
https://doi.org/10.1007/s00145-019-09327-x
J Cryptol (2020) 33:406–458

From Minicrypt to Obfustopia via Private-Key
Functional Encryption

Ilan Komargodski∗
Cornell Tech, New York, USA
komargodski@cornell.edu

Gil Segev†
School of Computer Science and Engineering, Hebrew University of Jerusalem, 91904 Jerusalem, Israel

segev@cs.huji.ac.il

Communicated by Rafail Ostrovsky.

Received 9 August 2017 / Revised 21 December 2018
Online publication 12 June 2019

Abstract. Private-key functional encryption enables fine-grained access to symmet-
rically encrypted data. Although private-key functional encryption (supporting an un-
bounded number of keys and ciphertexts) seems significantly weaker than its public-
key variant, its known realizations all rely on public-key functional encryption. At the
same time, however, up until recently it was not known to imply any public-key prim-
itive, demonstrating our poor understanding of this primitive. Bitansky et al. (Theory
of cryptography—14th international conference, TCC 2016-B, 2016) showed that sub-
exponentially secure private-key function encryption bridges from nearly exponential
security in Minicrypt to slightly super-polynomial security in Cryptomania, and from
sub-exponential security in Cryptomania to Obfustopia. Specifically, given any sub-
exponentially secure private-key functional encryption scheme and a nearly exponen-
tially secure one-way function, they constructed a public-key encryption scheme with
slightly super-polynomial security. Assuming, in addition, a sub-exponentially secure
public-key encryption scheme, they then constructed an indistinguishability obfuscator
(or a public-key functional encryption scheme if the given building blocks are polyno-
mially secure).

We show that quasi-polynomially secure private-key functional encryption bridges
from sub-exponential security in Minicrypt all the way to Cryptomania. First, given
any quasi-polynomially secure private-key functional encryption scheme, we construct
an indistinguishability obfuscator for circuits with inputs of poly-logarithmic length.

∗Supported in part by a Packard Foundation Fellowship and by an AFOSR Grant FA9550-15-1-0262.
Work done while being a Ph.D. student at the Weizmann Institute of Science, supported by grants from the
Israel Science Foundation (No. 950/16) and by a Levzion Fellowship.

†Supported by the European Union’s 7th Framework Program (FP7) via a Marie Curie Career Integration
Grant, by the European Union’s Horizon 2020 Framework Program (H2020) via an ERC Grant (Grant No.
714253), by the Israel Science Foundation (Grant No. 483/13), by the Israeli Centers of Research Excellence
(I-CORE) Program (Center No. 4/11), by the US-Israel Binational Science Foundation (Grant No. 2014632),
and by a Google Faculty Research Award.

© International Association for Cryptologic Research 2019

http://crossmark.crossref.org/dialog/?doi=10.1007/s00145-019-09327-x&domain=pdf

From Minicrypt to Obfustopia via Private-Key Functional Encryption 407

Then, we observe that such an obfuscator can be used to instantiate many natural appli-
cations of indistinguishability obfuscation. Specifically, relying on sub-exponentially
secure one-way functions, we show that quasi-polynomially secure private-key func-
tional encryption implies not just public-key encryption but leads all the way to public-
key functional encryption for circuits with inputs of poly-logarithmic length. More-
over, relying on sub-exponentially secure injective one-way functions, we show that
quasi-polynomially secure private-key functional encryption implies a hard-on-average
distribution over instances of a PPAD-complete problem. Underlying our constructions
is a new transformation from single-input functional encryption to multi-input func-
tional encryption in the private-key setting. The previously known such transformation
(Brakerski et al. J Cryptol 31(2):434–520, 2018) required a sub-exponentially secure
single-input scheme, and obtained a scheme supporting only a slightly super-constant
number of inputs. Our transformation both relaxes the underlying assumption and sup-
ports more inputs: Given any quasi-polynomially secure single-input scheme, we obtain
a scheme supporting a poly-logarithmic number of inputs.

Keywords. Private-key functional encryption,Multi-input functional encryption, PPAD
hardness, Indistinguishability obfuscation.

1. Introduction

Functional encryption [20,49,52] allows tremendous flexibility when accessing en-
crypted data: Such encryption schemes support restricted decryption keys that allow
users to learn specific functions of the encrypted data without leaking any additional
information. We focus on the most general setting where the functional encryption
schemes support an unbounded number of functional keys in the public-key setting, and
an unbounded number of functional keys and ciphertexts in the private-key setting. In
the public-key setting, it has been shown that functional encryption is essentially equiv-
alent to indistinguishability obfuscation [4,6,22,33,54], and thus, it currently seems
somewhat challenging to base its security on standard cryptographic assumptions (es-
pecially given the various attacks on obfuscation schemes and their underlying building
blocks [10,25–28,40,48]—see [5, Appendix A] for a summary of these attacks).
Luckily, when examining the various applications of functional encryption (see, for

example, the survey by Boneh et al. [21]), it turns out that private-key functional encryp-
tion suffices in many interesting scenarios.1 However, although private-key functional
encryption may seem significantly weaker than its public-key variant, constructions of
private-key functional encryption schemes are currently known based only on public-key
functional encryption.2

Minicrypt, Cryptomania, or Obfustopia? For obtaining a better understanding of
private-key functional encryption, we must be able to position it correctly within the hi-
erarchy of cryptographic primitives. Up until recently, private-key functional encryption

1As a concrete (yet quite general) example, consider a user who stores her data on a remote server: The
user uses the master secret key both for encrypting her data, and for generating functional keys that will enable
the server to offer her various useful services.

2This is not true in various restricted cases, for example, when the functional encryption scheme has to
support an a priori bounded number of functional keys or ciphertexts [39]. However, as mentioned, we focus
on schemes that support an unbounded number of functional keys and ciphertexts.

408 I. Komargodski, G. Segev

was not known to imply any cryptographic primitives other than those that are essentially
equivalent to one-way functions (i.e.,Minicrypt primitives [42]).Moreover, Asharov and
Segev [8] proved that as long as a private-key functional encryption scheme is invoked
in a black-box manner, it cannot be used as a building block to construct any public-key
primitive (i.e., Cryptomania primitives [42]).3 This initial evidence hinted that private-
key functional encryption may belong to Minicrypt, and thus may be constructed based
on extremely well-studied cryptographic assumptions.
Recently, Bitansky et al. [15] showed that private-key functional encryption is more

powerful than suggested by the above initial evidence. First, any sub-exponentially
secure private-key functional encryption scheme and any (nearly) exponentially se-
cure one-way function can be used to construct a public-key encryption scheme.4 Al-
though their underlying building blocks are at least sub-exponentially secure, the re-
sulting public-key scheme is only slightly super-polynomially secure. Second, any sub-
exponentially secure private-key functional encryption schemeandany sub-exponentially
secure public-key encryption scheme imply a full-fledged indistinguishability obfusca-
tor. Lastly, in the polynomial security regime, together with a result of [38,47], any
private-key functional encryption scheme and any public-key encryption scheme (and
PRFs in NC1) can be used to construct a full-fledged public-key functional encryption
scheme.
Overall, it is known that sub-exponentially secure private-key functional encryption

bridges from nearly exponential security inMinicrypt to slightly super-polynomial secu-
rity in Cryptomania, and from (sub-exponential security in) Cryptomania to Obfustopia
(see Fig. 1). The question we are interested in is whether private-key functional encryp-
tion can bridge, by itself, from Minicrypt to Obfustopia, without assuming additional
“Cryptomaniac” assumptions.

