n · κ3

log κ

)

or O

(
n · s · κ3

log2 κ
+ n2 · s · κ2

log n + log κ

)

in the semi-honest or malicious settings, respectively.

Concrete Network Cost. We now perform all the substitutions necessary to collapse
the cost figures we have reported into concrete values. We plug the costs of individual
sub-protocols from Sect. 6.2 into the main protocol breakdown presented in this section,
using bandwidth-optimal variants where appropriate, and convert gate counts into bit
counts assuming the protocol of Yang et al. [51]. We also derive the expected cost of
sampling a single biprime via sequential iteration of πRSAGen until a success occurs:
this strategy allows us to determine the number of iterations required by inverting the
success probabilities calculated in Sect. 6.1. Finally, we set λ = 128 and s = 80. We
report the results of this calculation for our semi-honest protocol variant in Table 4, and
for our malicious protocol variant in Table 5.

6.4. Strictly Constant and Expected-Constant Rounds

In the foregoing sections, we have given costs for sampling a biprime under the as-
sumption that πRSAGen is iterated sequentially. While this ensures that no work or
communication is wasted, since no additional instances of πRSAGen are run after the
first success, it also yields an expected round complexity that grows with 	(κ2/ log2 κ)

at the least (the inverse of the success probability of a single instance, per Sect. 6.1), and

12 Page 40 of 84 M. Chen et al.

Table 5. Communication per party in megabits: malicious.

κ 1024 1024 1536 1536 2048 2048
n 2 16 2 16 2 16

Per-phase costs for one instance of πRSAGen
Sieving (S) 0.8 12.6 1.2 18.2 1.6 23.9
Sieving (K) 6.8 101.9 9.4 141.3 11.9 179.0
BP Test (N) 0.4 6.1 0.6 9.2 0.8 12.3
BP Test (B) 25,229.6 978,419.1 45,839.0 1,587,619.4 70,150.5 2,256,835.7
Check (N) 0.8 12.3 1.2 18.2 1.6 24.3
Check (B) 134,182.3 17,082,684.8 280,519.2 35,969,343.8 480,332.5 61,859,261.7
Expected costs to sample a biprime via sequential iteration of πRSAGen
E[Iterations] 3607 3607 7251 7251 11,832 11,832
E[Total] (S) 166,877.0 18,173,077.0 348,411.1 37,887,748.1 598,191.8 64,831,710.2
E[Total] (K) 188,334.2 18,494,934.2 407,904.4 38,780,146.5 720,514.4 66,666,548.8

Recall that biprimes produced are of size 2κ . Values are rounded to the nearest 100 Kilobits, and s = 80
and λ = 128 for all calculations. Rows marked with S or K correspond to costs when Silent OT [6] or KOS
OT [35] is used to instantiate oblivious transfer, respectively. Rows marked with B or N correspond to costs
when a biprime or a non-biprime is sampled, respectively. Note that the biprimality test phase has nearly the
same concrete cost, regardless of whether Silent OT or KOS OT is used

concretely yields tens or hundreds of thousands of rounds in expectation for the values
of κ used in practice. This is not satisfying.

Unfortunately, we cannot achieve constant (or even expected constant) rounds by
running instances of πRSAGen concurrently, because the sample operation of πAugMul
(which samples pairs of secret-shared nonzero values) is also probabilistic, with termi-
nation in expected-constant rounds. When multiple expected-constant-round protocols
are composed in parallel, the resulting protocol does not have constant rounds in ex-
pectation [3,13,14]. The naïve solution is to modify the sample operation of πAugMul
to generate candidates concurrently instead of sequentially and set the parameters such
that it succeeds with overwhelming probability. However, this leads to a factor of �(s)
overhead with respect to communication complexity, relative to sequential composition,
which is also not satisfying.

Instead, we propose a non-black-box composition strategy. In order to invoke πRSAGen
x times concurrently, we must sample x pairs of nonzero values with respect to each
modulus in m. To do this, we run a pooled sampling procedure for each modulus, which
concurrently samples enough candidates to ensure that there are at least x successes
among them with overwhelming probability. For modulus m j , and candidate count
y ≥ x , the probability of success is governed by the binomial distribution on y and
(m j − 1)3/m3

j . Specifically, to ensure success with overwhelming probability, we must
calculate y such that

1 − 2−s =
y∑

i=x

(
y

x

)(
m j − 1

m j

)3i

·
(

1 −
(
m j − 1

m j

)3
)y−i

(5)

Multiparty Generation of an RSA Modulus Page 41 of 84 12

holds. Although reasonable bounds and approximations exist, it is not easy to solve this
equation for y in closed form. Given concrete values for the other parameters, we can
compute a value for y.

As an example, consider the following concrete scenario: let x be the size of a batch
of concurrent invocations of πRSAGen, where x is tuned such that the batch samples at
least one biprime with probability 1/2. Let κ = 1024 and let s = 80, and via Sect. 6.1,
we have x = 2500. Now consider m2 = 3, the smallest modulus with respect to which
sampling will occur. Solving Eq. 5, we find that if we sample 9989 candidate values
modulo m2, then at least 2500 of them will be nonzero with probability 1 − 2−s . Now,
if we sample a biprime by running batches of size x , one batch after the next, until a
biprime is sampled, then two batches are required in expectation, which implies that
19,978 total candidate pairs must be sampled with respect to m2, in expectation.

For comparison, consider the sequentially composed case with sequential sampling,
in which single instances of πRSAGen are invoked one-at-a-time until a success occurs,
and similarly πAugMul samples candidate pairs of nonzero values until a success occurs.
In this case, 3607 invocations of πRSAGen are required in expectation, and during each
invocation, (3/2)3 candidate pairs are sampled in expectation by πAugMul with respect
to the modulus m2 = 3. The total number of candidate pairs with respect to m2 is thus
12,174 in expectation over all invocations of πRSAGen. Thus, in terms of candidates-
with-respect-to-m2, the overhead to achieve expected constant rounds using the above
strategy is a factor of roughly 1.65, and it is easy to confirm that for all other elements
in m, this factor is smaller. We conclude from this example that the bandwidth over-
head for sampling a biprime in expected-constant rounds is reasonable, relative to the
bandwidth-optimal (i.e., sequential) composition strategy. By adjusting the batch-size
parameter, it can be shown that there exists a biprime-sampling strategy that takes strict-
constant rounds and succeeds in sampling a biprime with probability 1 − 2−40 and that
the bandwidth overhead of this strategy is a factor of less than 30 with respect to the
bandwidth-optimal strategy (assuming, as before, that κ = 1024 and s = 80).

An Exact Round Count. It remains only to determine the exact round count of a batch,
which is the same as the round count of a single instance of πRSAGen, assuming the
sampling performed by πAugMul in that instance is performed concurrently, and that the
round-optimal variants of the biprimality test are used. In the semi-honest setting, if
we modify the simple semi-honest realization of FAugMul given in Sect. 6.2 to sample
concurrently instead of sequentially then it requires exactly 5 rounds to sample. A similar
modification yields 10 rounds for sampling using πAugMul in the malicious setting. All
other components of our combined protocol have constant round counts, and combining
the round counts already given in Sects. 6.2, 6.3, and Appendix B yields a total of 12
rounds in the semi honest setting, or 35 rounds in the malicious setting. It is likely that
both values can be reduced noticeably by interleaving and combining rounds, but we
have made no attempt to do so. If the parties are interacting for the first time, they will
need a small number of additional rounds to initialize OT-extensions, but this need only
be done once.

12 Page 42 of 84 M. Chen et al.

6.5. Comparison to Prior Work

The most relevant prior work is that of Frederiksen et al. [23], and in this section we
provide an in-depth comparison of the two. Unfortunately, Frederiksen et al. do not report
concrete communication costs, and so we must re-derive them as best as we can. Before
we discuss concrete costs, however, we describe the high-level differences between the
two approaches, and our methodology for comparison. As their protocol supports only
two parties, we will assume for the duration of this section that n = 2.

Both their protocol and ours are based upon oblivious transfer, but the sampling
mechanisms of the two protocols have substantial structural differences. Our CRT-form
sampling mechanism has a complexity in O(κ · log κ) or O(κ · s) in the semi-honest
or malicious settings, respectively. This complexity includes the cost of computing the
modulus N from shares of its factors. Their protocol instead samples integer shares
of p and q uniformly in standard form and uses 1-of-many OT [40] to perform trial
division efficiently. Subsequently, they use an OT-multiplier of their own design to
compute N ..= p · q. Because this multiplication is not performed in CRT form, it
has a communication complexity of O(κ2) in both the semi-honest and the malicious
settings. In addition, their method induces some leakage, whereas ours leaks no more
than Boneh and Franklin [5]. When a biprime is sampled successfully, their biprimality
test uses another, similar multiplier, with inputs that are larger by a constant factor.
Since their protocol makes black-box use of the KOS OT-extension protocol [35], our
comparison will assume their protocol is upgraded to use the more-recent Silent OT-
extension protocol [6]. Furthermore, we will assume their scheme amortizes the costs
of both 1-of-2 and 1-of-many OT-extension in the best possible way (i.e., we will only
count costs that can never be amortized).

In the malicious setting, Frederiksen et al.’s protocol makes use of a proof of honesty
which consists mainly of a circuit evaluated by a generic MPC functionality. It is quite
similar to a combination of the circuits used by our πBiprime protocol and the consistency
check phase of our πRSAGen protocol.14 However, they must run their circuit twice, and
on the other hand, because their protocol is two-party only and already admits leakage,
they are able to use the very efficient leaky dual-execution method of Mohassel and
Franklin [39] to evaluate their circuit, whereas we must use an n-party method with
full malicious security. Our goal is to illustrate performance differences between our
approach and theirs, not performance differences among underlying black-box compo-
nents. Because we do not think there is a fair way to reconcile the discrepancy in the
generic MPC techniques that the two works employ, we will report the number of AND
gates required by both protocols,15 and also the number of bits transmitted per party
excluding those due to evaluation of these circuits.

Finally, as Frederiksen et al. observed and as we have previously discussed, their
functionality allows a malicious adversary to covertly prevent successful sampling in
a selective fashion. This is true regardless of the composition strategy employed. As

14As described in their work, their circuit contains additional gates for calculating parts of the RSA key-pair
other than the modulus. We omit these parts from our analysis, for the sake of fairness.

15We calculate their circuit size using the building blocks we previously described in Table 3 and use their
estimate of 6000 gates for the cost of a single AES call.

Multiparty Generation of an RSA Modulus Page 43 of 84 12

Table 6. Comparison against Frederiksen et al: semi-honest.

Scheme [23] Ours [23] Ours [23] Ours
κ 1024 1024 1536 1536 2048 2048

Expected costs for one instance/iteration
E[Kbits] (N) 2281 29 4991 44 8750 61
E[Kbits] (B) 5439 2291 12,087 5010 21,357 8779
Expected costs to sample a biprime via sequential iteration
E[Iterations] 3607 3607 7251 7251 11,832 11,832
E[Total Kbits] 8,230,314 105,693 36,198,034 325,243 103,539,224 730,494

Recall that biprimes produced are of size 2κ . We set s = 80 and λ = 128 for all calculations, and all rows
assume Silent OT [6] is used to instantiate 1-of-2 oblivious transfer. Rows marked with B or N correspond to
costs when a biprime or a non-biprime is sampled, respectively

a consequence, in the malicious setting, we will report both the best-case behavior, in
which the adversary politely avoids covert cheating, and the worst-case behavior, in
which they must run sufficiently many iterations to ensure a modulus should have been
sampled with overwhelming probability (and thus there must be a corrupt party present
if no moduli are produced).

The protocol of Frederiksen et al. takes as a free parameter a trial-division bound,
which determines the amount of trial division to be done before the candidate biprime N
is reconstructed and biprimality testing occurs. Since they do not report the trial-division
bound used for their concrete experiments, nor do they make a recommendation about
the value other than that it be tweaked to optimize the protocol cost concretely, we choose
their trial-division bound to be the same as the largest element in a (κ, 2)-near-primorial
vector, per Definition 3.4. This is a reasonable choice in terms of concrete efficiency,
but it also allows us to easily make a fair comparison, since with this parametrization
sampling a biprime will require the same number of invocations of πRSAGen (each with
one biprimality test and one consistency check) in our case as there are executions of
the biprimality test phase and proof-of-honesty in their case.16

The protocol of Frederiksen et al. also takes a second trial division bound, which is
used for local trial division on the reconstructed modulus. For the sake of analysis, we
assume this feature is not used (we have done likewise with the analogous feature in our
own protocol). We calculate concrete costs for their protocol using s = 80 and λ = 128
and report the results alongside our own for the semi-honest setting in Table 6, and for
the malicious setting in Table 7.

In the semi-honest setting, the asymptotic and concrete advantages of our approach
are very clear: the overall expected cost advantage of our protocol is a factor of at least
75 and increases with the size of the biprime to be sampled. This advantage is a direct
consequence of our CRT-form sampling strategy, since the two semi-honest protocols
are otherwise very similar.

In the malicious setting, the relationship between the two protocols is more complex.
It is still apparent that for non-successful instances, our protocol is both asymptotically
and concretely better. This comes at the price of a larger circuit to be evaluated when

16Assuming that in their case, the adversary never forces the rejection of valid candidates.

12 Page 44 of 84 M. Chen et al.

Table 7. Comparison against Frederiksen et al: malicious.

Scheme [23] Ours [23] Ours [23] Ours
κ 1024 1024 1536 1536 2048 2048

Expected costs for one instance/iteration
E[Mbits] (N) 4.9 2.1 10.5 3.0 18.1 4.0
E[Mbits] (B) 16.0 72.8 34.1 98.1 59.1 120.7
Expected costs to sample a biprime via sequential iteration
E[Iterations] (P) 3607 3607 7251 7251 11,832 11,832
E[Iterations] (W) 199,968 3607 402,003 7251 656,070 11,832
E[Non-Gate Mbits] (P) 17,602.2 7537.1 75,851.0 22,149.9 214,613.1 47,828.0
E[Non-Gate Mbits] (W) 75,245.0 7537.1 4,203,970.4 22,149.9 11,897,803.5 47,828.0
Millions of Gates 16.5 63.6 26.4 130.7 37.3 220.9

Recall that biprimes produced are of size 2κ , and note that bit counts exclude bits due to generic evaluation of
circuits, which are counted separately. We set s = 80 and λ = 128 for all calculations, and all rows assume
Silent OT [6] is used to instantiate 1-of-2 oblivious transfer. Rows marked with B or N correspond to costs
when a biprime or a non-biprime is sampled, respectively. Rows marked with W or P correspond to costs
when a Worst-case or a Polite (i.e., best-case) adversary is present, respectively

an instance succeeds in sampling a biprime. We believe this to be a beneficial trade:
only one successful instance is required to sample a biprime, whereas thousands of
unsuccessful instances are to be expected in the best case. However, the most noticeable
difference between the two arises due to the ability of a malicious adversary to covertly
force instances of the Frederiksen et al. protocol to fail. This can cause the number of
instances they require to be inflated by a factor of around fifty, assuming sequential
iteration, giving our approach a clear advantage.

Acknowledgements

The authors thank Muthuramakrishnan Venkitasubramaniam for the useful conversa-
tions and insights he provided, Tore Frederiksen for reviewing and confirming our cost
analysis of his protocol [23], Peter Scholl and Xiao Wang for providing detailed cost
analyses of their respective protocols [30,49], and Nigel Smart for pointing out the con-
nection to Residue Number Systems. This research was supported in part by the Office of
the Director of National Intelligence (ODNI), Intelligence Advanced Research Project
Activity (IARPA) under contract number 2019-19-020700009 (ACHILLES). The views
and conclusions contained herein are those of the authors and should not be interpret-
ed as necessarily representing the official policies or endorsements, either expressed or
implied, of ODNI, IARPA, DoI/NBC, or the U.S. Government. The U.S. Government
is authorized to reproduce and distribute reprints for Governmental purposes notwith-
standing any copyright annotation thereon.

Multiparty Generation of an RSA Modulus Page 45 of 84 12

Appendix A. The UC Model and Useful Functionalities

Appendix A.1. Universal Composability

We give a high-level overview of the UC model and refer the reader to [7] for a further
details.

