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Abstract. Functional encryption lies at the frontiers of the current research in cryptog-
raphy; some variants have been shown sufficiently powerful to yield indistinguishability
obfuscation (IO), while other variants have been constructed from standard assumptions
such as LWE. Indeed,most variants have been classified as belonging to either the former
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or the latter category. However, one mystery that has remained is the case of secret-key
functional encryption with an unbounded number of keys and ciphertexts. On the one
hand, this primitive is not known to imply anything outside of minicrypt, the land of
secret-key cryptography, but, on the other hand, we do no know how to construct it
without the heavy hammers in obfustopia. In this work, we show that (subexponentially
secure) secret-key functional encryption is powerful enough to construct indistinguisha-
bility obfuscation if we additionally assume the existence of (subexponentially secure)
plain public-key encryption. In other words, secret-key functional encryption provides
a bridge from cryptomania to obfustopia. On the technical side, our result relies on two
main components. As our first contribution, we show how to use secret-key functional
encryption to get “exponentially efficient indistinguishability obfuscation” (XIO), a no-
tion recently introduced by Lin et al. (PKC’16) as a relaxation of IO. Lin et al. show
how to use XIO and the LWE assumption to build IO. As our second contribution, we
improve on this result by replacing its reliance on the LWE assumption with any plain
public-key encryption scheme. Lastly, we ask whether secret-key functional encryp-
tion can be used to construct public-key encryption itself and therefore take us all the
way from minicrypt to obfustopia. A result of Asharov and Segev (FOCS’15) shows
that this is not the case under black-box constructions, even for exponentially secure
functional encryption. We show, through a non-black-box construction, that subexpo-
nentially secure-key functional encryption indeed leads to public-key encryption. The
resulting public-key encryption scheme, however, is at most quasi-polynomially secure,
which is insufficient to take us to obfustopia.
Keywords. Indistinguishability obfuscation, Functional encryption, Public-key en-
cryption.

1. Introduction

The concept of functional encryption [21,55] extends that of traditional encryption by
allowing the distribution of functional decryption keys that reveal specified functions
of encrypted messages, but nothing beyond. This concept is one of the main frontiers
in cryptography today. It offers tremendous flexibility in controlling and computing on
encrypted data, is strongly connected to the holy grail of program obfuscation [3,22,52],
and for many problems, may give superior solutions to obfuscation-based ones [34,35].
Accordingly, recent years have seen outstanding progress in the study of functional
encryption, both in constructing functional encryption schemes and in exploring different
notions, their power, and the relationship among them (see, for instance, [1,2,4,5,9,12,
16,18–20,26–29,32,33,37,38,47,48,58,60] and many more).
One striking question that has yet to be solved is the gap between public-key and

secret-key functional encryption schemes. In particular, does any secret-key scheme
imply a public-key one?
The answer to this question is nuanced and seems to depend on certain features of func-

tional encryption schemes, such as the number of functional decryption keys and number
of ciphertexts that can be released. For functional encryption schemes that only allow the
release of an a priori bounded number of functional keys (often referred to as bounded
collusion), we know that the above gap is essentially the same as the gap between plain
(rather than functional) secret-key encryption and public-key encryption, and should thus
be as hard to bridge. Specifically, in the secret-key setting, such schemes supporting an
unbounded number of ciphertexts can be constructed assuming low-depth pseudorandom
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generators (or just one-way functions in the single-key case) [37,58]. These secret-key
constructions are then converted to public-key ones, relying on (plain) public-key encryp-
tion (and this is done quite directly by replacing invocations of a secret-key encryption
scheme with invocations of a public-key one). The same state of affairs holds when
reversing the roles and considering a bounded number of ciphertexts and an unbounded
number of keys [37,58]. In other words, in the terminology of Impagliazzo’s complexity
worlds [40], if the number of keys or ciphertexts is a priori bounded, then symmetric-key
functional encryption lies in minicrypt, the world of one-way functions, and public-key
functional encryption lies in cryptomania, the world of public-key encryption.
For functional encryption schemes supporting an unbounded (polynomial) number of

keys and unbounded number of ciphertexts, which will be the default notion throughout
the rest of the paper, the question is far less understood (we will often refer to such
schemes as multi-key and multi-ciphertext, respectively). In the public-key setting, such
functional encryption schemeswith subexponential security are known to imply indistin-
guishability obfuscation [3,4,22]. In contrast, Bitansky and Vaikuntanathan [22] show
that their construction of indistinguishability obfuscation using functional encryption
may be insecure when instantiated with a secret-key functional encryption scheme. In
fact, secret-key functional encryption schemes (even exponentially secure ones) are not
known to imply any cryptographic primitive beyond those that follow from one-way
functions. As far as we know, the two notions of functional encryption may correspond
to opposite extremes of the complexity spectrum: on one side, public-key schemes cor-
respond to obfustopia, the world where indistinguishability obfuscation exists, and on
the other side secret-key schemes may lie in minicrypt where there is even no (plain)
public-key encryption.
One piece of evidence that may support such a view of the world is given by Asharov

and Segev [6] who show that there do not exist fully black-box constructions of plain
public-key encryption from secret-key functional encryption, even if the latter is expo-
nentially secure. Still, while we may hope that secret-key functional encryption schemes
could be constructed from significantly weaker assumptions than needed for public-key
schemes, so far no such construction has been exhibited—all known constructions live
in obfustopia.

1.1. Our Contributions

In this work, we shed new light on the question of secret-key vs public-key functional
encryption (in the multi-key, multi-ciphertext setting). Our main result bridges the two
notions based on (plain) public-key encryption.

Theorem 1.1. (Informal) Assuming secret-key functional encryption and plain public-
key encryption that are both subexponentially secure, there exists indistinguishability
obfuscation, and in particular, also public-key functional encryption.

In the terminology of Impagliazzo’s complexity worlds: secret-key functional encryp-
tion would turn cryptomania, the land of public-key encryption, into obfustopia. This
puts in new perspective the question of constructing such secret-key schemes from stan-
dard assumptions—any such construction would lead to indistinguishability obfuscation
from standard assumptions.
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The above result still does not settle the question of whether secret-key functional
encryption on its own implies (plain) public-key encryption. Here, we show that assum-
ing subexponentially secure secret-key functional encryption and (almost) exponentially
secure one-way functions, there exists (polynomially secure) public-key encryption.

Theorem 1.2. (Informal) Assuming subexponentially secure secret-key functional en-
cryption and 2n/ log log n-secure one-way functions, there exists (polynomially secure)
public-key encryption.

The resulting public-key encryption is not strong enough to take us to obfustopia. Con-
cretely, the constructed scheme is not subexponentially secure as required by our first
theorem—it can be quasi-polynomially broken. Nevertheless, the result does show that
the black-box barrier shown by Asharov and Segev [6], which applies even if the under-
lying secret-key functional encryption scheme and one-way functions are exponentially
secure, can be circumvented. Indeed, our construction uses the functional encryption
scheme in a non-black-box way (see further details in A Technical Overview section
below).

1.2. A Technical Overview

We now provide an overview of the main steps and ideas leading to our results.
Key observation: from SKFE to (strong) exponentially efficient IO Our first ob-
servation is that secret-key functional encryption (or SKFE in short) implies a weak
form of indistinguishability obfuscators termed by Lin et al. [51] exponentially efficient
indistinguishability obfuscation (XIO). Like IO, this notion preserves the functional-
ity of obfuscated circuits and guarantees that obfuscations of circuits of the same size
and functionality are indistinguishable. However, in terms of efficiency the XIO notion
only requires that an obfuscation ˜C of a circuit C : {0, 1}n → {0, 1}m is just mildly
smaller than its truth table, namely |˜C | ≤ 2γ n · poly(|C |), for some compression factor
γ < 1, and a fixed polynomial poly, rather than the usual requirement that the time to
obfuscate, and in particular the size of ˜C , are polynomial in |C |. We show that SKFE
implies a slightly stronger notion than XIO where the time to obfuscate C is bounded
by 2γ n ·poly(|C |). We call this notion strong exponentially efficient indistinguishability
obfuscation (SXIO). (We note that, for either XIO or SXIO, we shall typically be inter-
ested in circuits over some polynomial-size domain, which could be much larger than
the circuit itself, e.g., {0, 1}n where n = 100 log |C |.)

Proposition 1.1 (Informal)

1. For any constant γ < 1, there exists a transformation from SKFE to SXIO with
compression factor γ (and polynomial security loss).

2. For some subconstantγ = o(1), there exists a transformation fromsubexponentially
secure SKFE to polynomially secure SXIO with compression factor γ .

We add more technical details regarding the proof of the above SXIO proposition
later on. Both of our theorems stated above rely on the constructed SXIO as a main tool.
We next explain, still at a high-level, how the first theorem is obtained. We then dive
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into further technical details about the proof of this theorem as well as the proof of the
second theorem.
From SXIO to IO through public-key encryption Subexponentially secure SXIO (or
evenXIO) schemeswith a constant compression factor (as in Proposition 1.1) are already
shown to be quite strong in [51]—assuming subexponential hardness of learning with
errors (LWE) [56], they imply IO.

Corollary 1.1 (of Proposition 1.1 and [51]) Assuming SKFE and LWE, both subexpo-
nentially secure, there exists IO.

We go beyond the above corollary, showing that LWE can be replaced with a generic
assumption—the existence of (plain) public-key encryption schemes. The transforma-
tion of [51] from LWE and XIO to IOessentially relies on LWE to obtain a specific type
of public-key functional encryption (PKFE) with certain succinctness properties. We
show how to construct such PKFE from public-key encryption and SXIO. More details
follow.
Concretely, the notion considered is of PKFE schemes that support a single decryption

key. Furthermore, the time complexity of encryption is bounded by roughly sβ · dO(1),
where s and d are the size and depth of the circuit computing the function, and β < 1
is some compression factor. We call such schemes weakly succinct PKFE schemes. A
weakly succinct PKFE for boolean functions (i.e., functions with a single output bit) is
constructed by Goldwasser et al. [33] from (subexponentially hard) LWE; in fact, the
Goldwasser et al. construction has no dependence at all on the circuit size s (namely,
β = 0).

Lin et al. [51] then show a transformation, relying on XIO, that extends the class
of functions also to functions with a long output, rather than just boolean ones (their
transformation is stated for the case that β = 0 assuming any constant XIO compression
factor γ < 1, but can be extended to also work for any sufficiently small constant
compression factor β for the PKFE). Such weakly succinct PKFE schemes can then be
plugged in to the transformations of [3,22,52] to obtain full-fledged IO.1

We follow a similar blueprint. We first construct weakly succinct PKFE for functions
with a single output bit based on SXIO and PKE, rather than LWE (much of the technical
effort in this work lies in this construction). We then bootstrap the construction to deal
with multi-bit functions using (a slightly augmented version of) the transformation from
[51].

Proposition 1.2. (Informal) For any β = �(1), assuming PKE and SXIO with a
small enough constant compression factor γ , there exists a single-key weakly succinct
PKFE scheme with compression factor β (for functions with long output). We summarize
how to construct IO from SKFE and PKE in Fig 1.

1The above is a slightly oversimplified account of [51]. They also rely on LWE to deduce the existence of
puncturable PRFs in NC1 and show their transformation starting from weakly succinct PKFE for functions in
NC1. We avoid the reliance on puncturable PRFs in NC1 by constructing weakly succinct PKFE for functions
with no depth restriction, at the expense of allowing the complexity of encryption to scale polynomially in the
depth. This is still sufficient for [22, Section 3.2].
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[16]
[51]

[22]

Fig. 1. An illustration of our result on IO. Dashed lines denote known results. White backgrounds denote
our ingredients or goal. Primitives in rounded rectangles are subexponentially secure. t-SKFE denotes t-input
SKFE. γ -SXIO denotes SXIO with compression factor γ , which is an arbitrary constant less than 1.

A Closer Look into the Techniques

We now provide further details regarding the proofs of Propositions 1.1 and 1.2 as well
as the proof of Theorem 1.2.
SKFE to SXIO: the basic idea To convey the basic idea behind the transformation, we
first describe a construction of SXIO with compression γ = 1/2. We then explain how
to extend it to obtain the more general form of Proposition 1.1.

Recall that in an SKFE scheme, first a master secret key MSK is generated, and can
then be used to:

• encrypt (any number of) plaintext messages,
• derive (any number of) functional keys.

The constructed obfuscator sxiO is given a circuit C defined on domain {0, 1}n , where
we shall assume for simplicity that the input length is even (this is not essential), and
works as follows:

• For every x ∈ {0, 1}n/2, computes a ciphertext CTx encrypting the circuit Cx (·)
that given input y ∈ {0, 1}n/2, returns C(x, y).

• For every y ∈ {0, 1}n/2, derives a functional decryption key SKy for the function
Uy(·) that given as input a circuit D of size at most maxx |Cx |, returns D(y).

• Outputs ˜C =
(

{CTx }x∈{0,1}n/2 ,
{

SKy
}

y∈{0,1}n/2

)

as the obfuscation.

To evaluate ˜C on input (x, y) ∈ {0, 1}n , simply decrypt

Dec(SKy,CTx ) = Uy(Cx ) = Cx (y) = C(x, y) .

Indeed, the required compression factor γ = 1/2 is achieved. Generating each ciphertext
is proportional to the size of themessage |Cx | = Õ(|C |) and somefixedpolynomial in the
security parameter λ. Similarly, the time to generate each functional key is proportional
to the size of the circuit |Uy | = Õ(|C |) and some fixed polynomial in the security
parameter λ. Thus overall, the time to generate ˜C is bounded by 2n/2 · poly(|C |, λ).
The indistinguishability guarantee follows easily from that of the underlying SKFE.