1.1. Our Contributions

We show that quasi-polynomially secure private-key functional encryption bridges from
sub-exponential security in Minicrypt all the way to Obfustopia. Given any quasi-
polynomially secure private-key functional encryption scheme, we construct a (quasi-
polynomially secure) indistinguishability obfuscator for circuits with inputs of poly-
logarithmic length and sub-polynomial size.

Theorem 1.1. (Informal)Assumingaquasi-polynomially secureprivate-key functional
encryption scheme for polynomial-size circuits, there exists an indistinguishability ob-
fuscator for the class of circuits of size 2(log λ)ε with inputs of length (log λ)1+δ bits, for
some positive constants ε and δ.

Underlying our obfuscator is a new transformation from single-input functional en-
cryption to multi-input functional encryption in the private-key setting. The previously
known such transformation of Brakerski et al. [13] required a sub-exponentially secure

3This holds even if the construction is allowed to generate functional keys (in a non-black-box manner)
for any circuit that invokes one-way functions in a black-box manner.

4Bitansky et al. overcome the black-box barrier introduced by Asharov and Segev [8] by relying on the
non-black-box construction of a private-key multi-input functional encryption scheme of Brakerski et al. [13].

From Minicrypt to Obfustopia via Private-Key Functional Encryption 409

single-input scheme, and obtained amulti-input scheme supporting only a slightly super-
constant number of inputs. Our transformation both relaxes the underlying assumption
and supports more inputs: Given any quasi-polynomially secure single-input scheme,
we obtain a multi-input scheme supporting a poly-logarithmic number of inputs.
We demonstrate the wide applicability of our obfuscator by observing that it can be

used to instantiate natural applications of (full-fledged) indistinguishability obfuscation
for polynomial-size circuits. The kind of applications where our obfuscator can be used
are those where the obfuscated circuit gets as input a string whose length is proportional
to a different security parameter. In this case, we can assume stronger security on the
primitive that uses this input and thus have a shorter input.We exemplify this observation
by constructing a public-key functional encryption scheme (based on [54]), and a hard-
on-average distribution of instances of a PPAD-complete problem (based on [16]).

Theorem 1.2. (Informal)Assumingaquasi-polynomially secureprivate-key functional
encryption scheme for polynomial-size circuits, and a sub-exponentially secure one-way
function, there exists a public-key functional encryption scheme for the class of circuits
of size 2(log λ)ε with inputs of length (log λ)1+δ bits, for some positive constants ε and δ.

Theorem 1.3. (Informal)Assumingaquasi-polynomially secureprivate-key functional
encryption scheme for polynomial-size circuits, and a sub-exponentially secure injec-
tive one-way function, there exists a hard-on-average distribution over instances of a
PPAD-complete problem.

Compared to thework ofBitansky at el. [15], Theorem1.2 shows that private-key func-
tional encryption implies not just public-key encryption but leads all the way to public-
key functional encryption. Furthermore, in terms of underlying assumptions, whereas
Bitansky et al. assume a sub-exponentially secure private-key functional encryption
scheme and a (nearly) exponentially secure one-way function, we only assume a quasi-
polynomially secure private-key functional encryption scheme and a sub-exponentially
secure one-way function.
In addition, recall that average-case PPAD hardness was previously shown based

on compact public-key functional encryption (or indistinguishability obfuscation) for
polynomial-size circuits and one-way permutations [37]. We show average-case PPAD
hardness based on quasi-polynomially secure private-key functional encryption and sub-
exponentially secure injective one-way function. In fact, as shown by Hubáček and
Yogev [41], our result (as well as [16,37]) implies average-case hardness for CLS, a
proper subclass of PPAD and PLS [31]. See Fig. 1 for an illustration of our results.

1.2. Overview of Our Constructions

In this section, we provide a high-level overview of our constructions. First, we recall
the functionality and security requirements of multi-input functional encryption (MIFE)
in the private-key setting, and explain the main ideas underlying our new construction of
a multi-input scheme. Then, we describe the obfuscator we obtain from our multi-input
scheme, and briefly discuss its applications to public-key functional encryption and to
average-case PPAD hardness.

410 I. Komargodski, G. Segev

Fig. 1. An illustration of our results (dashed arrows correspond to trivial implications).

Multi-input Functional Encryption In a private-key t-input functional encryption
scheme [32], the master secret key msk of the scheme is used for encrypting any mes-
sage xi to the i th coordinate, and for generating functional keys for t-input functions.
A functional key sk f corresponding to a function f enables to compute f (x1, . . . , xt)
given Enc(x1, 1), . . . ,Enc(xt , t). Building upon the previous notions of security for
private-key multi-input functional encryption schemes [14,32], we consider a strength-
ened notion of security that combines both message privacy and function privacy (as
in [1,19] for single-input schemes and as in [4,13] for multi-input schemes), to which we
refer as full security. Specifically, we consider adversaries that are given access to “left
or right” key-generation and encryption oracles.5 These oracles operate in one out of two
modes corresponding to a randomly chosen bit b. The key-generation oracle receives as
input pairs of the form (f0, f1) and outputs a functional key for the function fb. The en-
cryption oracle receives as input triples of the form (x0, x1, i), and outputs an encryption
of the message xb with respect to coordinate i . We require that no efficient adversary can
guess the bit b with probability noticeably higher than 1/2, as long as for each such t +1
queries (f0, f1), (x01 , x

1
1), . . . , (x

0
t , x

1
t) it holds that f0(x

0
1 , . . . , x

0
t) = f1(x11 , . . . , x

1
t).

5In this work, we focus on selectively secure schemes, where an adversary first submits all of its encryption
queries, and can then adaptively interact with the key-generation oracle (see Definition 2.7). This notion of
security suffices for the applications we consider in this paper.

From Minicrypt to Obfustopia via Private-Key Functional Encryption 411

The BKS Approach Given any private-key single-input functional encryption scheme
for all polynomial-size circuits, Brakerski et al. [13] constructed a t (λ)-input scheme
for all circuits of size s(λ) = 2(log λ)ε , where t (λ) = δ · log log λ for some fixed positive
constants ε and δ, and λ ∈ N is the security parameter.
Their transformation is based on extending the number of inputs the scheme supports

one by one. That is, for any t ≥ 1, given a t-input scheme they construct a (t + 1)-
input scheme. Relying on the function privacy of the underlying scheme, Brakerski et
al. observed that ciphertexts for one of the coordinates can be treated as a functional key
for a function that has the value of the input hardwired. In terms of functionality, this
idea enabled them to support t + 1 inputs using a scheme that supports t inputs. The
transformation is implemented such that every step of it incurs a polynomial blowup
in the size of the ciphertexts and functional keys.6 Thus, applying this transformation t
times, the size of a functional key for a function of size s is roughly (s ·λ)O(1)t . Therefore,
Brakerski et al. could only apply their transformation t (λ) = δ · log log λ times, and
this required assuming that their underlying single-input scheme is sub-exponentially
secure, and that s(λ) = 2(log λ)ε .