The real-world experiment involves n parties P1, . . . ,Pn that execute a protocol π,
an adversary A that can corrupt a subset of the parties, and an environment Z that is
initialized with an advice-string z. All entities are initialized with the security parameter
κ and with a random tape. The environment activates the parties involved in π, chooses
their inputs and receives their outputs, and communicates with the adversary A. A semi-
honest adversary simply observes the memory of the corrupted parties, while amalicious
adversary may instruct them to arbitrarily deviate from π. In this work, we consider only
static adversaries, who corrupt up to n − 1 parties at the beginning of the experiment.
The real-world experiment completes when Z stops activating parties and outputs a
decision bit. Let realπ,A,Z (z, κ) denote the random variable representing the output of
the experiment.

The ideal-world experiment involves n dummy parties P1, . . . ,Pn , an ideal function-
ality F, an ideal-world adversary S (the simulator), and an environment Z . The dummy
parties act as routers that forward any message received from Z to F and vice versa. The
simulator can corrupt a subset of the dummy parties and interact with F on their behalf;
in addition, S can communicate directly with F according to its specification. The en-
vironment and the simulator can interact throughout the experiment, and the goal of the
simulator is to trick the environment into believing it is running in the real experiment.
The ideal-world experiment completes when Z stops activating parties and outputs a
decision bit. Let idealF,S,Z (z, κ) denote the random variable representing the output
of the experiment.

A protocol π UC-realizes a functionality F if for every probabilistic polynomial-time
(PPT) adversary A there exists a PPT simulator S such that for every PPT environment
Z

{
realπ,A,Z (z, κ)

}
z∈{0,1}∗,κ∈N ≈c

{
idealF,S,Z (z, κ)

}
z∈{0,1}∗,κ∈N

If the above distributions are perfectly or statistically indistinguishable, then we say that
π perfectly or statistically UC-realizes F, respectively.

Communication model. We follow standard practice of MPC protocols: Every pair
of parties can communicate via an authenticated channel, and in the malicious setting
we additionally assume the existence of a broadcast channel. Formally, the protocols
are defined in the (Fauth,Fbc)-hybrid model (see [7,8]). We leave this implicit in their
descriptions.

Appendix A.2. Useful Functionalities

To realize FAugMul and FBiprime, we use a number of standard functionalities that have
well-known realizations in the cryptography literature. For completeness, we give those

12 Page 46 of 84 M. Chen et al.

functionalities in this section. First among them is a simple distributed coin-tossing
functionality, which samples an element uniformly at random from an arbitrary domain.

Functionality A.1. FCT(n,X). Coin Tossing
This functionality is parametrized by the number of parties n and a domain X.

Sample: Upon receiving (flip, sid) from all parties, wheresid is a fresh, agreed-
upon value, uniformly sample a random element x ← X and send (coin, sid, x)
to all parties as adversarially delayed output.

We also make use of a one-to-many commitment functionality, which we have taken
directly from Canetti et al. [8].

Functionality A.2. FCom(n). One-to-many Commitment
This functionality is parametrized by the number of parties n. In each instance
one specific party Pi commits, and all other parties receive the commitment and
committed value.

Commit: On receiving (commit, sid, x,D) from party Pi , where D ⊆ [n] and
x ∈ {0, 1}∗, if sid is a fresh value, then store (commitment, sid, x,D, i) in
memory and send (committed, sid, i) to each party P j for j ∈ D.

Decommit: On receiving (decommit, sid) from Pi , if a record of the form
(commitment, sid, x,D, i) exists in memory, then send (decommitted, sid, x)
to every party P j for j ∈ D.

In πBiprime (Protocol 5.2), we make use of a functionality for randomly sampling
integer shares of zero. This functionality can be realized assuming two-party coin tossing
via a slight modification of a protocol of Cramer et al. [17].

Functionality A.3. FZero(n, B). Integer Zero Sharing
This functionality is parametrized by a number of parties n and a maximal value
B.

Sample: Upon receiving (sample, sid) from all parties, where sid is a fresh,
agreed-upon value, uniformly sample x ← [−B, B]n×n conditioned on xi, j +
x j,i = 0 for all i ∈ [n] and j ∈ [n], and send (zero-share, sid,

∑
j∈[n] xi, j) to

each party Pi as adversarially delayed private output.

In both πBiprime and πAugMul, we use a functionality for generic commit-and-compute
multiparty computation. This functionality allows each party to commit to private inputs,
after which the parties agree on one or more arbitrary circuits to apply to those inputs.
It can be realized using many generic multiparty computation protocols.

Multiparty Generation of an RSA Modulus Page 47 of 84 12

Functionality A.4. FComCompute(n). Commit-and-compute MPC
This functionality is parametrized by the number of parties n.

Input Commitment: Upon receiving (commit, sid, x) from party Pi , if sid is a
fresh value, then store (value, sid, i, x) in memory, and send (committed, sid, i)
to all other parties.

Computation: Upon receiving (compute, sid, input-sids, f) from all parties,
where sid is a fresh, agreed upon value, and where input-sids is a vector of session
IDs such that for every i ∈ [|input-sids|] there exists in memory a record of the
form (value, input-sidsi , ∗, ∗), and where f is the description of a function that
takes as input the values associated with the IDs in input-sids and produces as
output an n-tuple of values, if the parties disagree upon the function f or the vector
input-sids, then abort, informing them in an adversarially delayed fashion, and
otherwise:
1. Let x be a vector of the same length as input-sids such that for i ∈ [|input-sids|],

there exists in memory a record of the form (value, input-sidsi , ∗, v) such that
xi = v.

2. Compute (y1, . . . , yn) ..= f (x), and then send (result, sid, yi) to each party
Pi as an adversarially delayed private output.

Finally, we use a delayed-transmission correlated oblivious transfer functionality as
the basis of our multiplication protocols. This functionality can be realized by combining
a standard OT protocol with a commitment scheme, as we discuss in Appendix B.1.
Unlike an ordinary COT functionality, which allows the sender to associate a single
correlation to each choice bit, this functionality allows the sender to associate an arbitrary
number of correlations to each bit. The transfer action then commits the sender to the
correlations, and the sender can later decommit them individually, at which point the
receiver learns either a random pad, or the same pad plus the decommitted correlation,
according to their choice. We suggest that this functionality be instantiated via either
Silent OT-extension [6] or the KOS OT-extension protocol [35].

Functionality A.5. FDelayedCOT. Delayed-Transmission COT
This functionality interacts with a sender S and a receiver R.

Receiver Choice: On receiving (choose, sid, β) from the receiver, where β ∈
{0, 1}, if sid is a fresh value, then store (choice, sid, β) in memory and send
(chosen, sid) to the sender.

Sender Commitment: On receiving (commit, sid,α) from the sender, where
α ∈ G1 × G2 × . . .G�OT (that is, α is a vector of elements of length �OT from
a heterogeneous set of groups), if a record of the form (choice, sid, ∗) ex-
ists in memory, but no record of the form (correlation, sid, ∗, ∗) exists in
memory, then sample a random vector of pads ρ ← G1 × G2 × . . .G�OT , store

12 Page 48 of 84 M. Chen et al.

(correlation, sid,α, ρ) in memory, send (pads, sid, ρ) to the sender, and
send (committed, sid) to the receiver.

Transfer: On receiving (transfer, sid, i) from the sender, if records of the
form (correlation, sid,α, ρ) and (choice, sid, β) exist in memory such
that 0 < i ≤ �OT, but no record (complete, sid, i) exists in memory, then send
(message, sid, i, β ·αi −ρi) to the receiver, where the + operator is defined over
Gi , and store (complete, sid, i) in memory.

Appendix B. Instantiating Multiplication

In this section, we describe how to instantiate the FAugMul functionality and discuss
the efficiency of our protocols. In Appendix B.1, we begin by using oblivious trans-
fer and commitments to build delayed correlated oblivious transfer (FDelayedCOT). In
Appendix B.2, we use FDelayedCOT to realize a two-party multiplier FReuseMul2P that
allows inputs to be reused and postpones the detection of malicious behavior. In Ap-
pendix B.3, we plug this into the classic GMW multiplication technique [26] in order
to realize an n-party multiplier FReuseMul, with the same properties of input-reuse and
delayed cheat detection. Finally, in Appendix B.4, we combine this component with
generic multiparty computation (FComCompute) via a simple MAC to realize FAugMul.
We discuss security and give concrete efficiency analysis in parallel. In our efficiency
analysis, we make the same assumptions and concessions as in Sect. 6.

Appendix B.1. Delayed-Transmission Correlated Oblivious Transfer

Given groups G1, . . . ,G�OT , the functionality FDelayedCOT with respect to G1 × · · · ×
G�OT can be realized in the (FCom,FCT,FOT)-hybrid model, where FOT is the stan-
dard oblivious-transfer functionality [8]. Our construction uses a collection of �OT hash
functions Hi : {0, 1}λ → Gi such that for r ← {0, 1}λ, the vector (H1(r), . . . , H�OT(r))
is indistinguishable from (g1, . . . , g�OT) ← G1 × · · · ×G�OT . This is trivial when each
Hi is modeled as a random oracle.

1. The sender samples two uniformly random messages (r0, r1) ← {0, 1}λ × {0, 1}λ,
and the receiver (who has an input bit β ∈ {0, 1}) uses FOT to receive rβ .

2. In order to commit to its input-correlation vector α, the sender sends αi − Hi (r0) −
Hi (r1) for i ∈ [�OT] to FCom.

3. The sender and receiver useFCT to sample an agreed-upon uniform vector ρ̃ ← G1×
· · ·×G�OT . The sender outputs ρ ..= {Hi (r0)+Hi (αi −Hi (r0)−Hi (r1))− ρ̃i }i∈[�OT]
as its pads.

4. To implement the transfer instruction for index i , the sender instructs FCom to de-
commit x ≡ αi − Hi (r0)− Hi (r1), and then the receiver retrieves its output follows:

• If β = 0, then the receiver calculates its output as ρ̃i − Hi (r0) − Hi (x). Note that
this is equivalent to −ρi

• If β = 1, then the receiver calculates its output as x + ρ̃i + Hi (r1) − Hi (x). Note
that this is equivalent to αi − ρi .

Multiparty Generation of an RSA Modulus Page 49 of 84 12

It is clear to see that at the end of this protocol, the sender and receiver hold additive
shares of β · αi for every index i that has been decommitted, and that the sender is
committed to α.

Theorem B.1. LetG1, . . . ,G�OT be groups and assume there exists a collection {Hi :
{0, 1}λ → Gi }i∈[�OT] as described above. Then, there exists a protocol in the (FOT,FCT,
FCom)-hybrid model that UC-realizes FDelayedCOT with respect to G1 × · · · × G�OT

against a malicious PPT adversary that statically corrupts one party, and this protocol
requires a single invocation of FOT.

We note that with a particular usage pattern, there is a more efficient instantiation
available, based upon a non-black-box usage of either Silent OT [6] or KOS OT [35],
which we introduced in Sect. 6.2. In particular, assume there is some specific point in
time, and that all correlations are decommitted either immediately after they are com-
mitted, or at that point. Both Silent OT and KOS OT involve sending a message from the
receiver to the sender first, followed by a message from the sender to the receiver, where
each bit in this latter message corresponds to one bit of the correlation(s) transferred
(and any correlation bit can be recovered from only the one associated message bit).
Thus, FDelayedCOT can be realized in the following context-optimized way: the receiver
sends its message, and then the sender sends the bits of its message associated with the
correlations to be immediately released, and commits (using a single commitment) to the
other bits of its message. These bits are decommitted later. This eliminates the potential
overhead associated with transferring the r0 and r1 values in our above construction. Fur-
thermore, if many FDelayedCOT instances are invoked at once, and the delayed-release
correlations are released simultaneously across all instances, then the instances can share
a single commitment. Our usage of FDelayedCOT matches this pattern, and so its cost is
equal (up to a few bits) to that of either Silent OT or KOS OT. When calculating concrete
efficiency figures, we assume the overhead is exactly zero.

B.2. Two-Party Reusable-Input Multiplier

Our basic two-party multiplication functionality FReuseMul2P allows parties to input
arbitrarily many values, whereafter, on request, it returns additive shares of the product
of any pair of them. Unlike the standard two-party multiplication functionality, however,
we allow the adversary to both request the honest party’s inputs and determine the output
products. We then add two explicit check commands which the parties can agree to
invoke. One notifies the honest party if the adversary has used its power to cheat, and the
other opens the private inputs to the multiplication, while also, as a side effect, notifying
the honest party if the adversary has used its power to cheat.

12 Page 50 of 84 M. Chen et al.

Functionality B.2. FReuseMul2P(m). Two-Party Multiplication
This functionality is parametrized by the prime modulus m. It interacts with two
parties, Alice and Bob, who have indices A and B, respectively, and it also interacts
directly with an ideal adversary S, who corrupts one of the parties.

CheaterActivation: Upon receiving (cheat, sid) fromS, store (cheater, sid)

in memory and send every record of the form (value, sid, i, x) to S. For the pur-
poses of this functionality, we will consider session IDs to be fresh even when a
cheater record already exists in memory.

Input: Upon receiving (input-self, sid, x) from party Pi , where i ∈ {A,B},
and also receiving (input-other, sid) from the opposite party: if sid is a fresh,
agreed-upon value and if 0 ≤ x < m, then store (value, sid, i, x) in mem-
ory and send (value-loaded, sid) to both parties. If a record of the form
(cheater, sid) exists in memory, then send (value, sid, i, x) to S.

Multiplication: Upon receiving (multiply, sid1, sid2, sid3) from bothPA and
PB, if sid3 has not previously been used, and if records of the form (value, sid1,

i, x) and (value, sid2, j, y) exist in memory such that i �= j , and if no record
of the form (cheater, sid1) or (cheater, sid2) exists in memory, then sample
zA ← Zm uniformly and compute zB ..= (x · y − zA) mod m. If the previous
conditions hold, but a record of the form (cheater, sid1) or (cheater, sid2)

exists in memory, then send (cheat-multiply, sid1, sid2, sid3) to S and in
response receive (cheat-product, sid3, zA, zB) where 0 ≤ zA, zB < m. Re-
gardless, send (product, sid3, zA) and (product, sid3, zB) to Alice and Bob
respectively as adversarially delayed private output.

Cheater Check: Upon receiving (check, sid) from both parties, if a record of
the form (cheater, sid) exists in memory, then abort, informing both parties
in an adversarially delayed fashion. Otherwise, send (no-cheater, sid) to both
parties as adversarially delayed output. Regardless, refuse all future messages with
this sid.

Input Revelation: Upon receiving (open, sid) from both parties, if a record of
the form (cheater, sid) exists in memory, then abort, informing both parties in an
adversarially delayed fashion. Otherwise, if a record of the form (value, sid, i, x)
exists in memory, then send (opening, sid, x) toP j , where j ∈ {A,B} and j �= i ,
as adversarially delayed output. Refuse all future messages with this sid.

Theorem B.3. There exists a protocol in the (FDelayedCOT,FCT,FCom)-hybrid model
that statistically UC-realizes FReuseMul2P against a malicious adversary that statically
corrupts one party.

The proof of this theorem is via construction of a protocol πReuseMul2P, which we
sketch here, along with a security argument. We adapt the multiplication protocols of
Doerner et al., and refer the reader to their work [20, Section 3] for a more in-depth tech-
nical explanation. Our main changes involve making the security parameter independent

Multiparty Generation of an RSA Modulus Page 51 of 84 12

of the working field, separating the input, multiplication, and cheater check components
into separate phases such that inputs can be reused and checks performed retroactively,
and adding an input-opening phase not originally present. For any input the parties can
choose to use either the cheater check or the input-opening mechanism, but not both.
Along with the sketch of each phase of the protocol, we provide a cost analysis of that
phase, and sketch a simulation strategy and security argument. We omit a formal proof
of security via hybrid experiments, as it would closely resemble proofs already provided
by Doerner et al. [19,20].

Common parameters and hybrid functionalities. The protocol πReuseMul2P is
parametrized by the statistical security parameter s and a prime m such that |m| ∈
O(log s). For convenience, we define a batch-size ξ ..= 2s + |m| and a repetition count
r = �s/|m|�. Looking ahead, Bob will encode his input via the inner product of ξ ran-
dom bits and a uniformly sampled vector g. Intuitively, the parameter ξ is set so that
even if s bits of his codeword are revealed to Alice, she has negligible advantage in
guessing his input. Note that unlike in prior works, g is not fixed ahead of time, but
chosen uniformly after Alice is committed to her inputs. The participating parties have
access to the coin-tossing functionality FCT, the commitment functionality FCom, and
the delayed-transfer COT functionality FDelayedCOT.