Indeed, SKFE guarantees that for any two sequences m = {mi } and m′ = {

m′
i

}

of
messages to be encrypted and any sequence of functions { fi } for which keys are derived,
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encryptions of the m are indistinguishable from encryptions of the m′, provided that
the messages are not “separated by the functions,” i.e., f j (mi ) = f j (m′

i ) for every
(i, j). In particular, any two circuits C and C ′ that have equal size and functionality will
correspond to such two sequences ofmessages {Cx }x∈{0,1}n/2 and

{

C ′
x

}

x∈{0,1}n/2 , whereas
{

Uy
}

y∈{0,1}n are indeed functions such that Uy(Cx ) = C(x, y) = C ′(x, y) = Uy(C ′
x )

for all (x, y). (The above argument works even given a very weak selective security
definition where all messages and functions are chosen by the attacker ahead of time.)
As said, the above transformation achieves compression factor γ = 1/2. While such
compression is sufficient, for example, to obtain IO based on LWE, it will not suffice for
our twoTheorems 1.1 and 1.2 (for the first wewill need γ to be a smaller constant, and for
the secondwewill need it to even be slightly subconstant). To prove Proposition 1.1 in its
more general form, we rely on a result by Brakerski et al. [16] that shows how to convert
any SKFE into a t-input SKFE. A t-input scheme allows to encrypt a tuple of messages
(m1, . . . ,mt ) each independently and derive keys for t-input functions f (m1, . . . ,mt ).
In their transformation, starting from a multi-key SKFE results in a multi-key t-input
SKFE.
The general transformation then follows naturally. Rather than arranging the in-

put space in a 2-dimensional cube {0, 1}n/2 × {0, 1}n/2 as we did before with a 1-
input scheme, given a t-input scheme we can arrange it in a (t + 1)-dimensional cube
{0, 1}n/(t+1)×· · ·×{0, 1}n/(t+1), andwewill accordingly get compressionγ = 1/(t+1).
The only caveat is that the BKS transformation incurs a security loss and blowup in the
size of the scheme that can grow doubly exponentially in t . As long as t is constant, the
security loss and blowup are fixed polynomials. The transformation can also be invoked
for slightly super-constant t (double logarithmic) assuming subexponential security of
the underlying 1-input SKFE (giving rise to the second part of Proposition 1.1).

We remark that previously Goldwasser et al. [27] showed that t-input SKFE for
polynomial t directly gives full-fledged IO. We demonstrate that even when t is small
(even constant), t-input SKFE implies a meaningful obfuscation notion such as SXIO.
From SXIO and PKE to weakly succinct PKFE: main ideas We now describe the
main ideas behind our construction of a single-key weakly succinct PKFE. We shall
focus on the main step of obtaining such a scheme for functions with a single output
bit.2

Our starting point is the single-key PKFE scheme of Sahai and Seyalioglu [58] based
on Yao’s garbled circuit method [61]. Their scheme basically works as follows (we
assume basic familiarity with the garbled circuit method):

• The master public keyMPK consists of L pairs of public keys
{

PK0
i ,PK

1
i

}

i∈L for

a (plain) public-key encryption scheme.

2Extending this to functions with multi-bit output is then done, based on SXIO, using a transformation
of [51]. Concretely, given an m-bit output function f (x) we consider a new single bit function g f (x, i) that
returns the i th bit of f (x). The function key is then derived for the boolean function g f . The new encryption
algorithm, for message x , produces an SXIO obfuscation of a circuit that given i ∈ [m] uses the old encryption
scheme to encrypt (m, i), deriving randomness using a puncturable PRF. The security of the construction is
proven as in [51] based on a probabilistic IO argument [25]. (Mild) efficiency of the encryption then follows
from the mild efficiency of the SXIO and PKFE with related (constant) compression factors.
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• A functional decryption key SK f for a function (circuit) f of size L consists of the

secret decryption keys {SK fi
i }i∈L corresponding to the above public keys, according

to the bits of f ’s description.
• To encrypt a message m, the encryptor generates a garbled circuit ̂Um for the
universal circuitUm that given f , returns f (m). It then encrypts the corresponding
input labels {k0i , k1i }i∈L under the corresponding public keys.

• The decryptor in possession of SK f can then decrypt to obtain the labels {k fi
i }i∈L

and decode the garbled circuit to obtain Um( f ) = f (m).

Selective security of this scheme (where the function f and allmessages are chosen ahead
of time) follows from the semantic security of PKE and the garbled circuit guarantee
which says that ̂Um, {k fi

i }i∈L can be simulated from f (m).
The scheme is indeed not succinct in any way. The complexity of encryption and even

the size of the ciphertext grows with the complexity of f . Nevertheless, it does seem that
the encryption process has amuchmore succinct representation. In particular, computing
a garbled circuit is a decomposable process—each garbled gate in ̂Um depends on a single
gate in the original circuit Um and a small amount of randomness (for computing the
labels corresponding to its wires). Furthermore, the universal circuit Um itself is also
decomposable—there exists a small (say, poly(|m| , log L)-sized) circuit that given i can
output the i-th gate in Um along with its neighbors. The derivation of randomness itself
can also be made decomposable using a pseudorandom function. All in all, there exists a
small (poly(|m| , log L , λ)-size, for security parameter λ), decomposition circuit Ude

m,K

associated with a key K ∈ {0, 1}λ for a pseudorandom function that can produce the i th
garbled gate/input-label given input i .
Yet, the second part of the encryption process, where the input labels {k0i , k1i }i∈L are

encrypted under the corresponding public keys
{

PK0
i ,PK

1
i

}

i∈L , may not be decompos-

able at all. Indeed, in general, it is not clear how to even compress the representation of
these 2L public keys. In this high-level exposition, let us make the simplifying assump-
tion that we have at our disposal a succinct identity-based-encryption (IBE) scheme.
Such a scheme has a single public-keyPK that allows to encrypt a message to an identity
id ∈ ID taken from an identity space ID. Those in possession of a corresponding secret
key SKid can decrypt and others learn nothing. Succinctness means that the complexity
of encryption may only grow mildly in the size of the identity space. Concretely, by a
factor of |ID|γ for some small constant γ < 1. In the body, we show that such a scheme
can be constructed from (plain) public-key encryption and SXIO. (The construction re-
lies on standard “puncturing techniques” and is pretty natural, see Sect. 5.1 for more
details.)
Equipped with such an IBE scheme, we can now augment the Sahai–Seyalioglu

scheme to make sure that the entire encryption procedure is decomposable. Concretely,
we will consider the identity space ID = [L] × {0, 1}, augment the public key to
only include the IBE’s public key PK, and provide the decryptor with the identity keys
{SK(i, fi )}i∈L . Encrypting the input labels {k0i , k1i }i∈L will now be done by simply en-
crypting to the corresponding identities {(i, 0), (i, 1)}i∈L . This part of the encryption can
now also be described by a small (say Lγ · poly(λ, log L)-size) decomposition circuit
Ede
K ,K ′,PK that has the PRF key K to derive input labels, the IBE public key PK, and
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another PRF key K ′ to derive randomness for encryption. Given an identity (i, b), it
generates the corresponding encrypted input label.
At this point, a natural direction is to have the encryptor send a compressed version of

the Sahai–Seyalioglu encryption, by first using SXIO to shield the two decomposition
circuits Ede

K ,K ′,PK,Ude
m,K and then sending the two obfuscations. Indeed, decryption can

be done just as before by first reconstructing the expanded garbled circuit and input
labels and then proceeding as before. Also, in terms of encryption complexity, provided
that the IBE compression factor γ is a small enough constant, the entire encryption time
will scale only sublinearly in the function’s size | f | = L (i.e., with Lβ for some constant
β < 1).

The only question is of course security. It is not too hard to see that if the decom-
position circuits Ede

K ,K ′,PK,Ude
m,K are given as black boxes, then security is guaranteed

just as before. The challenge is to prove security relying only on the indistinguishability
guarantee of SXIO. A somewhat similar challenge is encountered in the work of Bitan-
sky et al. [8,13] when constructing succinct randomized encodings. In their setting, they
obfuscate (using standard IO rather than SXIO) a decomposition circuit Cde

x,K (analo-

gous to our Ude
m,K ) that computes the garbled gates of some succinctly represented long

computation.
As already demonstrated in [8,13], proving the security of such a construction is

rather delicate. As in the standard setting of garbled circuits, the goal is to gradually
transition through a sequence of hybrids, from a real garbled circuit (that depends on
the actual computation) to a simulated garbled circuit that depends just on the result of
the computation. However, unlike the standard setting of garbled circuits, here each of
these hybrids should be generated by a hybrid obfuscated decomposition circuit and the
attacker should not be able to tell the hybrid circuits apart.
A feature of the hybrid strategy which is crucial in this context is the amount of infor-

mation that hybrid decomposition circuits need tomaintain about the actual computation.
Indeed, as the amount of this information grows so will the size of these decomposition
circuits as will the size of the decomposition circuits in the actual construction (that will
have to be equally padded to preserve indistinguishability). Accordingly, this feature
affects the succinctness of the entire construction.
Bitansky et al. [8,13] show a hybrid strategy where the amount of information scales

with the space of the computation (or circuit width). Whereas in their context this is
meaningful (as the aim is to save comparing to the time of the computation), in our
context this is clearly insufficient. Indeed, in our case the space of the computation
given by the universal circuit Um and the function f can be as large as f ’s description.
Instead, we invoke a different hybrid strategy by Hemenway et al. [39] that scales only
with the circuit depth. Indeed, this is the cause for the polynomial dependence on depth
in our single-key PKFE construction. Below, we further elaborate on the Hemenway et
al. hybrid strategy and how it is imported into our setting.
Decomposable Garbling and Pebbling The work of Hemenway et al. [39] provided
a useful abstraction for proving the security of Yao’s garbled circuits via a sequence of
hybrid games. The goal is to transition from a “real” garbled circuit, where each garbled
gate is in “RealGate” mode consisting of four ciphertexts encrypting the two labels
k0c , k

1
c of the output wire c under the labels of the input wires, to a “simulated” garbled
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circuit where each garbled gate is in SimGate mode consisting of four ciphertexts that
all encrypt the same dummy label k0c . As an intermediate step, we can also create a
garbled gate in CompDepSimGatemode consisting of four ciphertexts encrypting the
same label kv(c)

c where v(c) is the value going over wire c during the computation C(x)
and therefore depends on the actual computation.
The transition from a real garbled circuit to a simulated garbled circuit proceeds

via a sequence of hybrids where in each subsequent hybrid we can change one gate
at a time from RealGate to CompDepSimGate (and vice versa) if all of its prede-
cessors are in CompDepSimGate mode or it is an input gate, or change a gate from
CompDepSimGatemode toSimGatemode (and vice versa) if all of its successors are
in CompDepSimGate or SimGate modes. The goal of Hemenway et al. was to give
a strategy using the least number of gates in CompDepSimGate mode as possible.3

They abstracted this problem as a pebbling game and show that for circuits of depth d
there exists a sequence of 2O(d) hybrids with at most O(d) gates inCompDepSimGate
mode in any single hybrid.
In our case, we can give a decomposable circuit for each such hybrid game consisting

of gates inRealGate,SimGate,CompDepSimGatemodes. In particular, the decom-
posable circuit takes as input a gate index and outputs the garbled gate in the correct
mode. We only need to remember which gate is in which mode, and for all gates in
CompDepSimGate mode we need to remember the bit v(c) going over the wire c
during the computation C(x). It turns out that the configuration of which mode each
gate is in can be represented succinctly, and therefore the number of bits we need to
remember is roughly proportional to the number of gates in CompDepSimGate mode
in any given hybrid. Therefore, for circuits of depth d, the decomposable circuit is of
size O(d) and the number of hybrid steps is 2O(d).

To ensure that the obfuscations of decomposable circuits corresponding to neighboring
hybrids are indistinguishable, we also need to rely on standard puncturing techniques. In
particular, the gates are garbled using a punctured PRF andwe show that in any transition
between neighboring hybrids we can even give the adversary the PRF key punctured
only on the surrounding of the gate whose mode is changed.
On the Security Loss We note that our transformation from SXIO and PKE to weakly
succinct PKFE only incurs a polynomial security loss when considering logarithmic
depth circuits. Subexponential security of SXIO and PKE in Theorem 1.1 is required in
order to use the known transformations from PKFE to IO, which require subexponential
security [3,22].
From SKFE to PKE: the basic idea We end our technical exposition by explaining
the basic idea behind the construction of public-key encryption (PKE) from SKFE. The
construction is rather natural. Using subexponentially secure SKFE and the second part
of Proposition 1.1, we can obtain a poly(λ)-secure SXIOwith a subconstant compression
factor γ = o(1); concretely, it can be, for example, O(1/ log log λ). We can now think
about this obfuscator as a plain (efficient) indistinguishability obfuscator for circuits
with input length at most log λ · log log λ.

3Their aimwas proving adaptive security, which is completely orthogonal to our aim. However, for entirely
different reasons, the above goal is useful in both their work and ours.
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Then, we take a construction of public-key encryption from IO and one-way func-
tions where the input size of obfuscated circuits can be scaled down at the expense of
strengthening the one-way functions. For instance, following the basic witness encryp-
tion paradigm in [31], the public key can be a pseudorandom string PK = PRG(s)
for a 2n/ log log n-secure length-doubling pseudorandom generator with seed length n =
log λ · log log λ. Here, the obfuscator is only invoked for a circuit with inputs in {0, 1}n .
An encryption of m is simply an obfuscation of a circuit that has PK hardwired, and
releases m only given a seed s such that PK = PRG(s). Security follows essentially as
in [31]. Note that in this construction, we cannot expect more than 2n security, which is
quasi-polynomial in the security parameter λ.
How does the construction circumvent the Asharov-Segev barrier?As noted earlier,
Asharov and Segev [6] show that even exponentially secure SKFE cannot lead to public-
key encryption through a fully black-box construction (see their paper for details about
the exact model). The reason that our construction does not fall under their criteria lies in
the transformation from SKFE to SXIO with subconstant compression, and concretely
in the Brakerski–Komargodski–Segev [16] transformation from SKFE to t-input SKFE
that makes non-black-box use in the algorithms of the underlying SKFE scheme.

1.3. Subsequent Works

We now mention several follow-up works, including ones that have relied on our work
for new application and ones that have extended our work.

• New Transformations Several works gave different improved transformations
fromSKFE to IO.Komargodski and Segev [46] improved the known transformation
[16] from single-input SKFE to multi-input SKFE. Via the improved transforma-
tion, they can improve the direct IO construction we described above, which avoids
the reliance on public-key encryption. Starting from quasi-polynomially SKFE,
they obtain IO for circuits of sub-polynomial size and inputs of polylogarithmic.
Kitagawa et al. [44] present a simpler transformation from SKFE and public-key
encryption to PKFE (and IO) than the one presented here. Then, in a follow-up
work, the same set of authors [42,43] removed the reliance on public-key encryption
altogether. That is, they transform any subexponentially secure multi-key SKFE to
IO for all circuits (without a restriction on their size or input length). In another
follow-upwork, the same set of authors [41,43] replacemulti-keySKFEwith single-
keyweakly succinct SKFE in the transformation above by showing a transformation
from any single-key weakly succinct SKFE to multi-key (succint) SKFE.