Our ConstructionWe present a new transformation that constructs a 2t-inputs scheme
directly from any t-input scheme. Our transformation shares the same polynomial ef-
ficiency loss as in [13], so applying the transformation t times makes a functional key
be of size (s · λ)O(1)t . But now, since each transformation doubles the number of in-
puts, applying the transformation t times gets us all the way to a scheme that supports
2t = (log λ)δ inputs, as required. We further observe, by a careful security analysis, that
for the resulting scheme to be secure it suffices that the initial scheme is only quasi-
polynomially secure (and the resulting scheme can be made quasi-polynomially secure
as well).

Doubling the Number of Inputs via Dynamic Key Encapsulation As opposed to the
approach of [13] (and the similar idea of [4]), it is much less clear how to combine the
ciphertexts and functional keys of a t-input scheme to satisfy the required functionality
(and security) of a 2t-input scheme.

Our high-level idea is as follows. Given a 2t-input function f , we will generate a
functional key for a function f ∗ that gets t inputs each of which is composed of two
inputs: f ∗(x1‖x1+t , . . . , xt ‖x2t) = f (x1, . . . , x2t).Wewill encrypt each input such that
it is possible to compute an encryption of each pair (x�, x�+t), and evaluate the function
in two steps. First, we concatenate each such pair to get an encryption of x� ‖ x�+t . Then,
given such t ciphertexts, we will apply a functional key that corresponds to f ∗. By the
correctness of the underlying primitives, the output must be correct. There are threemain
issues that we have to overcome: (1) We need to be able to generate the encryption of
x� ‖ x�+t , (2) we need to make sure all of these ciphertexts are with respect to the same
master secret key and that the functional key for f ∗ is also generated with respect to
the same key, and (3) we need to prove the security of the resulting scheme. We now
describe our solution.

6A similar strategy was also employed by Ananth and Jain [4] that showed how to use any t-input private-
key scheme to get a private-key (t + 1)-input scheme under the additional assumption that a public-key
functional encryption scheme exists. Their construction, however, did not incur the polynomial blowup and
could be applied all the way to get a scheme that supports a polynomial number of inputs.

412 I. Komargodski, G. Segev

Fig. 2. The t-input functions Gen f,K and AGGx�+t ,K .

The master secret key for our scheme is a master secret key for a t-input scheme
msk and a PRF key K . We split the 2t input coordinates into two parts: (1) the first t
coordinates 1, . . . , t which we call the “master coordinates” and (2) the last t coordi-
nates 1 + t, . . . , 2t which we call the “slave coordinates”. Our main idea is to let each
combination of the master coordinates implicitly define a master secret “encapsulation”
key mskx1...,xt for a t-input scheme. Details follow.
To encrypt a message x� with respect to a master coordinate 1 ≤ � ≤ t , we encrypt

x� with respect to coordinate � under the key msk. To encrypt a message x�+t with
respect to a slave coordinate 1 ≤ � ≤ t , we generate a functional key for a t-input
function AGGx�+t ,K under the key msk. To generate a functional key for a 2t-input
function f , we generate a functional key for a t-input function Gen f,K under msk.
BothAGGx�+t ,K andGen f,K first compute a pseudorandommaster secret keymskx1...xt
using randomness generated via the PRF key K on input x1 . . . xt . Then, AGGx�+t ,K

computes an encryption of (x� ‖ x�+t) to coordinate � under this master secret key, and
Gen f,K computes a functional key for f ∗ (described above) under this master secret
key (see Fig. 2).
It is straightforward to verify that the above scheme indeed provides the required

functionality of a 2t-input scheme. Indeed, given t ciphertexts corresponding to the
master coordinates ctx1, . . . , ctxt , t ciphertexts corresponding to the slave coordinates
ctx1+t , . . . , ctx2t , and a functional key sk f for a 2t-input function f , we first combine
ctx1, . . . , ctxt with each ctx�+t to get ctx�‖x�+t , which is an encryption of x� ‖ x�+t under
mskx1...xt . Then, we combine ctx1, . . . , ctxt with sk f to get a functional key sk f ∗ for
f ∗ under the same mskx1...xt . Finally, we combine ctx1‖x1+t , . . . , ctxt‖x2t with sk f ∗ to
get f ∗(x1 ‖ x1+t , . . . , xt ‖ x2t) = f (x1, . . . , x2t), as required.
The security proof is done by a sequence of hybrid experiments, where we “at-

tack” each possible sequence of master coordinates separately, namely we handle each
mskx1...xt separately so that it will not be explicitly needed. A typical approach for
such a security proof is to embed all possible encryptions and key-generation queries
under mskx1...xt in the ciphertexts that are generated under msk. Handling the key-
generation queries usingmskx1...xt is rather standard: Whenever a key-generation query
is requested we compute the corresponding functional key under mskx1...xt and embed
it into the functional key. Handling encryption queries under mskx1...xt is significantly
more challenging since for every x1 . . . xt sequence, there are many possible ciphertexts
x�+t of slave coordinates that will be paired with it to get the encryption of x� ‖ x�+t . It
might seem as if there is not enough space to embed all these possible ciphertexts, but
we observe that we can embed each ciphertext ctx�‖x�+t in the ciphertext corresponding
to x�+t (for each such x�+t). This way,mskx1...xt is not explicitly needed in the scheme
and we can use the security of the underlying t-input scheme. In total, the number of
hybrids is roughly T t , where T is an upper bound on the running time of the adversary.

From Minicrypt to Obfustopia via Private-Key Functional Encryption 413

Thus, since t is roughly logarithmic in the security parameter, we have to start with a
quasi-polynomially secure scheme.

FromMIFE toObfuscationGoldwasser et al. [32] observed that multi-input functional
encryption is tightly related to indistinguishability obfuscation [11,33]. Specifically, a
multi-input scheme that supports a polynomial number of inputs (i.e., t (λ) = poly(λ))
readily implies an indistinguishability obfuscator (and vice-versa). We use a more fine-
grained relationship (as observed by Bitansky et al. [15]) that is useful when t (λ) is
small compared to λ: A multi-input scheme that supports all circuits of size s(λ) and
t (λ) inputs implies an indistinguishability obfuscator for all circuits of size s(λ) that
have at most t (λ) · log λ input bits.