The Input and Multiplication phases of πReuseMul2P. For the sake of succinctness,
we will describe the input and multiplication processes jointly: each party will supply
exactly one input, and they will receive shares of the product, in a single step. Later,
we will discuss how the protocol can be generalized to allow the parties to input values
independently, and to reuse those input values. Alice begins the protocol with an input
a ∈ [0,m), and Bob with an input b ∈ [0,m), and they both know a fresh, agreed-upon
session ID sid. They take the following steps:

1. Alice and Bob both independently compute a vector of session IDs bit-sids ..=
{GenSID(sid, j)} j∈[ξ].

2. Alice samples a consistency-check vector ã ← Z
r
m .

3. Bob samples a vector of choice bits β ← {0, 1}ξ .
4. For each i ∈ [ξ] (concurrently):

(a) Bob sends (choose,bit-sidsi ,β i) to FDelayedCOT, and Alice is notified.
(b) Alice sends (commit,bit-sidsi , (a, ã1, . . . , ãr) ∈ Z

r+1
m) to FDelayedCOT.

FDelayedCOT sends (pads,bit-sidsi , (zA,i , z̃A,i,1, . . . , z̃A,i,r)) to Alice in re-
ply, and notifies Bob of her commitments.

(c) Alice sends (transfer,bit-sidsi , 1) toFDelayedCOT. As a consequence, Bob
receives zB,i from FDelayedCOT, such that zA,i + zB,i ≡ a · β i (mod m).

5. Alice and Bob use FCT to generate an agreed-upon uniform vector e ← Z
r
m , and

then Alice privately computes

ψ ..= {
(ã j + e j · a) mod m

}
j∈[r]

ζ ..= {
(z̃A,i, j + e j · zA,i) mod m

}
i∈[ξ], j∈[r]

12 Page 52 of 84 M. Chen et al.

6. Alice uses FCom to commit to (a, zA,∗) and independently to (ψ, ζ), and Bob is
notified.

7. Alice and Bob use FCT to generate an agreed-upon uniform vector g ← Z
ξ
m .

8. Bob computes b̃ ..= 〈g,β〉 and sends δ ..= b − b̃ mod m to Alice.
9. Alice outputs zA ..= a ·δ+〈g, zA,∗〉 mod m, while Bob outputs zB ..= 〈g, zB,∗〉 mod

m.

While the correctness of the above procedure is easy to verify when both parties
follow the protocol, we note that it omits some of the consistency-check components of
the protocols of Doerner et al. [19,20], which will appear in the next protocol phase. In
particular, the consistency-check vector ã is committed by the end of the protocol, but
it has not yet been transferred to Bob. This omission admits cheating behavior, such as
a corrupt Alice using different values for a in each iteration of Step 4b. We model these
attacks in FReuseMul2P by allowing the ideal adversary to fully control the results of a
multiplication, once it has explicitly notified FReuseMul2P that it wishes to cheat.

If the parties agree that Alice should be compelled to reuse an input in multiple
different multiplications, then she must also reuse the same consistency-check vector ã
in all of those multiplications. The consistency-check mechanism (in the next protocol
phase) that ensures the internal consistency of a single multiplication will also ensure
the consistency of many multiplications.

If the parties agree that Bob should be compelled to reuse an input in multiple different
multiplications, then the above protocol is run exactly once, and Alice combines her
inputs for all of those multiplications (and their associated, independent consistency-
check vectors) into a single array, which she commits to in Step 4b. She then repeats
Step 4c, changing the index as appropriate to cause the transfer of each of her inputs
(but not, for now, the consistency-check vectors). The remaining steps in the protocol
are repeated once for each multiplication, except for Step 8, which is performed exactly
once, for Bob’s one input.

In the case that Bob wishes to input a value to be used in one or more later (potentially
dynamically chosen) multiplications, the parties can run the above protocol until Step 4a
is complete and then pause the protocol until a multiplication using Bob’s input must be
performed. In the case that Alice wishes to input a value to be used later, Bob must input
a dummy value, and compulsory input reuse is employed (as previously described) to
ensure she uses her input again in the appropriate multiplications, when they occur.

We observe that the dominant cost of the above protocol is incurred by the ξ = 2s+|m|
invocations of FDelayedCOT per multiplication, each invocation with a correlation of size
|m|. If we realizeFDelayedCOT via Silent OT, then Alice must transmit |m|·(|m|+2s)+4λ

bits in total and Bob must transmit 2|m| + 2s bits it total. If we realize FDelayedCOT
via KOS OT, then Alice must transmit |m| · (|m| + 2s) + 4λ bits in total and Bob must
transmit λ · (|m| + 2s) + |m| bits in total. Regardless, they require three rounds if FCT
is realized non-interactively.

Simulator overview. Since our multiplication protocol has two asymmetric roles, we
specify two separate simulation strategies: one against a corrupted Alice, and the other
against a corrupted Bob. As in prior malicious-secure OT-based multipliers, Bob has
few avenues via which he can cheat, and so his simulator is relatively straightforward.
On the other hand, the division of the protocol into multiple independent phases and

Multiparty Generation of an RSA Modulus Page 53 of 84 12

addition of a second cheater-checking mechanism has noticeably complicated simulation
against Alice. Alice is committed to her inputs and to many components of the cheater-
check mechanisms by the end of the input/multiplication phase. The simulation can
thus analyze her cheats before returning an output to her. Based on certain attributes
of her cheats, the simulator may decide to call the cheat interface of FReuseMul2P, in
which case the functionality will certainly abort when either the cheater check or input
revelation phases is called, or the simulator may decide to avoid calling the cheat
interface (thereby depriving the adversary of leakage and control over the output), and
instead manually instruct FReuseMul2P to abort when one or both of the aforementioned
phases is actually entered, or the simulator may not abort at all.

Simulating Inputs and Multiplication. Simulation of this phase against a corrupt Bob
is simple: he has no avenue for cheating, and his ideal input in any single instance of
the above protocol is defined by b ≡ δ + 〈g,β〉 (mod m), which is available to the
simulator. The only values that he receives during the course of the protocol are g and
zB,∗, which can be simulated by sampling them uniformly.

Simulating against a corrupt Alice is more involved: if she uses inconsistent values of
a across the OT instances in Step 4b, then the simulator takes her most common value to
be her ideal input (breaking ties arbitrarily). Let this ideal input be denoted by a, and let
the vector of (possibly inconsistent) she supplied in the OT instances be α. The length
α depends upon the number of multiplications in which Alice and Bob agreed that her
input should be reused; for example |α| = ξ if a was used in only one multiplication.
Without loss of generality, we will assume one multiplication only for the rest of our
simulator description, but note where generalizations must occur. Let c be the number
of inconsistencies in α with respect to a, and let I be a vector of the indices of these
inconsistencies; that is, a vector such that |I| = c and ∀i ∈ [|α|],αi �= a ⇐⇒ i ∈ I.
We have two cases.

If c ≥ s, then the simulator activates thecheat interface ofFReuseMul2P and receives
Bob’s inputs. Hereafter, the simulator can run Bob’s code in order to behave exactly as he
would in the real world. Since neither the real Bob nor theFReuseMul2P aborts during the
input and multiplication phases, regardless of Alice’s behavior, it is easy to see that the
real and ideal world experiments are identically distributed insofar as those two phases
are concerned. However, activating the cheat interface dooms FReuseMul2P to abort
when the input-opening or cheater-check interfaces are used, and so it remains to prove
that Bob aborts with overwhelming probability in the real word when the corresponding
protocol phases are run. We will discuss this further in the relevant sections.

If c < s, then the simulator will not call the cheat interface of FReuseMul2P, but
will instead use the same interface as an honest Alice, compute and apply the effects of
Alice’s inconsistencies locally, and potentially instruct FReuseMul2P to abort at a later
time. The simulator begins by sampling g ← Z

|α|
m uniformly. It then computes a vector

� of the offsets by which Alice has cheated, one for each OT instance,

� ..= {αi − a mod m}i∈[|α|]

12 Page 54 of 84 M. Chen et al.

after which it flips a coin for each location where Alice has cheated. That is, if we let β̂

represent the simulator’s coins, then it samples β̂ i ← {0, 1} for i ∈ I and sets β̂ i
..= ⊥

(where ⊥ is a special symbol indicating that no value has been chosen) otherwise.
Next, the simulator calls the input phase of FReuseMul2P using a as its input value, and

then, for each time that the input α is supposed to be reused, it performs the following
sequence of steps. First, it calls the multiply phase of FReuseMul2P, and receives ẑA as
output. In order to deliver a reply to Alice on behalf of FDelayedCOT in Step 4b of the
protocol, the simulator must apply Alice’s cheats. It samples a uniform δ ← Zm and a
set of ideal outputs for the OT instances; specifically, it finds a vector ẑA,∗ ∈ Z

ξ
m such

that

〈
g, ẑA,∗

〉+ δ · a ≡ ẑA (mod m)

and using these values, the simulator computes the values that it must output to Alice
on behalf of FDelayedCOT:

zA,∗ ..=
{
ẑA,i + β̂ i · �i mod m

}

i∈[ξ]

Here again we have assumed that a is being used in only one multiplication, and so
|α| = |β̂| = |�| = ξ ; in generality, the simulator uses the appropriate slice of � and β̂

for each multiplication, and then concatenates the resulting vectors to form one unified
vector zA,∗ ∈ Z

|α|
m . To simulate Step 4b of the protocol, the simulator sends each zA,i to

Alice on behalf of the i th instance of FDelayedCOT.
In Step 6 of the protocol, the simulator receives (a′, z′A,∗) and (ζ ,ψ) from Alice on

behalf of FCom. Note that if Alice is honest, then a = a′ and zA,∗ = z′A,∗, but in general
Alice might cheat, and so these values are stored by the simulator for later. To simulate
Step 7, the simulator sends g on behalf of FCT, which it previously sampled uniformly
just as FCT would. To simulate Step 8 of the protocol, the simulator sends the value δ

that it sampled previously to Alice on behalf of Bob. This completes the simulation for
the input and multiplication phases of πReuseMul2P against a corrupt Alice, when c < s.

We will briefly argue for the indistinguishability of the real and ideal-world experi-
ments with respect to adversaries corrupting Alice, when c < s. The adversary’s view
includes α, δ, g, and zA,∗, and additionally, the environment determines the input b and
receives the output zB. We must analyze the joint distribution of these six variables. In
both the real and ideal worlds, g is chosen uniformly and independently. In the ideal
world, δ is chosen uniformly and independently, but in the real world, it is chosen as
the difference between b and the inner product of g and Bob’s choice bits β. These two
distributions are statistically indistinguishable as previously shown by Impagliazzo and
Naor [31, Proposition 1.1] (see also [20, Lemma B.5]). Finally, in the ideal world, zB and
zA,∗ are chosen uniformly by FReuseMul2P and the simulator, subject to the following
constraints

ẑA + zB ≡ a · b (mod m) (6)

ẑA ≡ 〈
g, ẑA,∗

〉+ δ · a (mod m) (7)

Multiparty Generation of an RSA Modulus Page 55 of 84 12

ẑA,∗ ≡
{
zA,i − β̂ i · (αi − a)

}

i∈[ξ] (mod m) (8)

assuming that |α| = |β̂| = |�| = ξ , as before. Substituting Eq. 8 into 7, and the result
into 6 yields

∑

i∈[ξ]
gi ·

(
zA,i − β̂ i · (αi − a)

)
+ δ · a + zB ≡ a · b (mod m)

and rearranging, we have

〈
g, zA,∗

〉+ zB ≡ a · (b − δ) +
∑

i∈[ξ]

(
gi · β̂ i · (αi − a)

)
(mod m) (9)

In the real world, on the other hand, zA,∗ and zB,∗ are chosen uniformly byFDelayedCOT
subject to

{
zA,i + zB,i

}
i∈[ξ] ≡

{
β i · αi

}
i∈[ξ] (mod m)

which implies that

〈
g, zA,∗

〉+ zB ≡
∑

i∈[ξ]
gi · β i · αi (mod m) (10)

Now, recall that b̃ ≡ b − δ (mod m) and 〈g,β〉 ≡ b̃ (mod m), which allows us to
rewrite Eq. 10 by adding a zero-sum term to the right hand side:

〈
g, zA,∗

〉+ zB ≡ a · (b − δ − 〈g,β〉) +
∑

i∈[ξ]
gi · β i · αi (mod m)

where we take a to be the most common element of α, as in the ideal world. Rearranging,
we have

〈
g, zA,∗

〉+ zB ≡ a · (b − δ) +
∑

i∈[ξ]
gi · β i · (αi − a) (mod m) (11)

Observe that Eqs. 9 and 11 are identical except for the difference between Bob’s
choice bits β and the simulator’s simulated choice bits β̂. In the real world, Bob samples
β uniformly. In the ideal world, the simulator samples β̂ uniformly at every index i
where αi �= a. Thus, the constraints under which zB and zA,∗ are sampled are equivalent
in the real and ideal worlds, and the two worlds are statistically indistinguishable when
c < s.

The Cheater Check phase of πReuseMul2P. In this phase of the protocol, the parties
perform a process analogous to the consistency check in the multiplication protocols of
Doerner et al. [20]. This reveals to the honest parties any cheats in the protocol phases

12 Page 56 of 84 M. Chen et al.

described above. As we have previously noted, Bob does not have an opportunity to
cheat; thus this check verifies only Alice’s behavior, via the consistency-check vectors
ã, ζ and ψ , to which she is committed. In addition to the consistency-check vector,
Alice begins the protocol with an input a, and both parties know a vector sids of all the
multiplications in which Alice was expected to use this input, along with a vectorbit-sids
of the individual FDelayedCOT instances (over all of the multiplications associated with
sids) in which she was expected to commit {a}‖ã. Bob begins with a vector of choice
bits, β, one bit for each entry in bit-sids. We assume for the sake of simplicity that Bob
was not expected to reuse his inputs. The parties take the following steps:

1. For each i ∈ [|bit-sids|] and j ∈ [r], Alice sends (transfer,bit-sidsi , j + 1) to
FDelayedCOT, and as a consequence, Bob receives z̃B,i, j such that 0 ≤ z̃B,i, j < m.
Note that if Alice has behaved honestly, then per the specification of FDelayedCOT, it
holds for all i ∈ [|bit-sids|] and j ∈ [r] that

z̃A,i, j + z̃B,i, j ≡ β i · ã j (mod m)

2. Alice instructs FCom to decommit (ζ ,ψ).
3. Bob verifies that for each i ∈ [|bit-sids|] and j ∈ [r],

ζ i, j + z̃B,i, j + e j · zB,i ≡ β i · ψ j (mod m)

and if this relationship does not hold, then he aborts.

The cheater check costs only one round and 2s · (|m| + 2s) · |sids| bits of transmitted
data for Alice, where |sids| is the number of multiplications in which the input to be
checked was used.

Simulating theCheaterCheck.Notice that in the foregoing procedure, Bob learns noth-
ing about α or zA,∗; all values derived from these are masked by Alice using uniformly
sampled one-time pads before being transmitted to him. Notice furthermore that every
value in Bob’s check in Step 3 is known to or determined by the simulator. Thus, simu-
lation against Bob is trivial: the simulator can send Bob exactly the message that causes
his check to pass, and then send the appropriate check message to FReuseMul2P.