• IO from SKFE A progression of works [7,48,49,53,54] has shown how to reduce
the degree of multi-linear maps required for constructing IO. In these constructions,
the core ingredient is a construction of FE for low-degree polynomials, which is
then bootstrapped to full-fledged FE and IO. Relying on our work, it is sufficient to
construct such schemes in the secret-key setting, which allows reducing the required
degree to three in the state of the art (assuming also appropriate pseudorandom
generators) [49].

• Non-Trivial null XIO from Standard Assumptions Brakerski et al. [15] show
that our key technique can actually be applied to existing constructions of attribute-
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based, or predicate, encryption. This yields non-trivial notions of exponential wit-
ness encryption (XWE) and null XIO for NC1, based on standard assumptions like
learning with errors.

• FE with Ideal Multi-Linear Maps Bitansky, Lin, and Paneth [17] prove that any
construction of FE schemes that are succinct enough that uses constant degree
multi-linear maps in a black-box way, can be transformed into a scheme based on
bilinear maps. For this, they use XIO as a main component and crucially rely on
the fact that our XIO construction from FE uses the underlying FE as a black box.

Organization In Sect. 2, we provide preliminaries and basic definitions used throughout
the paper. In Sect. 3, we introduce the definition of SXIO and present our construction
based on SKFE schemes. In Sect. 4, we review Yao’s garbled circuits and introduce a
notion of decomposable garbling. In Sect. 5, we present our construction of IO from
PKE and SXIO. In Sect. 6, we present a polynomially secure PKE scheme from SKFE
schemes.

2. Preliminaries

We review basic concepts and definitions used throughout the paper.

2.1. Standard Computational Concepts

We rely on the standard notions of Turing machines and Boolean circuits.

• We say that a (uniform) Turing machine is PPT if it is probabilistic and runs in
polynomial time.

• A polynomial-size (or just polysize) circuit family C is a sequence of circuits C =
{Cλ}λ∈N, such that each circuit Cλ is of polynomial size λO(1) and has λO(1) input
and output bits.

• We follow the standard habit of modeling any efficient adversary strategy as a
family of polynomial-size circuits. For an adversary A corresponding to a family
of polysize circuits {Aλ}λ∈N, we often omit the subscript λ, when it is clear from
the context.

• We say that a function f : N → R is negligible if for all constants c > 0, there
exists N ∈ N such that for all n > N , f (n) < n−c.

• If X (b) = {X (b)
λ }λ∈N for b ∈ {0, 1} are two ensembles of random variables indexed

by λ ∈ N, we say that X (0) and X (1) are computationally indistinguishable if for
all polysize distinguishersD, there exists a negligible function ν such that for all λ,

� =
∣

∣

∣Pr[D(X (0)
λ ) = 1] − Pr[D(X (1)

λ ) = 1]
∣

∣

∣ ≤ ν(λ).

• We write X (0) ≈δ X (1) to denote that the advantage � is bounded by δ.
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2.2. Functional Encryption

In this section, we define the different notions of functional encryption (FE) considered
in this work.

Definition 2.1. (Multi-input secret-key functional encryption) Let t (λ) be a function,
M = {Mλ = M(1)

λ × · · · × M(t (λ))
λ }λ∈N be a product message domain, Y = {Yλ}λ∈N

a range, and F = {Fλ}λ∈N a class of t-input functions f : Mλ → Yλ. A t-input
secret-key functional encryption (t-SKFE) scheme forM,Y,F is a tuple of algorithms
SKFEt = (Setup,KeyGen,Enc,Dec) where:

• Setup(1λ) takes as input the security parameter and outputs a master secret key
MSK.

• KeyGen(MSK, f ) takes as input the master secretMSK and a function f ∈ F . It
outputs a secret key SK f for f .

• Enc(MSK,m, i) takes as input the master secret key MSK, a message m ∈ M(i)
λ ,

and an index i ∈ [t (λ)], and outputs a ciphertext CTi .
• Dec(SK f ,CT1, . . . ,CTt ) takes as input the secret key SK f for a function f ∈ F
and ciphertexts CT1, . . . ,CTt , and outputs some y ∈ Y , or ⊥.

We also require the following property:Correctness:For all tuplesm = (m1, . . . ,mt ) ∈
Mλ and any function f ∈ Fλ, we have that

Pr

⎡

⎣Dec(SK f ,CT1, . . . ,CTt ) = f (m) :
MSK ← Setup(1λ),

SK f ← KeyGen(MSK, f ),
∀i CTi ← Enc(MSK,m, i)

⎤

⎦ = 1

Definition 2.2. (Selectively secure multi-key t-SKFE)We say that a tuple of algorithms
SKFEt = (Setup,KeyGen,Enc,Dec) is a selectively secure t-input secret-key func-
tional encryption scheme forM,Y,F , if it satisfies the following requirement, formal-
ized by the experiment ExptSKFEt

A (1λ, b) between an adversary A and a challenger:

1. The adversary submits challenge message tuples
{

(m0
i,1,m

1
i,1, i)

}

i∈[t] , . . . ,
{

(m0
i,q ,m

1
i,q , i)

}

i∈[t] for all i ∈ [t] to the challenger where q is an arbitrary poly-

nomial in λ.
2. The challenger runs MSK ← Setup(1λ)

3. The challenger generates ciphertexts CTi, j ← Enc(MSK,mb
i, j , i) for all i ∈ [t]

and j ∈ [q], and gives {CTi, j }i∈[t], j∈[q] to A.
4. A is allowed to make q function queries, where it sends a function f j ∈ F to

the challenger for j ∈ [q] and q is an arbitrary polynomial in λ. The challenger
responds with SK f j ← KeyGen(MSK, f j ).

5. A outputs a guess b′ for b.
6. The output of the experiment is b′ if the adversary’s queries are valid:

f j (m
0
1, j1, . . . ,m

0
t, jt ) = f j (m

1
1, j1, . . . ,m

1
t, jt ) for all j1, . . . , jt , j ∈ [q] .
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Otherwise, the output of the experiment is set to be ⊥.

We say that the functional encryption scheme is selectively secure if, for all polysize
adversaries A, there exists a negligible function μ(λ), such that

AdvSKFEt
A =

∣

∣

∣Pr
[

ExptSKFEt
A (1λ, 0) = 1

]

− Pr
[

ExptSKFEt
A (1λ, 1) = 1

]∣

∣

∣ ≤ μ(λ).

We further say that SKFEt is δ-selectively secure, for some concrete negligible function
δ(·), if the above indistinguishability gap μ(λ) is smaller than δ(λ)�(1).

We recall the following theorem by Brakerski, Komargodski, and Segev, which states
that one can build selectively secure t-SKFE from any selectively secure 1-SKFE. The
transformation induces a significant blowup and security loss in the number of inputs t .
This loss is polynomial as long as t is constant, but in general grows doubly exponentially
in t .

Theorem 2.1. ([16])

1. For t = O(1), if there exists δ-selectively secure single-input SKFE for P/poly,
then there exists δ-selectively secure t-input SKFE for P/poly.

2. There exists a constant ε < 1, such that for t (λ) = ε · log log(λ), λ̃ = 2(log λ)ε ,

δ(λ̃) = 2−λ̃ε
, if there exists δ-selectively secure single-input SKFE for P/poly,

then there exists polynomially secure selectively secure t-input SKFE for functions
of size at most 2O((log λ)ε). (Here, λ̃ is the single-input SKFE security parameter
and λ is the t-input SKFE security parameter.)

Remark 2.1. (Dependence on circuit size in [16]) The [16] transformation incurs a
(s · λ̃)2

O(t)
blowup in parameters, where s is the size of maximal circuit size of supported

functions and λ̃ is the security parameter used in the underlying single-input SKFE. In
the main setting of parameters considered there, t = O(1), the security parameter λ of
the t-SKFE scheme can be identified with λ̃ and s can be any polynomial in this security
parameter. (Accordingly, the dependence on s is implicit there, and the blowup they
address is λ2

O(t)
.)

For the second part of the theorem, to avoid superpolynomial blowup in λ, the security
parameter λ̃ for the underlying SKFE and the maximal circuit size s should be set to
2O((log λ)ε).

Definition 2.3. (Public-key functional encryption) Let M = {Mλ}λ∈N be a message
domain, Y = {Yλ}λ∈N a range, and F = {Fλ}λ∈N a class of functions f : M → Y . A
public-key functional encryption (PKFE) scheme for M,Y,F is a tuple of algorithms
PKFE = (Setup,KeyGen,Enc,Dec) where:

• Setup(1λ) takes as input the security parameter and outputs a master secret key
MSK and master public key MPK.

• KeyGen(MSK, f ) takes as input the master secretMSK and a function f ∈ F . It
outputs a secret key SK f for f .
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• Enc(MPK,m) takes as input the master public key MPK and a message m ∈ M,
and outputs a ciphertext c.

• Dec(SK f , c) takes as input the secret key SK f for a function f ∈ F and a cipher-
text c, and outputs some y ∈ Y , or ⊥.

We also require the following property: Correctness: For any message m ∈ M and
function f ∈ F , we have that

Pr

⎡

⎣Dec(SK f , c) = f (m) :
(MSK,MPK) ← Setup(1λ),

SK f ← KeyGen(MSK, f ),
c ← Enc(MPK,m)

⎤

⎦ = 1

Definition 2.4. (Selectively secure single-key PKFE) We say that a tuple of algorithm
PKFE = (Setup,KeyGen,Enc,Dec) is a selectively secure single-key public-key
functional encryption scheme for M,Y,F , if it satisfies the following requirement,
formalized by the experimentExptPKFEA (1λ, b)between an adversaryA and a challenger:

1. A submits the message pair m∗
0,m

∗
1 ∈ M and a function f to the challenger.

2. The challenger runs (MSK,MPK) ← Setup(1λ), generates ciphertext CT∗ ←
Enc(MPK,m∗

b) and a secret key SK f ← KeyGen(MSK, f ). The challenger
gives (MPK,CT∗, sk f ) to A.

3. A outputs a guess b′ for b.
4. The output of the experiment is b′ if f (m∗

0) = f (m∗
1) and ⊥ otherwise.

We say that the public-key functional encryption scheme is selectively secure if, for all
PPT adversaries A, there exists a negligible function μ(λ), such that

AdvPKFEA =
∣

∣

∣Pr
[

ExptPKFEA (1λ, 0) = 1
]

− Pr
[

ExptPKFEA (1λ, 1) = 1
]∣

∣

∣ ≤ μ(λ).

We further say that PKFE is δ-selectively secure, for some concrete negligible function
δ(·), if for all polysize distinguishers the above indistinguishability gap μ(λ) is smaller
than δ(λ)�(1).

We now further define a notion of succinctness for functional encryption schemes as
above. To do this, we define functional encryption for collections of classesF = {F =
{Fλ}}, such as P/poly or NC1.

Definition 2.5. (Functional Encryption for a Collection of Functions [17]) In a func-
tional encryption scheme FE = (Setup,KeyGen,Enc,Dec) for a collection of func-
tion classes F = {F = {Fλ}}, the setup algorithm Setup(1λ, n, s) takes the security
parameter 1λ and two parameters (n(λ), s(λ)) representing bounds on input length and
circuit size.
For any class F = {Fλ} ∈ F with maximum input length n(λ) and maximum circuit

size s(λ), FEF = (Setup(·, n(·), s(·)),KeyGen,Enc,Dec) satisfies the correctness
and security requirement defined above for general functional encryption schemes.

Definition 2.6. (Weakly Succinct functional encryption [17,22]) A functional encryp-
tion scheme for a collection of function classes F = {F = {Fλ}} is weakly succinct if
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there exists a constant γ < 1, and a fixed polynomial poly(·), depending only onF (but
not on any specific F ∈ F ), such that for any class F = {Fλ} ∈ F with

• maximum input length n(λ),
• maximum circuit size s(λ), and
• maximum circuit depth d(λ),

in FEF , the size of the encryption circuit is bounded by sγ · poly(n, λ, d). We call γ

the compression factor.

The following result from [22, Sections 3.1 and 3.2] states that one can construct an in-
distinguishability obfuscator from any single-key weakly succinct public-key functional
encryption scheme.

Theorem 2.2. ([22]) If there exists a subexponentially secure single-key weakly suc-
cinct PKFE scheme for P/poly, then there exists an indistinguishability obfuscator for
P/poly.

2.3. Indistinguishability Obfuscation

We recall the notion of indistinguishability obfuscation (IO) [10].

Definition 2.7. (Indistinguishability obfuscator (IO)) A PPT machine iO is an indis-
tinguishability obfuscator for a circuit class {Cλ}λ∈N if the following conditions are
satisfied:

• Functionality for all security parameters λ ∈ N, for all C ∈ Cλ, for all inputs x ,
we have that

Pr[C ′(x) = C(x) : C ′ ← iO(C)] = 1 .

• Indistinguishability for any polysize distinguisher D, there exists a negligible
function μ(·) such that the following holds: for all security parameters λ ∈ N, for
all pairs of circuits C0,C1 ∈ Cλ of the same size and such that C0(x) = C1(x) for
all inputs x , then

∣

∣Pr
[D(iO(C0)) = 1

] − Pr
[D(iO(C1)) = 1

]∣

∣ ≤ μ(λ) .

We further say that iO is δ-secure, for some concrete negligible function δ(·), if for
all polysize distinguishers the above indistinguishability gap μ(λ) is smaller than
δ(λ)�(1).

2.4. Puncturable Pseudorandom Functions

Puncturable PRFs, defined by Sahai and Waters [59], are PRFs with a key-puncturing
procedure that produces keys that allow evaluation of the PRF on all inputs, except for
a designated polynomial-size set.
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Definition 2.8. (Puncturable pseudorandom function) For sets D,R, a puncturable
pseudorandom function (PPRF) consists of a tuple of algorithmsPPRF = (PRF.Gen,

PRF.Ev,PRF.Punc) that satisfy the following two conditions.

Functionality preserving under puncturing: For all polynomial-size set S ⊆ D
and for all x ∈ D \ S, it holds that

Pr[PRF.EvK (x) = PRF.EvK {S}(x) : K ← PRF.Gen(1λ),

K {S} ← PRF.Punc(K , S)] = 1.