This transformation works as follows. An obfuscation of a function f of circuit size
at most s(λ) that has at most t (λ) · log λ bits as input, is composed of t (λ) ·λ ciphertexts
and one functional key. We think of f as a function f ∗ that gets t (λ) inputs each of
which is of length log λ bits. The obfuscation now consists of a functional key for the
circuit f ∗, denoted by sk f = KG(f ∗), and a ciphertext ctx,i = Enc(x, i) for every
(x, i) ∈ {0, 1}log λ × [t (λ)]. To evaluate C at a point x = (x1 . . . xt (λ)) ∈ ({0, 1}log λ)t (λ)

one has to compute and output Dec(sk f , ctx1,1, . . . , ctxt (λ),t (λ)) = f (x). Correctness
and security of the obfuscator follow directly from the correctness and security of the
multi-input scheme.
Given the relationship described above and given ourmulti-input scheme that supports

circuits of size at most s(λ) = 2(log λ)ε that have t (λ) = (log λ)δ inputs for some fixed
positive constants ε and δ, we obtain Theorem 1.1.

Applications of OurObfuscatorOne of the main conceptual contributions of this work
is the observation that an indistinguishability obfuscator as described above (that sup-
ports circuits with a poly-logarithmic number of input bits) is in fact sufficient for many
of the applications of indistinguishability obfuscation for all polynomial-size circuits.
We exemplify this observation by showing how to adapt the construction of Waters [54]
of a public-key functional encryption scheme and the construction of Bitansky et al. [16]
of a hard-on-average distribution for PPAD, to our obfuscator. Such an adaptation is quite
delicate and involves a careful choice of the additional primitives that are involved in the
construction. In a very high level, since the obfuscator supports only a poly-logarithmic
number of inputs, a primitive that has to be securewhen applied on (part of) the input (say
a one-way function), must be sub-exponentially secure. We believe that this observation
may find additional applications beyond the scope of our work.

Using the Multi-input Scheme of [13]. Using the multi-input scheme of [13], one
can get that sub-exponentially secure private-key functional encryption implies indistin-
guishability obfuscation for inputs of length slightly super-logarithmic. However, using
such an obfuscator as a building block seems to inherently require to additionally assume
nearly exponentially secure primitives and the resulting primitives are (at most) slightly
super-polynomially secure.
Our approach, on the other hand, requires quasi-polynomially secure private-key func-

tional encryption. In addition, our additional primitives are only sub-exponentially secure
and the resulting primitives are quasi-polynomially secure.

414 I. Komargodski, G. Segev

1.3. Additional Related Work

Constructions of FE Schemes Private-key single-input functional encryption schemes
that are sufficient for our applications are known to exist based on a variety of as-
sumptions, including indistinguishability obfuscation [33,54], differing-input obfusca-
tion [2,9], and multilinear maps [34]. Restricted functional encryption schemes that
support either a bounded number of functional keys or a bounded number of cipher-
texts can be based on the learning with errors (LWE) assumption (where the length
of ciphertexts grows with the number of functional-key queries and with a bound on
the depth of allowed functions) [36], and even based on pseudorandom generators com-
putable by small-depth circuits (where the length of ciphertexts growswith the number of
functional-key queries and with an upper bound on the circuit size of the functions) [39].
In the work of Bitansky et al. [15, Proposition 1.2 & Footnote 1], it has been shown

that assuming weak PRFs in NC1, any public-key encryption scheme can be used to
transform a private-key functional encryption scheme into a public-key functional en-
cryption scheme (which can be used to get PPAD hardness [37]). This gives a better
reduction than ours in terms of security loss, but requires a public-key primitive to begin
with.

Constructions of MIFE Schemes There are several constructions of private-key multi-
input functional encryption schemes. Mostly related to our work is the construction of
Brakerski et al. [13] which we significantly improve (see Sect. 1.2 for more details).
Other constructions [4,14,32] are incomparable as they either rely on stronger assump-
tions or could be proven secure only in an idealized genericmodel. Goldwasser et al. [32]
constructed a multi-input scheme that supports a polynomial number of inputs assum-
ing indistinguishability obfuscation for all polynomial-size circuits. Ananth and Jain [4]
constructed amulti-input functional encryption scheme that supports a polynomial num-
ber of inputs assuming any sub-exponentially secure (single-input) public-key functional
encryption scheme. Boneh et al. [14] constructed a multi-input scheme that supports a
polynomial number of inputs based on multilinear maps, and was proven secure in the
idealized generic multilinear map model.

Proof Techniques Parts of our proof rely on two useful techniques from the functional
encryption literature: key encapsulation (also known as “hybrid encryption”) and func-
tion privacy.
Keyencapsulation is an extremelyuseful approach in thedesignof encryption schemes,

both for improved efficiency and for improved security. Specifically, key encapsulation
typically means that instead of encrypting a message m under a fixed key sk, one can
instead sample a random key k, encrypt m under k and then encrypt k under sk. The
usefulness of this technique in the context of functional encryption was demonstrated
by Ananth et al. [3] and Brakerski et al. [13]. Our constructions incorporate key encap-
sulation techniques, and exhibit additional strengths of this technique in the context of
functional encryption schemes. Specifically, as discussed in Sect. 1.2, we use key en-
capsulation techniques for our dynamic key-generation technique, a crucial ingredient
in our constructions and proofs of security.
The security guarantees of functional encryption typically focus on message pri-

vacy that ensures that a ciphertext does not reveal any unnecessary information on the

From Minicrypt to Obfustopia via Private-Key Functional Encryption 415

plaintext. In various cases, however, it is also useful to consider function privacy [1,17–
19,51], asking that a functional key sk f does not reveal any unnecessary information
on the function f . Brakerski and Segev [19] (and the follow-up of Ananth and Jain [4])
showed that any private-key (multi-input) functional encryption scheme can be gener-
ically transformed into one that satisfies both message privacy and function privacy.
Function privacy was found useful as a building block in the construction of several
functional encryption schemes [3,13,46]. In particular, functional encryption allows to
successfully apply proof techniques “borrowed” from the indistinguishability obfusca-
tion literature (including, for example, a variant of the punctured programming approach
of Sahai and Waters [53]).

Follow-UpWork In a recent work, Kitagawa et al. [44] showed that indistinguishability
obfuscation for all circuits can be constructed from sub-exponentially secure private-key
functional encryption without any further assumptions. Their technique is quite differ-
ent from ours. Roughly speaking, they replace the public-key functional encryption
scheme in the construction of indistinguishability obfuscation of Bitansky and Vaikun-
tanathan [22] with a primitive called puncturable private-key functional encryption and
show how to generically construct it from any private-key functional encryption scheme.
A question that is still left open in this line of work is whether a public-key functional

encryption scheme can be generically constructed from a private-key one with only a
polynomial loss in security.

1.4. Paper Organization

The remainder of this paper is organized as follows: In Sect. 2, we provide an overview
of the notation, definitions, and tools underlying our constructions. In Sect. 3, we present
our construction of a private-key multi-input functional encryption scheme based on any
single-input scheme. In Sect. 4, we present our construction of an indistinguishability
obfuscator for circuits with inputs of poly-logarithmic length, and its applications to
public-key functional encryption and average-case PPAD hardness.