As before, simulation against Alice is more involved. Although Alice was instructed
to reuse the same r -length vector ã for all OT instances involving a in Step 4b of the
input phase, she could have cheated and used different vectors in some OT instances.
Thus, let α̃ ∈ Z

|α|×r
m represent her actual inputs to the OTs, where α̃i,∗ = α̃i ′,∗ = ã for

all i, i ′ ∈ [|α|] if Alice is honest. Note that |α| = |bit-sids|. Upon the decommitment
instruction from Alice on behalf of FCom, the simulator performs the following check
for all i ∈ [|α|]:
1. Let J ⊆ [r] be a vector containing every index j where the following equalities do

not both hold:

ψ j ≡ (α̃i, j + e j · αi) (mod m)

ζ i, j ≡ (z̃A,i, j + e j · zA,i) (mod m)

Multiparty Generation of an RSA Modulus Page 57 of 84 12

Note that if Alice has acted honestly then these equalities will always hold.
2. Compute β∗ ∈ Z

r
m such that

β∗
j ≡

⎧
⎪⎨

⎪⎩

ζ i, j − (z̃A,i, j + e j · zA,i)

ψ j − (α̃i, j + e j · αi)
(mod m) if j ∈ J

⊥ if j �∈ J

where ⊥ is a special symbol used to indicate no value, and an additional special
symbol ∞ is used to indicate an undefined value due to division by zero.

3. If there exists any index j ∈ [r] such that β∗
j �∈ {0, 1,⊥}, or any pair (j, j ′) such

that β∗
j ,β

∗
j ′ ∈ {0, 1} ∧ β∗

j �= β∗
j ′ , then immediately instruct FReuseMul2P to abort. If

the simulator continues past this point, it must be the case that either β∗ ∈ {0,⊥}r
or β∗ ∈ {1,⊥}r . This means that there exists a set of choice bits that would cause
Bob’s check to pass in the real world.

4. If i ∈ I and there exists an index j ∈ [r] such that β∗
j �∈ {β̂ i ,⊥}, then immediately

instruct FReuseMul2P to abort.
5. If i �∈ I and there exists an index j ∈ [r] such that β∗

j �= ⊥, then flip a uniform coin
and immediately instruct FReuseMul2P abort if it lands on heads.

If the check passes (i.e., no abort instruction is issued) for all i ∈ [|α|], then the simulator
sends the appropriate check message to FReuseMul2P (which will abort at this point if
the cheat instruction was previously issued), completing the simulation.

We will briefly argue for indistinguishability of the real and ideal-world experiments,
with respect to adversaries corrupting Alice. During this phase, no values are transmitted
to Alice, and thus the two worlds are distinguishable only by the distribution of aborts.
In the real world, Bob aborts unless

ζ i, j + z̃B,i, j + e j · zB,i ≡ β i · ψ j (mod m)

for every i ∈ [|bit-sids|] and j ∈ [r], per Step 3 of the protocol, and if we take a to be
the most common input among Alice’s OT instances (breaking ties arbitrarily) and � to
be a vector of deviations from a, then, rewriting, we have

ζ i, j − z̃A,i, j − e j · zA,i ≡ β i · (ψ j − α̃i, j − e j · (a + �i)) (mod m) (12)

On the other hand, in the ideal world, there are a number of abort conditions. We will
argue that for every condition that triggers an abort in the ideal world, an abort is also
observed by Alice in the real world with negligibly different probability.

1. The abort condition in Step 3 of the simulator checks whether there exists any hy-
pothetical set of choice bits that could allow Eq. 12 to hold, given Alice’s messages.
If no such set of choice bits exists, then the simulator aborts, and clearly Bob must
abort in the real world as well.

2. The abort condition in Steps 4 and 5 of the simulator checks whether Eq. 12 holds,
given a simulated set of Bob’s choice bits. The condition is split into two cases to
ensure these choice bits are consistent with any simulated choice bits previously sam-
pled when simulating the multiplication phase of the protocol, which the environment

12 Page 58 of 84 M. Chen et al.

may have been able to infer from the outputs zB and zA,∗ that it receives at the end of
the multiplication phase. Regardless, the simulated choice bits are chosen uniformly
in the ideal world after Alice is already committed to ζ and ψ , and the real choice
bits are chosen uniformly by Bob and information-theoretically hidden from Alice
until after her commitments are made, and thus the probability of abort is the same
in both worlds. Notice that this case technically subsumes the first.

3. The abort condition in the cheater check phase of FReuseMul2P is triggered at the
end of the simulation if and only if c ≥ s, which implies the vector � is nonzero
(i.e., Alice cheated when supplying inputs to FDelayedCOT) at at least s locations. We
argue that under this condition, Bob aborts with overwhelming probability in the real
world as well.

Notice first that Alice commits to α and α̃ before e is defined. After receiving e, she
commits to ζ and ψ , and only then does she receive δ (and the environment receives
zB), which might potentially allow β to be distinguished from uniform.

Consider Bob’s real-world check, Eq. 12. Since Alice knows every value on the left-
hand side, and is permitted to freely choose ζ i, j after learning the others, the left-hand
side is completely within her control. Now consider some index j and two indices i , i ′
such that �i �= �i ′ . Due to the order in which values are committed and sampled, we
have

Pr
e j

[
α̃i, j + e j · (a + �i) = α̃i ′, j + e j · (a + �i ′)

] = 1

m

regardless of how Alice samples her variables (again, assuming �i �= �i ′). Over r
independent repetitions, the probability that the above equality holds is 1/mr ≤ 2−s ,
and it follows that if there exists any pair of indices i and i ′ such that �i �= �i ′ , then
with probability overwhelming in s there exists some index j such that

α̃i, j + e j · (a + �i) �≡ 0 (mod m) ∨ α̃i ′, j + e j · (a + �i ′) �≡ 0 (mod m)

Without loss of generality, then, let us say that the left-hand predicate holds. Since
β i ∈ {0, 1} is uniformly sampled and information-theoretically hidden from Alice at the
time she commits to ζ i, j and ψ j , she can pass Bob’s check (Eq. 12) for index i and all
j ∈ [r] with probability at most 1/2 + negl(s).

Consider that either Alice’s most-common OT input a is also her majority input, in
which case we can pair each of the c OT instances where she has cheated with one
where she is honest, or she has no majority input, in which case c ≥ s + �|m|/2� and
no more than s + �|m|/2 of her cheats are identical. In the latter case, her identical
cheats can be paired with honest OT instances an non-identically cheated OT instances.
Thus, we can always find at least c pairs of indices i and i ′ such that �i �= �i ′ , and
such that all pairs are disjoint. Since we have supposed that c ≥ s, Alice’s probability of
satisfying Eq. 12 over all combinations of indices is at most (1/2+negl(s))s ∈ negl(s).
Thus, in the ideal world, FReuseMul2P always aborts, and in the real world, Bob aborts
with probability overwhelming in s, and it follows that the real and ideal worlds are
statistically indistinguishable in this case.

Multiparty Generation of an RSA Modulus Page 59 of 84 12

Finally, we note that the above three cases partition the real-world conditions under
which Eq. 12 does not hold. In other words, for every abort observed in the real world,
an abort is also observed in the ideal world with negligibly different probability, and so
the real and ideal worlds are statistically indistinguishable.

The Input Revelation phase of πReuseMul2P. In this phase of the protocol, the parties
can open their inputs to one another. This phase may be run in place of the cheater check
phase, but they may not both be run. It has no analogue in the protocols of Doerner
et al. [19,20]. For the sake of simplicity, we assume that both parties wish to reveal
their inputs simultaneously, though the protocol may be extended to allow independent
release. Alice begins the protocol with her inputa and a check vector ã, and output vectors
zA,∗ and z̃A,∗. Furthermore, she has an outstanding commitment to (a, zA,∗) from Step 6
of the multiplication phase. Bob begins with an input b, a vector of choice bits β and an
output vector zB. In addition, they both know the vector bit-sids of session IDs of all
relevant FDelayedCOT instances (i.e., one instance for each of Bob’s bits, where Alice
was expected to use the same input in all instances), and they both know the uniformly
sampled vector g. The parties take the following steps:

1. For each i ∈ [|bit-sids|] and j ∈ [r], Alice sends (transfer,bit-sidsi , j + 1) to
FDelayedCOT as a consequence, Bob receives z̃B,i, j such that 0 ≤ z̃B,i, j < m.

2. In order to prove that he used b as his input, Bob sends b and (β i , z̃B,i,∗) for every
i ∈ [|bit-sids|] to Alice, who verifies that

δ ≡ 〈g,β〉 − b (mod m)

and that

z̃A,i, j + z̃B,i, j ≡ β i · ã j (mod m)

for every i ∈ [|bit-sids|] and j ∈ [r].
The security of this step lies in the inherent committing nature of OT; Bob is able to
pass the test while also lying about his choice bit (without loss of generality, β i) only
by outright guessing the value for z̃B,i,∗ that will cause the test to pass. This is as hard
as guessing ã, and Bob succeeds with probability less than 2−s .

3. In order to prove that she used an input a for all FDelayedCOT instances associated with
the session IDs in bit-sids, Alice decommits (a, zA,∗) via FCom. Bob verifies that for
each i ∈ [|bit-sids|], it holds that

zA,i + zB,i ≡ a · β i (mod m)

Alice is able to subvert this check for some index i if and only if she correctly guesses
Bob’s corresponding choice bit β i during the input phase, and appropriately offsets zA,i .
Thus, her probability of success is negligible in the number of her cheats.

In the random oracle model, this protocol can be optimized by instructing Bob to send
a 2s-bit digest of his z̃B,∗,∗ values, instead of sending the values themselves, since Alice
is able to recompute the same values herself using only β and the information already

12 Page 60 of 84 M. Chen et al.

in her view. Under this optimization, the cost of this protocol is |m| + 2s bits for Bob,
|m| · (|m| + 2s) bits for Alice, and 3 messages in total.

Simulating Input Revelation. Consider first a simulator against Bob. Recall that Bob
has not thus far had an opportunity to cheat; each group of FDelayedCOT instances
commits him to an unambiguous input, which the simulator has previously extracted. The
simulator sends a uniformly sampled vector z̃B,∗,∗ to Bob on behalf of FDelayedCOT, and
aborts on behalf of Alice if any of the values it receives in Step 2 of the above protocol
do not match the ones it has sent or extracted. On receiving Alice’s true input from
FReuseMul2P, the simulator uses her input along with Bob’s extracted input and the
values of zB,∗ that it previously sent him to compute the correct value of zA,∗ that it
must send to Bob on behalf of FCom. Under this simulation strategy, the ideal world is
distinguishable from the real protocol to an adversary corrupting Bob only when Bob
sends a combination of values in Step 2 that is incorrect (thus causing the simulator to
abort) but nevertheless satisfies Alice’s check (avoiding an abort in the real world). The
probability that he achieves this is negligible in the statistical parameter.

Now consider simulation against Alice. Recall that if c ≥ s (i.e., there were at
least s inconsistencies among Alice’s inputs to FDelayedCOT in the input phase), then
the simulator activated the cheat interface of FReuseMul2P and learned Bob’s input. If
this happened, then we must prove that the real-world Bob always aborts during Input
Revelation. If c < s, then the simulator sampled a set of c simulated choice bits β̂ (one
bit for each location where Alice cheated) and used them to calculate Alice’s output in
the multiplication phase. It is possible that the environment was able to learn those bits,
and thus, we must prove that they are compatible with whatever input the simulator is
required to reveal.

As before, let α and α̃ ∈ Z
|α|×r
m represent Alice’s her actual inputs to the OTs,

where |α| = |bit-sids| and where αi = αi ′ = a and α̃i,∗ = α̃i ′,∗ = ã for all i, i ′ ∈ [|α|]
if Alice was honest. Additionally, let (a′, z′A,∗) be the values to which Alice actually
committed in Step 6 of the multiplication phase, where a′ = a and z′A,∗ = zA,∗ if Alice
was honest.

Let us first consider the case that c < s. In this case, the simulator begins by sending
an open message with the correct session ID to FReuseMul2P, and in return it receives
Bob’s input b. In order to simulate Step 2 of the protocol, the simulator must sample a
set of choice bits β such that

β i = β̂ i ⇐⇒ i ∈ I ∧ b + δ ≡ 〈g,β〉 (mod m) (13)

for δ and b and g that have previously been fixed. We can simplify the problem by
rewriting it as follows: let b′ ..= b+ δ − 〈g, β̂〉 mod m (recall that β̂ i = 0 ⇐⇒ i �∈ I),
and let g′ ∈ Z

|g|−c
m be the result of deleting from g each gi with index i ∈ I. The simulator

can clearly find β satisfying Eq. 13 if it can find β ′ ∈ {0, 1}|g|−c such that 〈g′,β ′〉 ≡ b′
(mod m). We encapsulate the proof that the simulator can find such a β ′ efficiently into
the following lemma:

Multiparty Generation of an RSA Modulus Page 61 of 84 12

Lemma B.4. There exists an algorithm Brute such that for c ≤ s and any arbitrary
b′ ∈ [0,m),

Pr
[
〈g′,β ′〉 ≡ b′ (mod m) | g′ ← Z

|m|+2s−c
m ,β ′ ← Brute(b′, g′)

]
≥ 1 − 2−s

where the probability is taken over the distribution of g′ and the internal coins of Brute.
If m ∈ O(s), then the running time of Brute is in O(s2).

Proof. The algorithm Brute works by repeatedly guessing uniform values of β ′ until
the predicate 〈g′,β ′〉 ≡ b′ (mod m) is satisfied. Given a particular value of c, it follows
from Impagliazzo and Naor [31, Proposition 1.1.2] that a single uniformly random
assignment of β ′ satisfies the predicate with probability no less than

1/m − 2−s+c/2 = 2s − 2c/2

m · 2s

and since we have assumed that c ≤ s, we have:

2s − 2c/2

m · 2s
≥ 2s − 2s/2

m · 2s
≥ 2s−1

m · 2s
= 1

2m

Thus, in order to find a satisfying assignment of β ′ with probability overwhelming in
s, Brute must make g guesses such that

(

1 − 1

2m

)g

≤ 2−s

Taking the natural log of both sides of this equation and using the fact that ln(1+ x) ≥
x/(1 + x) if x > −1, we have

g ≥ ln(2) · s · (2m − 1)

and it follows that if m ∈ O(s), then there is a sufficiently large value of g in O(s2),
and this determines the runtime of Brute.

Having found an appropriate set of choice bits β by brute force, the simulator sends it
to Alice, along with the exact value of z̃B,∗,∗ that will cause her check to pass (which the
simulator can calculate, since it knows all other values used in her check), and thereby
Step 2 of the protocol is simulated. To simulate Step 3 of the protocol, the simulator can
simply evaluate Bob’s check exactly as he would, and then instruct FReuseMul2P to abort
if Bob’s check would fail. In the case that c < s, the real and ideal world experiments
are statistically indistinguishable.

12 Page 62 of 84 M. Chen et al.

Now let us consider the case that c ≥ s. In this case, the simulator already knows Bob’s
inputs, and thus, it can simulate his behavior exactly. Since FReuseMul2P is doomed to
abort in this case, we must prove that Bob aborts with overwhelming probability in the
real world as well. Recall that |I| = c and that zA,i + zB,i ≡ β i · (a + �i) (mod m)

and that �i �= 0 ⇐⇒ i ∈ I and that β was uniformly sampled and information-
theoretically hidden from Alice when she committed to (a′, z′A,∗). Given the value a′
that she chooses, Alice must commit

z′A,i ≡ β i · (a′ − a − �i) + zA,i (mod m)

in order to pass Bob’s check at some index i . If a′ − a − �i �≡ 0 (mod m), then she
will have committed the correct value with probability at most 1/2. When c ≥ s, it must
hold that a′ −a−�i �≡ 0 (mod m) for at least c indices i (notice that setting a′ �= a can
only hurt Alice), and she avoids an abort in the real world with probability no more than
2−c ≤ 2−s . Thus, the real world is statistically indistinguishable from the ideal world,
when c ≥ s.

B.3. Multiparty Reusable-Input Multiplier

Plugging FReuseMul2P into a GMW-style multiplication protocol [26] yields an n-party
equivalent of the same functionality, i.e.,FReuseMul. This flavor of composition is stan-
dard (it is used, for example, by Doerner et al. [20]), and the security argument follows
along similar lines to prior work. Note that we give the ideal adversary slightly more
power than strictly necessary, in order to simplify our description: when it cheats, it
always learns the secret inputs of all honest parties; in the real protocol, on the other
hand, the adversary may cheat on honest parties individually.

Functionality B.5. FReuseMul(m, n). Multiparty Multiplication
This functionality is parametrized by the party count n and a prime modulus m. In
addition to the parties it interacts directly with an ideal adversary S.

