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Abstract. Almost perfect nonlinear (APN) functions play an important role in the
design of block ciphers as they offer the strongest resistance against differential crypt-
analysis. Despite more than 25 years of research, only a limited number of APN functions
are known. In this paper, we show that a recent construction by Taniguchi provides at

least ϕ(m)
2

⌈
2m+1

3m

⌉
inequivalent APN functions on the finite field with 22m elements,

where ϕ denotes Euler’s totient function. This is a great improvement of previous results:

for even m, the best known lower bound has been ϕ(m)
2

(�m4 � + 1
)
; for odd m, there

has been no such lower bound at all. Moreover, we determine the automorphism group
of Taniguchi’s APN functions.

Keywords. Vectorial Boolean function, APN function, Differential uniformity, CCZ-
equivalence, Differential analysis.

1. Introduction

A function f : F2n → F2n is called almost perfect nonlinear (APN) if the equation

f (x + a) + f (x) = b

has exactly 0 or 2 solutions for any b ∈ F2n and any nonzero a ∈ F2n . APN functions
were introduced in 1994 by Nyberg [28]. She defined them as the mappings with the
highest resistance to differential cryptanalysis, which is one of the most important crypt-
analyst tools for block ciphers and was introduced in 1991 by Biham and Shamir [3].
APN functions and other functions with low differential uniformity are widely used in
the design of symmetric key cryptographic algorithms such as the S-boxes in nonlinear
layers of block ciphers. For instance, in the hardware-oriented MISTY ciphers [27], the
16-bit state is split into two parts of different odd lengths on which two APN permuta-
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tions are used; in the AES algorithm [15], an affine transformation of the inverse function
over F28 which has differential 4-uniformity was chosen as the S-box. Blondeau and
Nyberg [4] provide an overview of theoretical results and applications of APN functions
in cryptography.

APN functions are also strongly connected with coding theory and finite geometry. In
particular, quadratic APN functions are equivalent to a special type of dimensional dual
hyperovals; see the work by Yoshiara [31], Edel [21], and Dempwolff and Edel [16] for
more details.

Since their introduction, APN functions have been studied intensively. For an extended
overview of these functions, we refer to the survey by Pott [29]. For a long time, only
very few APN functions were known, all of which power functions of the form x �→ xd .
In 2006, Edel et al. [20] reported the first two examples of non-power APN functions
on F210 and F212 . Since then, quite a few infinite families of non-power APN functions
have been found. A recent list of them was given by Budaghyan et al. [10, Table 3].

Except for some sporadic examples, every known non-power APN function is equiva-
lent to a quadratic APN function that can be written in the form

∑
0≤i< j≤n−1 αi, j x2i+2 j +∑

0≤i≤n−1 βi x2i + γ with αi, j , βi , γ ∈ F2n for i, j = 0, . . . , n− 1 and not all αi, j = 0.
By equivalent, we mean there exists a CCZ-equivalence transformation between func-
tions over F2n . This equivalence relation was introduced in 1998 by Carlet et al. [14], it
preserves the APN property, and it is the most general equivalence relation of functions
from F2n to F2n .

When n is odd, several known APN functions are also permutations on F2n . The most
fascinating problem regarding APN functions is to find APN permutations on F2n where
n is even. So far, only one such function is known: it was found by Browning et al. [7]
on F26 . This sporadic example is also equivalent to a quadratic APN function.

A very basic and natural question concerning APN functions is the following.

Question 1. How many CCZ-inequivalent APN functions on F2n exist for a given n?

Despite its simplicity, this question has not been satisfactorily answered yet. By check-
ing the known APN functions, see Sect. 3, we first notice that all the power APN functions
only provide very few inequivalent examples. Little is known, however, about the num-
ber of inequivalent non-power APN functions as it is, in general, a very hard problem
to prove the non-equivalence of two functions. Only for small dimensions, this problem
can be solved computationally; for larger dimensions, one has to solve it theoretically.
Studying a special family of non-power APN functions introduced by Pott and the sec-
ond author [33], the present authors [26] recently presented a first benchmark to answer
Question 1 for certain fields: they showed that there are at least 1

2ϕ(m) (�m/4� + 1)

inequivalent APN functions on F22m with m even, where ϕ is Euler’s totient function.
In this paper, we considerably improve this lower bound and extend it to F22m for any

m ≥ 2. We investigate a family of APN functions defined on F22m for any m ≥ 2 that has
been found by Taniguchi [30]. By completely determining the equivalence of members
among this family, we show that the number of inequivalent APN functions on F22m is
at least
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ϕ(m)

2

⌈
2m + 1

3m

⌉
.

As a corollary, our results enable us to determine the automorphism group of the
Taniguchi APN functions.

The paper is organized as follows. In Sect. 2, we introduce all necessary definitions
and notations. In Sect. 3, we give an overview of the known classes of APN functions
and introduce the constructions by Taniguchi [30] and Pott and the second author [33].
Afterwards, we solve the equivalence problem for the Taniguchi APN functions and
present their automorphism group in Sect. 4. In Sect. 5, we use these results to establish
the aforementioned lower bound on the total number of inequivalent APN functions
on F22m . To conclude, we point out several open problems regarding APN functions in
Sect. 6.

2. Preliminaries

In this section, we present all the definitions and basic results needed to follow the
paper. Denote by F

n
2 the n-dimensional vector space over the finite field F2 with two

elements. A function from F
n
2 to F

m
2 is called a vectorial Boolean function if m ≥ 2

or simply a Boolean function if m = 1. In this paper, we will only consider vectorial
Boolean functions from F

n
2 to F

n
2, we say functions on F

n
2. In most cases, we identify

the n-dimensional vector space F
n
2 over F2 with the finite field F2n with 2n elements.

This will allow us to use finite field operations and notations. Note that any function on
the finite field F2n can be written as a univariate polynomial mapping of degree at most
2n − 1. Furthermore, denote by F

∗
2n the multiplicative group of F2n .

Besides our definition given above, there are several equivalent definitions of almost
perfect nonlinear functions. We refer to Budaghyan [9] and Pott [29] for an extended
overview of these functions. In this paper, we will only consider quadratic APN func-
tions. We define this term using the coordinate function representation of a function on
F
n
2.

Definition 1. Let f : F
n
2 → F

n
2 be a vectorial Boolean function defined by n Boolean

coordinate functions f1, . . . , fn : F
n
2 → F2 that are given in their algebraic normal

form, that is,

f (x1, . . . , xn) =
⎛
⎜⎝

f1(x1, . . . , xn)
...

fn(x1, . . . , xn)

⎞
⎟⎠ .

The maximal degree of the coordinate functions f1, . . . , fn is called the algebraic degree
of f . We call a function of algebraic degree 2 quadratic and a function of algebraic degree
1 affine. If f is affine and has no constant term, we call f linear.

In polynomial mapping representation, any quadratic function f on F2n can be written
in the form
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f (x) =
n−1∑
i, j=0
i< j

αi, j x
2i+2 j +

n−1∑
i=0

βi x
2i + γ,

and any affine function f : F2n → F2n can be written as

f (x) =
n−1∑
i=0

βi x
2i + γ.

If f is affine and γ = 0, then f is linear. Similar terms are used to describe polynomials
over F2n . Denote by F2n [X ] the univariate polynomial ring over F2n . A polynomial of
the form

P(X) =
∑
i≥0

αi X
2i

is called a linearized polynomial. Note that there is a one-to-one correspondence between
linear functions on F

n
2 and linearized polynomials in F2n [X ]/(X2n − X). In the same

way as for univariate polynomials, we define a linearized polynomial in the multivariate
polynomial ring F2n [X1, . . . , Xr ] as a polynomial of the form

P(X1, . . . , Xr ) =
r∑
j=1

⎛
⎝∑

i≥0

αi, j X
2i
j

⎞
⎠ .

We will use such polynomials to study the equivalence of APN functions. In this
paper, we are interested in inequivalent APN functions. There are several notions of
equivalence between vectorial Boolean functions that preserve the APN property. We
list them in the following definition.

Definition 2. Two functions f, g : F2n → F2n are called

• Carlet–Charpin–Zinoviev equivalent (CCZ-equivalent), if there is an affine permu-
tation C on F2n × F2n such that

C(G f ) = Gg,

where G f = {(x, f (x)) : x ∈ F2n } is the graph of f ,
• extended affine equivalent (EA-equivalent) if there exist three affine functions

A1, A2, A3 : F2n → F2n , where A1 and A2 are permutations, such that

f (A1(x)) = A2(g(x)) + A3(x),

• extended linearly equivalent (EL-equivalent) if they are EA-equivalent and A1, A2
and A3 are linear,
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• affine equivalent if they are EA-equivalent and A3(x) = 0,
• linearly equivalent if they are EL-equivalent and A3(x) = 0.

In the case of EL- or linear equivalence, we usually write L , N , M instead of
A1, A2, A3 to underline the linearity of these functions. CCZ-equivalence is the most
general known notion of equivalence that preserves the APN property. Obviously, linear
equivalence implies affine equivalence, and affine equivalence implies EA-equivalence.
Similarly, linear equivalence implies EL-equivalence, and EL-equivalence implies EA-
equivalence. Moreover, it is well known that EA-equivalence implies CCZ-equivalence,
but, in general, the converse is not true. For quadratic APN functions, however, Yoshiara
[32] proved that also the converse holds.

Proposition 2.1. [32, Theorem 1] Let f and g be quadratic APN functions on a finite
field F2n with n ≥ 2. Then, f is CCZ-equivalent to g if and only if f is EA-equivalent
to g.

In this paper, Proposition 2.1 will allow us to prove the CCZ-inequivalence of certain
quadratic APN functions by showing that they are EA-inequivalent.

We characterize some of the mappings that define an equivalence of two functions
in the sense of Definition 2 in more detail. Let f, g be functions on F2n , and denote
their graphs by G f and Gg , respectively. We call an affine permutation C on F2n × F2n

such that C(G f ) = Gg a CCZ-mapping from g to f . Similarly to [12], we define an
EL-mapping CEL = (L , M, N ) from g to f as a linear CCZ-mapping from g to f
satisfying

f (L(x)) = N (g(x)) + M(x),

where L , N are linear permutations on F2n and M is a linear map on F2n . Such an
EL-mapping CEL from g to f may be represented as a formal matrix

CEL =
[
L 0
M N

]

corresponding to the calculation

[
L 0
M N

] [
x

g(x)

]
=

[
L(x)

N (g(x)) + M(x)

]
=

[
y

f (y)

]
.

We, moreover, define an EA-mapping CEA = (L , M, N , a, b) from g to f as a CCZ-
mapping from g to f whose linear part is an EL-mapping. It is characterized by L , M, N
as above and two elements a, b ∈ F2n such that

f (L(x) + a) = N (g(x)) + M(x) + b. (1)

Of particular interest are equivalence mappings from f to f , that are mappings pre-
serving the graph of f .
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Definition 3. For a function f : F2n → F2n with graph G f , we call an affine permuta-
tion A on F2n × F2n with A(G f ) = G f an automorphism of f . We denote the set of all
such mappings by Aut( f ). IfA is an EA-mapping, we say thatA is anEA-automorphism
of f , and we denote the set of all EA-automorphisms by AutE A( f ). Analogously, if A
is an EL-mapping, we say that A is an EL-automorphism of f , and we denote the set of
all EL-automorphisms by AutEL( f ).