2. Preliminaries

In this section, we present the notation and basic definitions that are used in this work.
For a distribution X we denote by x ← X the process of sampling a value x from the
distribution X . Similarly, for a set X we denote by x ← X the process of sampling a
value x from the uniform distribution overX . For a randomized function f and an input
x ∈ X , we denote by y ← f (x) the process of sampling a value y from the distribution
f (x). For an integer n ∈ N we denote by [n] the set {1, . . . , n}.
Throughout the paper, we denote by λ the security parameter. A function neg : N →

R
+ is negligible if for every constant c > 0 there exists an integer Nc such that neg(λ) <

λ−c for all λ > Nc. Two sequences of random variables X = {Xλ}λ∈N and Y = {Yλ}λ∈N
are computationally indistinguishable if for any probabilistic polynomial-time algorithm
A there exists a negligible functionneg(·) such that ∣∣Pr[A(1λ, Xλ) = 1] − Pr[A(1λ,Yλ)

= 1]| ≤ neg(λ) for all sufficiently large λ ∈ N.

416 I. Komargodski, G. Segev

2.1. One-Way Functions and Pseudorandom Generators

Werely on the standard (parameterized) notions of one-way functions and pseudorandom
generators.

Definition 2.1. (One-way function) An efficiently computable function f : {0, 1}∗ →
{0, 1}∗ is (t, μ)-one-way if for every probabilistic algorithmA that runs in time t = t (λ)

it holds that

AdvOWF
f,A (λ)

def= Pr
x←{0,1}λ

[A(1λ, f (x)) ∈ f −1(f (x))] ≤ μ(λ),

for all sufficiently large λ ∈ N, where the probability is taken over the choice of x ∈
{0, 1}λ and over the internal randomness of A.

Whenever t = t (λ) is a super-polynomial function and μ = μ(λ) is a negligible
function, we will often omit t and μ and simply call the function one-way. In case
t (λ) = 1/μ(λ) = 2λε

, for some constant 0 < ε < 1, we will say that f is sub-
exponentially one-way.

Definition 2.2. (Pseudorandom generator) Let �(·) be a function. An efficiently com-
putable function PRG : {0, 1}�(λ) → {0, 1}2�(λ) is a (t, μ)-secure pseudorandom
generator if for every probabilistic algorithm A that runs in time t = t (λ) it holds that

AdvPRGf,A
def=

∣
∣
∣
∣

Pr
x←{0,1}�(λ)

[A(1λ,PRG(x)) = 1] − Pr
r←{0,1}2�(λ)

[A(1λ, r) = 1]
∣
∣
∣
∣
≤ μ(λ)

for all sufficiently large λ ∈ N.

Whenever t = t (λ) is a super-polynomial function and μ = μ(λ) is a negligible
function, we will often omit t and μ and simply call the function a pseudorandom
generator. In case t (λ) = 1/μ(λ) = 2λε

, for some constant 0 < ε < 1, we will say that
PRG is sub-exponentially secure.

2.2. Pseudorandom Functions

Let {Kλ,Xλ,Yλ}λ∈N be a sequence of sets, and let PRF = (PRF.Gen,PRF.Eval) be
a function family with the following syntax:

• PRF.Gen is a probabilistic polynomial-time algorithm that takes as input the unary
representation of the security parameter λ, and outputs a key K ∈ Kλ.

• PRF.Eval is a deterministic polynomial-time algorithm that takes as input a key
K ∈ Kλ and a value x ∈ Xλ, and outputs a value y ∈ Yλ.

The sets Kλ, Xλ, and Yλ are referred to as the key space, domain, and range of the
function family, respectively. For easy of notation, we may denote by PRF.EvalK (·)
or PRFK (·) the function PRF.Eval(K , ·) for K ∈ Kλ. The following is the standard
definition of a pseudorandom function family.

From Minicrypt to Obfustopia via Private-Key Functional Encryption 417

Definition 2.3. (Pseudorandomness) A function family PRF = (PRF.Gen,

PRF.Eval) is (t, μ)-secure pseudorandom if for every probabilistic algorithm A that
runs in time t (λ), it holds that

AdvPRF,A(λ)
def=

∣
∣
∣
∣

Pr
K←PRF.Gen(1λ)

[

APRF.EvalK (·)(1λ) = 1
]

− Pr
f ←Fλ

[

A f (·)(1λ) = 1
]
∣
∣
∣
∣

≤ μ(λ),

for all sufficiently large λ ∈ N, where Fλ is the set of all functions that map Xλ into Yλ.

In addition to the standard notion of a pseudorandom function family, we rely on the
seemingly stronger (yet existentially equivalent) notion of a puncturable pseudorandom
function family [12,23,45,53]. In terms of syntax, this notion asks for an additional
probabilistic polynomial-time algorithm, PRF.Punc, that takes as input a key K ∈ Kλ

and a set S ⊆ Xλ and outputs a “punctured” key KS . The properties required by such a
puncturing algorithm are captured by the following definition.

Definition 2.4. (Puncturable PRF) A (t, μ)-secure pseudorandom function family
PRF = (PRF.Gen,PRF.Eval) ispuncturable if there exists a probabilistic polynomial-
time algorithm PRF.Punc such that the following properties are satisfied:

1. Functionality For all sufficiently large λ ∈ N, for every set S ⊆ Xλ, and for every
x ∈ Xλ\S it holds that

Pr
K←PRF.Gen(1λ);

KS←PRF.Punc(K ,S)

[PRF.EvalK (x) = PRF.EvalKS (x)] = 1.

2. Pseudorandomness at punctured points LetA = (A1,A2) be any probabilistic
algorithm that runs in time at most t (λ) such that A1(1λ) outputs a set S ⊆ Xλ, a
value x ∈ S, and state information state. Then, for any such A it holds that

AdvpuPRFPRF,A(λ)
def= ∣

∣Pr
[A2(KS,PRF.EvalK (x), state) = 1

]

−Pr [A2(KS, y, state) = 1]| ≤ μ(λ)

for all sufficiently largeλ ∈ N,where (S, x, state) ← A1(1λ), K ← PRF.Gen(1λ),
KS = PRF.Punc(K , S), and y ← Yλ.

For our constructions, we rely on pseudorandom functions that need to be punctured
only at one point (i.e., in both parts of Definition 2.4 it holds that S = {x} for some
x ∈ Xλ). As observed by [12,23,45,53], the GGM construction [35] of PRFs from
any one-way function can be easily altered to yield such a puncturable pseudorandom
function family.