Pseudorandom at punctured points: For all polynomial size set S ⊆ D with
S = {x1, . . . , xk(λ)} and any polysize distinguisher A, there exists a negligible
function μ, such that:

|Pr[A(PRF.EvK {S}, {PRF.EvK (xi )}i∈[k]) = 1]
−Pr[A(PRF.EvK {S},Uk) = 1]| ≤ μ(λ)

where K ← PRF.Gen(1λ), K {S} ← PRF.Punc(K , S) andU denotes the uniform
distribution overR. We further say thatPPRF is δ-secure, for some concrete neg-
ligible function δ(·), if for all polysize distinguishers the above indistinguishability
gap μ(λ) is smaller than δ(λ)�(1).

The GGM tree-based construction of PRFs [30] from one-way functions is easily seen
to yield puncturable PRFs where the size of the punctured key grows polynomially with
the size of the set S being punctured, as recently observed by [11,23,45]. Thus, we have:

Theorem 2.3. ([11,23,30,45]) If one-way functions exist, then for all efficiently com-
putable functions n(λ) and m(λ), there exists a puncturable pseudorandom function that
maps n(λ) bits to m(λ) bits (i.e., D = {0, 1}n(λ) and R = {0, 1}m(λ)).

2.5. Public-Key Encryption

We recall the notion of plain public-key encryption (PKE).

Definition 2.9. (Plain public-key encryption) LetM be somemessage space.A public-
key encryption (PKE) scheme for M is a tuple of algorithms (KeyGen,Enc,Dec)
where:

• KeyGen(1λ) takes as input the security parameter and outputs a public key PK and
a secret key SK.

• Enc(PK,m) takes as input the public key PK and a message m ∈ M and outputs
a ciphertext CT.

• Dec(SK,CT) takes as input the secret key SK and a ciphertext CT, and outputs
some m ∈ M, or ⊥.

We also require the following property:
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Correctness For any message m ∈ M, we have that

Pr

[

Dec(SK, c) = m : (SK,PK) ← KeyGen(1λ),

CT ← Enc(PK,m)

]

= 1

We also recall the standard notion of security.

Definition 2.10. (Secure public-key encryption) A tuple of algorithms PK E =
(KeyGen,Enc,Dec) is a secure PKE for M if it satisfies the following requirement,
formalized by the experimentExptPKEA (1λ, b) between an adversaryA and a challenger:

1. The challenger runs (SK,PK) ← KeyGen(1λ), and gives PK to A.
2. At some point, A sends two messages m∗

0,m
∗
1 as the challenge messages to the

challenger.
3. The challenger generates ciphertext CT∗ ← Enc(PK,m∗

b) and sends CT∗ to A.
4. A outputs a guess b′ for b. The experiment outputs 1 if b′ = b, 0 otherwise.

We say the PKE scheme is secure if, for all PPT adversariesA, there exists a negligible
function μ(λ), it holds:

AdvPKEA =
∣

∣

∣Pr[ExptPKEA (1λ, 0) = 1] − Pr[ExptPKEA (1λ, 1) = 1]
∣

∣

∣ ≤ μ(λ).

We further say that PK E is δ-secure, for some concrete negligible function δ(·), if for all
polysize distinguishers the above indistinguishability gap μ(λ) is smaller than δ(λ)�(1).

2.6. Succinct Identity-Based Encryption

We define identity-based encryption (IBE) [57] with a succinctness properties.

Definition 2.11. (Succinct IBE with γ -compression) Let M be some message space
and ID be an identity space. A succint IBE scheme with γ -compression for M, ID is
a tuple of algorithms (Setup,KeyGen,Enc,Dec) where:

• Setup(1λ) takes as input the security parameter and outputs a master secret key
MSK and a master public key MPK.

• KeyGen(MSK, id) takes as input the master secretMSK and an identity id ∈ ID.
It outputs a secret key SKid for id.

• Enc(MPK, id,m) takes as input the public-parameter MPK, an identity id ∈ ID,
and a message m ∈ M, and outputs a ciphertext c.

• Dec(SKid, c) takes as input the secret key SKid for an identity id ∈ ID and a
ciphertext c, and outputs some m ∈ M, or ⊥.

We require the following properties:
Correctness For any message m ∈ M and identity id ∈ ID, we have that

Pr

⎡

⎣Dec(SKid, c) = m :
(MSK,MPK) ← Setup(1λ),

SKid ← KeyGen(MSK, id),

c ← Enc(MPK, id,m)

⎤

⎦ = 1
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Succinctness: For any security parameter λ ∈ N, identity space ID, the size of the
encryption circuit Enc, for messages of size 
, is at most |ID|γ · poly(λ, 
).

In this work, we shall consider the following selective security.

Definition 2.12. (Selectively secure IBE) A tuple of algorithms IBE = (Setup,

KeyGen,Enc,Dec) is a selectively secure IBE scheme for M, ID if it satisfies the
following requirement, formalized by the experiment ExptIBEA (1λ, b) between an adver-
sary A and a challenger:

1. A submits the challenge identity id∗ ∈ ID and the challenge messages (m∗
0,m

∗
1)

to the challenger.
2. The challenger runs (MSK,MPK) ← Setup(1λ), generates ciphertext CT∗ ←

Enc(MPK,m∗
b), and gives (MPK,CT∗) to A.

3. A is allowed to query (polynomially many) identities id ∈ ID such that id �= id∗.
The challenger gives SKid ← KeyGen(1λ,MSK, id) to the adversary.

4. A outputs a guess b′ for b. The experiment outputs 1 if b′ = b, 0 otherwise.

We say the IBE scheme is selectively secure if, for all PPT adversariesA, there exists a
negligible function μ(λ), it holds

AdvIBEA =
∣

∣

∣Pr[ExptIBEA (1λ, 0) = 1] − Pr[ExptIBEA (1λ, 1) = 1]
∣

∣

∣ ≤ μ(λ).

We further say that IBE is δ-selectively secure, for some concrete negligible function
δ(·), if for all polysize distinguishers the above indistinguishability gap μ(λ) is smaller
than δ(λ)�(1).

3. Strong Exponentially Efficient Indistinguishability Obfuscation

Lin et al. [51] propose a variant of IO that has a weak (yet non-trivial) efficiency,
which they call exponentially efficient IO (XIO). All that this notion requires in terms
of efficiency is that the size of an obfuscated circuit is sublinear in the size of the
corresponding truth table. They also refer to a stronger notion that requires that also
the time to obfuscate a given circuit is sublinear in the size of the truth table. This
notion, which we call strong exponentially efficient IO (SXIO), serves as one of the
main abstractions in our work.

Definition 3.1. (Strong exponentially efficient indistinguishability obfuscation (SXIO)
[51]) For a constant γ < 1, a machine sxiO is a γ -compressing strong exponentially
efficient indistinguishability obfuscator (SXIO) for a collection of circuit classes C =
{Cλ}λ∈N if it satisfies the functionality and indistinguishability in Definition 2.7 and the
following efficiency requirements:
Non-trivial time efficiency there exists a constant γ < 1 and a fixed polynomial poly(·),
depending on the collection C (but not on any specific class C ∈ C), such that for any
class C ∈ C, security parameter λ ∈ N, and circuit C ∈ {Cλ}λ∈N with input length n, the
running time of sxiO on input (1λ,C) is at most 2nγ · poly(λ, |C |).
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3.1. SXIO from Single-Input SKFE

In this section, we show that we can construct SXIO from any selectively secure t-
input SKFE scheme. We recall that such a t-SKFE scheme can be constructed from any
selectively secure 1-SKFE scheme, as stated in Theorem 2.1.

Theorem 3.1. For any function t (λ), if there exists δ-selectively secure t-SKFE for
P/poly, then there exists 1

t+1 -compressing δ-secure SXIO for P/poly.

The idea of the construction of SXIO from SKFE is explained in Introduction.
We immediately obtain the following corollary from Theorems 2.1 and 3.1.

Corollary 3.1. 1. If there exists δ-selectively secure single-input SKFE for P/poly,
then there exists γ -compressing δ-secure SXIO for P/poly where γ < 1 is an
arbitrary constant.

2. Let ε < 1 be a constant and λ̃ = 2(log λ)ε . If there exists 2−λ̃�(1)
-selectively secure

single-input SKFE for P/poly, then there exists polynomially secure SXIO with
compression factor γ (λ) = O(1/ log log λ) for circuits of size at most 2O((log λ)ε).
(Here, λ̃ is the single-input SKFE security parameter and λ is the SXIO security
parameter.)

3.2. The Construction of SXIO

We start by describing the SXIO construction and next argue its security. Inwhat follows,
given a circuit C , we identify its input space with [N ] = {1, . . . , N } (so in particular,
N = 2n if C takes n-bit strings as input). Let SKFEt = (Setup,KeyGen,Enc,Dec)
be a selectively secure t-input secret-key functional encryption scheme.
Construction We construct an SXIO scheme sxiO as follows.

sxiO(1λ,C): For every j ∈ [N 1/(t+1)]:
• let Uj be the t-input universal circuit that given j1, . . . , jt−1 ∈ [N 1/(t+1)] and
a t-input circuit D, returns D( j1, . . . , jt−1, j).

• let C j be the t-input circuit that given j1, . . . , jt ∈ [N 1/(t+1)] returns
C( j1, . . . , jt , j).

1. Generate MSK ← Setup(1λ).
2. Generate CTt, j ← Enc(MSK,C j , t) for j ∈ [N 1/(t+1)].
3. Generate CTi, j ← Enc(MSK, j, i) for i ∈ [t − 1] and j ∈ [N 1/(t+1)].
4. Generate SKUj ← KeyGen(MSK,Uj ) for j ∈ [N 1/(t+1)]
5. sxiO(C) = ({CTi, j }i∈[t], j∈[N1/(t+1)], {SKUj } j∈[N1/(t+1)])

Eval(sxiO, x): To evaluate the obfuscated circuit, convert x ∈ [N ] into ( j1, . . . , jt ,
jt+1) ∈ [N 1/(t+1)](t+1) and output Dec(SKUjt+1

,CT1, j1 , . . . ,CTt, jt ) .

Proof of Theorem 3.1. We first note that sxiO indeed satisfies the non-trivial time ef-
ficiency requirement. The obfuscated circuit consists of t · N 1/(t+1) ciphertexts, each
computable in time poly(|C |, λ), and N 1/(t+1) secret keys ofSKFEt , each computable in
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time poly(|C |, λ). Thus, for t ≤ λ, the overall running time of the obfuscator is bounded
by N 1/(t+1) · poly(|C |, λ), as required.
SecurityWe show that if there exists a distinguisherD against sxiO, then there exists an
adversary A that breaks the security of the underlying scheme SKFEt . (It even breaks
a weaker security notion than the one from Definition 2.2, where function queries are
also fixed in advance.)
The reduction is straightforward. If D distinguishes sxiO obfuscations of circuits

C,C ′ (of same size and functionality), then A can invoke D to distinguish
{

( j1, . . . , jt−1,C jt ) : ji ∈ [N 1/(t+1)]
}

and
{

( j1, . . . , jt−1,C
′
jt ) : ji ∈ [N 1/(t+1)]

}

,

given secret keys for all functions
{

Ujt+1 : jt+1 ∈ [N 1/(t+1)]}. Since the two circuits are
functionally equivalent, all these queries are valid queries, sinceUjt+1( j1, . . . , jt−1,C jt )

= C( j1, . . . , jt , jt+1) = C( j1, . . . , jt , jt+1) = Ujt+1( j1, . . . , jt−1,C ′
jt
).

This completes the proof of Theorem 3.1. �

Remark 3.1. (SXIO from succinct single-key SKFE) To get t-input SKFE as required
above from 1-input SKFE, via the [16] transformation, the original SKFE indeed has
to support an unbounded polynomial number of functional keys. We note that a similar
SXIO construction is possible from a 1-input SKFE that supports a functional key for
a single function f , but is succinct in the sense that encryption only grows mildly with
the complexity of f , namely with | f |β for some constant β < 1.
Inmore detail, assume a (1-input) single-key SKFEwith succinctness as above, where

the time to derive a key for a function f is bounded by | f |c · poly(λ) for some constant
c ≥ 1. The SXIO will consist of a single key for the function f that given as inputC j , as

defined above, returnsC j (1), . . . ,C j (N
1

c+1−β ), and encryptions ofC1, . . . ,CNc−β/c+1−β .
Accordingly, we still get SXIO with compression factor γ = 1 − 1−β

c+1−β
. This does

not lead to arbitrary constant compression (in contrast with the theorem above), since
1
2 ≤ γ < 1. Yet, it already suffices to obtain IO, when combined with LWE (as in
Corollary 1.1).

4. Yao’s Garbled Circuits are Decomposable

In this section, we define the notion of decomposable garbled circuits and prove that the
classical Yao’s garbled circuit construction satisfies our definition of decomposability (in
some parameter regime). We use a decomposable garbling scheme as a building block
to construct a PKFE scheme in Sect. 5.2.

4.1. Decomposable Garbling

Circuit garbling schemes [14,61] typically consist of algorithms (Gar.CirEn,Gar.InpEn,

Gar.De). Gar.CirEn(C, K ) is a circuit garbling algorithm that given a circuit C and
secret key K produces a garbled circuit ̂C . Gar.InpEn(x, K ) is an input garbling algo-
rithm that takes an input x and the same secret key K , and produces a garbled input x̂ .
Gar.De(̂C, x̂) is a decoder that given the garbled circuit and input decodes the result y.
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In this work, we shall particularly be interested in garbling decomposable circuits. A
decomposable circuit C can be represented by a smaller circuit Cde that can generate
each of the gates in the circuit C (along with pointers to their neighbors). When garbling
such circuits, we shall require that the garbling process will also be decomposable and
will admit certain decomposable security properties. We next formally define the notion
of decomposable circuits and decomposable garbling schemes.

Definition 4.1. (Decomposable Circuit) Let C : {0, 1}n → {0, 1} be a boolean cir-
cuit with L binary gates and W wires. Each gate g ∈ [L] has an associated tuple
( f, wa, wb, wc) where f : {0, 1}2 → {0, 1} is the binary function computed by the
gate, wa, wb ∈ [W ] are the incoming wires, and wc ∈ [W ] is the outgoing wire. A wire
wc can be the outgoing wire of at most a single gate, but can be used as an incoming wire
to several different gates and therefore this models a circuit with fan-in 2 and unbounded
fan-out. We define the predecessor gates of g to be the gates whose outgoing wires are
wa, wb (at most 2 of them). We define the successor gates of g to be the gates that have
wc as an incoming wire. The gates are topologically ordered and labeled by 1, . . . , L
so that if j is a successor of i , then i < j . A wire w is an input wire if it is not the
outgoing wire of any gate. We assume that the wires 1, . . . , n are the input wires. There
is a unique output wire w which is not an incoming wire to any gate.