Note that Aut( f ), AutE A( f ) and AutEL( f ) each form a group under composition, see
[12], and AutEL( f ) is a subgroup of AutE A( f ), which in turn is a subgroup of Aut( f ).
Hence, we simply call Aut( f ) the automorphism group of f , and we call AutE A( f ) and
AutEL( f ) the automorphism group of f under EA- or EL-equivalence, respectively.

All the functions we study in this paper are quadratic and have no constant term.
We show that if any two such functions f and g are EA-equivalent, they are also EL-
equivalent.

Proposition 2.2. Suppose f and g are EA-equivalent quadratic functions on F
n
2 with

f (0) = g(0) = 0, and denote by CEA = (L , M, N , a, b) an EA-mapping from g to f .
Define a mapping D f,L ,a on F

n
2 as

D f,L ,a(x) = f (L(x) + a) + f (L(x)) + f (a).

Then, b = f (a), the functions f and g are EL-equivalent, and CEA uniquely defines an
EL-mapping CEL = (L , M + D f,L ,a, N ) from g to f .

Proof. Recall that CEA satisfies (1). As f is quadratic, it is easy to confirm that D f,L ,a

is linear for a 
= 0 and zero for a = 0. Combining (1) with the definition of D f,L ,a , we
obtain

f (L(x)) = N (g(x)) + M(x) + D f,L ,a(x) + b + f (a).

As f (0) = g(0) = 0 and L , N , M, D f,L ,a have no constant part either, it follows that
b = f (a), which implies

f (L(x)) = N (g(x)) + M(x) + D f,L ,a(x).

Consequently, CEA corresponds to an EL-mapping CEL from g to f of the shape

[
L 0

M + D f,L ,a N

]
,

that is uniquely determined by CEA. �

With the help of Proposition 2.2, we can also establish a connection between the auto-
morphism groups AutE A( f ) and AutEL( f ) of a quadratic function f with no constant
part. Proposition 2.3 may be well-known. We need the definition of a semidirect product
first. Let G be a group with identity element e. Let H and N be two subgroups of G.
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If N is normal, G = NH and N ∩ H = {e}, then we say G is a semidirect product of
N and H and write

G = N � H.

Proposition 2.3. Let f be a quadratic function on F2n with f (0) = 0. Then,

AutE A( f ) = T f � AutEL( f ),

where T f is isomorphic to the additive group (F2n ,+) of F2n .

Proof. By Proposition 2.2, every EA-automorphism of f given by (L , M, N , a, b) can
be uniquely written as the composition of an EL-automorphism ϕ of the shape

ϕ :
[
x
y

]
�→

[
L 0
M̃ N

] [
x
y

]
, (2)

where M̃ = M + D f,L ,a for D f,L ,a as defined in Proposition 2.2, and a map τa of the
shape

τa :
[
x
y

]
�→

[
I 0

D f,I,a I

] [
x
y

]
+

[
a

f (a)

]
,

where I is the identity map on F2n .
Note that the set of all ϕ is AutEL( f ). Clearly, τa is also an EA-automorphism of

f mapping (x, f (x)) to (x + a, f (x + a)) for any x ∈ F2n . The set of all τa with
a ∈ F2n forms a subgroup T f of AutE A( f ), which is isomorphic to (F2n ,+). Hence
AutE A( f ) = T f AutEL( f ). Moreover, it is obvious that the identity map on F2n × F2n

is the unique common element of T f and AutEL( f )
It remains to show that T f is a normal subgroup of AutE A( f ). We do so by verifying

that
τa ◦ ϕ = ϕ ◦ τL−1(a). (3)

A similar result was given by Dempwolff and Edel [16, Lemma 2.5]. The left-hand side
of (3), τa ◦ ϕ, is exactly the EA-automorphism (L , M, N , a, b) we decomposed above.
The right-hand side of (3), ϕ ◦ τL−1(a), maps (x, f (x)) to

ϕ ◦ τL−1(a)

[
x

f (x)

]
=

[
L 0
M̃ N

] [
x + L−1(a)

f (x + L−1(a))

]

=
[

L(x) + a
N ( f (x + L−1(a))) + M̃(x + L−1(a))

]
. (4)

We consider
N ( f (x + L−1(a))) + M̃(x + L−1(a)). (5)
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Adding N ( f (x)) + N ( f (L−1(a))) twice and using the definition of M̃ , (5) equals

N ( f (x)) + M(x) + N ( f (L−1(a)) + M(L−1(a))

+ D f,L ,a(x) + N ( f (x + L−1(a))) + N ( f (x)) + N ( f (L−1(a))) + D f,L ,a(L
−1(a)).

First, note that D f,L ,a(L−1(a)) = 0. Second, as we have f (L(x)) = N ( f (x))+M(x)+
D f,L ,a(x) by the definition of ϕ, it follows that

N ( f (x + L−1(a))) + N ( f (x)) + N ( f (L−1(a)))

= f (L(x) + a) + f (L(x)) + f (a) = D f,L ,a(x).

Third, using the same reasoning as before and recalling that D f,L ,a(L−1(a)) = 0, we
have

N ( f (L−1(a)) + M(L−1(a)) = f (a) + D f,L ,a(L
−1(a)) = f (a).

Consequently, we obtain

N ( f (x + L−1(a))) + M̃(x + L−1(a)) = N ( f (x)) + M(x) + f (a),

which, considering (4), means that ϕ ◦ τL−1(a) also describes the EA-automorphism
(L , M, N , a, b). Therefore, by definition, AutE A( f ) = T f � AutEL( f ). �

We remark that Proposition 2.3 enables us to determine the automorphism group
AutE A( f ) under EA-equivalence of any quadratic function f on F2n , also if f (0) 
= 0.
To obtain AutE A( f ), we only have to apply a conjugation of a translation on AutE A( f +
f (0)), which we can determine with Proposition 2.3.

Regarding the automorphism groups of quadratic APN functions, we may say even
more: the following lemma follows from Yoshiara’s [32] proof of Proposition 2.1 in
combination with a result by Dempwolff and Edel [16, Theorem 4.10].

Lemma 2.4. Let f be a quadratic APN function on the finite field F2n , where n ≥ 4.
Then,

Aut( f ) = AutE A( f ).

We close this section by introducing the general framework we use to study the
equivalence of functions in the remainder of this paper. We will mostly consider functions
on finite fields of even extension degree. Such functions can be represented in a bivariate
description as a map on F

2
2m = F2m × F2m with two coordinate functions. As all the

functions we study are quadratic and have no constant term, we may use Proposition 2.1
in combination with Proposition 2.2 to study their CCZ-equivalence by focusing on EL-
mappings. We describe EL-equivalence as follows: Two functions f, g : F

2
2m → F

2
2m ,

where

f (x, y) = ( f1(x, y), f2(x, y)) and g(x, y) = (g1(x, y), g2(x, y))
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Table 1. List of known APN power functions x �→ xd [29, Table 3].

Exponents d Conditions Reference

Gold functions 2i + 1 gcd(i, n) = 1, i ≤ � n2 � [22,28]
Kasami functions 22i − 2i + 1 gcd(i, n) = 1, i ≤ � n2 � [24,25]
Welch function 2k + 3 n = 2k + 1 [19]

Niho function 2k + 2
k
2 − 1, k even n = 2k + 1 [18]

2k + 2
3k+1

2 − 1, k odd n = 2k + 1
Inverse function 22k − 1 n = 2k + 1 [2,28]
Dobbertin function 24k + 23k + 22k + 2k − 1 n = 5k [17]

for coordinate functions f1, f2, g1, g2 : F
2
2m → F2m , are EL-equivalent, if there exist

linear functions L , N , M : F
2
2m → F

2
2m , where L and N are bijective, such that

f (L(x, y)) = N (g(x, y)) + M(x, y).

Write

L(x, y) = (LA(x, y), LB(x, y)) and M(x, y) = (MA(x, y), MB(x, y))

for linear functions LA, LB, MA, MB : F
2
2m → F2m and

N (x, y) = (N1(x) + N3(y), N2(x) + N4(y))

for linear functions N1, . . . , N4 : F2m → F2m . In terms of these newly defined functions,
f and g are EL-equivalent if both

f1(L A(x, y), LB(x, y)) = N1(g1(x, y)) + N3(g2(x, y)) + MA(x, y), (6)

f2(L A(x, y), LB(x, y)) = N2(g1(x, y)) + N4(g2(x, y)) + MB(x, y) (7)

hold. They are linearly equivalent if M(x, y) = 0.
Equations (6) and (7) will form the general framework in the proof of our main

theorem.

3. Known Classes of APN Functions

In this section, we give a short overview of the currently known APN functions. In
Table 1, we present the known APN power functions. This list is conjectured to be
complete. APN power functions and their equivalence relations are very well studied. It
is well known that the classes in Table 1 are in general CCZ-inequivalent. Moreover, it
is, for example, known that Gold functions are inequivalent for different values of i ; see
Budaghyan et al. [11].

As far as non-power APN functions are concerned, the situation becomes much less
clear than for power functions. Several infinite families of non-power APN functions
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have been found, but only for few of them their equivalence relations are known. This
includes equivalence relations both between functions from different classes as well
as between functions coming from the same class. A current list of known families
of APN functions that are CCZ-inequivalent to power functions was recently given by
Budaghyan et al. [10, Table 3]. This list contains 13 distinct classes, all of which are
quadratic.

In the present paper, we study the family (F12) from this list. It was introduced by
Taniguchi [30] who used a criterion developed by Carlet [13] to prove the APN property
of his functions. In Theorem 3.1, we restate Taniguchi’s [30] construction in bivariate
representation. Its univariate form can be found in the list by Budaghyan et al. [10].

Theorem 3.1. [30, Theorem 3] Let m ≥ 2 and k be positive integers such that
gcd(k,m) = 1. Let α, β ∈ F2m and β 
= 0. Then, the function fk,α,β : F22m → F22m ,
where

fk,α,β(x, y) =
(
x22k (2k+1) + αx22k

y2k + βy2k+1, xy
)

is APN if and only if the polynomial X2k+1 + αX + β ∈ F2m [X ] has no root.

We remark that the Taniguchi APN functions from Theorem 3.1 are quadratic. In the
following lemma we specify the case α = 0.

Lemma 3.2. A Taniguchi function fk,0,β on F22m is APN if and only if m is even and
β is a non-cube in F

∗
2m .

Proof. According to Theorem 3.1, the function fk,0,β is APN if and only if the poly-

nomial P(X) ∈ F2m [X ], where P(X) = X2k+1 + β, has no root. Recall that m and k
are coprime. Hence,

gcd(2k + 1, 2m − 1) =
{

1, if m is odd,

3, if m is even.

Consequently, if m is odd, P(X) is a permutation polynomial and, thus, always has a
root. If m is even, however, then P(X) has a root if and only if β is a cube. �

The following lemma provides insight on the total number of Taniguchi APN func-
tions for given m and k—without considering equivalence—by giving the number of
admissible β ∈ F

∗
2m . This result is due to Bluher [5, Theorem 5.6] who proved it in

a more general setting. In the specific form of the present paper, the result was also
obtained by Helleseth and Kholosha [23].