418 I. Komargodski, G. Segev

2.3. Private-Key Multi-input Functional Encryption

In this section, we define the functionality and security of private-key t-input functional
encryption. For i ∈ [t] let Xi = {(Xi)λ}λ∈N be an ensemble of finite sets, and let
F = {Fλ}λ∈N be an ensemble of finite t-ary function families. For each λ ∈ N, each
function f ∈ Fλ takes as input t strings, x1 ∈ (X1)λ, . . . , xt ∈ (Xt)λ, and outputs a
value f (x1, . . . , xt) ∈ Zλ.
A private-key t-input functional encryption scheme � for F consists of four proba-

bilistic polynomial-time algorithmSetup,Enc,KG, andDec, described as follows. The
setup algorithm Setup(1λ) takes as input the security parameter λ, and outputs a master
secret keymsk. The encryption algorithmEnc(msk,m, �) takes as input a master secret
keymsk, a messagem, and an index � ∈ [t], wherem ∈ (X�)λ, and outputs a ciphertext
ct�. The key-generation algorithm KG(msk, f) takes as input a master secret keymsk
and a function f ∈ Fλ, and outputs a functional key sk f . The (deterministic) decryption
algorithm Dec takes as input a functional key sk f and t ciphertexts, ct1, . . . , ctt , and
outputs a string z ∈ Zλ ∪ {⊥}.
Definition 2.5. (Correctness) A private-key t-input functional encryption scheme� =
(Setup,Enc,KG,Dec) forF is correct if there exists a negligible function neg(·) such
that for every λ ∈ N, for every f ∈ Fλ, and for every (x1, . . . , xt) ∈ (X1)λ×· · ·×(Xt)λ,
it holds that

Pr
[

Dec(sk f ,Enc(msk, x1, 1), . . . ,Enc(msk, xt , t)) = f (x1, . . . , xt)
]

≥ 1 − neg(λ),

where msk ← Setup(1λ), sk f ← KG(msk, f), and the probability is taken over the
internal randomness of Setup,Enc and KG.

In termsof security,we rely on theprivate-keyvariant of the standard indistinguishability-
based notion that considers both message privacy and function privacy [1,13,19]. In-
tuitively, we say that a t-input scheme is secure if for any two t-tuples of messages
(x01 , . . . , x

0
t) and (x11 , . . . , x

1
t) that are encrypted with respect to indices � = 1 through

� = t , and for every pair of functions (f0, f1), the triplets (sk f0 ,Enc(msk, x01 , 1), . . . ,
Enc(msk, x0t , t)) and (sk f1 ,Enc(msk, x11 , 1), . . . ,Enc(msk, x1t , t)) are computation-
ally indistinguishable as long as f0(x01 , . . . , x

0
t) = f1(x11 , . . . , x

1
t) (note that this cap-

tures both message privacy and function privacy). The formal notions of security build
upon this intuition and capture the fact that an adversary may in fact hold many func-
tional keys and ciphertexts, and may combine them in an arbitrary manner. We for-
malize our notions of security using left or right key-generation and encryption or-
acles. Specifically, for each b ∈ {0, 1} and � ∈ {1, . . . , t} we let the left or right

key-generation and encryption oracles be KGb(msk, f0, f1)
def= KG(msk, fb) and

Encb(msk, (m0,m1), �)
def= Enc(msk,mb, �). Before formalizing our notions of secu-

rity, we define the notion of a valid t-input adversary. Then, we define selective security.

From Minicrypt to Obfustopia via Private-Key Functional Encryption 419

Definition 2.6. (Valid adversary)Aprobabilistic polynomial-timealgorithmA is called
valid if for all private-key t-input functional encryption schemes � = (Setup,KG,

Enc,Dec) over a message space X1 × · · · ×Xt = {(X1)λ}λ∈N × · · · × {(Xt)λ}λ∈N and
a function space F = {Fλ}λ∈N, for all λ ∈ N and b ∈ {0, 1}, and for all (f0, f1) ∈ Fλ

and ((x0i , x
1
i), i) ∈ Xi × Xi × [t] with which A queries the left or right key-generation

and encryption oracles, respectively, it holds that f0(x01 , . . . , x
0
t) = f1(x11 , . . . , x

1
t).

Definition 2.7. (Selective security) Let t = t (λ),T = T (λ),Qkey = Qkey(λ),Qenc =
Qenc(λ) and μ = μ(λ) be functions of the security parameter λ ∈ N. A private-key t-
input functional encryption scheme� = (Setup,KG,Enc,Dec) over a message space
X1 × · · · ×Xt = {(X1)λ}λ∈N × · · · × {(Xt)λ}λ∈N and a function space F = {Fλ}λ∈N is
(T, Qkey, Qenc, μ)-selectively secure if for any valid adversaryA that on input 1λ runs
in time T (λ) and issues at most Qkey(λ) key-generation queries and at most Qenc(λ)

encryption queries for each index i ∈ [t], it holds that

AdvselFEt
�,F ,A

def=
∣
∣
∣
∣
Pr

[

ExpselFEt
�,F ,A(λ) = 1

]

− 1

2

∣
∣
∣
∣
≤ μ(λ),

for all sufficiently large λ ∈ N, where the random variable ExpselFEt
�,F ,A(λ) is defined via

the following experiment:

1. (�x1, . . . , �xt , state) ← A1

(

1λ
)

, where �xi = ((x0i,1, x
1
i,1), . . . , (x

0
i,Qenc

, x1i,Qenc
))

for i ∈ [t].
2. msk ← Setup(1λ), b ← {0, 1}.
3. cti, j ← Enc(msk, xbi, j , 1) for i ∈ [t] and j ∈ [Qenc].
4. b′ ← AKGb(msk,·,·)

2

(

1λ, {cti, j }i∈[t], j∈[T], state
)

.
5. If b′ = b then output 1, and otherwise output 0.

KnownConstructions for t = 1Private-key single-input functional encryption schemes
that satisfy the above notion of full security and support circuits of any a priori bounded
polynomial size are known to exist based on a variety of assumptions.
Ananth et al. [3] gave a generic transformation from selective security to full security.

Moreover, Brakerski and Segev [19] showed how to transform any message-private
functional encryption scheme into a functional encryption scheme which is fully secure,
and the resulting scheme inherits the security guarantees of the original one. Therefore,
based on [3,19], given any selectively secure message-private functional encryption
scheme we can generically obtain a fully secure scheme. This implies that schemes
that are fully secure for any number of encryption and key-generation queries can be
based on indistinguishability obfuscation [33,54], differing-input obfuscation [2,9], and
multilinear maps [34]. In addition, schemes that are fully secure for a bounded number of
key-generation queries Qkey can be based on the learning with errors (LWE) assumption
(where the length of ciphertexts grows with Qkey and with a bound on the depth of
allowed functions) [36], and even based on pseudorandom generators computable by
small-depth circuits (where the length of ciphertexts grows with Qkey and with an upper
bound on the circuit size of the functions) [39].