We say that C is decomposable if there exists a smaller circuit Cde, called the decom-
position circuit, that given a gate label g ∈ [L] as input, outputs the associated tuple
Cde(g) = ( f, wa, wb, wc).

Definition 4.2. (Decomposable Garbling) A decomposable garbling scheme consists
of a tuple of three deterministic polynomial-time algorithms (Gar.CirEn,Gar.InpEn,

Gar.De) that work as follows:

• ̂bi ← Gar.InpEn(i, b; K ): takes as an input label i ∈ [n], a bit b ∈ {0, 1}, and
secret key K ∈ {0, 1}λ, and outputs a garbled input bit̂bi .

• ̂Gg ← Gar.CirEn(Cde, g; K ): takes as input a decomposition circuitCde : {0, 1}L
→ {0, 1}∗, a gate label g ∈ [L], and secret key K ∈ {0, 1}λ, and outputs a garbled
gate ̂Gg .

• y ← Gar.De(̂C,̂b): takes as input garbled gates ̂C = {

̂Gg
}

g∈[L], and garbled

input bitŝb = {

̂bi
}

i∈[n], and outputs y ∈ {0, 1}m .
The scheme should satisfy the following requirements:

1. Correctness: for every decomposable circuit C with decomposition circuit Cde
and any input b1, . . . , bn ∈ {0, 1}n , the decoding procedure Gar.De produces the
correct output y = C(b1, . . . , bn).

2. (σ, τ, δ)-Decomposable Indistinguishability: There are functions σ(, s, λ),

τ () ∈ N, δ(λ) ≤ 1 such that for any security parameter λ, any input x ∈ {0, 1}n ,
and any two circuits (C,C ′) that:
• have the same topology , and in particular the same size L and input-output
lengths (n,m),

• have decomposition circuits (Cde,C ′
de) of the same size s

• and agree on x : C(x) = C ′(x),
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there exist hybrid circuits
{

Gar.HInpEn(t),Gar.HCirEn(t)
∣

∣ t ∈ [τ ]
}

, each being

of size at most σ , as well as (possibly inefficient) hybrid functions
{

Gar.HPunc(t)
∣

∣ t ∈ [τ ]
}

with the following syntax:

• (K (t)
pun, g

(t)
pun, i

(t)
pun) ← Gar.HPunc(t)(K ), given a key K ∈ {0, 1}λ and an index

t ∈ [τ ], outputs a punctured key K (t)
pun, a gate label g(t)

pun ∈ [L], and an input

label i (t)pun ∈ [n].
• ̂Gg ← Gar.HCirEn(t)(g; K ), given a gate label g ∈ [L], and a (possibly
punctured) key K , outputs a fake garbled gate ̂Gg .

• ̂bi ← Gar.HInpEn(t)(i, b; K ), given an input label i ∈ [n], and a (possibly
punctured) key K , outputs a fake garbled input bit ̂bi .

We require that the following properties hold:

(a) The hybrids transition from C to C ′: For any K ∈ {0, 1}λ, g ∈ [L], i ∈ [n],
b ∈ {0, 1},

Gar.CirEn(Cde, g; K ) = Gar.HCirEn(1)(g; K ),

Gar.InpEn(i, b; K ) = Gar.HInpEn(1)(i, b; K ),

Gar.CirEn(C ′
de, g; K ) = Gar.HCirEn(τ )(g; K ) ,

Gar.InpEn(i, b; K ) = Gar.HInpEn(τ )(i, b; K ).

(b) Punctured keys preserve functionality: For any K ∈ {0, 1}λ, and t ∈ [τ −1],
and letting (K (t)

pun, g
(t)
pun, i

(t)
pun) = Gar.HPunc(t)(K ), it holds that:

• For any g �= g(t)
pun, we have

Gar.HCirEn(t)(g; K ) = Gar.HCirEn(t)(g; K (t)
pun)

= Gar.HCirEn(t+1)(g, K ).

• For any i �= i (t)pun and b ∈ {0, 1}, we have

Gar.HInpEn(t)(i, b; K ) = Gar.HInpEn(t)(i, b; K (t)
pun)

= Gar.HInpEn(t+1)(i, b, K ).

(c) Indistinguishability on punctured inputs: For any polysize distinguisherD,
security parameter λ ∈ N, and circuits (C,C ′) as above,

∣

∣

∣ Pr
[

D
(

ĝ(t)
pun, î

(t)
pun,Gar.HPunc(t)(K )

)

= 1
]

−Pr
[

D
(

ĝ(t+1)
pun , î (t+1)

pun ,Gar.HPunc(t)(K )
)

= 1
] ∣

∣

∣ ≤ δ(λ) ,
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where, for t ≥ 0 we denote by ĝ(t)
pun the valueGar.HCirEn(t)(g(t)

pun; K ) and by

î (t)pun the valueGar.HInpEn(t)(i (t)pun, xi (t)pun
; K ), with x being the input on which

the two circuits C and C ′ agree on. The probability is over K ← {0, 1}λ, and
(K (t)

pun, g
(t)
pun, i

(t)
pun) = Gar.HPunc(t)(K ).

We show that Yao’s garbled circuit scheme, in fact, gives rise to a decomposable garbling
scheme where the security loss and size of the hybrid circuits scale with the depth of the
garbled circuits.

Theorem 4.1. Let C = {Cλ}λ∈N be a class of boolean circuits where each C ∈ Cλ

has circuit size at most L(λ), input size at most n(λ), depth at most d(λ), fan-out at
most ϕ(λ), and decomposition circuit of size at most �(λ). Then, assuming the ex-
istence of δ-secure one-way functions, C has a decomposable garbling scheme with
(σ, τ, δ)-decomposable indistinguishability where the bound on the size of hybrid cir-
cuits is σ = poly(λ, d, log L , ϕ,�), the number of hybrids is τ = L · 2O(d), and the
indistinguishability gap is δ�(1).

The proof of the above theorem spans the rest of this section. We rely heavily on the
ideas of Hemenway et al. [39] which considered an orthogonal question of adaptively
secure garbling schemes but (for entirely different reasons) developed ideas that are
useful for decomposable garbling.

4.2. Yao’s Garbled Circuits: Construction

Let (SEnc,SDec) be a CPA-secure symmetric-key encryption scheme with key space
{0, 1}λ. Furthermore, assume it satisfies special correctness so that for all messages m
we have:

Pr[SDeck(SEnck′(m)) �= ⊥ : k, k′ ← {0, 1}λ] = negl(λ).

Such encryption schemes can be based on one-way functions.
Let PPRF = (PRF.Gen,PRF.Ev,PRF.Punc) be a PPRF with:

• domain D = ([W ] × {0, 1}) ∪ [L], where [W ] is the set of wires and [L] is the set
of gates

• range R = {0, 1}λ
and furthermore assume that the keys output by PRF.Gen are just random values K ∈
{0, 1}λ. Such PPRFs can be constructed based on one-way functions.
Yao’s Garbled Circuit Construction The key K of the garbling scheme is just a key
for the PPRF. We define the two functions Gar.InpEn,Gar.CirEn as follows.

• ̂bi ← Gar.InpEn(i, b; K ): Output̂bi = PRF.EvK ((i, b)).
• ̂Gg ← Gar.CirEn(Cde, g; K ): LetCde(g) = ( f, wa, wb, wc). Compute the 6 wire

labels kβ
α = PRF.EvK (wα, β) for α ∈ {a, b, c} and β ∈ {0, 1}, unless wc is an

output wire in which case set k0c = 0, k1c = 1. Compute 4 ciphertexts:
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c0,0 ← SEnck0a (SEnck0b (k
f (0,0)
c ))

c0,1 ← SEnck0a (SEnck1b (k
f (0,1)
c ))

c1,0 ← SEnck1a (SEnck0b (k
f (1,0)
c ))

c1,1 ← SEnck1a (SEnck0b (k
f (1,1)
c ))

where the encryption randomness is derived using PRF.EvK (g). Set ̂Gg = [c1, c2,
c3, c4] to be a lexicographic ordering of the above ciphertexts.

• y ← Gar.De(̂C,̂b): On input garbled gates ̂C = {

̂Gg
}

g∈[L] and garbled input bits
̂b = {

̂bi
}

i∈[n], iteratively compute a wire label for every wire in the circuit.

For the input wires, the labels these are given by ̂b. For any gate g with incoming
wireswa, wb andoutgoingwirewc such that the labels ka, kb ofwa, wb have already
been computed, derive the label kc of wc as follows. Parse ̂Gg = [c1, c2, c3, c4]
and set kc = SDeckb (SDecka (ci )) for the first one of i = 1, 2, 3, 4 for which the
outcome is not ⊥.
Finally, output the value y which is the wire label of the output wire.

The correctness of this construction follows by inspection and from the special correct-
ness of the symmetric-key encryption scheme.

4.3. Hybrid Circuits and Pebbling

We now show that Yao’s construction is decomposable by defining the hybrid functions
as in Definition 4.2.
Half-Sequence We now define the sequence of hybrid functions

{

Gar.HInpEn(t),Gar.HCirEn(t),Gar.HPunc(t)
∣

∣ t ∈ [τ ]
}

.

We will actually only define a half-sequence which ensures that:

• Gar.CirEn(Cde, g; K ) = Gar.HCirEn(1)(g; K ),Gar.InpEn(i, b; K ) =
Gar.HInpEn(1)(i, b; K ) = Gar.HInpEn(τ )(i, b; K ),

• Gar.HCirEn(τ )(g; K ) does not depend on Cde but only on its topology  and the
output bit C(x) = C ′(x).

By adding a symmetric sequence of additional hybrid functions

{

Gar.HInpEn(t),Gar.HCirEn(t),Gar.HPunc(t)
∣

∣ t ∈ {τ + 1, . . . , 2τ − 1}
}

where we define the functions with t = τ + i the same way as those with t = τ − i but
with C ′

de instead of Cde we then get the full hybrid sequence satisfying the definition.
Pebbling We define the following pebbling game over a circuit with some topology .
Each gate of the circuit can either have no pebble, a black pebble, or a gray pebble. The
rules of the game are as follows:

I. We can place or remove a black pebble on a gate as long as both predecessors of
that gate have black pebbles on them (or the gate is an input gate).
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II. We can replace a black pebble with a gray pebble on any non-output gate as long
as all successors of that gate have black or gray pebbles on them.

A pebbling of the topology  is a sequence of steps where we start with no pebbles on
any gate and sequentially apply rules I and II so as to end up with a gray pebble on every
non-output gate and a black pebble on the output. Let us assume that the topology 

admits a pebbling consisting of steps pstep1, . . . ,pstepτ ′ .
Pebbling and Circuit ConfigurationsWe will define the hybrids, each of which being
parametrized by a circuit configuration conf. For every gate g, the configuration conf
specifies if the gate is in one of four possible modes

{RealGate,SimGate,CompDepSimGate,
1

2
CompDepSimGate}.

Furthermore, for every wire w which is an incoming or outgoing wire of some gate in
mode CompDepSimGate or 1

2CompDepSimGate, the configuration specifies a bit
v(w).
Assume we are given an input x and a circuit C having topology  that admits a

pebbling consisting of steps pstep1, . . . ,pstepτ ′ . We first define a sequence of config-
urations conf′1, . . . , conf′τ ′ where every configuration conf′i corresponds to the pebble
placement after step i of the pebbling: every gate that has no pebble is in RealGate
mode, every gate that has a black pebble is in CompDepSimGate mode, every gate
that has a gray pebble is in SimGate mode. Furthermore, for every wire w which is
an incoming or outgoing wire of some gate in mode CompDepSimGate we set v(w)

to be the bit going over the wire w during the computation C(x). Next we add several
intermediate configurations as follows: if the transition from conf′i , conf′i+1 corresponds
to an application of rule I in the pebbling, meaning that we either add or remove a black
pebble on some gate g, then we add an intermediate configuration in between these,
which is identical to conf′i , conf′i+1 except that the gate g is in 1

2CompDepSimGate
mode. This results in a sequence conf1, . . . , confτ where τ ≤ 2τ ′.
Configurations and Hybrids We now define the hybrid functions

{

Gar.HInpEn(t),Gar.HCirEn(t),Gar.HPunc(t)
∣

∣ t ∈ [τ ]
}

.

First, for a configuration conf we define the functions Gar.HInpEn(conf) and
Gar.HCirEn(conf) parameterized by conf. For every t ∈ [τ ], we then define
Gar.HInpEn(t) = Gar.HInpEn(conft ) and Gar.HCirEn(t) = Gar.HCirEn(conft ) where
conf1, . . . , confτ is the sequence of configuration given by the pebbling game as above.

• ̂Gg ← Gar.HCirEn(conf)(g; K ): Let Cde(g) = ( f, wa, wb, wc).
If the key K is a standard PPRF key, then proceed as follows. Compute the 6 wire
labels kβ

α = PRF.EvK (wα, β) for α ∈ {a, b, c} and β ∈ {0, 1}, unless wc is an
output wire in which case set k0c = 0, k1c = 1. Compute 4 ciphertexts c0,0, c0,1, c1,0,
c1,1 as in Fig. 2 depending on the mode of g, where the encryption randomness is
derived fromPRF.EvK (g). Let ̂Gg = [c1, c2, c3, c4] to be a lexicographic ordering
of the above ciphertexts.



From Cryptomania to Obfustopia Through Secret-Key Functional Encryption 383

Fig. 2. Garbling Gate modes: RealGate, SimGate, CompDepSimGate, 12CompDepSimGate.

If the key K is not a standard PPRF key, then parse K = (K {S}, H). If there is
a tuple of the form (g, ̂Gg) in H then output ̂Gg . Else attempt to compute ̂Gg as
above using the punctured PPRF key K {S} and output ⊥ if this is not possible.

• Gar.HInpEn(conf)(i, b; K ): If the key K is a standard PPRF key, then output̂bi =
PRF.EvK ((i, b)). Else parse K = (K {S}, H) and output̂bi = PRF.EvK {S}((i, b))
or ⊥ if this computation fails.

We define Gar.HPunc(t)(K ) as follows. Assume that the transition from conft to
conft+1 changes the mode of a gate g(t)

pun such that g
(t)
pun has incoming wires wa, wb and

outgoing wire wc.