Lemma 3.3. Let k,m be coprime integers such that 0 < k < m. The number of
β ∈ F

∗
2m such that the polynomial X2k+1 + X + β has no root in F2m is 2m−1

3 if m is

even and 2m+1
3 if m is odd.
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In Theorem 3.4, we present another family of APN functions, which is closely related
to Taniguchi’s [30] construction from Theorem 3.1. It was introduced by Pott and the
second author [33], and Anbar et al. [1] showed that the conditions on the parameters are
not only sufficient but also necessary. The equivalence problem of these APN functions
was recently solved by the present authors [26].

Theorem 3.4. [33, Corollary 2] and [1, Proposition 3.5] Let m be an even integer and
let k, s be integers, 0 ≤ k, s ≤ m, such that gcd(k,m) = 1. Let α ∈ F

∗
2m . The function

gk,s,α : F22m → F22m defined as

gk,s,α(x, y) =
(
x2k+1 + αy2s (2k+1), xy

)

is APN if and only if s is even and α is a non-cube.

In the following Lemma 3.5 and Theorem 3.6, we restate two results by the present
authors [26] about the equivalence between Pott–Zhou APN functions that we will need
to study the equivalence relations between Taniguchi APN functions in Sect. 4.

Lemma 3.5. [26, Lemma 5.1] Let m ≥ 2 be an even integer. Let k, � be integers
coprime to m such that 0 < k, � < m, and let s, t be even integers with 0 ≤ s, t ≤
m. Let α, α′ ∈ F

∗
2m be non-cubes. The two APN functions gk,s,α, g�,t,α′ on F22m from

Theorem 3.4 are linearly equivalent

(a) if k = � and s = t , no matter which non-cubes α and α′ we choose,
(b) if k ≡ ±� (mod m) and s ≡ ±t (mod m).

Theorem 3.6. [26, Theorem 1.1] Let m ≥ 4 be an even integer. Let k, � be integers
coprime to m such that 0 < k, � < m

2 , let s, t be even integers with 0 ≤ s, t ≤ m
2 , and

let α, α′ ∈ F
∗
2m be non-cubes. Two Pott–Zhou APN functions gk,s,α, g�,t,α′ on F22m from

Theorem 3.4, are CCZ-equivalent if and only if k = � and s = t .

4. On the Equivalence of Taniguchi APN Functions

In this section, we study the equivalence problem of the Taniguchi APN functions
on F22m , which were introduced in Theorem 3.4. We will answer the question for
which values of the parameters k, α, β two Taniguchi APN functions fk,α,β are CCZ-
inequivalent.

As we have pointed out before, Taniguchi APN functions are quadratic. Moreover,
they have no constant term. Hence, by Proposition 2.1 and Proposition 2.2, two Taniguchi
APN functions are CCZ-equivalent if and only if they are EL-equivalent, and, by
Lemma 2.4, their automorphism groups under CCZ- and EA-equivalence are the same.
We begin by studying the case α = 0. Recall from Lemma 3.2 that fk,0,β is APN if and
only if m is even and β is a non-cube.

Proposition 4.1. Let m ≥ 2 be an even integer, and let 0 < k < m
2 such that k and m

are coprime. Let β, γ ∈ F
∗
2m be non-cubes. The Taniguchi APN function fk,0,β on F22m
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from Theorem 3.1 is linearly equivalent to the Pott–Zhou APN function gk,2k,γ on F22m

from Theorem 3.4.

Proof. If β is a non-cube in F
∗
22m , then 1

β
is as well. From Lemma 3.5 (a), we know

that the Pott–Zhou APN function gk,2k,γ is linearly equivalent to gk,2k, 1
β

. We will show

that fk,0,β is linearly equivalent to gk,2k, 1
β

.

By (6) and (7) and the explanations below, the two functions fk,0,β and gk,2k, 1
β

are lin-

early equivalent if there exist bijective mappings L , N on F
2
2m , represented by linearized

polynomials LA(X,Y ), LB(X,Y ) ∈ F2m [X,Y ] and N1(X), . . . , N4(X) ∈ F2m [X ],
respectively, such that the two equations

LA(x, y)22k (2k+1) + βLB(x, y)(2
k+1) = N1(x

2k+1 + 1
β
y22k (2k+1)) + N3(xy),

L A(x, y)LB(x, y) = N2(x
2k+1 + 1

β
y22k (2k+1)) + N4(xy)

hold for all x, y ∈ F2m . The functions fk,0,β and gk,2k, 1
β

are linearly equivalent by

L A(X,Y ) = Y, LB(X,Y ) = X,

N1(X) = βX, N2(X) = N3(X) = 0, N4(X) = X.

Consequently, fk,0,β is linearly equivalent to gk,2k,γ . �

From Proposition 4.1, we immediately obtain the following results.

Corollary 4.2. Let m ≥ 4.

(a) Two Taniguchi APN functions fk,0,β and f−k,0,β on F22m are CCZ-equivalent.
(b) Two Taniguchi APN functions fk,0,β and f�,0,β ′ on F22m where 0 < k, � < m

2 are
CCZ-equivalent if and only if k = �.

Proof. Statement (a) follows from Proposition 4.1 in combination with Lemma 3.5 (b).
Statement (b) follows from Proposition 4.1 in combination with Theorem 3.6. �

We remark that for m = 2, all Taniguchi APN functions, no matter if α is zero or
not, are CCZ-equivalent to the Gold APN function x �→ x3. From now on, we focus
on the case α 
= 0. In the following Lemma 4.3, we summarize several results about
polynomials of the shape X2k+1 + X +β that we need to solve the equivalence problem
of the Taniguchi APN functions.

Lemma 4.3. Let m ≥ 2 and k < m be positive integers, and let α, β ∈ F
∗
2m .

(a) The polynomial P(X) = X2k+1 + αX + β has no root in F2m if and only if
P ′(X) = X2k+1 + X + β

α2−k+1
has no root in F2m .

(b) The polynomial P(X) = X2k+1 + X +β has no root in F2m if and only if P ′(X) =
X2k+1 + X + β2i has no root in F2m for i ∈ {0, . . . ,m − 1}.
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(c) The polynomial P(X) = X2k+1 + X +β has no root in F2m if and only if P ′(X) =
X2k+1 + X + β has no root in F2m .

Proof. (a) Substitute X by α2−k
X in P(X) to obtain α2−k+1X2k+1 + α2−k+1X + β.

Factoring out α2−k+1 gives the result.
(b) For any i ∈ {0, . . . ,m − 1} we can transform P(X) into P ′(X) by applying the

automorphism x �→ x2i on the coefficients of P(X).
(c) We can transform P ′(X) into P(X) using the substitution X �→ (X + 1)2k . �

We now focus on the equivalence relations between Taniguchi APN functions. Propo-
sition 4.4 (a) was also observed by Taniguchi [30, Proposition 2].

Proposition 4.4. Let m ≥ 2 be an integer. Let k be an integer coprime to m such that
0 < k < m, and let α, β ∈ F

∗
2m . Then, the following pairs of Taniguchi APN functions

on F22m from Theorem 3.1 are linearly equivalent:

(a) fk,α,β and fk,1,
β

α2−k+1
,

(b) f
k,1,β2i and fk,1,β for i ∈ {0, . . . ,m − 1},

(c) f−k,1,β and fk,1,β .

Proof. It follows from Lemma 4.3 that all the functions in Proposition 4.4 are APN.
By (6) and (7) and the explanations below, two Taniguchi APN functions fk,α,β and

f�,α′,β ′ are linearly equivalent if there exist invertible mappings L , N on F
2
2m , represented

by linearized polynomials LA(X,Y ), LB(X,Y ) ∈ F2m [X,Y ] and N1(X), . . . , N4(X) ∈
F2m [X ], respectively, such that the two equations

L A(x, y)22k (2k+1) + αL A(x, y)22k
L B(x, y)2k + βLB(x, y)(2

k+1)

= N1(x
(2�+1)22� + α′x22�

y2� + β ′y2�+1) + N3(xy),

L A(x, y)LB(x, y) = N2(x
(2�+1)22� + α′x22�

y2� + β ′y2�+1) + N4(xy)

hold for all x, y ∈ F2m . We will give such polynomials for (a)–(c). As we have N2(X) =
N3(X) = 0 in all three cases, we will not restate these polynomials in every case.

(a) The functions fk,α,β and fk,1,
β

α2−k+1
are linearly equivalent by

L A(X,Y ) = X, LB(X,Y ) = 1
α2−k Y, N1(X) = X, N4(X) = 1

α2−k X.

(b) The functions fk,1,β2i and fk,1,β are linearly equivalent by

L A(X,Y ) = X2i , LB(X,Y ) = Y 2i , N1(X) = X2i , N4(X) = X2i .

(c) We first show that f−k,1,β and fk, 1
β
, 1
β

are equivalent. This can be seen choosing

L A(X,Y ) = Y 23k
, LB(X,Y ) = X23k

, N1(X) = βX, N4(X) = X23k
.
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Using (a), it follows that fk, 1
β
, 1
β

is linearly equivalent to f
k,1,β2−k , which, by (b),

is linearly equivalent to fk,1,β .

�

Next, we present our main theorem. We remark that it only holds form ≥ 3 as form =
2, all Taniguchi APN functions are CCZ-equivalent to the Gold APN function x �→ x3.
According to Proposition 4.4, for m ≥ 3, every Taniguchi APN function fk,α,β , where
α 
= 0, is linearly equivalent to a Taniguchi APN function f�,1,β ′ , where 0 < � < m

2 .
Hence, we will only consider functions fk,1,β where 0 < k < m

2 in our theorem. Note
that the structure of the proof of Theorem 4.5 is similar to the structure of the proof
of Theorem 3.6 by the present authors [26]. To keep the paper self-contained we will
restate some parts that also appear in [26].

Theorem 4.5. Let m ≥ 3 be an integer, and let k, � be integers, 0 < k, � < m
2 , coprime

to m. Let β, β ′ ∈ F
∗
2m such that the polynomials X2k+1 + X + β and X2�+1 + X + β ′

have no roots in F2m . Two Taniguchi APN functions fk,1,β , f�,1,β ′ on F22m , where

fk,1,β = (x22k (2k+1) + x22k
y2k + βy2k+1, xy)

and

f�,1,β ′ = (x22�(2�+1) + x22�

y2� + β ′y2�+1, xy),

are CCZ-equivalent if and only if k = � and β ′ = β2i for some i ∈ {0, . . . ,m − 1}.

Proof. We have shown in Proposition 4.4 that fk,1,β and f
k,1,β2i are linearly equivalent

and thereby CCZ-equivalent. We will now show the converse: if fk,1,β and f�,1,β ′ are

CCZ-equivalent, then k = � and β ′ = β2i for some i ∈ {0, . . . ,m − 1}.
For m = 3 and m = 4, the result can be easily confirmed. If m = 3, then k = 1 and,

according to Lemma 3.3, there are three distinct β ∈ F
∗
23 such that X3 + X + β has no

root in F23 . Clearly, if β meets this condition, then β2 and β4 do as well. Consequently,
for m = 3, all three Taniguchi APN functions belong to the same equivalence class. If
m = 4, then k = 1 and there are five distinct β ∈ F

∗
24 such that X3 + X + β has no

root, namely 1 and β, β2, β4, β8 for some β 
= 1. Hence, for m = 4, there exist two
equivalence classes: f1,1,1 and f1,1,β , where β 
= 1. The existence of these two classes
was also observed by Taniguchi [30], who computed the �-ranks for these functions.