420 I. Komargodski, G. Segev

KnownConstructions for t > 1Private-keymulti-input functional encryption schemes
are much less understood than single-input ones. Goldwasser et al. [32] gave the first
construction of a selectively secure multi-input functional encryption scheme for a poly-
nomial number of inputs relying on indistinguishability obfuscation and one-way func-
tions [11,33,43]. Following the work of Goldwasser et al., a fully secure private-key
multi-input functional encryption scheme for a polynomial number of inputs based was
constructed based onmultilinear maps [14]. Later, Ananth, Jain, and Sahai, and Bitasnky
and Vaikuntanathan [4,6,22] showed a selectively secure multi-input functional encryp-
tion scheme for a polynomial number of inputs based on any sub-exponentially secure
single-input public-key functional encryption scheme. Brakerski et al. [13] showed that
a fully secure single-input private-key scheme implies a fully securemulti-input scheme
for any constant number of inputs. Furthermore, Brakerski et al. observed that their
construction can be used to get a fully secure t-input scheme for t = O(log log λ)

inputs, where λ is the security parameter, if the underlying single-input scheme is sub-
exponentially secure.

2.4. Public-Key Functional Encryption

In this section, we define the functionality and security of public-key (single-input)
functional encryption. Let X = {Xλ}λ∈N be an ensemble of finite sets, and let F =
{Fλ}λ∈N be an ensemble of finite function families. For each λ ∈ N, each function
f ∈ Fλ takes as input a string, x ∈ Xλ, and outputs a value f (x) ∈ Zλ.
A public-key functional encryption scheme � for F consists of four probabilistic

polynomial-time algorithm Setup, Enc, KG, and Dec, described as follows. The setup
algorithmSetup(1λ) takes as input the security parameter λ, and outputs a master secret
key msk and a master public key mpk. The encryption algorithm Enc(mpk,m) takes
as input a master public key mpk and a message m ∈ Xλ, and outputs a ciphertext ct.
The key-generation algorithm KG(msk, f) takes as input a master secret keymsk and
a function f ∈ Fλ, and outputs a functional key sk f . The (deterministic) decryption
algorithm Dec takes as input a functional key sk f and t ciphertexts, ct1, . . . , ctt , and
outputs a string z ∈ Zλ ∪ {⊥}.
Definition 2.8. (Correctness)Apublic-key functional encryption scheme� = (Setup,

Enc,KG,Dec) forF is correct if there exists a negligible function neg(·) such that for
every λ ∈ N, for every f ∈ Fλ, and for every x ∈ Xλ, it holds that

Pr
[

Dec(sk f ,Enc(mpk, x)) = f (x)
] ≥ 1 − neg(λ),

where (msk,mpk) ← Setup(1λ), sk f ← KG(msk, f), and the probability is taken
over the internal randomness of Setup,Enc and KG.

In termsof security,we rely on thepublic-keyvariant of the existing indistinguishability-
based notions for message privacy.7 Intuitively, we say that a scheme is secure if the

7We note that the notion of function privacy is very different from the one in the private-key setting, and
in particular, natural definitions already imply obfuscation.

From Minicrypt to Obfustopia via Private-Key Functional Encryption 421

encryption of any pair of messagesEnc(mpk,m0) andEnc(mpk,m1) cannot be distin-
guished as long as for any function f for which a functional key is queries, it holds that
f (m0) = f (m1). The formal notions of security build upon this intuition and capture
the fact that an adversary may in fact hold many functional keys and ciphertexts, and
may combine them in an arbitrary manner. Before formalizing our notions of security,
we define the notion of a valid adversary. Then, we define selective security.8

Definition 2.9. (Valid adversary)Aprobabilistic polynomial-timealgorithmA is called
valid if for all public-key functional encryption schemes � = (Setup,KG,Enc,Dec)
over a message space X = {Xλ}λ∈N and a function space F = {Fλ}λ∈N, for all λ ∈ N

and b ∈ {0, 1}, and for all f ∈ Fλ and ((x0, x1) ∈ (X)2 with which A queries the left
or right encryption oracle, it holds that f (x0) = f (x1).

Definition 2.10. (Selective security) Let t = t (λ), T = T (λ), Qkey = Qkey(λ) and
μ = μ(λ) be functions of the security parameter λ ∈ N. A public-key functional
encryption scheme � = (Setup,KG,Enc,Dec) over a message space X = {Xλ}λ∈N
and a function space F = {Fλ}λ∈N is (T, Qkey, μ)-selectively secure if for any valid
adversaryA that on input 1λ runs in time T (λ) and issues atmost Qkey(λ) key-generation
queries, it holds that

Advsel-pkFE
�,F ,A

def=
∣
∣
∣
∣
Pr

[

Expsel-pkFE
�,F ,A (λ) = 1

]

− 1

2

∣
∣
∣
∣
≤ μ(λ),

for all sufficiently large λ ∈ N, where the random variable Expsel-pkFE
�,F ,A (λ) is defined via

the following experiment:

1.
(

x0, x1, state
) ← A1

(

1λ
)

.
2. (msk,mpk) ← Setup(1λ), b ← {0, 1}.
3. b′ ← AKG(msk,·)

2

(

1λ,Enc(mpk, xb), state
)

.
4. If b′ = b then output 1, and otherwise output 0.

2.5. Indistinguishability Obfuscation

We consider the standard notion of indistinguishability obfuscation [11,33]. We say that
two circuits, C0 and C1, are functionally equivalent, and denote it by C0 ≡ C1, if for
every x it holds that C0(x) = C1(x).

Definition 2.11. (Indistinguishability obfuscation) Let C = {Cn}n∈N be a class of
polynomial-size circuits operating on inputs of length n. An efficient algorithm iO
is called a (t, μ)-indistinguishability obfuscator for the class C if it takes as input
a security parameter λ and a circuit in C and outputs a new circuit so that following
properties are satisfied:

1. Functionality For any input length n ∈ N, any λ ∈ N, and any C ∈ Cn it holds
that

8We focus on selective security and do not define full security since there is a generic transformation [3].

422 I. Komargodski, G. Segev

Pr
[

C ≡ iO(1λ,C)
] = 1,

where the probability is taken over the internal randomness of iO.
2. Indistinguishability For any probabilistic adversary A = (A1,A2) that runs in

time t = t (λ), it holds that

AdviOiO,C,A
def=

∣
∣
∣
∣
Pr

[

ExpiOiO,C,A(λ) = 1
]

− 1

2

∣
∣
∣
∣
≤ μ(λ),

for all sufficiently large λ ∈ N, where the random variableExpiOiO,C,A(λ) is defined
via the following experiment:

(a) (C0,C1, state) ← A1(1λ) such that C0,C1 ∈ C and C0 ≡ C1.
(b) Ĉ ← iO(Cb), b ← {0, 1}.
(c) b′ ← A2

(

1λ, Ĉ, state
)

.
(d) If b′ = b then output 1, and otherwise output 0.

3. Private-Key MIFE for a Poly-Logarithmic Number of Inputs

In this section, we present our construction of a private-key multi-input functional en-
cryption scheme. The main technical tool underlying our approach is a transformation
from a t-input scheme to a 2t-input scheme which is described in Sect. 3.1. Then, in
Sects. 3.2 and 3.3, we show that by iteratively applying the aforementioned transforma-
tion O(log log λ) times, and by carefully controlling the security loss and the efficiency
loss by adjusting the security parameter appropriately, we obtain a t-input scheme, where
t = (log λ)δ for some constant 0 < δ < 1 (recall that λ ∈ N denotes the security pa-
rameter).