• If the transition changes g(t)
pun from RealGate to 1

2CompDepSimGate (or vice
versa):
Gar.HPunct (K ) := (K t

pun = ((K {S}, H), g(t)
pun, ia)where S = {(wa, 1−v(wa)),

g(t)
pun}, K {S} = PRF.Punc(K , S), ia = ⊥ if wa is not an input wire, else ia is the

index of input wire wa . For every gate g �= g(t)
pun that has wa as an input wire

compute ̂Gg ← Gar.HCirEn(conft )(g; K ) and add ̂Gg to H .

• If the transition changes g(t)
pun from

1
2CompDepSimGate to CompDepSimGate

(or vice versa):
Gar.HPunct (K ) := (K t

pun = ((K {S}, H), g(t)
pun, ib)where S = {(wb, 1−v(wb)),

g(t)
pun}, K {S} = PRF.Punc(K , S), ib = ⊥ if wb is not an input wire, else ib is the

index of input wire wb. For every gate g �= g(t)
pun that has wb as an input wire

compute ̂Gg ← Gar.HCirEn(conft )(g; K ) and add ̂Gg to H .

• If the transition changes g(t)
pun from CompDepSimGate to SimGate (or vice

versa):
Gar.HPunct (K ) := (K t

pun = ((K {S}, H), g(t)
pun,⊥) with S being the set

{(wc, 0), (wc, 1), g
(t)
pun}, K {S} = PRF.Punc(K , S). For every gate g �= g(t)

pun that

has wc as an input wire compute ̂Gg ← Gar.HCirEn(conft )(g; K ) and add ̂Gg to
H .



384 N. Bitansky et al.

4.4. Proof of Security

We now show that the above hybrid functions satisfy properties (a), (b), (c) of Defini-
tion 4.2.
Property (a) Firstly,

{

Gar.HInpEn(t),Gar.HCirEn(t),Gar.HPunc(t)
∣

∣ t ∈ [τ ]
}

repre-

sents a valid half-sequence, meaning that:

• Gar.CirEn(Cde, g; K ) = Gar.HCirEn(1)(g; K ),Gar.InpEn(i, b; K ) =
Gar.HInpEn(1)(i, b; K ) = Gar.HInpEn(τ )(i, b; K ),

• Gar.HCirEn(τ )(g; K ) does not depend on Cde but only on its topology  and the
output bit Cde(x).

In particular, Gar.HCirEn(τ )(g; K ) = Gar.HCirEn(confτ )(g; K ) corresponds to a con-
figuration where all non-output gates are in SimGate mode and the output gate is in
CompDepSimGatemode, meaning thatGar.HCirEn(confτ )(g; K ) does not depend on
the boolean function f implemented by any of the gates. Furthermore, the configuration
confτ only specifies the output value v(wout ) = C(x). Therefore, these functions are
a valid half-sequence. As we discussed, by adding a symmetric half-sequence in the
reverse direction for the circuit C ′

de we get a sequence that satisfies property (a).
Property (b) This property follows by inspection. In particular,

• For any g �= g(t)
pun, we have

Gar.HCirEn(t)(g; K ) = Gar.HCirEn(t)(g; K (t)
pun) = Gar.HCirEn(t+1)(g, K ) .

Since Gar.HCirEn(t)(g; K ) and Gar.HCirEn(t+1)(g, K ) only differ on the mode
of the gate g(t)

pun and the punctured key K (t)
pun hardwires the value of all other gates

affected by PRF puncturing to match those of Gar.HCirEn(t)(g; K )

• For any i �= i (t)pun and b ∈ {0, 1}, we have Gar.HInpEn(t)(i, b; K ) =
Gar.HInpEn(t)(i, b; K (t)

pun) = Gar.HInpEn(t+1)(i, b, K ). Actually, we have

Gar.HInpEn(t)(i, b; K ) = Gar.InpEn(i, b; K ) as well as Gar.HInpEn(t)(i, b;
K (t)
pun) = Gar.InpEn(i, b; K ), for all i �= i (t)pun.

Property (c) For property (c), we must show that
(

Gar.HCirEn(t)(g(t)
pun; K ),Gar.HInpEn(t)(i (t)pun, xi (t)pun

; K ), K (t)
pun

)

≈
(

Gar.HCirEn(t+1)(g(t)
pun; K ),Gar.HInpEn(t+1)(i (t)pun, xi (t)pun

; K ), K (t)
pun

)

are computationally indistinguishable, where the probability is over K ← {0, 1}λ, and
(K (t)

pun, g
(t)
pun, i

(t)
pun) = Gar.HPunc(t)(K ).

Since in our case Gar.HInpEn(t)(i, b; K ) = Gar.HInpEn(t+1)(i, b; K )

= Gar.InpEn(i, b; K ) for all i, b, we can simplify the above to:

(

Gar.HCirEn(t)(g(t)
pun; K ),Gar.InpEn(i (t)pun, xi (t)pun

; K ), K (t)
pun

)

≈
(

Gar.HCirEn(t+1)(g(t)
pun; K ),Gar.InpEn(i (t)pun, xi (t)pun

; K ), K (t)
pun

)
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We consider several cases. Assume that the transition from conft to conft+1 changes
the mode of a gate g(t)

pun such that g(t)
pun has incoming wires wa, wb and outgoing wire

wc.

Case 1: If the transition changes g(t)
pun from RealGate to 1

2CompDepSimGate (or
vice versa):
The difference betweenGar.HCirEn(t)(g(t)

pun; K ),Gar.HCirEn(t+1)(g(t)
pun; K )

is only in the value encrypted by the ciphertexts:

c1−v(wa),0 ← SEnc
k1−v(wa )
a

(· · · )
c1−v(wa),1 ← SEnc

k1−v(wa )
a

(· · · )

The key k1−v(wa)
a = PRF.EvK (wa, 1− v(wa)) is computed using a PPRF and

the encryption randomness is derived using r = PRF.EvK (g(t)
pun). Furthermore,

K (t)
pun = (K {S}, H) where K {S} is punctured at S = {(wa, 1− v(wa)), g

(t)
pun}.

The set H only contains other ciphertexts created under the key k1−v(wa)
a but

otherwise does not contain any other information related to k1−v(wa)
a or r .

Therefore, we can first rely on punctured PRF security to switch k1−v(wa)
a

and r to random, then on CPA security to switch the value encrypted by the
ciphertexts c1−v(wa),0, c1−v(wa),1 from that ofGar.HCirEn(t)(g(t)

pun; K ) to that

of Gar.HCirEn(t+1)(g(t)
pun; K ) and then on punctured PRF security again to

switch k1−v(wa)
a and the encryption randomness back to PRF outputs. This

proves indistinguishability.
Case 2: If the transition changes g(t)

pun from 1
2CompDepSimGate to the mode

CompDepSimGate (or vice versa):
This case is identical to the previous one with wb instead of wa .

Case 3: If the transition changes g(t)
pun from CompDepSimGate to SimGate (or vice

versa):
The difference betweenGar.HCirEn(t)(g(t)

pun; K ),Gar.HCirEn(t+1)(g(t)
pun; K )

is only a switch from kv(wc)
c to k0c in the garbled gate g(t)

pun.
The keys k0c = PRF.EvK (wc, 0), k1c = PRF.EvK (wc, 1) are computed using

the PPRF. Furthermore, K (t)
pun = (K {S}, H) where K {S} is punctured at S =

{(wc, 0), (wc, 1)}. The keys k0c , k1c are used to compute some values in H , but
they are used in a completely symmetric manner (this is because all successors
of g(t)

pun are in SimGate,CompDepSimGatemodes and therefore the 0 and 1
keys are used identically). Therefore, we first rely on PPRF security to switch
k0c , k

1
c to random values, then by symmetry we can exchange kv(wc)

c for k0c in

the garbled gate g(t)
pun, and then we rely on PPRF security again to switch them

back to PRF outputs.

This completes the proof of property (c).
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4.5. Pebble Complexity and Parameters

We now analyze the parameters σ(, s, λ), τ () ∈ N, δ(λ) as defined in Definition 4.2
that our construction achieves. Assume that the topology  has maximum fan-out ϕ()

and can be pebbled in τ ′() steps using at most p() black pebbles. Furthermore,
assume that the pebbling is succinct meaning that in any step t of the pebbling there
is an index g(t)

gray ∈ [L] such that a gate g has a gray pebble on it if and only if g is

not the output gate and g ≥ g(t)
gray . Lastly assume that the size of the compact circuits

Cde,C ′
de is at most � and that the symmetric-key encryption scheme and the PPRF

have security δENC (λ) and δPPRF (λ), respectively, meaning that the advantage of any
polynomial-time attacker against these schemes is bounded by δENC (λ) and δPPRF (λ),
respectively.

Lemma 4.1. The construction given achieves τ() ≤ 4τ ′(), σ(, s, λ)

≤ poly(λ, ϕ(), p(), log L) + �, and δ(λ) ≤ O(δENC (λ) + δPPRF (λ)).

Lemma 4.1. It’s easy to see that τ() ≤ 4τ ′() since we added at most one interme-
diate configuration in between any pebbling steps to define the half-sequence of hybrid
functions of length at most 2τ ′(), and therefore the length of the full sequence is of
length at most 4τ ′().

We now compute σ(, s, λ) which is a bound on the circuit size of

{

Gar.HInpEn(t),Gar.HCirEn(t)
∣

∣ t ∈ [τ ]
}

.

First, we note that the size of the punctured key K t
pun is |K t

pun| ≤ ϕ()poly(λ) since it
hardwires atmostϕ() garbled gates. Secondlywe note that the size of any configuration
conft can be described by at most O(p() log L) bits since it only needs to specify the
p() gates that are in CompDepSimGate mode and in 1

2CompDepSimGate mode,

the bits v(wc) for each outgoing wire wc of such gates, and the index g
(t)
gray to be able to

decide if a gate is in SimGate or RealGate mode. Lastly, the function Gar.HCirEn(t)

needs to run the circuit Cde or C ′
de once and then apply some processing on the output.

Therefore, byobservation, the circuit size is boundedbypoly(λ, ϕ(), p(), log L)+�.
Finally, the bound on δ(λ) follows directly from the security proof. �

In [39] (Section 6, Strategy 2), it is shown that any circuit topology of depth d and
circuit size L can be pebbled using p() ≤ 2d black pebbles and in τ ′() ≤ L4d steps.
Furthermore, it is easy to see that this pebbling is succinct.4 Therefore, by plugging these
parameters into Lemma 4.1 we get the proof of Theorem 4.1.

4Indeed, if the gates 1, . . . , L are topologically sorted so that L is the output gate, then the pebbling can
be made to place gray pebbles in according to this ordering, meaning that the first gray pebble is placed on
gate L − 1 and then L − 2 and finally continuing down to 1. One minor difference between our version and
the one in [39] is that the latter allows replacing a black pebble with a gray pebble at the output gate, whereas
our does not. This only requires us to slightly modify the pebbling strategy to keep the pebble at the output
gate black.
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5. Single-Key Succinct PKFE from SXIO and PKE

This section consists of four subsections. Themain part is constructing aweakly succinct
PKFE scheme for boolean functions in Sect. 5.2. First, in Sect. 5.1, we construct a
succinct IBE scheme with γ -compression, which we shall use as a building block in
Sect. 5.2. In Sect. 5.3, we present a transformation from weakly succinct PKFE schemes
for boolean functions into ones for non-boolean functions. Lastly, we explain how the
pieces come together to give IO from SKFE in Sect. 5.4.

5.1. A Succinct IBE Scheme

In this section, we construct a succinct IBE scheme from SXIO and PKE. Here by
succinct, we mean that the size of the encryption circuit (and then also of the master
public key) is sublinear in the size of the identity space (roughly, |ID|γ , with γ < 1,
see Sect. 2.6 for the complete definition). In the following subsections, we will use the
constructed IBE as a building block in our construction of succinct PKFE.

Theorem 5.1. Foranyβ < γ < 1, assuming there exists aβ-compressingSXIOscheme
for P/poly, a puncturable PRF, and a plain PKE scheme, there exists a succinct IBE
scheme with γ -compression. Moreover, assuming the underlying primitives are δ-secure
so is the resulting IBE scheme.

We start by describing the IBE construction and then argue its security. LetPPRF =
(PRF.Gen,PRF.Ev,PRF.Punc)be apuncturablePRF, PK E = (PKE.Gen,PKE.Enc,
PKE.Dec) a PKE scheme, and sxiO a β-compressing SXIO scheme. Let [s] denote the
identity space.
Construction The scheme IBE = (Setup,KeyGen,Enc,Dec) for an identity space
ID = [s] is given by the following algorithms.

Setup(1λ):

• Choose puncturable PRF key S ← PRF.Gen(1λ).
• Construct a circuit KGibe[S] as described in Fig. 3 that computes
ri = PRF.EvS(i) for an input i ∈ [s] and generates a pair of keys (PKE.PKi ,

PKE.SKi ) ← PKE.Gen(1λ; ri ).
• Output MPK = sxiO(KGibe[S]) and MSK = {PKE.SKi }i∈[s].

KeyGen(MSK, id):

• Parse MSK = {PKE.SKi }i∈[s].
• Output SKid = PKE.SKid.

Enc(MPK, id, x):

• Compute PKE.PKid by running MPK(id) = sxiO(KGibe[S])(id).
• Output CT ← PKE.Enc(PKE.PKid, x).

Dec(SKid,CT):

• Output PKE.Dec(SKid,CT).
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Fig. 3. Circuit KGibe[S].

Fig. 4. Circuit KG∗
ibe[S{id∗}].

Proof of Theorem 5.1. We now prove Theorem 5.1, starting by analyzing succinctness,
and then moving on to the security proof.

Padding Parameter

The proof of security relies on indistinguishability of obfuscations of circuits KGibe and
KG∗

ibe defined in Figs. 3 and 4. Accordingly, we set pad = max(|KGibe| ,
∣

∣KG∗
ibe

∣

∣). The
circuits KGibe and KG

∗
ibe compute a puncturable PRF over domain [s], a PKE key pair,

and may have punctured PRF keys and public keys hardwired. Thus,

pad ≤ poly(λ, log(s)) .

Succinctness

The input space for KGibe is [s]. Therefore, by the SXIO guarantee, the size of the
encryption circuit (dominated by running the obfuscated KGibe) is

sβ · poly(λ, 
, log s) ≤ sγ · poly(λ, 
) ,

where 
 is a bound on the length of encrypted messages.
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Security Proof

Let us assume that the underlying primitives are δ-secure.We define a sequence of hybrid
games.