For the remainder of the proof, let m ≥ 5. Assume fk,1,β and f�,1,β ′ are CCZ-
equivalent. By Propositions 2.1 and 2.2, this implies that the functions are also
EL-equivalent. Hence, analogously to the proof of Proposition 4.4, there exist lin-
earized polynomials LA(X,Y ), LB(X,Y ), MA(X,Y ), MB(X,Y ) ∈ F2m [X,Y ] and
N1(X), . . . , N4(X) ∈ F2m [X ], where
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L(X,Y ) = (L A(X,Y ), LB(X,Y ))

and

N (X,Y ) = (N1(X) + N3(Y ), N2(X) + N4(Y ))

are invertible, such that the equations

L A(x, y)22k (2k+1) + L A(x, y)22k
L B(x, y)2k + βLB(x, y)2k+1

= N1(x
(2�+1)22� + x22�

y2� + β ′y2�+1) + N3(xy) + MA(x, y), (8)

L A(x, y)LB(x, y) = N2(x
(2�+1)22� + x22�

y2� + β ′y2�+1) + N4(xy) + MB(x, y) (9)

hold for all x, y ∈ F2m . We write L A(X,Y ) = L1(X) + L3(Y ) and LB(X,Y ) =
L2(X) + L4(Y ) for linearized polynomials L1(X), . . . , L4(X) ∈ F2m [X ]. Hence,

L(X,Y ) = (L1(X) + L3(Y ), L2(X) + L4(Y )) .

Write

L1(X) =
m−1∑
i=0

ai X
2i , L2(X) =

m−1∑
i=0

bi X
2i ,

L3(Y ) =
m−1∑
i=0

aiY
2i , L4(Y ) =

m−1∑
i=0

biY
2i .

Analogously, define linearized polynomials M1(X), . . . , M4(X) ∈ F2m [X ] such that

M(X,Y ) = (M1(X) + M3(Y ), M2(X) + M4(Y )).

For the remainder of the proof, let x, y ∈ F2m . We first prove the following claim.

Claim. If fk,1,β and f�,1,β ′ are EL-equivalent, then k = � and each of the linearized
polynomials L1(X), L2(X), L3(Y ), L4(Y ) is a monomial or zero.
We will prove the result for y = 0 and obtain statements for L1(X) and L2(X). Using the
same approach with x = 0, identical statements can be obtained for L3(Y ) and L4(Y ).
Let y = 0. Then, it follows from (8) and (9) that

L1(x)
22k (2k+1) + L1(x)

22k
L2(x)

2k + βL2(x)
2k+1 = N1(x

(2�+1)22�

) + M1(x), (10)

L1(x)L2(x) = N2(x
(2�+1)22�

) + M2(x) (11)

for all x ∈ F2m . Write

N1(X) =
m−1∑
i=0

ci X
2i and N2(X) =

m−1∑
i=0

di X
2i−2�

.
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Note that, for convenience, we shift the summation index of N2(X).
As L(X,Y ) has to be invertible, it is not possible that both L1(X) and L2(X) are zero.

First, suppose L1(X) 
= 0 and L2(X) = 0. For the case L1(X) = 0 and L2(X) 
= 0,
an identical result can be obtained by symmetry. If L1(X) 
= 0 and L2(X) = 0, then
it follows from (11) that N2(X) = M2(X) = 0 as the left-hand side is zero, and (10)
becomes

L1(x)
22k (2k+1) = N1(x

(2�+1)22�

) + M1(x). (12)

From (12), it follows that the Gold APN functions x �→ x2k+1 and x �→ x2�+1 on
F2m have to be EA-equivalent. It was shown by Budaghyan et al. [11, Theorem 2.1] that
this implies k = �. The present authors [26, Theorem 4.1], moreover, showed that if
m ≥ 5, the equivalence mappings between equivalent Gold APN functions are linearized
monomials. In our case, this means the polynomial L1(X) is a linearized monomial. In
summary, we obtain

L1(X) = au X
2u and L2(X) = 0 (13)

for some u ∈ {0, . . . ,m − 1} and au ∈ F
∗
2m . If we consider the case L1(X) = 0 and

L2(X) 
= 0, we analogously obtain

L1(X) = 0 and L2(X) = bu X
2u (14)

for some u ∈ {0, . . . ,m − 1} and bu ∈ F
∗
2m . In both cases, M1(X) = M2(X) = 0.

Now, let both L1(X), L2(X) 
= 0. Then, (11) becomes

m−1∑
i=0

aibi x
2i+1 +

m−1∑
i, j=0,
j 
=i

ai b j x
2i+2 j =

m−1∑
i=0

di x
(2�+1)2i + M2(x). (15)

Note that the first sum on the left-hand side of (15) is linearized. Hence, set M2(X) =∑m−1
i=0 aibi X2i+1

. We rewrite (15) as

∑
0≤i< j≤m−1

(aib j + a jbi )x
2i+2 j =

m−1∑
i=0

di x
2i+2i+�

which implies that the equations

aibi+� + ai+�bi = di for all i, (16)

aib j + a jbi = 0 for j 
= i, i ± �, (17)

where the subscripts are calculated modulo m, have to hold. We separate the proof into
two cases: first, the case that di = 0 for all i = 0, . . . ,m − 1, and, second, the case that
du 
= 0 for some u ∈ {0, . . . ,m − 1}.
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Case 1. In this case, we show that if di = 0 for all i = 0, . . . ,m − 1, similarly
to (12), the problem can be reduced to the equivalence problem of Gold APN functions
that has been studied by the present authors [26, Theorem 4.1]. Assume di = 0 for all
i = 0, . . . ,m − 1, which means N2(X) = 0. In this case, (16) and (17) combine to

aib j + a jbi = 0 for j 
= i. (18)

As L1(X) and L2(X) are both nonzero, each polynomial has at least one nonzero
coefficient. Assume au and bu′ are nonzero, where u, u′ ∈ {0, . . . ,m − 1}. If u = u′,
the corresponding term in (11), that is, aubu X2u+1, is linearized and only contributes to
M2(X). If u 
= u′, then, by (18),

aubu′ + au′bu = 0.

Consequently, au′ and bu have to be nonzero as well, and au, au′ , bu, bu′ have to meet
the condition au

bu
= au′

bu′ . Define 	 = au
bu

and note that 	 
= 0. It follows that (a j , b j )

satisfies either

a j = b j = 0 or
a j

b j
= 	 (19)

for all j = 0, . . . ,m−1. Consequently,b j = δa j , where δ = 1
	

, for all j = 0, . . . ,m−1,
and L2(X) is a multiple of L1(X), namely

L2(X) = δL1(X). (20)

We plug L1(X) and L2(X) into (10) and obtain

L1(x)
22k (2k+1)+δ2k L1(x)

2k (2k+1)+βδ2k+1L1(x)
2k+1 = N1(x

(2�+1)22�

)+M1(x). (21)

Define a polynomial T (X) ∈ F2m [X ] as

T (X) = X22k + δ2k X2k + βδ2k+1X

and rewrite the left-hand side of (21) as

T (L1(x)
2k+1).

We show that T (X) is a permutation polynomial. Since T (X) is linearized, it is
sufficient to show that T (X) has no nonzero roots. If T (X) had a nonzero root, it would
also be a root of the polynomial

T ′(X) = X22k−1 + δ2k X2k−1 + βδ2k+1.
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Substitute X2k−1 by Z . Note that this substitution is one-to-one since gcd(2k − 1, 2m −
1) = 2gcd(k,m) − 1 = 1. We obtain

T ′(Z) = Z2k+1 + δ2k Z + βδ2k+1.

By Lemma 4.3, the polynomial T ′(Z) has no root if and only if P(X) = X2k+1 + X +β

has no root. This holds by the definition of β.
Hence, we denote by T−1(X) the inverse of T (X) and rewrite (21) as

L1(x)
2k+1 = T−1(N1(x

(2�+1)22�

)) + T−1(M1(x)). (22)

Since T−1(X) is also linearized, (22) describes the equivalence problem of two Gold
APN functions as in the case that exactly one of L1(X) and L2(X) is zero. By [26,
Theorem 4.1], it follows that L1(X) is a monomial. Because of (20), the polynomials
L1(X) and L2(X) are monomials of the same degree:

L1(X) = au X
2u and L2(X) = bu X

2u . (23)

Moreover, M2(X) = aubu X2u+1
and M1(X) = 0.

Case 2. Consider (16) and (17) again and assume du 
= 0 for some u ∈ {0, . . . ,m−1}
which means N2(X) 
= 0. We will show that in this case, similarly to Case 1, the
polynomials L1(X) and L2(X) need to be monomials. In contrast to Case 1, however,
now L1(X) and L2(X) will have different degrees. If du 
= 0, then, by (16), au and bu
cannot be zero at the same time. We will separate the proof of Case 2 into two subcases:
first, Case 2.1, where both au and bu are nonzero, and second, Case 2.2, where exactly
one of au and bu is nonzero. Both these cases will be separated into several subcases
again.

Case 2.1. Assume au 
= 0 and bu 
= 0. It follows from (17) that all pairs (a j , b j ),
where j 
= u, u ± �, satisfy (19). We will first show that the only possible nonzero
coefficients are a j , b j for j = u, u ± �, u ± 2�.

By way of contradiction, assume there exists �′ 
= 0,±�,±2� such that au+�′ and
bu+�′ are nonzero. By (19), this implies

au+�′
bu+�′

= 	. Since u + �′ ± � 
= u ± �, it follows

from (16) with i = u + �′ that both (au+�, bu+�) and (au−�, bu−�) also have to satisfy
one of the equations in (19). Hence, (19) holds for all j = 0, . . . ,m − 1 which means
that L2(X) is a multiple of L1(X). However, now (11) implies N2(X) = 0. This is a
contradiction.

Hence, we assume a j = b j = 0 for j 
= u, u±�, u±2� for the remainder of Case 2.1.
We separate its proof into two subcases, both will lead to contradictions.

Case 2.1.1. Suppose au±2� = bu±2� = 0. In this case, we obtain only one equation
from (16), namely

au−�bu+� + au+�bu−� = 0.
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Hence, either

(i) au−� = au+� = 0 or bu−� = bu+� = 0, meaning that one of L1(X) and L2(X) is
a monomial and the other one has at most three nonzero coefficients, or

(ii) au−� = bu−� = 0 or au+� = bu+� = 0, meaning that both L1(X) and L2(X) have
at most two nonzero coefficients, or

(iii) au±�, bu±� 
= 0 and au−�

bu−�
= au+�

bu+�
, meaning that both L1(X) and L2(X) are trino-

mials.

We will consider each of these three subcases.

Subcase (i). Assume bu−� = bu+� = 0. The case au−� = au+� = 0 follows by
symmetry. We consider polynomials

L1(X) = au−�X
2u−� + au X

2u + au+�X
2u+�

and L2(X) = bu X
2u

which we plug into the left-hand side of (10). We obtain

L1(x)
22k (2k+1) = a22k (2k+1)

u−� x2u−�+2k (2k+1) + a22k (2k+1)
u x2u+2k (2k+1)

+ a22k (2k+1)
u+� x2u+�+2k (2k+1) + a23k

u−�a
22k

u x2u+2k (2k−�+1)

+ a23k

u a22k

u+�x
2u+�+2k (2k−�+1) + a23k

u+�a
22k

u−�x
2u−�+2k (2k+2�+1)

+ a23k

u−�a
22k

u+�x
2u+�+2k (2k−2�+1) + a23k

u a22k

u−�x
2u−�+2k (2k+�+1)

+ a23k

u+�a
22k

u x2u+2k (2k+�+1) (24)

and

L1(x)
22k

L2(x)
2k = a22k

u−�b
2k
u x2u+k (2k−�+1) + a22k

u b2k
u x2u+k (2k+1)

+ a22k

u+�b
2k
u x2u+k (2k+�+1) (25)

and
βL2(x)

2k+1 = βb2k+1
u x2u(2k+1). (26)

Recall that the right-hand side of (10) is

m−1∑
i=0

ci x
2i+2�(2�+1) + M1(x).