CheaterActivation: Upon receiving (cheat, sid) fromS, store (cheater, sid)

in memory and send any record of the form (value, sid, i, xi) to S. For the pur-
poses of this functionality, we will consider session IDs to be fresh even when a
cheater record already exists in memory.

Input: Upon receiving (input, sid, xi) from each party Pi for i ∈ [n], if 0 ≤
xi < m for all i ∈ [n], then store (value, sid, i, xi) in memory for each i ∈ [n] and
send (value-loaded, sid) to all parties. If a record of the form (cheat, sid)

exists in memory, then send (value, sid, i, xi) to S for each i ∈ [n].
Multiplication: Upon receiving (multiply, sid1, sid2, sid3) from each party
Pi for i ∈ [n], if all three session IDs are agreed upon and sid3 is fresh, and if no
record of the form (cheater, sid1) or (cheater, sid2) exists in memory, and if
records of the form (value, sid1, i, xi) and (value, sid2, i, yi) exist in memory
for all i ∈ [n], then sample zi ← Zm for i ∈ [n] subject to

Multiparty Generation of an RSA Modulus Page 63 of 84 12

∑

i∈[n]
zi ≡

∑

i∈[n]
xi ·

∑

i∈[n]
yi (mod m)

If the previous conditions hold, but (cheater, sid1) or (cheater, sid2) exists
in memory, then send (cheat-multiply, sid1, sid2, sid3) to S and in response
receive (cheat-product, sid3, {zi }i∈[n]) where 0 ≤ zi < m for all i . Regard-
less, send (product, sid3, zi) to each partyPi for i ∈ [n] as adversarially delayed
private output.

Cheater Check: Upon receiving (check, sid) from all parties, if a record of
the form (cheat, sid) exists in memory, then abort, informing all parties in an
adversarially delayed fashion. Otherwise, send (no-cheater, sid) to both parties
as adversarially delayed private output. Regardless, refuse all future messages with
this sid, except for the open message.

Input Revelation: Upon receiving (open, sid) from all parties, if a record of the
form (cheat, sid) exists in memory, then abort, informing all parties in an adver-
sarially delayed fashion. Otherwise, for each record of the form (value, sid, i, xi)
in memory, send (opened-value, sid, i, xi) to all parties as adversarially de-
layed output. Refuse all future messages with this sid.

We defer an efficiency analysis of the protocol that realizes this functionality to the next
subsection.

B.4. Augmented Multiplication

Finally, we describe a protocol πAugMul that realizes FAugMul in the (FReuseMul,
FComCompute)-hybrid model. It comprises five phases. Its input, multiplication, and
input revelation phases essentially fall through to FReuseMul. Its cheater check phase
falls through to the cheater check phase of FReuseMul, but also takes additional steps to
securely evaluate an arbitrary predicate over the checked values, using generic MPC.
Finally, it adds a sampling phase, which samples pairs of nonzero values by running a
sequence of FReuseMul instructions.

Theorem B.6. The protocol πAugMul statistically UC-realizes FAugMul in the
(FReuseMul, FComCompute)-hybrid model against a malicious adversary that statically
corrupts n − 1 parties.

Protocol B.7. πAugMul(n). Augmented Multiplication
This protocol is parametrized by the number of parties n; let s be the statistical
security parameter. The parties have access to the FReuseMul and FComCompute
functionalities.

12 Page 64 of 84 M. Chen et al.

Sampling: Upon receiving (sample, sid1, sid2,m) from the environment where
sid1 and sid2 are fresh values, each party Pi for i ∈ [n] sets ctr ..= 0 and sidx ..=
GenSID(sid1, sid2, x) for x ∈ [3, 6] and then:
1. For every x ∈ [1, 6], Pi computes ctrsidx ..= GenSID(sidx , ctr).
2. Pi samples three private random values, (ri , xi , yi) ← Z

3
m , and then loads them

into FReuseMul(m, n) by sending the messages (input, ctrsid1, xi), (input,

ctrsid2, yi), and (input, ctrsid3, ri), waiting after each for confirmation.
3. Pi sends (multiply, ctrsid1, ctrsid2, ctrsid4) to FReuseMul(m, n), and re-

ceives (product, ctrsid4, zi) in response.
4. Pi sends (input, ctrsid5, zi) to FReuseMul(m, n), and waits for confirmation,

after which it sends (multiply, ctrsid3, ctrsid5, ctrsid6) to
FReuseMul(m, n), and receives (product, ctrsid6, z̃i) in response.

5. Pi sends z̃i to all other parties, and in response it receives z̃ j for j ∈ [n] \ {i}. Pi

stores (sample, sid1, ctr, xi ,m) and (sample, sid2, ctr, yi ,m) in memory
and outputs (sampled-product, sid1, sid2, xi , yi , zi) to the environment if
and only if

∑

j∈[n]
z̃ j �≡ 0 (mod m)

Otherwise, Pi sends (open, ctrsid1), (open, ctrsid2), and (open, ctrsid3) to
FReuseMul(m, n). If FReuseMul(m, n) aborts, then Pi aborts. If Pi receives x j ,
y j , and r j for j ∈ [n] from FReuseMul(m, n) in response, and if

∑

j∈[n]
x j ·

∑

j∈[n]
y j ·

∑

j∈[n]
r j �≡ 0 (mod m)

then Pi aborts. Otherwise, Pi increments ctr and begins again from Step 1

Input: Each party Pi for i ∈ [n] begins this protocol phase upon receiving
(input, sid, xi ,m) from the environment where 0 ≤ xi < m and sid is a fresh
value.

6. Pi sends (input,GenSID(sid, 1), xi) to FReuseMul(m, n), and waits to re-
ceive (value-loaded,GenSID(sid, 1)) in response.

7. Pi stores (value, sid, 1, xi ,m) in memory.

Multiplication: Each party Pi for i ∈ [n] begins this protocol phase upon re-
ceiving (multiply, sid1, sid2, sid3) from the environment, where records of the
form (value, sid1, ctr1, xi ,m) and (value, sid2, ctr2, yi ,m) exist in memory
with the same value of m (either or both of these records may also be of type
sample), and where sid3 is a fresh value.

8. Pi sends (multiply,GenSID(sid1, ctr1),GenSID(sid2, ctr2), sid3) to
FReuseMul(m, n), and receives (product, sid3, zi) in response, which it for-
wards to the environment.

Multiparty Generation of an RSA Modulus Page 65 of 84 12

Predicate Cheater Check: Each party Pi for i ∈ [n] begins this protocol phase
upon receiving (check, sids, f) from the environment, where sids is a vector of
input session IDs such that for each sid ∈ sids, there exists a record of the form
(value, sid, ∗, ∗, ∗) or (sample, sid, ∗, ∗, ∗) inPi ’s memory, and where f is the
description of a predicate over the stored values associated with the input session
IDs. Pi does nothing if a previous iteration of this protocol phase or the Input
Revelation phase included any of the session IDs in sids. Let s be the statistical
security parameter, and for convenience, let joint-sid ..= GenSID(sids), and let
m be a vector (without duplication) of all the moduli associated with the records
referenced by the IDs in sids, and let filter(sids,m) denote the subvector of IDs
in sids associated with records that have the modulus m.

9. For each m ∈ m (concurrently):

(a) For each sid ∈ filter(sids,m), each party Pi for i ∈ [n] retrieves its record
(value, sid, ∗, xi ,m) (or sample) from memory and sends (commit,

GenSID(joint-sid, 1, i, sid), xi) to FComCompute(n), waiting afterward
for confirmation that all parties have submitted inputs.

(b) Each party Pi samples a vector ri,∗ ← Z
�s/|m|�
m .

(c) For each j ∈ [�s/|m|�], each partyPi for i ∈ [n] sends (commit,GenSID
(joint-sid, 2, i, j,m), ri, j) to FComCompute(n) and (input,GenSID
(joint-sid, 2, j), ri, j) to FReuseMul(m, n), waiting afterward for confirma-
tion that all other parties have submitted their inputs to both functionalities.

(d) For each j ∈ [�s/|m|�] and each sid ∈ filter(sids,m), in parallel:

i. Each Pi retrieves its record (value, sid, ctr, xi ,m) (or sample)
and sends (multiply,GenSID(sid, ctr),GenSID(joint-sid, 2, j),
GenSID(joint-sid, 3, j)) to FReuseMul(m, n), and receives
(product,GenSID(joint-sid, 3, j), ti, j) in response.

ii. Each Pi sends (commit,GenSID(joint-sid, 3, i, j,m), ti, j) to
FComCompute(n), waiting afterward for confirmation that all parties
have submitted inputs.

iii. Let f ′ be a description of the circuit that verifies whether

∑

i∈[n]
ri, j ·

∑

i∈[n]
xi ≡

∑

i∈[n]
ti, j (mod m)

and if j = 1 and this sid is associated with a sampled value, then let
f ′ also verify that

∑

i∈[n]
xi �≡ 0 (mod m)

12 Page 66 of 84 M. Chen et al.

and let

check-sids ..=

⎧
⎪⎨

⎪⎩

GenSID(joint-sid, 1, i ′, sid),

GenSID(joint-sid, 2, i ′, j,m),

GenSID(joint-sid, 3, i ′, j,m)

⎫
⎪⎬

⎪⎭
i ′∈[n]

Each party Pi sends (compute,GenSID(sid, j), check-sids, f ′)
to FComCompute(n), and aborts if FComCompute(n) aborts or if
FComCompute(n) indicates that the predicate f ′ is false.

(e) For each j ∈ [�s/|m|�], each party Pi for i ∈ [n] sends (check,

GenSID(joint-sid, 2, j)) to FReuseMul(m, n), and aborts if
FReuseMul(m, n) aborts.

(f) For each sid ∈ filter(sids,m), each party Pi for i ∈ [n] retrieves its
record (value, sid, ctr, xi ,m) and sends (check,GenSID(sid, ctr)) to
FReuseMul(m, n). If FReuseMul(m, n) aborts, then Pi aborts.

10. Let

pred-sids ..= {
GenSID(joint-sid, 1, i ′, sid)

}
i ′∈[n],sid∈sids

Each party Pi for i ∈ [n] sends (compute, joint-sid,pred-sids, f) to
FComCompute(n) and aborts if FComCompute(n) aborts. Otherwise, Pi receives
the output of the predicate from FComCompute, and forwards it to the environ-
ment.

Input Revelation: Each party Pi for i ∈ [n] begins this protocol phase up-
on receiving (open, sid) from the environment, such that a record of the form
(value, sid, ctr, ∗,m) exists in Pi ’s memory. No party executes this phase with
the same sid more than once.

11. Pi sends (open,GenSID(sid, ctr)) to FReuseMul(m, n), and then waits to re-
ceive (opened-value,GenSID(sid, ctr), j, x j) from FReuseMul(m, n) for
j ∈ [n]. It then outputs (opening, sid, j, x j) for j ∈ [n] to the environment.

We now discuss security and efficiency of πAugMul, phase-by-phase.

Input. The input phase of πAugMul defers directly toFReuseMul, and therefore inherits its
security. When realized as we have discussed in Sect. B.3, a single call to FReuseMul a-
mong all parties corresponds to all pairs of parties making two calls each toFReuseMul2P.
Recall that in FReuseMul2P, loading inputs from the party playing Bob is effectively free,
and as a consequence, we need only count costs due to inputs loaded from Alice. The
first party, P1, plays Alice in all of its interactions with FReuseMul2P, and pays a cost of
(n− 1) · (|m| · (|m|+ 2s)+ 4λ) bits if FDelayedCOT is realized via Silent OT [6] or KOS
OT [35]. The last party, Pn , always plays Bob, and pays a cost of (n − 1) · (2|m| + 2s)
bits if FDelayedCOT is realized via Silent OT, or (n − 1) · (λ · (|m| + 2s) + |m|) bits if

Multiparty Generation of an RSA Modulus Page 67 of 84 12

FDelayedCOT is realized via KOS OT. The other parties play a mixture of the roles, and
thus in general they each pay an average cost17 of

Bitsmultiply
ReuseMul (m) !→ (n − 1) · (|m| + 1) · (|m| + 2s) + |m| + 4λ

2

transmitted bits with Silent OT or

Bitsmultiply
ReuseMul (m) !→ (n − 1) · (|m| + λ) · (|m| + 2s) + |m| + 4λ

2

transmitted bits with KOS OT. Regardless, three rounds are required.

Multiplication. The input phase of πAugMul defers directly to FReuseMul. As we have
noted in Sect. B.2, the multiplication and input phases of FReuseMul2P cost the same;
however, whereas the input phase of πAugMul corresponds costwise to one invocation of
the input phase of FReuseMul2P for each pair of parties (due to Bob’s inputs being free),
the multiplication phase of πAugMul corresponds to two invocations of the multiplication
phase of FReuseMul2P for each pair of parties. Thus, the parties pay three rounds and an
average cost of 2Bitsmultiply

ReuseMul (m) transmitted bits per party. Note that as an optimization
two input phases can be fused with one multiplication (in which they are used), and the
inputs will consequently add no additional cost.

Input revelation. The input revelation phase of πAugMul defers directly to FReuseMul,
and corresponds to two invocations of the FReuseMul2P open command for each pair of
parties (where each invocation opens both parties’ inputs). Thus, the cost of this phase
is

Bitsopen
ReuseMul(m) !→ (n − 1) · (|m| + 1) · (|m| + 2s)

transmitted bits per party on average, and three rounds.

Sampling. This procedure is probabilistic. Specifically, each iteration succeeds with
probability ((m−1)/m)3. We will analyze the costs associated with iterating sequentially
until a value is successfully sampled (as described in πAugMul). So long as only a single
instance of the sampling procedure is considered, the expected number of sequential
iterations depends only on m, but we note that when multiple instances of the sampling
procedure are run concurrently, the expected maximum number of iterations among
the concurrent instances grows with the number of instances [14]. Such concurrency is
required in order to achieve biprime sampling in expected-constant or constant rounds,
as discussed in Sect. 6.4. In order to avoid huge overhead costs, an elaborate analysis is
required. We perform this analysis in Sect. 6.4 and, as we have said, focus here on the
sequential case.

In the sequential case, (m/(m− 1))3 iterations are required in expectation. Each iter-
ation requires two calls to the FReuseMul multiplication command (we will assume that
the FReuseMul input command is coalesced and therefore free, as described previously),

17We define a function in order to express other costs in terms of this cost; note that the variables n, s and
λ are assumed to be global, and thus for simplicity we do not include them among the function’s parameters.

cost:nmultmult
cost:nmultmult
cost:nmultmult
cost:nmultopen

12 Page 68 of 84 M. Chen et al.

and all iterations after the first require two invocations of the FReuseMul open command.
In addition, every party broadcasts a value in Zm to the other parties in each iteration.
Thus, the average cost per party is

(
m

m − 1

)3

·
(

4 · Bitsmultiply
ReuseMul (m) + 2 · Bitsopen

ReuseMul(m)

+(n − 1) · |m|

)

− 2 · Bitsopen
ReuseMul(m)

transmitted bits, in expectation, and the expected round count is 10(m/(m − 1))3 − 3.
For values of m of any significant size, these costs converge to the cost of two sequential
multiplications, plus one additional round.

With respect to security, we observe that the values z̃i for i ∈ [n] jointly reveal nothing
about the secret values xi and yi , because the latter pair of values have been masked
by ri . Thus, the security of a successful iteration reduces directly to the security of the
constituent multipliers.18 In failed iterations, all values are opened and the computations
are checked locally by each party. This ensures that the adversary cannot force sampling
failures by cheating, and thereby prevent the protocol from terminating.

Predicate cheater check. Unlike the other protocol phases, this phase takes an input of
flexible dimension and therefore its cost does not have a convenient closed-form cost.
Consequently, we will describe the cost piecemeal. For each input to be checked, letm be
the modulus with which the input is associated and let c be the number of multiplications
in which it has been used. The parties engage in �s/|m|� additional invocations of the
FReuseMul Multiplication command, with inputs that have previously been loaded, and
then run the Cheater Check command of FReuseMul, which implies running the Cheater
Check command of FReuseMul2P in a pairwise fashion. Together, these operations incur
a cost of

s · Bitsmultiply
ReuseMul (m)

|m| + (n − 1) · s ·
(

c + s

|m|
)

· (|m| + 2s)

transmitted bits per party, on average. Finally, for every input to be checked, the parties
each input �s/|m|+1� · |m| bits into a generic MPC, and then run a circuit that performs
3 · (n−1) · �s/|m|� modular additions and �s/|m|� modular multiplications and equality
tests over Zm . Using the circuit component sizes reported in Sect. 6.2, the size of this
circuit comprises (3 · (n − 1) · modadd(|m|) + modmul(|m|) + |m|) · �s/|m|� AND
gates, with |m| additional gates in the case that the input to be checked was sampled.
In addition to these costs for each input to be checked, the generic MPC also evaluates
the predicate f , comprising | f | AND gates, over the inputs already loaded. A handful
of additional AND gates are required to combine the results from the predicate and the
per-input checks, and the circuit has exactly one output wire.