Hyb0: The first game is the original selective security experiment for b = 0,
ExptIBEA (1λ, 0). In this game, the adversary first selects the challenge identity id∗
and messages (m∗

0,m
∗
1) and then gets an encryption of m∗

0 for identity id∗ and the
master public key. It can also query polynomially many secret keys for identities
different from id∗ (See Definition 2.12 for more details).
Hyb1: We change KGibe into KG∗

ibe described in Fig. 4. In this hybrid game,
we set r∗ = PRF.EvS(id∗) and (PKE.PK∗,PKE.SK∗) ← PKE.Gen(1λ; r∗).
Thus, the behaviors of KGibe and KG∗

ibe are totally the same, and so are their size
since we pad circuit KGibe to have the same size as KG∗

ibe. Then, we can use the
indistinguishability guarantee of sxiO and it holds Hyb0 ≈δ Hyb1.
Hyb2: We change r∗ = PRF.EvS(id∗) into uniformly random r∗. Due to the
pseudorandomness at punctured points, it holds Hyb1 ≈δ Hyb2.
Hyb3: We change CT∗ from PKE.Enc(id∗,m∗

0) to PKE.Enc(id∗,m∗
1). In Hyb2

and Hyb3, we do not need randomness used to generate PKE.PK∗. We just use the
hardwiredPKE.PK∗. Therefore,Hyb2 ≈δ Hyb3 follows directly from the semantic
security of the PKE scheme.
Hyb4: This is Expt

IBE
A (1λ, 1). We can show the indistinguishability between Hyb3

and Hyb4 in a reverse manner.

This completes the proof of Theorem 5.1. �

5.2. Weakly Succinct PKFE for Boolean Functions

We now construct a single-key weakly succinct PKFE scheme for the class of boolean
functions. The construction is based on succinct IBE, decomposable garbling, and SXIO.

Theorem 5.2. Let C = {Cλ}λ∈N be a family of circuits with a single output bit and
let n(λ), s(λ), d(λ) be bounds on their input length, size, and depth (respectively). For
any constants β, γ such that 3β < γ < 1, assuming a δ-secure, β-compressing SXIO
for P/poly, there exists a constant α, such that given any δ-secure, α-compressing IBE,
and δ-secure one-way functions, there exists a 2dsδ-secure succinct PKFE for C with
compression factor γ .

Depth preserving universal circuits To prove the above theorem, we recall the exis-
tence of depth preserving universal circuits [24]. Concretely, any family of circuits C
as considered in Theorem 5.2 has a uniform family of universal circuits {Uλ}λ∈N with
fan-out λ,5 depth O(d), and size s3 · polylog(s), for some fixed polynomial poly. Each
such circuit takes as input a description ( f1, . . . , fs) of a function in C and an input

5The restriction regarding fan-out is not stated explicitly in [24], but can always be achieved by blowing
up the size and depth by a factor of at most O(1).
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(x1, . . . , xn) and outputs f (x). Furthermore, uniformity here means that each circuit
has a decomposition circuit of size polylog(s).
Ingredients and notation used in the construction

• We denote byU (x) : {0, 1}s → {0, 1} the universal circuit, with x ∈ {0, 1}n being a
hardwired bit string, such that on input ( f1, . . . , fs), the circuitU (x) outputs f (x).
This circuit has a decomposition circuit of size poly(n, log(s)), which we denote
by U (x)

de . We also denote by L the number of gates in the circuit U (x).
• Let sxiO be a δ-secure, β-compressing SXIO scheme.
• Let IBE = (IBE.Setup, IBE.KeyGen, IBE.Enc, IBE.Dec) be δ-secure, succinct,
IBE scheme with α-compression for the identity space being ID = [s] × {0, 1}.

• Let (Gar.CirEn,Gar.InpEn,Gar.De) be a decomposable garbling scheme with
(σ, τ, δ)-decomposable indistinguishability where τ = s2O(d) and σ =
poly(λ, n, d, log(s)). Such schemes are implied by δ-secure one-way functions
(Theorem 4.1).

• Let PPRF = (PRF.Gen,PRF.Ev,PRF.Punc) be a δ-secure puncturable PRF.
These are implied by δ-secure one-way functions [11,23,30,45].

Construction The scheme consists of the following algorithms.

PKFE.Setup(1λ):

• Run (MSKibe,MPKibe) ← IBE.Setup(1λ).
• Set MSK = MSKibe,MPK = MPKibe.

PKFE.Key(MSK, f ):

• Compute SKi, fi ← IBE.KeyGen(MSKibe, (i, fi )) for i ∈ [s], where f =
( f1, . . . , fs).

• Return SK f = {SKi, fi }i∈[s].
PKFE.Enc(MPK, x):

• Compute U (x)
de and pick a garbling key K ← {0, 1}λ and a punctured key

S ← PRF.Gen(1λ);
• Generate an obfuscation ĨGC = sxiO(1λ, IGC[K , S,MPK]) of the input gar-
bling circuit defined in Fig. 5;

• Generate anobfuscation G̃GC = sxiO(1λ,GGC[K ,U (x)
de ])of the gate garbling

circuit defined in Fig. 6;

• Return CTx = (ĨGC, G̃GC).

PKFE.Dec(SK f ,CTx ):

• For i ∈ [s], run ĨGC(i, fi ) to obtain an IBE ciphertext, and decrypt the output
using SKi, fi to obtain f̂i .

• For all g ∈ [L], run G̃GC(g), in order to obtain the garbled gate ̂Gg .

• Return y ← Gar.De(̂C, f̂ ), with ̂C = {

̂Gg
}

g∈[L] and f̂ =
{

f̂i
}

i∈[s].
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Fig. 5. Circuit IGC[K , S,MPK].

Fig. 6. Circuit GGC[K ,U (x)
de ].

Proof of Theorem 5.2. We now prove Theorem 5.2, starting by correctness, continuing
to succinctness, and ending with the proof of security. In what follows, let s, d, and n
be bounds on the size, the depth, and the input length of functions in C.

Correctness

Correctness immediately follows from the correctness of the underlying identity-based
encryption and decomposable garbling schemes.

Padding Parameter

The proof of security relies on the indistinguishability guarantee of SXIO with respect
to two hybrid sequences of circuits, one corresponding to input garbling, and the other
one corresponding to gate garbling. Thus, we pad every circuit of each sequence to the
maximal size of any circuit in the sequence. That is, we consider

SIGC = {IGC,HIGCt ,HIGC( j)
t |1 ≤ t ≤ τ, 1 ≤ j ≤ 5}

SGGC = {GGC,HGGCt ,HGGC( j)
t |1 ≤ t ≤ τ, 1 ≤ j ≤ 5} ,

and let padIGC = maxC∈SIGC |C | and padGGC = maxC∈SGGC |C |.
We bound padIGC and padGGC as follows:

• Any circuit in SIGC consists of the following:

– A punctured PRF computation (deriving randomness for IBE encryption) over
a domain of size O(s), using keys that may be punctured at at most con-
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stant number of points. The contribution to the circuit size is bounded by
poly(λ, log(s)).

– Input garbling (possibly via one of the hybrid input garbling circuits). The
contribution to the circuit size is bounded by σ = poly(λ, d, log(s), n).

– IBE encryption of garbled inputs, using a hardwired public key and up to a
constant number of hardwired ciphertexts. The contribution to the circuit size
is bounded by sα · poly(λ, σ ) = sα · poly(λ, d, log(s), n).

Overall,

padIGC ≤ sα · poly(λ, n, d, log(s)) .

• Any circuit in SGGC performs a gate garbling operation (possibly via one of the
hybrid gate garbling circuits). The overall contribution to the circuit size is bounded
by

padGGC ≤ σ ≤ poly(λ, n, d, log(s)) .

Succinctness

We show that for any β < γ < 1 and an appropriate choice of α < 1, the size of the
encryption circuit is bounded by sγ · poly(λ, n, d).

Let sxiO be β-compressing. Let e be the size of the obfuscated circuits ĨGC and G̃GC
created during encryption. Since the input spaces of IGC and GGC are, respectively,
[2s] and [L], SXIO guarantees:

e ≤ (2s)β · poly(λ, |IGC|) + Lβ · poly(λ, |GGC|)
≤ sβ · poly(λ,padIGC) + Lβ · poly(λ,padGGC) ,

where poly is a fixed polynomial. Then, using the above bounds on padIGC and padGGC,
and denoting by c = O(1) the polynomial blowup in the circuit size incurred in sxiO,
we obtain:

e ≤ sβ+cα · poly(λ, n, d, log(s)) + Lβ · poly(λ, n, d, log(s)) .

Recalling that L is bounded by s3 · polylog(s), and that 3β < γ , we deduce that

e ≤ sγ · poly(λ, n, d) ,

provided that we choose α such that β + αc < γ (which is possible since β < γ and c
is a constant).

Security Proof

Let x0, x1 ∈ {0, 1}n denote the challenge messages and f denote the function query
provided by the adversary, and assume f (x0) = f (x1). Let U (x0) and U (x1) be the
universal circuits defined similarly to U (x) above, and U (x0)

de and U (x1)
de their respective
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Fig. 7. Circuit HIGCt [K , S,MPK].

decomposition circuits. Note that U (x0) and U (x1) have the same topology (they are
the same universal circuit with a different hardwired input of the same size n), and in
particular, their decomposition circuits are of the same size. Furthermore, these two
circuits also satisfy

U (x0)( f ) = f (x0) = f (x1) = U (x1)( f ) .

U (x0) and U (x1) satisfy the properties required by the (σ, τ, δ)-decomposable indistin-
guishability security of the decomposable garbling scheme, and thus, there exist circuits
{

Gar.HInpEn(t),Gar.HCirEn(t)
∣

∣ t ∈ [τ ]
}

, whose size is atmost σ , as well as (possibly

inefficient) hybrid functions
{

Gar.HPunc(t)
∣

∣ t ∈ [τ ]
}

as given by Definition 4.1.

We accordingly consider a sequence of τ + 2 hybrid games:

Hyb0: The first game is ExptFEA (1λ, 0), where the adversary hands x0, x1, f and
gets back from the challenger an encryption of x0.
Hybt (1 ≤ t ≤ τ ): The t-th game is defined similarly to ExptFEA (1λ, 0) except
that the challenge ciphertext CT∗ consists of obfuscations of corresponding hybrid
circuits:

CT∗ = (sxiO(1λ,HIGCt [K , S,MPK]), sxiO(1λ,HGGCt [K ])) ,

where circuits HIGCt [K ,MPK] and HGGCt [K ] are defined in Fig. 7 and Fig. 8,
respectively, and K is the key used in the decomposable garbling scheme for com-
puting the challenge ciphertext.
Hybτ+1: The last game is ExptFEA (1λ, 1), where x1 is encrypted (rather than x0).

We first note that Hyb0 ≈δ Hyb1 and Hybτ ≈δ Hybτ+1. Indeed, by the guarantee
of the decomposable garbling scheme (Definition 4.2), the obfuscated circuits in the
respective hybrids compute the exact same function (and are padded to the same size).
δ-indistinguishability follows by the SXIO guarantee.

We now argue that hybridsHybt andHybt+1, for 1 ≤ t ≤ τ −1, are computationally
indistinguishable.
Indistinguishability of Hybt and Hybt+1 (1 ≤ t ≤ τ − 1)
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Fig. 8. Circuit HGGCt [K ].

Fig. 9. Circuit HIGC( j)
t [K ( j), S( j),MPK,CT( j)

i∗, fi∗ ,CT( j)
i∗,1− fi∗ ], 1 ≤ j ≤ 5.

Fig. 10. Circuit HGGC( j)
t [K ( j), ̂G( j)

g∗ ], 1 ≤ j ≤ 5.

The indistinguishability of each such two hybrid games is proven by a sequence of
five intermediate hybrid games Hyb(1)

t , . . . ,Hyb(5)
t as follows. The five hybrid games

only differ from Hybt in the way the challenge ciphertext CT∗ is computed. For 1 ≤
j ≤ 5, the challenge ciphertext is computed in Hyb( j)

t as the obfuscations of the two
circuits HIGC( j)

t and HGGC( j)
t , described in Figs. 9 and 10, where the role of the

hardwired values K ( j), S( j),CT( j)
i∗, fi∗ ,CT

( j)
i∗,1− fi∗ and ̂G( j)

g∗ is described below. We also

let (K ∗, g∗, i∗) ← Gar.HPunc(t)(K ). Then, fi∗ denotes the i∗-th bit of the function
queried by the adversary.
We now prove indistinguishability of Hybt and Hybt+1 as follows:
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• Hybt to Hyb(1)
t : in Hyb(1)

t , we fix S(1) ← PRF.Punc(S, {(i∗, 1 − fi∗)}) and
K (1) ← K ∗. We hardwire the value CT(1)

i∗, fi∗ ←
IBE.Enc(MPK, (i∗, fi∗),Gar.HInpEn(t)(i∗, fi∗ ; K );PRF.EvS(1) (i∗, fi∗)), aswell

as CT(1)
i∗,1− fi∗ ← IBE.Enc(MPK, (i∗, 1 − fi∗),Gar.HInpEn(t)(i∗, 1 − fi∗ ; K );

PRF.EvS(i∗, 1 − fi∗)) in the first circuit, and ̂G(1)
g∗ ← Gar.HCirEn(t)(g∗; K ) in

the second circuit. Therefore, it is immediate that, by definitions, both circuits are
functionally equivalent in both games since hardwired values are correctly com-
puted, so the two hybrid games are computationally indistinguishable under the
security of sxiO. Hence, we have Hybt ≈δ Hyb

(1)
t .

• Hyb(1)
t toHyb(2)

t : The difference betweenHyb(1)
t andHyb(2)

t is that we now define
CT(2)

i∗, fi∗ ← IBE.Enc(MPK, (i∗, fi∗),Gar.HInpEn(t+1)(i∗, fi∗ ; K );
PRF.EvS(2) (i∗, fi∗)) in the first circuit, and ̂G(2)

g∗ ← Gar.HCirEn(t+1)(g∗; K ).
Other values remain the same as before. Thus, these two hybrid games are com-
putationally indistinguishable assuming decomposable indistinguishability of the
decomposition garbling scheme, and we have Hyb(1)

t ≈δ Hyb
(2)
t .