We will show that not all of the first three terms of (24) that all contain the factor x2k+1

can be canceled simultaneously. First, as 0 < � < m
2 , the terms cannot cancel each

other. Second, if � = m
2 − k, the exponent of x in the sixth term can be written as

2u−m
2 +2k(2k + 1), but by the same reasoning as above, the sixth term cannot cancel any

of the first three terms. Third, if m is odd and k < m
4 , it is possible that � = 2k. In this

case, the term in (26), the first term of (25) and the first term of (24) all contain the
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factor x2u(2k+1) and could potentially cancel each other, but the second and third terms
of (24) cannot be canceled. Analogously, the third term of (24) could be canceled if m
is odd and m

4 < k < m
2 and � = −2k, but the first and second terms would remain.

Fourth, if � = k, the first and the second terms of (24) could be canceled by the second
term of (25) and the seventh term of (24), respectively. However, the third term would
remain. In summary, for arbitrary k and �, the third term of (24) can never be canceled.

We now compare the left-hand side and the right-hand side of (10): The summands
on the left-hand side that contain the factor x2i (2k+1) can only be represented on the
right-hand side, if k = �. Hence, assume k = �. Now, the fourth and the fifth summands
of (24) as well as the first summand of (25) become linearized. Consequently,

M1(X) = a22k

u−kb
2k
u X2u+k+1 + a23k

u−ka
22k

u X2u+2k+1 + a23k

u a22k

u+k X
2u+3k+1

.

Next, consider the eighth and the ninth terms of (24) where the eighth term can be
summarized with the third term of (25):

a23k

u+ka
22k

u x2u+2k (22k+1), (a23k

u a22k

u−k + a22k

u+kb
2k
u )x2u+k (22k+1).

As m ≥ 5 and gcd(k,m) = 1, we have 2k 
≡ ±k (mod m). Hence, these terms cannot
be represented in the form ci x2i+2k (2k+1) on the right-hand side of (10) which means
that their coefficients have to be zero. As au 
= 0, it follows that au+k = 0 which then
implies au−k = 0. Hence, L1(X) and L2(X) are monomials of the same degree. As this
implies N2(X) = 0, it contradicts the assumption of Case 2.

Subcase (ii). Assume au−� = bu−� = 0. The case au+� = bu+� = 0 follows by
symmetry. In our case

L1(X) = au X
2u + au+�X

2u+�

and L2(X) = bu X
2u + bu+�X

2u+�

.

On the left-hand side of (10), we obtain

L1(x)
22k (2k+1) = a22k (2k+1)

u x2u+2k (2k+1) + a22k (2k+1)
u+� x2u+�+2k (2k+1)

+ a23k

u a22k

u+�x
2u+�+2k (2k−�+1) + a23k

u+�a
22k

u x2u+2k (2k+�+1)

and

L1(x)
22k

L2(x)
2k = a22k

u b2k
u x2u+k (2k+1) + a22k

u+�b
2k
u+�x

2u+�+k (2k+1)

+ a22k

u b2k
u+�x

2u+�+k (2k−�+1) + a22k

u+�b
2k
u x2u+k (2k+�+1)

and

βL2(x)
2k+1 = βb2k+1

u x2u(2k+1) + βb2k+1
u+� x2u+�(2k+1)

+ βb2k
u bu+�x

2u+�(2k−�+1) + βb2k
u+�bux

2u(2k+�+1).
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By similar reasoning as in Subcase (i), not all summands containing the factor x2k+1

can be canceled simultaneously. Consequently, we need k = � for these terms to be
represented on the right-hand side of (10). If k = �, the following terms, which cannot
be canceled, occur on the left-hand side of (10):

a23k

u+ka
22k

u x2u+2k (22k+1), a22k

u+kb
2k
u x2u+k (22k+1), βb22k

u+kbux
2u(22k+1).

As they cannot be represented in the form ci x2i+2k (2k+1) on the right-hand side of (10),
their coefficients need to be zero. Hence au+k = bu+k = 0, which means L1(X) and
L2(X) are monomials of the same degree. As in Subcase (i), this is a contradiction.

Subcase (iii). Now,

L1(X) = au−�X
2u−� + au X

2u + au+�X
2u+�

and L2(X) = bu−�X
2u−� + bu X

2u + bu+�X
2u+�

,

where all coefficients are nonzero and au−�

bu−�
= au+�

bu+�
. We plug these polynomials into

the left-hand side of (10). By similar reasoning as in Subcases (i) and (ii), not all terms
containing the factor x2k+1 can be canceled. Hence, k = �. Now, the left-hand side
contains the following two summands that cannot be canceled:

a23k

u+ka
22k

u x2u+2k (22k+1), βb22k

u bu−k x
2u−k (22k+1).

As none of them can be represented on the right-hand side of (10), their coefficients
need to be zero, which means that au+k = bu−k = 0. This contradicts our assumption.

Case 2.1.2. Suppose that not all of au±2�, bu±2� are zero. Recall that all pairs (a j , b j )

where j 
= u, u ± � have to satisfy (19). We consider the case that au+2� and bu+2� are
nonzero. One can obtain an almost identical result by symmetry when assuming that
au−2� and bu−2� are nonzero.

If au+2�, bu+2� 
= 0, then, by (19), au+2�

bu+2�
= 	. It follows from (17) that also

(au−2�, bu−2�) and (au−�, bu−�) have to satisfy (19). However, (17) does not provide
any restriction on the values of au+� and bu+�. If (au+�, bu+�) satisfies (19), then all
(a j , b j ) do and we know from the beginning of Case 2.1 that this implies N2(X) = 0.
As before, this is a contradiction. If (au+�, bu+�) does not satisfy (19), then it follows
from (17) that a j = b j = 0 for j = u − �, u − 2�. Hence,

L1(X) = au X
2u + au+�X

2u+� + au+2�X
2u+2�

and L2(X) = bu X
2u + bu+�X

2u+� + bu+2�X
2u+2�

.

As au
bu

= au+2�

bu+2�
, this case is similar to Case 2.1.1, Subcase (iii), when we substitute u

by u + �, with the only difference that now, one of the middle coefficients au+�, bu+�

can be zero. However, the arguments used in the previous case leading to the conclusion
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k = � still hold. If k = �, the left-hand side of (10) contains the following terms that
cannot be canceled:

a23k

u+2ka
22k

u x2u+2k (23k+1), a22k

u+2kb
2k
u x2u+k (23k+1), βb2k

u+2kbux
2u(23k+1).

They cannot be represented on the right-hand side of (10), hence, their coefficients need
to be zero. This contradicts our assumption that au, au+2k, bu, bu+2k are nonzero.

Case 2.2. Assume, exactly one of au and bu is nonzero. We show the case au 
= 0 and
bu = 0. The case au = 0 and bu 
= 0 can be proved analogously. So, assume au 
= 0
and bu = 0. From (16) with i = u, we obtain the equation

aubu+� = du .

As du 
= 0, it follows that bu+� 
= 0. From (17) with i = u, we obtain

aub j = 0 for j 
= u, u ± �.

Consequently, b j = 0 for j 
= u ± �. Now, it follows from (17) with i = u + � that

a jbu+� = 0 for j 
= u − �, u, u + �, u + 2�.

Consequently, a j = 0 for j 
= u − �, u, u + �, u + 2�. We will separate the proof of
Case 2.2 into two subcases: in Case 2.2.1, we consider bu−� 
= 0, in Case 2.2.2, we
suppose bu−� = 0.

Case 2.2.1. Assume bu−� 
= 0. From (17) with i = u − � and j = u + 2�, we obtain

au+2�bu−� = 0,

which implies au+2� = 0, and

au−�bu+� + au+�bu−� = 0,

which, recalling that bu+� is nonzero, implies either au−� = au+� = 0 or au−�, au+� 
= 0
and au−�

bu−�
= au+�

bu+�
. We separate these two subcases:

Subcase (i). Assume au−� = au+� = 0. Then,

L1(X) = au X
2u and L2(X) = bu−�X

2u−� + bu+�X
2u+�

.

We plug these polynomials into the left-hand side of (10) and obtain

L1(x)
22k (2k+1) = a22k (2k+1)

u x2u+2k (2k+1)
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and

L1(x)
22k

L2(x)
2k = a22k

u b2k
u−�x

2u−�+k (2k+�+1) + a22k

u b2k
u+�x

2u+�+k (2k−�+1)

and

βL2(x)
2k+1 = βb2k+1

u−� x2u−�(2k+1) + βb2k+1
u+� x2u+�(2k+1)

+ βb2k
u−�bu+�x

2u+�(2k−2�+1) + βb2k
u+�bu−�x

2u−�(2k+2�+1). (27)

As in previous cases, if k 
= �, not all terms containing the factor x2k+1 can be canceled
simultaneously. Thus, we need k = �. However, if k = �, the left-hand side of (10)
contains the term

a22k

u b2k
u−k x

2u(22k+1)

that cannot be represented in the form ci x2i+2k (2k+1) on the right-hand side of (10).
Hence, its coefficient needs to be zero which contradicts our assumption.

Subcase (ii). Assume au−�, au+� 
= 0 and au−�

bu−�
= au+�

bu+�
. Then,

L1(X) = au−�X
2u−� + au X

2u + au+�X
2u+�

and

L2(X) = bu−�X
2u−� + bu+�X

2u+�

.

We plug these polynomials into the left-hand side of (10). Then, L1(x)22k (2k+1) is as
in (24) and βL2(x)2k+1 is as in (27). Moreover,

L1(x)
22k

L2(x)
2k = a22k

u−�b
2k
u−�x

2u−�+k (2k+1) + a22k

u+�b
2k
u+�x

2u+�+k (2k+1)

+ a22k

u−�b
2k
u+�x

2u+�+k (2k−2�+1) + a22k

u b2k
u−�x

2u−�+k (2k+�+1)

+ a22k

u b2k
u+�x

2u+�+k (2k−�+1) + a22k

u+�b
2k
u−�x

2u−�+k (2k+2�+1). (28)

By the same reasoning as in Subcase (i), it follows that k = �. However, if k = �, then the
fourth term of (28) cannot be canceled by any other terms on the left-hand side of (10),
neither can it be represented on the right-hand side of (10). This implies bu−� = 0 which
contradicts our assumption.

Case 2.2.2. Assume bu−� = 0. From (17) with i = u + � and j = u − �, it follows
that

au−�bu+� = 0
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which, recalling that bu+� 
= 0, implies au−� = 0. Then,

L1(X) = au X
2u + au+�X

2u+� + au+2�X
2u+2�

and L2(X) = bu+�X
2u+�

.