With respect to security, we note that the protocol effectively uses a straightfor-
ward composition of secure parts to implement an information-theoretic MAC over
the shared values corresponding to the inputs to be checked, in order to ensure that they

18Note that the constituent multipliers in this case admit cheats, which are caught later by the Cheater
Check command, if it is invoked

cost:nmultmult
cost:nmultopen
cost:nmultopen
cost:nmultmult

Multiparty Generation of an RSA Modulus Page 69 of 84 12

are transferred into the circuit of the generic MPC faithfully. Forced reuse ensures that
the MACs are applied to the correct values, and because each MAC has soundness error
1/m = 2−|m|, it is necessary to repeat the process s/|m| times in order to achieve a
soundness error of 2−s . The multiplications (including those used to apply the MACs)
are then checked for cheats, and the MACs are verified inside the circuit before the
predicate f is evaluated.

Appendix C. Proof of Security for Our Biprime-Sampling Protocol

In this section, we provide the full proof of Theorem 4.6, showing that πRSAGen realizes
FRSAGen in the malicious setting.

Theorem 4.6. If factoring biprimes sampled by BFGM is hard, then πRSAGen UC-
realizes FRSAGen in the (FAugMul,FBiprime)-hybrid model against a malicious PPT
adversary that statically corrupts up to n − 1 parties.

Proof. We begin by describing a simulator SRSAGen for the adversary A. Next, we
prove by a sequence of hybrid experiments that no PPT environment can distinguish
with more than negligible probability between running with the dummy adversary and
real parties executing πRSAGen, and running with SRSAGen and dummy parties that
interact with FRSAGen. Formally speaking, we show that

{
realπRSAGen,A,Z (z, κ)

}

z∈{0,1}∗,κ∈N ≈c

{
idealFRSAGen,SRSAGen,Z (z, κ)

}

z∈{0,1}∗,κ∈N

for all environments Z , assuming the hardness of factoring primes generated by BFGM.
Since the following simulator is quite long and involves complex state tracking, we invite
the reader to revisit Sect. 4.4 for an overview of the simulation strategy.

Simulator C.1. (SRSAGen(κ, n, B). Distributed Modulus Sampling)
This simulator is parametrized by the RSA security parameter κ , the number of
parties n, and the trial-division bound B. It interacts with the parties on behalf
of the functionalities FAugMul and FBiprime, and also interacts directly with A,
who plays the role of the ideal adversary for the aforementioned functionalities.
Let P∗ be the set of corrupted parties, let P* be the set of non-corrupted parties,
and let (m, �′, �, M) be the (κ, n)-compatible parameter set as in Definition 4.3.
The simulator initializes two flags for each individual session, which represent its
internal state: queryflag ..= 0 indicates whether FRSAGen is waiting on a response
from SRSAGen and cheatflag ..= 0 indicates whether a cheat has occurred.

Candidate Sieving:
1. Receive (adv-sample,psids j ,qsids j ,pi, j ,qi, j ,Ni, j ,m j) from A on be-

half of FAugMul for every j ∈ [2, �] and i ∈ P∗, where psids j and qsids j are
derived consistently from a single fresh session ID sid. That is, let sid be such
that psids j = GenSID(sid, j,p) and qsids j = GenSID(sid, j,q).

12 Page 70 of 84 M. Chen et al.

If A previously sent (cheat,psids j) or (cheat,qsids j) to FAugMul at any
point, then send (cheat-sample,psids j ,qsids j) toA on behalf ofFAugMul,
receive (cheat-samples,psids j ,qsids j , {(pi, j ,qi, j ,Ni, j)}i∈P*) in
response, store the records (sim-samples, sid, j, {(pi, j ,qi, j)}i∈P*) and
(sim-product, sid, j, {Ni, j }i∈P*) in memory, and set cheatflag ..= 1.
Regardless, send (sampled-product,psids j ,qsids j ,pi, j ,qi, j ,Ni, j) toPi

for every i ∈ P∗ on behalf of FAugMul. This simulates Step 1 of πRSAGen.
If at any point after the sampled-product message is sent to the corrup-
t parties, A sends (cheat,psids j) or (cheat,qsids j) to FAugMul, then set
cheatflag ..= 1, retroactively sample (pi, j ,qi, j ,Ni, j) for every i ∈ P* us-
ing the method to follow, and finally respond to A on behalf of FAugMul with
(value,psids j , i,pi, j ,m j) for all i ∈ P* if it sent (cheat,psids j), or with
(value,qsids j , i,qi, j ,m j) for all i ∈ P* if it sent (cheat,qsids j).
In order to retroactively sample (pi, j ,qi, j ,Ni, j) for all i ∈ P* and for some
j ∈ [�], the following steps must be taken:

(a) If cheatflag = 1 and queryflag = 1, then send (cheat, sid) toFRSAGen,
receive (factors, sid, p, q) in response, store this response in memory
if no such record already exists, and set queryflag ..= 0.

(b) Either retrieve (sim-product, sid, j, {Ni, j }i∈P*) from memory if it is
stored, or else sample Ni, j ← Zm j for every i ∈ P* subject to

∑

i∈[n]
Ni, j ≡ p · q (mod m j)

if the record (factors, sid, p, q) exists in memory, or subject to

∑

i∈[n]
Ni, j �≡ 0 (mod m j)

if it does not. Store the aforementioned sim-product record using the
sampled values, if such a record does not already exist.

(c) Either retrieve (sim-samples, sid, j, {(pi, j ,qi, j)}i∈P*) from memory if
it is stored, or else sample pi, j ← Zm j and qi, j ← Zm j for every i ∈ P*

subject to

∑

i∈[n]
pi, j ·

∑

i∈[n]
qi, j ≡

∑

i∈[n]
Ni, j (mod m j)

and also subject to

∑

i∈[n]
pi, j ≡ p (mod m j) and

∑

i∈[n]
qi, j ≡ q (mod m j)

Multiparty Generation of an RSA Modulus Page 71 of 84 12

if the record (factors, sid, p, q) exists in memory. Store the aforemen-
tioned sim-samples record in memory using the sampled values, if such
a record does not already exist.

Note that this retroactive sampling procedure will be used throughout this sim-
ulator.

2. On behalf of FAugMul, for j ∈ [� + 1, �′], receive (input,psids j ,pi, j ,m j)

and (input,qsids j ,qi, j ,m j) from every party Pi for i ∈ P∗, where psids j
= GenSID(sid, j,p) and qsids j = GenSID(sid, j,q), and in each case reply
with (value-loaded,psids j) and (value-loaded,qsids j) as FAugMul
would. This partially simulates Step 3 of πRSAGen.
If A sends (cheat,psids j) or (cheat,qsids j) to FAugMul at any point sub-
sequently, then set cheatflag ..= 1, retroactively sample pi, j and qi, j for every
i ∈ P* using the method to follow, and respond to A on behalf of FAugMul with
(value,psids j , i,pi, j ,m j) for all i ∈ P* if it sent (cheat,psids j), or with
(value,qsids j , i,qi, j ,m j) for all i ∈ P* if it sent (cheat,qsids j). If at any
point previously one of these messages has already been received, then take the
foregoing steps immediately.
In order to retroactively sample pi, j and qi, j for all i ∈ P* and for some
j ∈ [� + 1, �′], the following steps must be taken:

(a) For j ′ ∈ [�], retroactively sample (pi, j ′ ,qi, j ′ ,Ni, j ′) for every i ∈ P* as
necessary, using the method described in Step 1.

(b) Compute

pi, j ..= CRTRecon
({

m j ′
}
j ′∈[�] ,

{
pi, j ′

}
j ′∈[�]

)
mod m j

qi, j ..= CRTRecon
({

m j ′
}
j ′∈[�] ,

{
qi, j ′

}
j ′∈[�]

)
mod m j

for every i ∈ P* and store (sim-inputs, sid, j, {(pi, j ,qi, j)}i∈P*) in
memory, if such a record does not already exist.

Note that as before, this retroactive sampling procedure will be used throughout
this simulator.

3. On behalf of FAugMul, for all j ∈ [� + 1, �′] and i ∈ P∗, receive
(adv-multiply,psids j ,qsids j ,Nsids j , i,Ni, j) from A, where Nsids j =
GenSID(sid, j,N). If A previously sent (cheat,psids j) or (cheat,qsids j)

to FAugMul, then send (cheat-multiply,psids j ,qsids j ,Nsids j) to A on
behalf ofFAugMul, receive (cheat-product,Nsids j , {Ni, j }i∈P*) in response,
and store (sim-product, sid, j, {Ni, j }i∈P*) in memory. Regardless, send
(product,Nsids j ,Ni, j) to Pi for every i ∈ P∗ on behalf of FAugMul. This
completes the simulation of Step 3 of πRSAGen.
In order to retroactively sample Ni, j for all i ∈ P* and for some j ∈ [�+ 1, �′],
the following steps must be taken:

(a) Retroactively sample pi, j and qi, j for every i ∈ P* if necessary, using the
method described in Step 2.

12 Page 72 of 84 M. Chen et al.

(b) Either retrieve (sim-product, sid, j, {Ni, j }i∈P*) from memory if it is
stored, or else sample Ni, j ← Zm j for every i ∈ P* subject to

∑

i∈[n]
Ni, j ≡

∑

i∈[n]
pi, j ·

∑

i∈[n]
pi, j (mod m j)

and store the aforementioned sim-product record in memory using the
sampled values, if such a record does not already exist.

Note that there is no reason to do this retroactive sampling yet, but we may need
to later, and thus we define the method here.

4. For each i ∈ P∗, compute

pi ..= CRTRecon
({

m j
}
j∈[�] ,

{
pi, j

}
j∈[�]

)

qi ..= CRTRecon
({

m j
}
j∈[�] ,

{
qi, j

}
j∈[�]

)

where p1,1
..= q1,1

..= 3 and pi,1 ..= qi,1 ..= 0 for i ∈ [2, n]. If there exists any
j ∈ [� + 1, �′] such that

∑

i∈P∗
pi, j �≡

∑

i∈P∗
pi (mod m j) or

∑

i∈P∗
qi, j �≡

∑

i∈P∗
qi (mod m j)

then set cheatflag ..= 1.
5. Now it is time to construct a candidate modulus, taking one of two paths de-

pending on whether or not any cheating has occurred.

• If cheatflag = 1, then we know that we will eventually instruct FRSAGen to
abort, and so we simulate the behavior of the honest parties directly. We must
sample a complete and consistent view for each honest party. In order to do
this, the following sequence of steps must be taken:

(a) For each j ∈ [�], retroactively sample (pi, j ,qi, j ,Ni, j) for every i ∈ P*

as necessary, using the method outlined in Step 1.
(b) For each j ∈ [� + 1, �′], retroactively sample (pi, j ,qi, j) and then Ni, j

for every i ∈ P* as necessary, using the methods outlined in Steps 2 and
3, respectively.

(c) For each i ∈ P*, compute

pi ..= CRTRecon
({

m j
}
j∈[�] ,

{
pi, j

}
j∈[�]

)

qi ..= CRTRecon
({

m j
}
j∈[�] ,

{
qi, j

}
j∈[�]

)

where p1,1
..= q1,1

..= 3 and pi,1 ..= qi,1 ..= 0 for i ∈ [2, n].

Multiparty Generation of an RSA Modulus Page 73 of 84 12

(d) If no record of the form (factors, sid, p, q) exists in memory, then
compute

p ..=
∑

i∈[n]
pi and q ..=

∑

i∈[n]
qi

and store such a record in memory, using the computed values.
(e) Compute N ..= p · q and determine whether N is a biprime.

• If cheatflag = 0, then set queryflag ..= 1, send (adv-sample, sid,

i, pi , qi) directly to FRSAGen for every i ∈ P∗ and receive (factors,

sid, p, q) or (biprime, sid, N) in response. If biprime is received, then
sample Ni, j ← Zm j uniformly for all i ∈ P* subject to

∑

i∈[n]
Ni, j ≡ N (mod m j)

and store (sim-product, sid, j, {Ni, j }i∈P*) in memory.a On the other
hand, if factors was received, then store (factors, sid, p, q) in memo-
ry, and sample views for all honest parties using the method described in the
previous bullet point of this step.b

Note that the factors p and q are now known to the simulator (as are the honest
parties’ simulated shares of those factors) unless N is a biprime and no cheating
has occurred (that is, cheatflag = 0). The honest parties’ simulated shares
of N are known in all cases. Note also that queryflag = 1 if and only if
cheatflag = 0.

6. BroadcastNi, j to all corrupt parties on behalf of every honest partyPi for i ∈ P*.
In response, receive broadcasts of N′

i, j for every j ∈ [�′] from every corrupt
party Pi for i ∈ P∗. This simulates Step 4 of πRSAGen.

7. Compute

N ′ ..=
∑

i∈P∗
CRTRecon

(
m,N′

i,∗
)+

∑

i∈P*

CRTRecon
(
m,Ni,∗

)

and if N ′ �= N , then set cheatflag ..= 1. If N ′ �= N or N ′ is divisible by
any prime smaller than B, then sample a view for each honest party using the
method described in the first bullet of Step 5. If N ′ is divisible by any prime
smaller than B, then proceed to simulating the privacy free consistency check
by skipping to Step 13 without executing the intervening steps. This simulates
Step 5 of πRSAGen.

Biprimality Test:

8. On behalf of FBiprime, receive (check-biprimality, sid, N ′′
i , p′i , q ′

i) from
every corrupted party Pi for i ∈ P∗.

12 Page 74 of 84 M. Chen et al.

9. If

∑

i∈P∗
p′i =

∑

i∈P∗
pi and

∑

i∈P∗
q ′
i =

∑

i∈P∗
qi

and if for all i ∈ P∗ it holds that p′i < M and q ′
i < M and N ′′

i = N ′, and if
cheatflag = 0 and N is known to be a biprime, then send (biprime, sid) to
A on behalf of FBiprime.
If A responds to FBiprime with (proceed, sid), then send (biprime, sid)

to every corrupt party Pi for i ∈ P∗ on behalf of FBiprime, and skip directly
to Step 13 without executing any intervening steps. Note that if this occurs,
cheatflag = 0 and N is known to be a biprime.
If A instead responds to FBiprime with (cheat, sid), then set cheatflag ..= 1,
sample a view for each honest party using the method described in the first bullet
of Step 5, and skip directly to Step 12 without executing any intervening steps.

10. If cheatflag = 0, but

∑

i∈P∗
p′i �=

∑

i∈P∗
pi or

∑

i∈P∗
q ′
i �=

∑

i∈P∗
qi

or there exists some i ∈ P∗ for which p′i ≥ M or q ′
i ≥ M or N ′′

i �= N ′, then
set cheatflag ..= 1 and sample a view for each honest party using the method
described in the first bullet of Step 5.

11. Compute

p′ ..=
∑

i∈P∗
p′i +

∑

i∈P*

pi and q ′ ..=
∑

i∈P∗
q ′
i +

∑

i∈P*

qi

and if p′ and q ′ are both prime, and p′ · q ′ = N ′, and N ′′
i = N ′ for all i ∈ [P∗],

then send (biprime, sid) directly to A on behalf of FBiprime. If A responds
to FBiprime with (proceed, sid), then send (biprime, sid) to every corrupt
party Pi for i ∈ P∗ on behalf of FBiprime, and skip directly to Step 13 without
executing any intervening steps.
If A instead responds to FBiprime with (cheat, sid), then set cheatflag ..= 1,
sample a view for each honest party using the method described in the first bullet
of Step 5, if necessary, and continue to Step 12.