• Hyb(2)
t to Hyb(3)

t : In the third hybrid game, we only modify the previous game
by letting CT(3)

i∗,1− fi∗ ← IBE.Enc(MPK, (i∗, 1 − fi∗),Gar.HInpEn(t)(i∗, 1 −
fi∗ ; K ); r), with r being a fresh uniformly random value. Other values remain
the same as before. Assuming PRF.Ev is a δ-secure puncturable pseudorandom
function, these two hybrid games are computationally indistinguishable, and we
have Hyb(2)

t ≈δ Hyb
(3)
t .

• Hyb(3)
t to Hyb(4)

t : In the fourth hybrid game, we define CT(4)
i∗,1− fi∗ ←

IBE.Enc(MPK, (i∗, 1 − fi∗),Gar.HInpEn(t+1)(i∗, 1 − fi∗; K ); r), with r being
a fresh uniformly random value. Other values remain the same as before. Assum-
ing the security of the identity-based encryption scheme, these two hybrid games
are computationally indistinguishable, and we have Hyb(3)

t ≈δ Hyb
(4)
t . The reduc-

tion is immediate but crucially relies on the fact that CT(4)
i∗,1− fi∗ is computed as

an encryption for the identity (i∗, 1 − fi∗) and not for the identity (i∗, fi∗), since
the secret key for identity (i∗, fi∗) is revealed to the adversary when giving the
functional secret key for f , but not the secret key for identity (i∗, 1 − fi∗).

• Hyb(4)
t to Hyb(5)

t : In this fifth hybrid game, we once again use randomness com-
puted with the PPRF by letting CT(5)

i∗,1− fi∗ ← IBE.Enc(MPK, (i∗, 1 − fi∗),

Gar.HInpEn(t+1)(i∗, 1− fi∗ ; K );PRF.EvS(i∗, 1− fi∗)). Other values remain the
same as before. Once again, assuming PRF.Ev is a secure puncturable pseudoran-
dom function, we have Hyb(4)

t ≈δ Hyb
(5)
t .

• Hyb(5)
t to Hybt+1: By definition, it is clear that the two circuits used in Hyb(5)

t

are functionally equivalent to the two circuits used inHyb(5)
t , sinceGar.HInpEn(t)

(i, b; K (5)) = Gar.HInpEn(t+1)(i, b; K ) for any (i, b) with that i �= i∗. Therefore,
under the security of sxiO, these two hybrid games are computationally indistin-
guishable, and we have Hyb(5)

t ≈δ Hybt+1.

This concludes the proof of Theorem 5.2. �
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5.3. Weakly Succinct PKFE for Non-boolean Functions

In this section,wegive a transformation fromweakly succinct PKFEschemes for boolean
functions into ones for non-boolean functions.

Theorem 5.3. Let C = {Cλ}λ∈N be a family of circuits (with multiple output bits) and
let n(λ), s(λ), d(λ) be bounds on their input length, size, and depth (respectively). For
any constants β < γ < 1, assuming a β-compressing SXIO for P/poly, there exists
a constant α, such that given any α-compressing weakly succinct PKFE for boolean
functions of size s · polylog(s) and depth O(d), and one-way functions, there exists a
succinct PKFE for C with compression factor γ . If all primitives are δ-secure so is the
resulting scheme.

The transformation is essentially the same transformation presented in [51, Section
4], with the following differences:

• They use XIO rather than SXIO, which results in a PKFE scheme where only
the size of ciphertexts is compressed, whereas the time to encrypt may be large.
They then make an extra step, based on LWE, to make encryption efficient. Using
SXIO directly as we do, allows avoiding this step.

• They start from weakly succinct PKFE for boolean functions where the size of
ciphertexts is completely independent of the size s of the function class considered.
Due to this, they can start from XIO with any compression factor β < 1. In our
notion of weakly succinct, there is dependence on sα , for some α < 1, and we need
to make sure that β and α are appropriately chosen to account for this.

• As stated, their notion of weak succinctness for PKFE does not explicitly scale with
the depth of the function class considered. Eventually, they apply their transforma-
tion to function classes in NC1, assuming puncturable PRFs in NC1 (which exist
under LWE). Our succinctness notion allows polynomial dependence on the depth,
which should be roughly preserved through the transformation.

For the sake of completeness, we describe the transformation in full and then analyze
the efficiency aspects. The proof of security is identical to the one in [51] and is omitted.
Construction Let BFE = (BFE.Setup,BFE.Key,BFE.Enc,BFE.Dec) be a weakly
succinct single-key public-key FE scheme for boolean functions. Our weakly succinct
single-key public-key FE scheme for multi-bit functions is given by the following algo-
rithms.

Setup(1λ):

• Compute (BFE.MPK,BFE.MSK) ← BFE.Setup(1λ).
• Output (MPK,MSK) = (BFE.MPK,BFE.MSK).

KeyGen(MSK, f ):

• RunBFE.SKC f ← BFE.Key(BFE.MSK,C f )whereC f : {0, 1}n×{0, 1}log 


is a function that takes (x, i) as inputs and outputs the i-th bit (out of 
) of f (x)
(this is a boolean function).

Enc(MPK, x ∈ {0, 1}n):
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Fig. 11. Circuit SE[x, S,BFE.MPK].

• Sample a puncturable PRF key S ← PRF.Gen(1λ),
• Generate sxiO(SE[x, S,BFE.MPK]) where the circuit SE[x, S,BFE.MPK]
is described in Fig. 11.

• Output CT = sxiO(SE[x, S,BFE.MPK]).
Dec(SK f ,CTx ):

• Compute BFE.CTi ← CT(i), and yi ← BFE.Dec(BFE.SKC f ,BFE.CTi )

for all i ∈ [
].
• Output y = (y1, . . . , y
).

Proof of Theorem 5.3. We now prove Theorem 5.3. We focus on succinctness. The
proof of security is based on a standard probabilistic IO argument [25], is identical to
the one given by Lin et al. [51, Theorem 6], and thus omitted. In what follows, let s, d,
n, and 
 be bounds on the size, the depth, input and output lengths of functions in C.

Padding Parameter

In the proof of security [51], the indistinguishability guarantee of SXIO is invoked for
the circuit SE and several hybrid versions of this circuit. All of these circuits compute
a puncturable pseudorandom function on an input i ∈ [
] and an encryption using
BFE.Enc. Therefore, their size is bounded by poly(λ, log(
)) + e′ where e′ is the size
of the encryption circuit for the class of boolean circuits C′ = {

C f
∣

∣ f ∈ C}

.
To bound e′, we note that the size and depth of circuits in C′ are preserved up to

polylogarithmic factors (induced by selecting one of 
 ≤ s output bits):

s′ := ∣

∣C f
∣

∣ ≤ s · polylog(s) and d ′ := depth(C f ) ≤ O(d) .

Thus, by the succinctness guarantee of the PKFE for boolean functions, we know that

e′ ≤ s′α · poly(d ′, λ, n + log 
) ≤ sα · poly(d, log(s), λ, n) ,

where α is the compression factor of the PKFE. Hence, we obtain:

pad ≤ sα · poly(d, log(s), λ, n) .
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[16]

[51]

[22]

Fig. 12. An illustration of the path from PKE and 1-SKFE to IO. Dashed lines denote known results. White
backgrounds denote our ingredients or goal. Primitives in rounded rectangles are subexponentially secure.
γ -SXIO denotes SXIO with compression factor γ , which is an arbitrary constant less than 1. We ignore
puncturable PRF in this figure since it is implied by OWF.

Succinctness

We show that for any β < γ < 1 and an appropriate choice of α < 1, the size of the
encryption circuit is bounded by sγ · poly(λ, n, d).

Let sxiO be β-compressing. Then, by the SXIO guarantee, the size e of the obfuscated
encryption circuit is bounded by

e ≤ 
β · poly(λ, |SE|) ≤ sβ · poly(λ,pad) ,

where SE is the obfuscated encryption circuit, and poly is a fixed polynomial. Then,
letting c = O(1) represent the polynomial blowup in circuit size incurred by sxiO, we
can bound

e ≤ sβ · sc·α · poly(d, n, λ, log(s)) ≤ sγ · poly(d, n, λ) ,

where the last inequality holds provided that we choose the constantα such that cα+β <

γ . (Such a constant indeed exist since β < γ and c is a constant.) �

5.4. Putting It All Together: From SKFE and PKE to IO

We now show how the results proved in this section come together to give our main
result. The main implications are also illustrated in Fig. 12.
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Theorem 5.4. Let C = {Cλ}λ∈N be a family of circuits (with multiple output bits)
and let n(λ), s(λ), d(λ) be bounds on their input length, size, and depth (respectively).
Then, for any constant γ < 1, there exists a constant β, such that given any δ-
secure, β-compressing SXIO for P/poly, and δ-secure PKE, there exists 2dsδ-secure,
γ -compressing, weakly succinct PKFE for C.

Proof. Fix some constant γ . The theorem follows from the previous theorems in this
section as follows:

• ByTheorem 5.3, there exist constants β ′, α′, such that 2dsδ-secure, γ -compressing,
weakly succinct PKFE for C, follows from 2dsδ-secure, β ′-compressing SXIO and
2dsδ-secure, α′-compressing, weakly succinct PKFE for boolean functions of size
s · polylog(s) and depth O(d), and 2dsδ-secure one-way functions.

• By Theorem 5.2, there exist constants β ′′, α′′ such that PKFE as required in the
previous item follows from δ-secure, β ′′-compressing SXIO and δ-secure, α′′-
compressing IBE, and δ-secure one-way functions.

• By Theorem 5.1, there exists a constant β ′′′ (in fact any β ′′′ < α′′), such that IBE
as required in the previous item follows from δ-secure, β ′′′-compressing SXIO and
δ-secure PKE.

• In all of the above δ-secure one-way functions follow from δ-secure PKE.

Setting β := min(β ′, β ′′, β ′′′), we derive the theorem. �

Combining the above theorem with the result from Sect. 3, we obtain the following
corollary.

Corollary 5.1. If there exist (1-input) SKFE for P/poly and PKE, both subexponen-
tially secure, then there exists IO for P/poly.

Proof. Fix any constants ε, γ < 1. For δ(λ) = 2−λε
.

• By Theorem 2.2 [22], for any constant γ < 1, IO is implied by δ-secure, γ -
compressing, weakly succinct PKFE.

• By the Theorem 5.4, there exists β, such that PKFE as required in the previous item
follows from β-compressing, δ-secure SXIO and δ-secure PKE, when setting the
security parameter for the SXIO and PKE to λ̃ = λ · d2/ε—this accounts for the
poly(2d) security loss, and only incurs poly(λ, d, log(s)) overhead, which satisfies
the succinctness requirements of the PKFE.

• By Theorem 3.1, letting t = 1
β

− 1, SXIO as required in the previous item follows
from δ-secure t-input SKFE.

• By Theorem 2.1 [16], the required t-input SKFE follows from any 1-input, δ-secure
SKFE.

The corollary follows. �

Remark 5.1. (The security loss) In order, the known reductions [3,22] of IO to weakly
succinct PKFE incur a subexponential loss. Accordingly, reducing IO to SKFE based on
our results incurs a similar loss. However, when restricting attention, to the transforma-
tion from SKFE to (weakly succinct) PKFE, then the loss is poly(2d , λ), for circuits of
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Fig. 13. CircuitWE[x,PK].

depth d. In particular, for NC1, our transformation incurs only polynomial security loss.
Such a PKFE for NC1 can then be bootstrapped to all polynomial-size circuits using the
transformation of [1], and assuming also weak PRFs in NC1.

In concurrent work [36,50], it is shown that weakly succinct single-key PKFE can
then be polynomially reduced to PKFE. In summary, SKFE and PRFs in NC1 can be
polynomially reduced to PKFE for all polynomial-size circuits.

6. Polynomially Secure PKE from Secret-Key FE

In this section, we construct PKE from SKFE. Our starting point is Corollary 3.1 that
directly follows from Theorems 2.1 and 3.1.

We now show how to construct a PKE scheme from such SXIO.
The construction Let

{

PRG : {0, 1}n → {0, 1}2n}n∈N be a length-doubling pseudoran-
dom generator that is 2−n/ log log n-secure. Let sxiO be a SXIO with compression factor
γ (λ) = O(1/ log log λ) (and poly(λ) security) for circuits of size at most 2O((log λ)ε).
The scheme PK E = (KeyGen,Enc,Dec) is defined as follows:

KeyGen(1λ):

• Sample a PRG seed s ← {0, 1}log λ/γ (λ).
• Output PK = PRG(s) and SK = s.

Enc(PK, x):

• Construct the (witness encryption) circuitWE[x,PK] described in Fig. 13 that
takes s′ ∈ {0, 1}log λ/γ (λ) as input and outputs x if and only if PK = PRG(s′)
holds.

• Output CT = sxiO(WE[x,PK])
Dec(SK,CT):

• Compute x ′ = CT(SK).

Proposition 6.1. PK E is a (polynomially secure) public-key encryption scheme.

Proof sketch. The scheme is clearly correct. We now note that the scheme is efficient;
namely, all algorithms run in time poly(λ) in the security parameter λ. This is clearly the
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case for KeyGen and Dec. As for Enc, by the SXIO compression guarantee, the time
required to compute the obfuscation is 2γ (λ)·log λ/γ (λ) ·poly(λ, |WE[b,PK]|) = poly(λ).
Note thatwe can apply sxiO toWE[b,PK] since |WE[b,PK]| is bounded by poly(log λ)

and it is less than 2O((log λ)ε). (This bound comes from Corollary 3.1.)
We turn to prove that the scheme is semantically secure. For this purpose, we first

consider an alternative encryption scheme where the public key is generated as a truly
random string PK ← {0, 1}2 log λ/γ (λ). By the security of the PRG, any polysize dis-
tinguisher cannot tell apart a real public key from such a fake public key except with
advantage

2−�(n(λ)/ log log n(λ)) = 2
−�

(

log λ/γ (λ)
log log(log λ/γ (λ))

)

≤ 2
−�

( − log λ·log log λ
log log log λ

)

= 2−ω(log λ) .

We next note that, by a union bound over all possible seeds, a random PK does not
have any preimage under PRG, except with probability

2log λ/γ (λ) · 2−2 log λ/γ (λ) = 2− log λ/γ (λ) ≤ 2−ω(log λ) .

In this case, WE[b,PK] is functionally equivalent to a circuit WE[⊥,PK] that is inde-
pendent of b and always outputs ⊥. Security thus follows from the usual IO guarantee.

�
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