Plugging these polynomials into (10), the expressions L1(x)22k (2k+1), L1(x)22k
L2(x)2k

and βL2(x)2k+1 are as in (24), (25) and (26), respectively, where we substitute u by
u + �. By the same reasoning as in Case 2.1.1, Subcase (i), it follows that k = �. If
k = �, analogously to Case 2.1.1, Subcase (i), the following terms occur on the left-hand
side of (10):

a23k

u+2ka
22k

u x2u+2k (23k+1), (a23k

u+ka
22k

u + a22k

u+2kb
2k
u+k)x

2u+2k (22k+1).

As neither of them can be represented on the right-hand side of (10), their coefficients
need to be zero. As au 
= 0, it follows that au+2k = 0, and, consequently, au+k = 0.
Hence, L1(X) and L2(X) are monomials of the form

L1(X) = au X
2u and L2(X) = bu+k X

2u+k
, (29)

and M1(X) = a22k

u b2k
u+k X

2u+2k+1
.

Note that if we consider Case 2.2 with au = 0 and bu 
= 0, we obtain

L1(X) = au+k X
2u+k

and L2(X) = bu X
2u (30)

and M1(X) = a22k

u+kb
2k
u X2u+2k+1

from Case 2.2.2. This concludes theproof of ourClaim.
We summarize the results we have obtained so far. If the Taniguchi APN functions fk,1,β

and f�,1,β ′ are EL-equivalent, then k = � and L1(X) and L2(X) meet the following
conditions: either, one of the polynomials L1(X) and L2(X) is zero and the other one is
a monomial, see (13) and (14), or both L1(X) and L2(X) are monomials, either of the
same degree or of degrees 2u and 2u+k , see (23), (29) and (30). Vice versa, the same
statements hold for L3(Y ) and L4(Y ). It remains to be shown that the EL-equivalence
of fk,1,β and fk,1,β ′ implies β ′ = β2i for some i ∈ {0, . . . ,m − 1}. Combining the
results on L1(X), L2(X), L3(Y ), L4(Y ) mentioned above, it is clear that the polynomials
L A(X,Y ) and LB(X,Y ) have to be of one of the following forms:

(a) L A(X,Y ) = au X2u + awY 2w
and LB(X,Y ) = bu X2u + bwY 2w

,
(b) LA(X,Y ) = au X2u + awY 2w

and LB(X,Y ) = bu X2u + bw+kY 2w+k
,

(c) LA(X,Y ) = au X2u + aw+kY 2w+k
and LB(X,Y ) = bu X2u + bwY 2w

,
(d) LA(X,Y ) = au X2u + awY 2w

and LB(X,Y ) = bu+k X2u+k + bwY 2w
,

(e) LA(X,Y ) = au+k X2u+k + awY 2w
and LB(X,Y ) = bu X2u + bwY 2w

,
(f) L A(X,Y ) = au X2u + awY 2w

and LB(X,Y ) = bu+k X2u+k + bw+kY 2w+k
,

(g) LA(X,Y ) = au X2u + aw+kY 2w+k
and LB(X,Y ) = bu+k X2u+k + bwY 2w

,
(h) LA(X,Y ) = au+k X2u+k + awY 2w

and LB(X,Y ) = bu X2u + bw+kY 2w+k
,

(i) LA(X,Y ) = au+k X2u+k + aw+kY 2w+k
and LB(X,Y ) = bu X2u + bwY 2w

.
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Note that, as L(X,Y ) = (LA(X,Y ), LB(X,Y )) has to be a permutation polynomial,
it is neither possible that LA(X,Y ) or LB(X,Y ) is zero nor that both L A(X,Y ) and
LB(X,Y ) depend only on X or only on Y . We will show that all cases listed above lead
to the conclusion that L A(X,Y ) and LB(X,Y ) need to be monomials of the same degree
of the shape

L A(X,Y ) = au X
2u and LB(X,Y ) = buY

2u . (31)

We rewrite (8) and (9) considering k = �:

LA(x, y)22k (2k+1) + L A(x, y)22k
L B(x, y)2k + βLB(x, y)2k+1

= N1(x
22k (2k+1) + x22k

y2k + β ′y2k+1) + N3(xy) + MA(x, y),
(32)

LA(x, y)LB(x, y) = N2(x
22k (2k+1) + x22k

y2k

+ β ′y2k+1) + N4(xy) + MB(x, y). (33)

We will plug all the possible combinations (a)–(i) into these equations. We begin
with (b). By proceeding analogously, the cases (c)–(e) lead to the same result. If we plug
the polynomials of (b) into the left-hand side of (33), we obtain

LA(x, y)LB(x, y) = aubux
2u+1 + awbw+k y

2w(2k+1)

+ aubw+k x
2u y2w+k + awbux

2u y2w

. (34)

Note that the first term of (34) is linearized. As there is no term containing the fac-
tor x2k+1, we need N2(X) = 0 on the right-hand side of (33). This implies, first, that
the coefficient awbw+k of the second summand of (34) has to be zero, and second, that
the third and the fourth summands of (34) cannot be represented simultaneously on the
right-hand side of (33). The coefficient of the second summand of (34) is zero if aw or
bw+k is zero. We separate the proof into two cases:

Case 1. Assume aw = 0. Note that this implies au 
= 0 and bw+k 
= 0 as otherwise
L(X,Y ) would not be a permutation polynomial. If aw = 0, then (33) holds only if
u = w + k. Set u = w + k and plug LA(x, y) and LB(x, y) into the left-hand side of
(32). We obtain

L A(x, y)22k (2k+1) = a22k (2k+1)
u x2u+2k (2k+1) (35)

and
LA(x, y)22k

L B(x, y)2k = a22k

u b2k
u x2u+k (2k+1) + a22k

u b
2k

u x2u+2k
y2u+k

(36)

and

βLB(x, y)2k+1 = βb2k+1
u x2u(2k+1) + βb

2k+1
u y2u(2k+1)

+ βb2k
u bux

2u+k
y2u + βb

2k

u bux
2u y2u+k

. (37)
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The fourth summand of (37) cannot be canceled by any other summand of (35)–(37)
and it cannot be represented on the right-hand side of (32). As β, bu 
= 0, it follows that
bu = 0. Consequently, L A(X,Y ) and LB(X,Y ) are monomials of the same degree as
in (31).

Case 2. Assume bw+k = 0. By the same reasoning as above, this implies bu 
= 0 and
au 
= 0. Now, (33) holds for u = w. Set u = w and plug L A(x, y) and LB(x, y) into
the left-hand side of (32). The summand LA(x, y)22k

L B(x, y)2k contains the term

a22k

u b2k
u x2u+k

y2u+2k
,

that has a nonzero coefficient and cannot be canceled by the other terms on the left-hand
side of (32). However, it cannot be represented on the right-hand side of (32). This is a
contradiction.

We next study (f). By symmetry, the same result also holds for (i). Moreover, an
analogous approach gives identical results for (g) and (h). If we plug LA(X,Y ) and
LB(X,Y ) of (f) into (33), we obtain

L A(x, y)LB(x, y) = aubu+k x
2u(2k+1) + awbw+k y

2w(2k+1)

+ aubw+k x
2u y2w+k + awbu+k x

2u+k
y2w

. (38)

If all coefficients are nonzero, we need u = w + 2k to represent the first and the second
summands of (38) on the right-hand side of (33). Then, however, the fourth term of (38)
cannot be represented on the right-hand side of (33), which is a contradiction.

Now assume one of the coefficients is zero. We show the case bu+k = 0. If we
assume au = 0 instead, we end up with the same contradiction as in Case 2 of the
study of (b). By symmetry, analogous results can be obtained when assuming aw = 0 or
bw+k = 0. If bu+k = 0, it follows that au and bw+k are nonzero as otherwise L(X,Y )

would not be a permutation polynomial. Moreover, as the first term of (38) vanishes,
we need N2(X) = 0. Then, also the second term of (38) cannot be represented on the
right-hand side of (33) and awbw+k has to be zero. As bw+k 
= 0, we need aw = 0 for
the second coefficient to be zero. Moreover, we need u = w + k to represent the third
summand of (38) on the right-hand side of (33). Consequently, L A(X,Y ) and LB(X,Y )

are monomials as in (31).
Finally, we study (a). If we plug LA(X,Y ) and LB(X,Y ) of (a) into (33), we obtain

L A(x, y)LB(x, y) = aubux
2u+1 + awbw y2w+1 + (aubw + awbu)x

2u y2w

. (39)

We separate two cases: in the first case, the third term of (39) vanishes; in the second
case, its coefficient is nonzero.
Case 1. We first show that the third term of (41) can only vanish if all coefficients

are nonzero. Suppose au = 0. Then, awbu has to be zero as well. However, this is not
possible, as au = 0 implies that aw and bu are nonzero. By symmetry, the same result
is obtained if we assume that any other coefficient is zero. Consequently, assume all
coefficients are nonzero and au

bu
= aw

bw
. Then, (39) does not provide any information, as
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the left-hand side is a linearized polynomial. We plug LA(X,Y ) and LB(X,Y ) into the
left-hand side of (32) and obtain

L A(x, y)22k (2k+1) = a22k (2k+1)
u x2u+2k (2k+1) + a22k (2k+1)

w y2w+2k (2k+1)

+ a23k

u a22k

w x2u+3k
y2w+2k + a23k

w a22k

u x2u+2k
y2w+3k

(40)

and

LA(x, y)22k
L B(x, y)2k = a22k

u b2k
u x2u+k (2k+1) + a22k

w b
2k

w y2w+k (2k+1)

+ a22k

u b
2k

w x2u+2k
y2w+k + a22k

w b2k
u x2u+k

y2w+2k
(41)

and

βLB(x, y)2k+1 = βb2k+1
u x2u(2k+1) + βb

2k+1
w y2w(2k+1)+

+ βb2k
u bwx

2u+k
y2w + βb

2k

w bux
2u y2w+k

. (42)

No matter how we choose u and w, the third and the fourth summands of (40) cannot be
canceled by the terms of (40)–(42) and they cannot be represented simultaneously on
the right-hand side of (32). Hence, at least one of the coefficients needs be zero which
is a contradiction.

Case 2. Assume aubw + awbu 
= 0. As there are no terms on the left-hand side of (33)
containing the factors x2k+1 and y2k+1, it follows that N2(X) = 0, and we need u = w

to represent the third summand of (39) on the right-hand side of (33). We plug L A(X,Y )

and LB(X,Y ) into (32) and obtain the same expressions as in (40)–(42) with u = w.
Analogously to Case 1, the third and the fourth term of (40) cannot be represented on
the right-hand side of (32) at the same time. Hence, auaw has to be zero. Assuming
aw = 0, we obtain, by similar reasoning as in the previous cases, that LA(X,Y ) and
LB(X,Y ) have to be monomials of the same degree as in (31). Assuming au = 0, we
obtain the same contradiction as in the study of (b), Case 2.