12. Send (leaked-shares, sid, {(pi , qi)}i∈P*‖{(p′i , q ′
i)}i∈P∗) to A and

(not-biprime, sid) to every corrupt partyPi for i ∈ P∗ on behalf ofFBiprime.
Note that this step may be skipped according to conditions in Steps 9 and 11.
Together, Steps 8 through 12 simulate Step 6 of πRSAGen.

Multiparty Generation of an RSA Modulus Page 75 of 84 12

Consistency Check:

13. Now, Step 7 of πRSAGen is simulated, taking one of two paths depending on
whether it was reported on behalf of FBiprime that the candidate is a biprime.c

Note that in all cases, cheatflag = 1 − queryflag at this point.

• If biprime was sent on behalf of FBiprime in 9 or 11 of this simulation, then
the privacy-preserving check must be simulated. Receive (check,psids‖
qsids, fi) on behalf of FAugMul from every corrupt party Pi for i ∈ P∗.
If there is any i ∈ P∗ such that fi is not a description of the predicate
specified in Step 7 of πRSAGen, then instruct FRSAGen to abort,d and signal
an abort to every corrupt party on behalf of FAugMul. On the other hand, if
fi is a description of the correct predicate for all i ∈ P∗, then reply to every
corrupt party with (predicate-result,psids‖qsids, 1−cheatflag) on
behalf of FAugMul, and either send proceed to FRSAGen if cheatflag = 0,
or instruct FRSAGen to abort if cheatflag = 1.d Regardless, on behalf of
FAugMul, refuse all future cheat instructions that include a session ID in
psids or qsids.

• Ifnot-biprimewas sent on behalf ofFBiprime in Step 12 of this simulation,
or if N ′ is divisible by some prime smaller than B, then the privacy-free
check must be simulated, and it must be the case that the simulated honest
parties’ shares pi, j and qi, j for i ∈ P* and j ∈ [�′] are already known. For
every j ∈ [2, �′] receive (open,psids j) and (open,qsids j) from Pi for
i ∈ P∗ on behalf of FAugMul. Respond with (opening,psids j , i,pi, j) and
(opening,qsids j , i,qi, j) for each i ∈ [n] and j ∈ [2, �′]. Ifcheatflag = 0,
then send proceed to FRSAGen. If cheatflag = 1, then instruct FRSAGen to
abort.d Regardless, on behalf ofFAugMul, refuse all futurecheat instructions
that include a session ID in psids or qsids.

aSince cheatflag = 0, no conflicting record can possibly exist.
bPer the description of that method, the views generated will be consistent with the received factors.
cThis is not the same as depending on whether the candidate is actually a biprime.
dRegardless of its current state in this simulation. This abort instruction may be redundant, or it

might be the first time FRSAGen is activated. Note that to all observers apart from SRSAGen itself, the
abort and cheat instructions produce identical outcomes.

We now define our sequence of hybrid experiments. The output of each experiment is
the output of the environment, Z . We begin with the real-world experiment, constructed
per the standard formulation for UC-security.

H0
..= {

realπRSAGen,A,Z (z, κ)
}
z∈{0,1}∗,κ∈N

HybridH1. In this experiment, we replace the real honest parties with dummy parties.
We then construct a simulator that plays the role of FRSAGen in its interactions with the
dummy parties, and also plays the roles of the honest parties in their interactions with
the corrupt parties. Furthermore, the simulator plays the roles of FAugMul and FBiprime
in their interactions with the corrupt parties and with the adversary A. Internally, the
simulator emulates each honest party by running its code, and it emulates FAugMul and

12 Page 76 of 84 M. Chen et al.

FBiprime similarly. By observing the output of each emulated honest party, the simulator
can send the appropriate message to each dummy party on behalf of FRSAGen, such
that the outcome of the experiment for each dummy party matches the output for the
corresponding honest party. The distribution of H1 is thus clearly identical to that of H0.

HybridH2. This hybrid experiment is identical to H1, except that in H2, the simulator
does not internally emulate the honest parties for Steps 1 through 3 of πRSAGen. Instead,
the simulator takes one of the following two branches:

• If A sends a cheat message to FAugMul before Step 4 of πRSAGen, or if there is any
i ∈ P∗ and j ′ ∈ [� + 1, �′] such that

pi, j ′ �≡ CRTRecon
({m j } j∈[�], {pi, j } j∈[�]

)
(mod m j ′)

then at the time the cheat occurs, the simulator must retroactively construct views for
the honest parties that are consistent with the outputs already delivered to the corrupt
parties.19 After this, the simulation is completed using the same strategy as inH1 (i.e.,
the honest parties are internally emulated by the simulator). It follows immediately
from the perfect security of additive secret sharing that H2 and H1 are identically
distributed in this branch.

• If A does not send a cheat message to FAugMul before Step 4 of πRSAGen, and if
for all i ∈ P∗ and j ′ ∈ [� + 1, �′] it holds that

pi, j ′ ≡ CRTRecon
({m j } j∈[�], {pi, j } j∈[�]

)
(mod m j ′)

then before simulating Step 4, the simulator uses the corrupt parties’ inputs (which it
received in its role as FAugMul) to compute

pi ..= CRTRecon
({m j } j∈[�], {pi, j } j∈[�]

)

qi ..= CRTRecon
({m j } j∈[�], {qi, j } j∈[�]

)

for i ∈ P∗. Next, the simulator runs CRTSample(κ, n, {(pi , qi)}i∈P∗) internally,
receives as output either (success, p, q) or (failure, p, q), and computes N ..=
p · q. With these values, the simulator retroactively constructs views for the honest
parties by sampling (pi, j ,qi, j ,Ni, j) ← Z

3
m j

uniformly for i ∈ P* and j ∈ [�′]
subject to

∑

i∈[n]
pi, j ≡ p (mod m j) and

∑

i∈[n]
qi, j ≡ q (mod m j)

and
∑

i∈[n]
Ni, j ≡ N (mod m j)

and then the simulator completes the simulation using the same strategy as in H1 (i.e.,
it emulates the honest parties internally).

19See the first branch of Step 5 of SRSAGen for a detailed algorithm to sample such views.

Multiparty Generation of an RSA Modulus Page 77 of 84 12

Recall that by construction CRTSample samples from a distribution identical to that
of πRSAGen, conditioned on honest behavior during the Candidate Sieving phase of the
protocol. Consequently, it follows from the perfect security of additive secret sharing
that H2 and H1 are identically distributed if this branch is taken. Note furthermore that
in H2 the output of FBiprime will be biprime only if CRTSample returns success
or if there exists some i ∈ P∗ such that pi �= p′i or qi �= q ′

i , where p′i and q ′
i are corrupt

inputs to FBiprime.

Hybrid H3. This hybrid experiment is identical to H2, except in the way that FBiprime
is simulated in Step 6 of πRSAGen. Recall that in H2, the simulator runs the code of
FBiprime internally, and in order to do this, it must know the factorization of the candidate
biprime N in all cases. In H3, if no cheating occurs until after the biprimality test, and
the candidate is in fact a biprime, then the simulator does not use the factorization of the
candidate biprime to simulate FBiprime.

If cheating occurs before Step 4 of πRSAGen is simulated, then H3 and H2 are identi-
cal: the simulator simply emulates the honest parties internally (retroactively sampling
their views as previously described). The experiments differ, however, if no cheating
occurs before Step 4 of πRSAGen. Recall that in H2, under this condition, the sim-
ulator runs CRTSample internally and receives p and q (plus an indication as to
whether they are both primes), from which values it constructs honest-party views
that are subsequently used to simulate FBiprime. In H3, if no cheating occurs before
Step 4 of πRSAGen, then there are four cases. Let N ′ be the candidate biprime re-
constructed in Step 4 of πRSAGen, which may not equal N if cheating occurs, and
let (check-biprimality, sid, N ′′

i , p′i , q ′
i) be the message received on behalf of

FBiprime from Pi for every i ∈ P∗ in Step 6 of πRSAGen. The four cases are as follows.

1. If CRTSample reports that N is a biprime, and the adversary continues to behave
honestly (i.e., in Steps 4 and 6 of πRSAGen, the corrupt parties transmit values that
add up to the expected sums), then the simulator outputs biprime to A on behalf of
FBiprime, and reports the same outcome to the corrupt parties if it receives proceed
from A in reply. Note that knowledge of p and q is not used in this eventuality. If
A instead replies to FBiprime with cheat, then p and q are used to formulate the
correct response.

2. If the previous case does not occur, and CRTSample reports that N is a biprime, but
there exists some i ∈ P∗ such that N ′′

i �= N ′, then the simulator sendsnon-biprime
to the corrupt parties on behalf of FBiprime.

3. If neither of previous cases occurs, and CRTSample reports that N is a biprime, and
N ′′
i = N for all i ∈ P∗, but

∑

i∈P∗
p′i �=

∑

i∈P∗
pi or

∑

i∈P∗
q ′
i �=

∑

i∈P∗
qi

then the simulator sends non-biprime to the corrupt parties on behalf of FBiprime.
4. If none of the previous cases occur, and CRTSample reports that N is not a biprime,

or for all i ∈ P∗ it holds that N ′′
i = N ′ �= N , then the simulator constructs honest-

party views from p and q and runs the code of FBiprime, as in H2.

12 Page 78 of 84 M. Chen et al.

It is easy to see that H3 and H2 are identically distributed in first, second, and fourth
cases above, and also in the case that cheating occurs before Step 4 of πRSAGen. It remains
only to analyze the third case. In H3, it leads to an unconditional abort,20 whereas in
H2, the adversary can avoid an abort by sending p′i and q ′

i for i ∈ P∗ such that
⎛

⎝p +
∑

i∈P∗

(
p′i − pi

)
⎞

⎠ ·
⎛

⎝q +
∑

i∈P∗

(
q ′
i − qi

)
⎞

⎠ = N

which can be achieved without falling into the first case by finding values of p′i and q ′
i

such that the factors supplied to FBiprime are effectively switched relative to their honest
order. This is the only condition under which H3 differs observably from H2, and thus
the environment’s advantage in distinguishing the two hybrids is determined exclusively
by the probability that the adversary triggers this condition. We wish to show that the
two hybrids are computationally indistinguishable under the assumption that biprimes
drawn from the distribution of BFGM are hard to factor. We begin by giving a simpler
description of the adversary’s task in the form of a game that is won by the adversary if
the following experiment outputs 1.

Experiment C.2. CRTSwapFactorsA(κ, n,P∗)
1. Invoke A(1n, 1κ ,P∗) and receive pi and qi for i ∈ P∗.
2. Sample (status, p, q) ← CRTSample(κ, n, {(pi , qi)}i∈P∗) and compute N ..=

p · q.
3. Send N to A(1κ ,P∗) and receive p′i and q ′

i for i ∈ P∗ in response.
4. Output 1 if and only if status = success and

∑

i∈P∗

(
p′i − pi

) �= 0 and
∑

i∈P∗

(
q ′
i − qi

) �= 0

and

⎛

⎝p +
∑

i∈P∗

(
p′i − pi

)
⎞

⎠ ·
⎛

⎝q +
∑

i∈P∗

(
q ′
i − qi

)
⎞

⎠ = N

Note that a reduction from winning the CRTSwapFactors game to distinguishing

betweenH3 andH2 exists by construction and there is no loss of advantage. Now consid-
er a variation on the classic factoring game (see Experiment 3.1) in which CRTSample
is used in place of GenModulus, and the adversary supplies a set of corrupt shares to
CRTSample.

Experiment C.3. CRTFindFactorsB(κ, n,P∗)
1. Invoke B(1n, 1κ ,P∗) and receive pi and qi for i ∈ P∗.
2. Sample (status, p, q) ← CRTSample(κ, n, {(pi , qi)}i∈P∗) and compute N ..=

p · q.
3. Send N to B(1κ ,P∗) and receive p′ and q ′ in response.

20The emulated honest parties abort upon discovering that the candidate really was a biprime during the
privacy-free consistency check.

Multiparty Generation of an RSA Modulus Page 79 of 84 12

4. Output 1 if and only if status = success and p′ · q ′ = N

We will show a lossless reduction from winning the CRTFindFactors game to win-
ning the CRTSwapFactors game, which implies as a corollary that any adversary
enabling the environment to distinguish H3 and H2 can be used to factor biprimes
produced by CRTSample with adversarial shares.

Lemma C.4. For every PPT adversary A, there exists a PPT adversary B such that
for all κ, n ∈ N and P∗ ⊂ [n], it holds that

Pr
[
CRTSwapFactorsA(κ, n,P∗) = 1

] = Pr
[
CRTFindFactorsB(κ, n,P∗) = 1

]

Proof. Our reduction plays the role of B in Experiment C.3, and the role of the chal-
lenger in Experiment C.2. It works as follows.

1. When invoked as B with inputs κ and P∗ in Experiment C.3, invoke A(1κ ,P∗) in
Experiment C.2. On receiving pi and qi for i ∈ P∗ from A, forward them to the
challenger in Experiment C.3.

2. On receiving N as B in Experiment C.3, forward it to A in Experiment C.2. Receive
p′i and q ′

i for i ∈ P∗
3. Try to solve the following system of equations for unknowns pH and qH
⎛

⎝pH +
∑

i∈P∗
pi

⎞

⎠ ·
⎛

⎝qH +
∑

i∈P∗
qi

⎞

⎠ =
⎛

⎝pH +
∑

i∈P∗
p′i

⎞

⎠ ·
⎛

⎝qH +
∑

i∈P∗
q ′
i

⎞

⎠ = N

and if exactly one valid pair (pH, qH) exists, then send

p′ ..= pH +
∑

i∈P∗
p′i and q ′ ..= qH +

∑

i∈P∗
q ′
i

to the challenger in Experiment C.3. Otherwise, send ⊥ to the challenger.

This reduction is correct and lossless by construction. A succeeds in Experiment C.2
only if it holds that

∑

i∈P∗

(
p′i − pi

) �= 0 and
∑

i∈P∗

(
q ′
i − qi

) �= 0

which implies exactly one solution to the system of equations in Step 3 of our reduction
when A succeeds. It follows easily by inspection that Experiment C.3 outputs 1 if and
only if Experiment C.2 outputs 1, and so the reduction is perfect.

It remains only to apply Lemma 3.7 (see Sect. 3.1), which asserts that any PPT al-
gorithm that factors biprimes produced by CRTSample with adversarial shares can be
used (with polynomial loss in the probability of success) to factor biprimes produced by

12 Page 80 of 84 M. Chen et al.

BFGMwithout adversarial shares. Thus, if we assume factoring biprimes from the distri-
bution of BFGM to be hard, then we must conclude that H3 and H2 are computationally
indistinguishable.