In summary, the only possible choice of LA(X,Y ) and LB(X,Y ) that can satisfy (32)
and (33) is LA(X,Y ) = au X2u and LB(x, y) = buY 2u . Considering (33) for these

monomials, it follows that N2(X) = 0, N4(X) = aubu X X2u

, and MB(X,Y ) = 0. If we
plug LA(X,Y ) and LB(X,Y ) into (32), we obtain

a22k (2k+1)
u x2u+2k (2k+1) + a22k

u b
2k

u x2u+2k
y2u+k + βb

2k+1
u y2u(2k+1)

= N1(x
22k (2k+1) + x22k

y2k + β ′y(2k+1)) + N3(xy) + MA(x, y). (43)

Obviously, N3(X) = 0 and MA(X,Y ) = 0 and N1(X) has to be a monomial of degree u,
the same degree as LA(X,Y ) and LB(X,Y ). Write N1(X) = cu X2u . Then, (43) becomes
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a22k (2k+1)
u x2u+2k (2k+1) + a22k

u b
2k

u x2u+2k
y2u+k + βb

2k+1
u y2u(2k+1)

= cux
2u+2k (2k+1) + cux

2u+2k
yu+2k + cuβ

′2u y2u(2k+1)

and the coefficients have to meet the following conditions:

a22k (2k+1)
u = cu, a22k

u b
2k

u = cu, βb
2k+1
u = cuβ

′2u . (44)

The first two equations of (44) imply bu = a22k

u and cu = b
2k+1
u . Combining the later

result with the third equation of (44), it follows that β = β ′2u . �

From the proof of Theorem 4.5, we can deduce the order of the automorphism group
of the Taniguchi APN functions. Note that Theorem 4.6 only holds for m ≥ 4. For
m = 2, the unique Taniguchi APN function f1,1,1 on F24 is CCZ-equivalent to the
Gold APN function x �→ x3. Its automorphism group has order 5760. If m = 3, the
unique Taniguchi APN function f1,1,β on F26 is CCZ-equivalent to the APN function
x �→ x3 + ux24 + x10, where u is primitive in F26 , that was first given by Browning et
al. [8]. In this case, |Aut( f1,1,β)| = 896.

Theorem 4.6. Letm ≥ 4, and let fk,α,β be a Taniguchi APN function fromTheorem 3.4
on F22m . Define β ′ = β

α2−k+1
. Then,

|AutEL( fk,α,β)| =

⎧⎪⎪⎨
⎪⎪⎩

3m(2m − 1) if α = 0 and m = 4,
3
2m(2m − 1) if α = 0 and m ≥ 5,

m(2m − 1)

min{u ≥ 1 : β ′2u = β ′} if α 
= 0

and

|Aut( fk,α,β)| =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

3m22m(2m − 1) if α = 0 and m = 4,

3m22m−1(2m − 1) if α = 0 and m ≥ 5,

m22m(2m − 1)

min{u ≥ 1 : β ′2u = β ′} if α 
= 0.

Proof. We determine |AutEL( fk,α,β)|; then, |Aut( fk,α,β)| follows from Proposition 2.3
and Lemma 2.4. If α = 0, according to Proposition 4.1, a Taniguchi APN function fk,0,β

is linearly equivalent to the Pott–Zhou APN function gk,2k,β whose automorphism group
was determined by the present authors [26, Theorem 5.2].

If α 
= 0, we know from Proposition 4.4 (a) that fk,α,β is linearly equivalent to fk,1,β ′ .
We study the case α = 1. For m = 4 the results can be confirmed computationally with
Magma [6]. Assumem ≥ 5. Then, the proof of Theorem 4.5 holds. We count the number
of equivalence mappings that map fk,1,β ′ on itself. Therefore, we consider the conditions
given in (44) which the coefficients of the linearized monomials LA(X,Y ), LB(X,Y )
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and N1(X) have to meet. We have shown that (44) implies

bu = a22k

u , cu = b
2k+1
u , and β ′2u−1 = 1.

The number of u such that β ′2u−1 = 1 is given by

m

min{u ≥ 1 : β ′2u = β ′} .

Next, we have 2m − 1 choices for au . By choosing au , the coefficients bu and cu are
uniquely determined. �

From Theorem 4.6, we easily deduce the following result about the inequivalence of
Taniguchi and Pott–Zhou APN functions. Recall that Pott–Zhou APN functions only
exist on F22m where m is even and that we have already solved the case α = 0 in
Proposition 4.1.

Corollary 4.7. Let m ≥ 4 be even. Let fk,α,β , where α 
= 0, be a Taniguchi APN
function from Theorem 3.1 on F22m , and let g�,s,γ be a Pott–Zhou APN function from
Theorem 3.4 on F22m . Then, fk,α,β and g�,s,γ are CCZ-inequivalent.

Proof. The order of the automorphism group of a vectorial Boolean function is invariant
under CCZ-equivalence. For a Taniguchi APN function fk,α,β on F22m , we determined
the order of the automorphism group Aut( fk,α,β) in Theorem 4.6. For a Pott–Zhou APN
function g�,s,γ on F22m , the present authors [26, Theorem 5.2] showed that

|Aut(g�,s,γ )| =
{

3m22m(2m − 1) if s ∈ {0, m
2 },

3m22m−1(2m − 1) otherwise.

As clearly m
min{u≥1:β ′2u=β ′} ≤ m, it follows that m

min{u≥1:β ′2u=β ′} < 3
2m < 3m. Hence,

the automorphism groups of fk,α,β and g�,s,γ are of different order which implies that
the functions are CCZ-inequivalent. �

From Corollary 4.7, we derive the final piece to determine the complete equivalence
of Taniguchi APN functions.

Corollary 4.8. Let m ≥ 4 be even. Two Taniguchi APN functions fk,0,β , and f�,α′,β ′ ,
where α′ 
= 0, from Theorem 3.1 on F22m are CCZ-inequivalent.

Proof. According to Proposition 4.1, fk,0,β is CCZ-equivalent to a Pott-Zhou APN
function gk,2k,γ from Theorem 3.4. The result now follows from Corollary 4.7. �
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5. On the Total Number of CCZ-Inequivalent Taniguchi APN Functions on F22mF22mF22m

The results from Sect. 4 allow us to determine the number of CCZ-inequivalent Taniguchi
APN functions on F22m for any m. This will be done in Theorem 5.5 by counting the
number of parameters k, α and β that lead to inequivalent functions. Recall from Propo-
sition 4.4 that every Taniguchi APN function fk,α,β where α 
= 0 is CCZ-equivalent to
a function fk,1,β ′ for some β ′ ∈ F

∗
2m . Hence, we only need to consider functions with

α = 0 or α = 1. As we know from Proposition 4.1 that fk,0,β is equivalent to a Pott–
Zhou APN function, whose equivalence problem was solved by the present authors [26],
we focus on α = 1 first.

Recall from Theorem 4.5 that two Taniguchi APN functions fk,1,β and fk,1,β ′ on F22m

are CCZ-equivalent if and only if β ′ = β2i for some i ∈ {0, . . . ,m − 1}. Consequently,
to obtain the exact number of β providing inequivalent functions for fixed k, we need to
determine the number of orbits of β such that X2k+1 + X + β has no root in F2m under
the action of the Galois group Gal(F2m/F2). We will do this in Proposition 5.4 with the
help of the following series of technical lemmas.

Lemma 5.1. If k > 1 is an integer with gcd(k, 3) = 1, then 3k does not divide 2k + 1.

Proof. Assume, by way of contradiction, that 3k | 2k + 1. By the Chinese Remainder
Theorem, 2k ≡ −1 (mod 3) which means that k is odd.

Let k = pt11 · · · ptss , where p1, . . . , ps are prime numbers such that 3 < p1 < p2 <

· · · < ps and ti ≥ 1 for i = 1, . . . , s. For convenience, we set p = p1 and t = t1 in the
remainder of this proof.

By the Chinese Remainder Theorem, it also follows that 2k ≡ −1 (mod pt ). Denote
by ϕ(x) the Euler’s totient function of x . Since 22k ≡ 1 (mod pt ) and the unit group
of the integer ring Zpt has order ϕ(pt ), it follows that ordpt (2) | gcd(2k, ϕ(pt )). Note
that ϕ(pt ) = (p − 1)pt−1. As p − 1 < pi for all i ∈ {1, . . . , s}, the number p −
1 is not divisible by any of the pi . Recalling that k = pt pt22 · · · ptss , it follows that

gcd(2k, ϕ(pt )) = 2pt−1. Consequently, 22pt−1 − 1 ≡ 0 (mod pt ). Thus, 22pt−1 − 1 ≡
4pt−1 − 1 ≡ 0 (mod p). As 4p = 4 (mod p), we obtain 4 − 1 ≡ 0 (mod p) which
means p = 3. This is a contradiction to the assumption 3 < p. �

Lemma 5.2. Suppose that k and m are positive integers satisfying gcd(k,m) = 1.
Write m = rp for an integer r and a prime p. For β ∈ F2r , suppose that the polynomial
P(X) = X2k+1 + X + β has no root in F2r .

(a) If p 
= 3, then P(X) has no root in F2m .
(b) If p = 3, then P(X) has exactly three roots in F2m .

Proof. Set σ(x) = x2r for x in any extension of F2r .
We show (a) first. Suppose that P(X) has at least one root x0 ∈ F2m . Then, x0, σ (x0),

. . . , σ p−1(x0) have to be p distinct roots of P(X) in F2m because σ(P(x0)) =
σ(x0)

2k+1 + σ(x0) + β = 0 and p is prime. Helleseth and Kholosha [23, Theorem 1]
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showed that if P(X) has more than one root, then P(X) has exactly three roots in F2m

which contradicts the assumption that p 
= 3.
We next prove (b). Now m = 3r . If P(X) has at least one root in F2m , by the proof

of (a), it has exactly three roots in F2m and we are done. Assume, by way of contradiction,
that P(X) has no root in F2m . First, if k = 1, then P(X) has degree 3 and is irreducible
over F2r . Therefore, P(X) splits over F2m which contradicts our assumption.

From now on, assume k > 1. Write P(X) = P1(X)P2(X) · · · Ps(X) for irreducible
polynomials P1(X), . . . , Ps(X) ∈ F2m . Since deg(P(X)) = 2k + 1 is odd, there exists
a polynomial Pj (X), where j ∈ {1, . . . , s}, of odd degree. Denote by Jodd the set of all
j ∈ {1, . . . , s} such that deg(Pj (X)) is odd, and let j∗ ∈ Jodd such that deg(Pj∗(X)) ≤
deg(Pj (X)) for all j ∈ Jodd. Set � = deg(Pj∗(X)) and note that � > 1 and � is odd.
Then, Pj∗(X) splits over F2m� , which is an extension of F2m with [F2m� : F2m ] = �.
Consequently, P(X) has a root in F2m� , and there is no root of P(X) in any proper
subfield of F2m� containing F2m . Define h = gcd(m�, k). As m and k are coprime, this
implies h = gcd(�, k) and, in particular, h | �. Then, F2h = F2m� ∩ F2k . As � is odd,
according to Bluher [5, Theorem 5.6], P(X) has exactly 2h + 1 roots in F2m� . If h = 1,
then the roots of P(X) in F2m� are also elements of F2m as m = 3r . This contradicts our
assumption. Hence, assume h > 1. We may regard σ as an element in Gal(F2m�/F2r ).
If 3 � �, then it is clear that x0, σ(x0), . . . , σ 3�(x0) are pairwise distinct for any root x0
of P(X) in F2m� . If 3 | �, then x0, σ(x0), . . . , σ 3�(x0) are still pairwise distinct for any
root x0 of P(X) in F2m� . The reason is as follows. Suppose that σ j (x0) = x0 for some
j < 3� with j | 3�. This means [F2r (x0) : F2r ] = j . Thus,

[F2m (x0) : F2m ] =
{
j if 3 � j,

j/3 if 3 | j.

For the first case, 3 � j , as F2m� = F2m (x0) by definition, we get j = � which is a
contradiction to the assumption that 3 | �. For the second case, 3 | j , we get � = [F2m� :
F2m ] = [F2m (x0) : F2m ] = j/3 which contradicts the assumption j < 3�.

Therefore, 3� divides 2h + 1, in particular, as h | �, we obtain 3h | 2h + 1. By
Lemma 5.1, this is only possible if gcd(h, 3) > 1 which implies gcd(m, k) > 1. This is
a contradiction. �

For any two relatively prime positive integers k and m, define

�(m) = {β ∈ F2m : X2k+1 + X + β has no root in F2m } (45)

and

M(m) = |�(m)|

and
N (m) = ∣∣{β ∈ �(m) : β /∈ F2m′ with m′ < m and m′ | m}∣∣ . (46)
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According to Lemma 3.3,

M(m) = 2m + (−1)m+1

3
. (47)

In the following Lemma 5.3, we determine the exact value of N (m).

Lemma 5.3. Suppose that m = 3n0
∏t

i=1 pnii where n0 is a non-negative integer,
p1, . . . , pt are distinct prime numbers, and n1, . . . , nt are positive integers. If t = 0,
that means m = 3n0 and, in particular, includes the case m = 1, then

N (m) = 2m + 1

3
.

If t ≥ 1, then

N (m) = 1

3

(
2m −

t∑
i=1

2
m
pi +

t∑
i, j=1,
j 
=i

2
m

pi p j − . . .

· · · + (−1)�
t∑

i1,...,i�=1
pairwise distinct

2
m

pi1
···pi� + · · · + (−1)t2

m
p1 p2 ···pt − ε

)
, (48)

where

ε =
{

2 if t = 1 and m ≡ 2 (mod 4),

0 otherwise.

Proof. By definition, to determine N (m), we have to exclude each element in �(m) ∩
F2m′ from �(m) for every proper subfield F2m′ of F2m . We first consider the case t = 0:

If n0 = 1, which means m = 1, then X2k+1 + X + β has no root in F2 if and only if
β = 1. Hence, N (1) = 1. If n0 ≥ 1, by Lemma 5.2,

�(m) ∩ F2m′ =
{

∅ if 3m′ | m,

�(m′) if 3m′
� m.

Hence, we get N (3n0) = M(3n0) and, by (47), M(3n0) = 2m+1
3 . From now on, assume

t ≥ 1. Then, by the inclusion-exclusion principle,

N (m) = M(m) −
t∑

i=1

M

(
m

pi

)
+

t∑
i, j=1,
j 
=i

M

(
m

pi p j

)
− · · ·

· · · + (−1)�
t∑

i1,··· ,i�=1
pairwise distinct

M

(
m

pi1 · · · pi�

)
+ · · · + (−1)t M

(
m

p1 · · · pt
)

.

(49)
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If m is odd, then m′ is odd for all m′ | m. If 4 | m, then m′ is even for all m′ =
m

pi1 ···pi� that occur in (49). Consequently, in these two cases, by (47), we have M(m′) =
2m

′+(−1)m+1

3 for any m′ = m
pi1 ···pi� occurring in (49). Plugging M(m′) into (49), we

obtain

N (m) =1

3

(
2m −

t∑
i=1

2
m
pi +

t∑
i, j=1,
j 
=i

2
m

pi p j − · · · + (−1)t2
m

p1 p2 ···pt
)

+ (−1)m+1

3

(
1 −

(
t

1

)
+

(
t

2

)
− · · · + (−1)t

)
. (50)

Note that the last sum of (50) equals zero which can be seen by using the binomial
identity

(x + y)n =
n∑

k=0

(
n

k

)
xn−k yk

with x = 1 and y = −1 (or vice versa).
If m ≡ 2 (mod 4), we set p1 = 2 and n1 = 1. By (47),

M(m′) =
⎧⎨
⎩

2m
′+1
3 if m′ = m

2pi2 ···pi� ,

2m
′−1
3 if m′ = m

pi1 ···pi� and i1, . . . , i� 
= 1.
(51)

Plugging (51) into (49), we obtain

N (m) =1

3

(
2m −

t∑
i=1

2
m
pi +

t∑
i, j=1,
j 
=i

2
m

pi p j − · · · + (−1)t2
m

p1 p2 ···pt
)

+ 1

3

t∑
i=0

(−1)i
((

t − 1

i − 1

)
−

(
t − 1

i

))
. (52)

We show where the last sum of (52) is coming from and which values it can take.
If t = 1, then m = 3n0 · 2. Note that m is even and m

2 is odd. Hence, in this case,

N (m) = M(m) − M(m2 ) = 2m − 2
m
2 − 2, and the last sum of (52) equals −2. Now

assume t > 1. Consider the sum

t∑
i1,··· ,i�=1

pairwise distinct

M

(
m

pi1 · · · pi�

)
(53)

from (48) for some � ∈ {1, . . . , t}. This sum consists of
(t
�

)
terms. Assume pi1 < pi2 <

· · · < pi� . If i1 = 1, which means pi1 = 2, then m
2pi2 ···pi� is odd. In this case, we have

(t−1
�−1

)
possibilities to choose pi2 , . . . , pi� . On the contrary, if i1 
= 1, then m

pi1 ···pi� is
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even, and we have
(t−1

�

)
possibilities to choose pi1, . . . , pi� . Combining these results

with (51), we have
(t−1
�−1

)
terms of the form 2m

′ + 1 and
(t−1

�

)
terms of the form 2m

′ − 1
in the sum from (53). Note that, by similar reasoning as in the case m odd or 4 | m, this
sum is zero if t > 1. �

Consider �(m) as in (45). We have shown in Lemma 4.3 that if X2k+1 + X + β

has no root in F2m , then neither has X2k+1 + X + β2i for all i ∈ {0, . . . ,m − 1}.
Consequently, �(m) decomposes into orbits of β ∈ F

∗
2m under the action of the Galois

group Gal(F2m/F2). In Proposition 5.4, we count this number of orbits.

Proposition 5.4. Let �(m) as in (45), and define

B(m) =
{
{β2i : i ∈ {0, . . . ,m − 1}} : β ∈ �(m)

}

as the set of orbits of β ∈ F
∗
2m such that X2k+1 + X + β has no root in F2m under the

action of the Galois group Gal(F2m/F2). Moreover, define b(m) = |B(m)|. Then,

b(m) =
∑

m′|m, 3� m
m′

N (m′)
m′ ,

where N (m′) is defined as in (46) and can be calculated as in Lemma 5.3.

Proof. For any subfield F2m′ of F2m , we count the number of orbits of β ∈ �(m)∩F
∗
2m′

under the action of Gal(F2m′ /F2) that have full length m′. This number is given by
N (m′)
m′ . It follows from Lemma 5.2 that we only need to consider the orbits in F2m′ with

3 � [F2m : F2m′ ]. Adding all these numbers gives b(m). �

With the help of Proposition 5.4, we can eventually determine the number of CCZ-
inequivalent Taniguchi APN functions on F22m in Theorem 5.5. We give a nice lower
bound on this number in Corollary 5.6.

Theorem 5.5. Let m ≥ 3, and denote by n(m) the number of CCZ-inequivalent
Taniguchi APN functions fk,α,β from Theorem 3.1 on F22m . Then,

n(m) =

⎧⎪⎪⎨
⎪⎪⎩

ϕ(m)b(m)

2
if m is odd,

ϕ(m)(b(m) + 1)

2
if m is even,

where ϕ denotes Euler’s totient function and b(m) is as in Proposition 5.4.

Proof. Let m ≥ 3. Thanks to Proposition 4.4, we only need to consider α ∈ {0, 1} and
0 < k < m

2 . We count the number of CCZ-inequivalent Taniguchi APN functions fk,1,β

first: According to Theorem 4.5, for 0 < k, � < m
2 two functions fk,1,β and f�,1,β ′ are

CCZ-equivalent if and only if k = � and β = β ′2i for some i ∈ {0, . . . ,m − 1}. We
count the number of pairs (k, β) that lead to inequivalent APN functions: As 0 < k < m

2
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and gcd(k,m) = 1, we have ϕ(m)
2 choices for k. The number of admissible β ∈ F

∗
2m

equals b(m) from Proposition 5.4. If m is odd, then these are all inequivalent Taniguchi
APN functions.

If m is even, according to Lemma 3.2, there also exist Taniguchi APN functions with
α = 0. In this case, it follows from Corollary 4.8 in combination with Corollary 4.2
that for every valid choice of k, there is additionally exactly one equivalence class of
Taniguchi APN functions fk,0,β that is inequivalent to all functions with α 
= 0. As
before, we have ϕ(m)

2 choices for k. �

Note that Corollary 5.6 shows that the number of APN functions on F22m increases
exponentially in m.

Corollary 5.6. Let m ≥ 3, and define n(m) as the number of CCZ-inequivalent
Taniguchi APN functions from Theorem 3.1 on F22m . Then,

n(m) ≥ ϕ(m)

2

⌈
2m + 1

3m

⌉
,

where ϕ denotes Euler’s totient function.

Proof. Define B(m) and b(m) as in Proposition 5.4. The value of b(m) is minimal if
all the orbits in B(m) have full length m. By Lemma 3.3, this implies

b(m) ≥

⎧⎪⎨
⎪⎩

⌈
2m−1

3m

⌉
if m is even,

⌈
2m+1

3m

⌉
if m is odd,

and it is easy to see that
⌈

2m−1
3m

⌉
=

⌈
2m+1

3m

⌉
for all m ≥ 3. �

In Table 2, we list the exact number of CCZ-inequivalent Taniguchi APN functions
obtained from Theorem 5.5 for certain values of m. Recall that for m = 2, there is only
one unique Taniguchi APN function. We, moreover, compare these numbers to the lower
bound that we have established in Corollary 5.6. It can be seen that the bound is very
close to the actual number of Taniguchi APN functions.

6. Conclusion and Open Questions

In the present paper, we establish a new lower bound on the total number of CCZ-
inequivalent APN functions on the finite field F22m . We show that the number of APN
functions on F22m grows exponentially in m. For even m, our result presents a great
improvement of the lower bound previously given by the present authors [26]. For
odd m, this is the first such lower bound.

Our result now shifts the focus on the following open problems concerning APN
functions:
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Table 2. Number of CCZ-inequivalent Taniguchi APN functions on F22m for certain values of m.

m 2 3 4 5 6 7 8

# 1 1 3 6 5 21 26
Bound 1 1 2 6 4 21 22

m 9 10 11 12 13 14 15 16

# 57 74 315 234 1266 1185 2916 5492
Bound 57 70 315 228 1266 1173 2916 5464

m 17 18 19 20 25 50 100

# 20,568 14,595 82,791 69,988 4,473,950 ≈ 7.5 × 1013 ≈ 8.5 × 1028

Bound 20,568 14,565 82,791 69,908 4,473,930 ≈ 7.5 × 1013 ≈ 8.5 × 1028

• Establish a lower bound on the total number of CCZ-inequivalent APN functions
on the finite field F2n with n odd.

• As it is confirmed now that there are very many quadratic APN functions on F22m ,
the efforts of finding new constructions of APN functions should focus on the search
for non-quadratic ones.

• It was shown by Anbar et al. [1] that Taniguchi APN functions have the classical
Walsh spectrum. It would be interesting to find more APN functions with non-
classical Walsh spectra.
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