Hybrid H4. This experiment is identical to H3, except in the way that the privacy-
preserving check is simulated in Step 7 of πRSAGen (the privacy-free check is simulated
as in H3). In H3, the simulator emulates both FComCompute and the honest parties
internally, using its knowledge of p andq. Specifically, inH3, the emulated honest parties
abort during the check if CRTRecon

(
m,pi,∗

) ≥ M or CRTRecon
(
m,qi,∗

) ≥ M for
any i ∈ P∗, or if a cheat instruction was sent to FAugMul at any point, or if

N ′ �=
∑

i∈[n]
CRTRecon

(
m,pi,∗

) ·
∑

i∈[n]
CRTRecon

(
m,qi,∗

)
(14)

In H4, the simulator avoids using knowledge of p or q when the privacy-preserving
check is run. It does not emulate the honest parties or FComCompute. The simulation
instead aborts on behalf of the honest parties if N ′ �= N or if there exists any j ∈ [�+1, �′]
such that

∑

i∈P∗
pi, j �≡

∑

i∈P∗
pi (mod m j) or

∑

i∈P∗
qi, j �≡

∑

i∈P∗
qi (mod m j) (15)

We will argue that this new predicate is equivalent to the former one.
First, consider a protocol state such that the check in Eq. 15 fails. Without loss of

generality, assume that the first half (dealing with p) fails, but an analogous argument
exists for q. If we define a vector of offset values p� such that p�

i, j = (pi−pi, j) mod m j

for every i ∈ P∗ and j ∈ [�+1, �′], then it is clear that when the parties behave honestly,
p�
i, j = 0 for every pair (i, j). On the other hand, a violation of Eq. 15 implies that there

must exist some pair (i, j) such that p�
i, j �= 0. If we let

M ′ ..=
∏

j∈[�′]
m j and recall that M =

∏

j∈[�]
m j

and we define p�
i, j = 0 for i ∈ P∗ and j ∈ [�] then we find that

CRTRecon
(
m,pi,∗

) = (
pi + CRTRecon

(
m,p�

i,∗
))

mod M ′

where it is certain that pi < M . Notice by inspection of the CRTRecon algorithm that

it must hold that CRTRecon
(
m,p�

i,∗
)
≡ 0 (mod M). Since it also clearly holds that

M ′ ≡ 0 (mod M), we can conclude that

(
pi + CRTRecon

(
m,p�

i,∗
))

mod M ′ = pi + CRTRecon
(
m,p�

i,∗
) ≥ M

where the equality is taken over the integers. Thus, if the check in Eq. 15 fails in H4,
causing H4 to abort, then the range check in H3 must also fail, causing H3 to abort. The
converse also holds: Since honest behavior cannot yield CRTRecon

(
m,pi,∗

) ≥ M , it

Multiparty Generation of an RSA Modulus Page 81 of 84 12

must be the case that if the range check in H3 fails, then there exists some (i, j) such
that p�

i, j �= 0, and thus the check in Eq. 15 fails in H4.
Now, consider a protocol state such that the check in Eq. 15 passes. It is easy to see

that in this case
∑

i∈[n]
CRTRecon

(
m,pi,∗

) ·
∑

i∈[n]
CRTRecon

(
m,qi,∗

) = N

which trivially yields

∑

i∈[n]
CRTRecon

(
m,pi,∗

) ·
∑

i∈[n]
CRTRecon

(
m,qi,∗

) = N ′ ⇐⇒ N = N ′

and thus, we can conclude that the two predicates are equivalent, and H4 is distributed
identically to H3.

HybridH5. During the entire sequence of hybrids thus far, our simulator has played the
role of FRSAGen. In this hybrid, the simulator instead interacts with the real FRSAGen
as a black box. In particular, whenever the simulator would have called CRTSample
(κ, n, {(pi , qi)}i∈P∗) in H4, it instead sends (adv-sample, sid, i, pi , qi) to FRSAGen
(κ, n) for every i ∈ P∗ in H5. Whereas CRTSample outputs factors of the candidate it
sampled, regardless of whether that candidate is a biprime,FRSAGen returns factors only
if the candidate is not a biprime, and if the candidate is a biprime, then FRSAGen outputs
the biprime itself.21 Recall that in H4, if the candidate is a biprime, and no cheating
occurs, then the simulator does not use knowledge of the factors in its simulation. Thus,
in H5, it has enough information to simulate when FRSAGen returns a biprime, until a
cheat occurs. If a cheat occurs, and the simulator requires knowledge of the factors to
continue, then the simulator sends (cheat, sid) to FRSAGen, which returns the factors
and aborts. If no cheat occurs, then the simulator sends (proceed, sid) to FRSAGen at
the end of the simulation, so that it releases its output to the honest parties.

Since FRSAGen simply calls CRTSample internally, it is easy to see that H5 is
distributed identically to H4. It is somewhat more difficult but nevertheless possible to
see that our simulator is now identical to SRSAGen as previously described; all remaining
differences between the two are purely syntactic. Thus,

H5 =
{
idealFRSAGen,SRSAGen,Z (z, κ)

}

z∈{0,1}∗,κ∈N

and by the sequence of hybrids we have just shown, it holds that

{
realπRSAGen,A,Z (z, κ)

}

z∈{0,1}∗,κ∈N ≈c

{
idealFRSAGen,SRSAGen,Z (z, κ)

}

z∈{0,1}∗,κ∈N

for the adversary A and all environments Z , assuming the hardness of factoring primes
generated by BFGM.

21Note that because the protocol does not permit the adversary to input shares of p or q with the wrong
residues modulo 4, the abort in the Sampling phase of FRSAGen can never be triggered.

12 Page 82 of 84 M. Chen et al.

References

[1] Joy Algesheimer, Jan Camenisch, and Victor Shoup. Efficient computation modulo a shared secret with
application to the generation of shared safe-prime products. In Advances in Cryptology – CRYPTO 2002,
pages 417–432, 2002.

[2] Elaine Barker. Nist special publication 800-57, part 1, revision 4. https://doi.org/10.6028/NIST.SP.800-
57pt1r4, 2016.

[3] Michael Ben-Or and Ran El-Yaniv. Resilient-optimal interactive consistency in constant time.Distributed
Computing, 16(4):249–262, 2003.

[4] Dan Boneh and Matthew K. Franklin. Efficient generation of shared RSA keys. InAdvances inCryptology
– CRYPTO 1997, pages 425–439, 1997.

[5] Dan Boneh and Matthew K. Franklin. Efficient generation of shared RSA keys. Journal of the ACM,
48(4):702–722, 2001.

[6] Elette Boyle, Geoffroy Couteau, Niv Gilboa, Yuval Ishai, Lisa Kohl, Peter Rindal, and Peter Scholl.
Efficient two-round OT extension and silent non-interactive secure computation. In Proceedings of the
26th ACM Conference on Computer and Communications Security, (CCS), pages 291–308, 2019.

[7] Ran Canetti. Universally composable security: A new paradigm for cryptographic protocols. In Pro-
ceedings of the 42nd Annual Symposium on Foundations of Computer Science (FOCS), pages 136–145,
2001.

[8] Ran Canetti, Yehuda Lindell, Rafail Ostrovsky, and Amit Sahai. Universally composable two-party
and multi-party secure computation. In Proceedings of the 34th Annual ACM Symposium on Theory of
Computing (STOC), pages 494–503, 2002.

[9] Megan Chen, Ran Cohen, Jack Doerner, Yashvanth Kondi, Eysa Lee, Schuyler Rosefield, and abhi shelat.
Multiparty generation of an RSA modulus. In Advances in Cryptology – CRYPTO 2020, part III, pages
64–93, 2020.

[10] Megan Chen, Carmit Hazay, Yuval Ishai, Yuriy Kashnikov, Daniele Micciancio, Tarik Riviere, abhi
shelat, Muthuramakrishnan Venkitasubramaniam, and Ruihan Wang. Diogenes: Lightweight scalable
RSA modulus generation with a dishonest majority. http://eprint.iacr.org/2020/374, 2020.

[11] Clifford Cocks. Split knowledge generation of RSA parameters. In Proceedings of the 6th International
Conference on Cryptography and Coding, pages 89–95, 1997.

[12] Clifford Cocks. Split generation of RSA parameters with multiple participants. http://citeseerx.ist.psu.
edu/viewdoc/summary?doi=10.1.1.177.2600, 1998.

[13] Ran Cohen, Sandro Coretti, Juan Garay, and Vassilis Zikas. Round-preserving parallel composition of
probabilistic-termination cryptographic protocols. In Proceedings of the 44th International Colloquium
on Automata, Languages, and Programming (ICALP), pages 37:1–37:15, 2017.

[14] Ran Cohen, Sandro Coretti, Juan A. Garay, and Vassilis Zikas. Probabilistic termination and compos-
ability of cryptographic protocols. Journal of Cryptology, 32(3):690–741, 2019.

[15] Ran Cohen, Iftach Haitner, Eran Omri, and Lior Rotem. From fairness to full security in multiparty
computation. In Proceedings of the 11th Conference on Security and Cryptography for Networks (SCN),
pages 216–234, 2018.

[16] Ran Cohen and Yehuda Lindell. Fairness versus guaranteed output delivery in secure multiparty com-
putation. Journal of Cryptology, 30(4):1157–1186, 2017.

[17] Ronald Cramer, Ivan Damgård, and Yuval Ishai. Share conversion, pseudorandom secret-sharing and
applications to secure computation. In Proceedings of the Second Theory of Cryptography Conference,
TCC 2005, pages 342–362, 2005.

[18] Ivan Damgård and Gert Læssøe Mikkelsen. Efficient, robust and constant-round distributed RSA key
generation. In Proceedings of the 7th Theory of Cryptography Conference, TCC 2010, pages 183–200,
2010.

[19] Jack Doerner, Yashvanth Kondi, Eysa Lee, and Abhi Shelat. Secure two-party threshold ECDSA from
ECDSA assumptions. In Proceedings of the 39th IEEE Symposium on Security and Privacy, (S&P),
pages 980–997, 2018.

[20] Jack Doerner, Yashvanth Kondi, Eysa Lee, and Abhi Shelat. Threshold ECDSA from ECDSA assump-
tions: The multiparty case. In Proceedings of the 40th IEEE Symposium on Security and Privacy, (S&P),
2019.

https://doi.org/10.6028/NIST.SP.800-57pt1r4
https://doi.org/10.6028/NIST.SP.800-57pt1r4
http://eprint.iacr.org/2020/374
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.177.2600
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.177.2600

Multiparty Generation of an RSA Modulus Page 83 of 84 12

[21] Shimon Even, Oded Goldreich, and Abraham Lempel. A randomized protocol for signing contracts.
Communications of the ACM, 28(6):637–647, 1985.

[22] Yair Frankel, Philip D. MacKenzie, and Moti Yung. Robust efficient distributed RSA-key generation.
In Proceedings of the 17th Annual ACM Symposium on Principles of Distributed Computing (PODC),
page 320, 1998.

[23] Tore Kasper Frederiksen, Yehuda Lindell, Valery Osheter, and Benny Pinkas. Fast distributed RSA key
generation for semi-honest and malicious adversaries. In Advances in Cryptology – CRYPTO 2018, part
II, pages 331–361, 2018.

[24] Niv Gilboa. Two party RSA key generation. InAdvances in Cryptology – CRYPTO 1999, pages 116–129,
1999.

[25] Oded Goldreich. The Foundations of Cryptography - Volume 1: Basic Techniques. Cambridge University
Press, 2001.

[26] Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental game or A completeness
theorem for protocols with honest majority. In Proceedings of the 19th Annual ACM Symposium on
Theory of Computing (STOC), pages 218–229, 1987.

[27] Shafi Goldwasser and Yehuda Lindell. Secure multi-party computation without agreement. Journal of
Cryptology, 18(3):247–287, 2005.

[28] Carmit Hazay, Gert Læssøe Mikkelsen, Tal Rabin, and Tomas Toft. Efficient RSA key generation and
threshold Paillier in the two-party setting. In Topics in Cryptology - CT-RSA 2012 - The Cryptographers’
Track at the RSA Conference, pages 313–331, 2012.

[29] Carmit Hazay, Gert Læssøe Mikkelsen, Tal Rabin, Tomas Toft, and Angelo Agatino Nicolosi. Efficient
RSA key generation and threshold paillier in the two-party setting. Journal of Cryptology, 32(2):265–
323, 2019.

[30] Carmit Hazay, Peter Scholl, and Eduardo Soria-Vazquez. Low cost constant round MPC combining
BMR and oblivious transfer. In Advances in Cryptology – ASIACRYPT 2017, part I, pages 598–628,
2017.

[31] Russell Impagliazzo and Moni Naor. Efficient cryptographic schemes provably as secure as subset sum.
Journal of Cryptology, 9(4):199–216, 1996.

[32] Yuval Ishai, Rafail Ostrovsky, and Vassilis Zikas. Secure multi-party computation with identifiable abort.
In Advances in Cryptology – CRYPTO 2014, part II, pages 369–386, 2014.

[33] Marc Joye and Richard Pinch. Cheating in split-knowledge RSA parameter generation. In Workshop on
Coding and Cryptography, pages 157–163, 1999.

[34] Jonathan Katz and Yehuda Lindell. Introduction to Modern Cryptography, Second Edition, chapter
Digital Signature Schemes, pages 443–486. Chapman & Hall/CRC, 2015.

[35] Marcel Keller, Emmanuela Orsini, and Peter Scholl. Actively secure OT extension with optimal overhead.
In Advances in Cryptology – CRYPTO 2015, part I, pages 724–741, 2015.

[36] Donald E. Knuth. The Art of Computer Programming, Volume II: Seminumerical Algorithms. Addison-
Wesley, 1969.

[37] Michael Malkin, Thomas Wu, and Dan Boneh. Experimenting with shared RSA key generation. In
Proceedings of the Internet Society’s 1999 Symposium on Network and Distributed System Security,
pages 43–56, 1999.

[38] Gary L. Miller. Riemann’s hypothesis and tests for primality. J. Comput. Syst. Sci., 13(3):300–317, 1976.
[39] Payman Mohassel and Matthew K. Franklin. Efficiency tradeoffs for malicious two-party computation. In

Proceedings of the 9th International Conference on the Theory and Practice of Public-Key Cryptography
(PKC), pages 458–473, 2006.

[40] Michele Orrù, Emmanuela Orsini, and Peter Scholl. Actively secure 1-out-of-n OT extension with
application to private set intersection. In Topics in Cryptology - CT-RSA 2017 - The Cryptographers’
Track at the RSA Conference, pages 381–396, 2017.

[41] Krzysztof Pietrzak. Simple verifiable delay functions. In Proceedings of the 10th Annual Innovations in
Theoretical Computer Science (ITCS) conference, pages 60:1–60:15, 2019.

[42] Guillaume Poupard and Jacques Stern. Generation of shared RSA keys by two parties. In Advances in
Cryptology – ASIACRYPT 1998, pages 11–24, 1998.

[43] Michael O. Rabin. Probabilistic algorithm for testing primality. Journal of Number Theory, 12(1):128–
138, 1980.

[44] Ronald L. Rivest. A description of a single-chip implementation of the RSA cipher, 1980.

12 Page 84 of 84 M. Chen et al.

[45] Ronald L. Rivest. RSA chips (past/present/future). In Workshop on the Theory and Application of Cryp-
tographic Techniques, pages 159–165. Springer, 1984.

[46] Ronald L. Rivest, Adi Shamir, and Leonard M. Adleman. A method for obtaining digital signatures and
public-key cryptosystems. Communications of the ACM, 21(2):120–126, 1978.

[47] J. Barkley Rosser and Lowell Schoenfeld. Approximate formulas for some functions of prime numbers.
Illinois J. Math., 6:64–94, 1962.

[48] Richard I. Szabo and Nicholas S. Tanaka. Residue Arithmetic and Its Application to Computer Technol-
ogy. McGraw-Hill, 1967.

[49] Xiao Wang, Samuel Ranellucci, and John Katz. Global-scale secure multiparty computation. In Pro-
ceedings of the 24th ACMConference on Computer and Communications Security, (CCS), pages 39–56,
2017.

[50] Benjamin Wesolowski. Efficient verifiable delay functions. In Advances in Cryptology – EUROCRYPT
2019, part III, pages 379–407, 2019.

[51] Kang Yang, Xiao Wang, and Jiang Zhang. More efficient MPC from improved triple generation and
authenticated garbling. In Proceedings of the 27th ACM Conference on Computer and Communications
Security, (CCS), 2020.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

	Multiparty Generation of an RSA Modulus
	1. Introduction
	1.1. Results and Contributions
	1.2. Overview of Techniques
	1.3. Additional Related Work
	1.4. Organization

	2. Preliminaries
	3. Assumptions and Ideal Functionality
	3.1. Factoring Assumptions
	3.2. The Distributed Biprime-Sampling Functionality

	4. The Distributed Biprime-Sampling Protocol
	4.1. High-Level Overview
	4.2. Ideal Functionalities Used in the Protocol
	4.3. The Protocol Itself
	4.4. Security Sketches

	5. Distributed Biprimality Testing
	5.1. The Semi-Honest Setting
	5.2. The Malicious Setting

	6. Efficiency Analysis
	6.1. Per-Instance Success Probability
	6.2. The Cost of Instantiating Fbiprime and Faugmult
	6.3. Putting It All Together
	6.4. Strictly Constant and Expected-Constant Rounds
	6.5. Comparison to Prior Work

	Acknowledgements
	Appendix A. The UC Model and Useful Functionalities
	Appendix A.1. Universal Composability
	Appendix A. 2. Useful Functionalities

	Appendix B. Instantiating Multiplication
	Appendix B.1. Delayed-Transmission Correlated Oblivious Transfer
	B.2. Two-Party Reusable-Input Multiplier
	B.3. Multiparty Reusable-Input Multiplier
	B.4. Augmented Multiplication

	Appendix C. Proof of Security for Our Biprime-Sampling Protocol
	References