3.1. From t Inputs to 2t Inputs

Let F = {Fλ}λ∈N be a family of 2t-input functionalities, where for every λ ∈ N the set
Fλ consists of functions of the form f : (X1)λ × · · · × (X2t)λ → Zλ. Our construction
relies on the following building blocks:

1. A private-key t-input functional encryption scheme FEt = (FEt .S,FEt .KG,

FEt .E,FEt .D).
2. A puncturable pseudorandom function family PRF = (PRF.Gen,PRF.Eval).

For a 2t-input function f : (X1)λ × · · · × (X2t)λ → Zλ, denote by C f the t-input
function, where each input i ∈ [t] is a pair of inputs that come from (Xi)λ × (Xt+i)λ,
and the output is Zλ. The function is defined as:

C f ((x1, xt+1), . . . , (xt , x2t)) = f (x1, . . . , x2t).

3.1.1. Overview of Our Construction

Our approach is to use the underlying t-input scheme to dynamically generate a master
secret key per t inputs x1, . . . , xt . Toward this goal, we associatewith each x�, where 1 ≤

From Minicrypt to Obfustopia via Private-Key Functional Encryption 423

Fig. 3. The t-input functions Gen f,Kmsk ,K key and AGGx�+t ,�+t,Kmsk ,Kenc .

� ≤ t , a random tag τ� andwe are going to derive from τ1 . . . τt (using a PRF) randomness
for this master secret key that we denote mskτ1,...,τt . That is, using the ciphertext of
x1, . . . , xt , wewill derivemskτ1,...,τt and use it to generate a functional key for the t-input
function C f . We are left with generating ciphertexts of (x1, xt+1), . . . , (xt , x2t) under
the key mskτ1,...,τt . To do that, upon an encryption request for x�+t for 1 ≤ � ≤ t , we
generate a key for a function that has x�+t hardwired, gets as input (x1, τ1), . . . , (xt , τt),
computes the dynamic master secret keymskτ1,...,τt (using the same PRF key and input
τ1 . . . τt), and outputs an encryption of (x�, x�+t) under the new master secret key. Once
we have the functional key and all ciphertexts under the dynamic master secret key, we
can compute C f ((x1, xt+1), . . . , (xt , x2t)) = f (x1, . . . , x2t), as needed.

We proceed with a slightly more precise description of the scheme that also explains
how we derandomize the derivation of randomness for the generation of each dynamic
master secret key using a PRF. The setup procedure outputs a PRF key Kmsk and a key
mskin for a t-input scheme FEt . To generate a key for a function f , we sample a PRF
key K key and output sk f ← FEt .KG(mskin,Gen f,Kmsk,K key), where Gen f,Kmsk,K key

is the t-input function that is defined in the left side of Fig. 3. To encrypt an input x
relative to an index � ∈ [2t], we have two cases depending on whether 1 ≤ � ≤ t or
t < � ≤ 2t . In the former, we sample a random tag τ and encrypt (x, τ) using mskin
relative to index �. In the latter, we sample a PRF key K enc and generate a functional
key for the function AGGx,�,Kmsk,K enc using mskin, where AGGx,�,Kmsk,K enc is the t-
input function defined in the right side of Fig. 3. Finally, to decrypt a functional key
sk f and ciphertexts ct1, . . . , ctt , skt+1, . . . , sk2t , we computes ct′i = FEt .D(ski , ct1,
. . . , ctt) for each t < i < 2t and sk′ = FEt .D(sk f , ct1, . . . , ctt), and finally output
FEt .D(sk′, ct′t+1, . . . , ct

′
2t).

This completes the full description of the scheme in terms of functionality; however,
to carry out the security proof we need to make several modifications. Our proof is by
a sequence of hybrids, where we “attack” each possible master secret key mskτ1,...,τt

separately, so that it will not be explicitly needed. In the proof, we maintain a counter
c� per � ∈ [t] and increase it by 1 every time a new ciphertext is issued with index �. We
logically think about all the encryption queries made with indices 1, . . . , t as a Qenc × t
matrix, where Qenc bounds the number of ciphertexts generated per each coordinate.
We denote the current sequence that we are attacking by thr1, . . . , thrt ∈ [Qenc] and
we embed it into each ciphertext corresponding to index � = 1. That is, thr� is the index
of the ciphertext we are attacking out of all the ciphertexts that were generated with
� ∈ [t]. This splits allmskτ1,...,τt to three sets: (1) ones that we already handled (“above”

424 I. Komargodski, G. Segev

thr1, . . . , thrt), (2) the one that we are currently handling (“equal” to thr1, . . . , thrt),
and (3) the ones we are yet to handle (“below” thr1, . . . , thrt).
We use a “double encryption” methodology to handle inputs that are “above” the

threshold differently than how we handle inputs that are “below”. This technique says
that instead of encrypting an input once, we are going to encrypt it twice and use only one
of them in an honest execution. In the proof, we use the slots interchangeably, depending
onwhether the given input is “above” or “below” the threshold.We use the same “double
encryption” trick to directly argue about function privacy by hardwiring the function in
two slots, and using the extra slot in the proof of security.
Oncewemarked and identified the τ1, . . . , τt that wewant to attack, we need to handle

key-generation and encryption queries so that we can get “get rid” of mskτ1,...,τt . To
handle a key-generation query, we pre-compute the corresponding functional key under
mskτ1,...,τt and embed it into the same functional key—we call this value w. Handling
encryption queries under mskx1...xt is done by embedding each ciphertext ctx�‖x�+t in
the ciphertext corresponding to x�+t (for each such x�+t). After these changesmskτ1...τt

is not explicitly needed in the scheme and we can use the security of the underlying
t-input scheme.

There are overall about Qt
enc different options for (thr1, . . . , thrt) and for each of

them the number of hybrids needed to get rid ofmskτ1,...,τt is constant. So, for t which
is roughly logarithmic, our security loss is quasi-polynomial.

3.1.2. The Construction

Our scheme FE2t = (FE2t .S,FE2t .KG,FE2t .E,FE2t .D) is defined as follows.

• The setupalgorithmOn input the security parameter 1λ the setup algorithmFE2t .S
samples a master secret key for a t-input scheme mskin ← FEt .S(1λ), and a PRF
key Kmsk ← PRF.Gen(1λ), and outputs msk = (mskin, Kmsk).

• The key-generation algorithmOn input the master secret keymsk and a function
f ∈ Fλ, the key-generation algorithm FE2t .KG samples a PRF key K key ←
PRF.Gen(1λ) and outputs sk f ← FEt .KG(mskin,Gen f,⊥,Kmsk,K key,⊥), where
Gen f,⊥,Kmsk,K key,⊥ is the t-input function that is defined in Fig. 4.

Fig. 4. The t-input function Gen f 0, f 1,Kmsk ,K key,w
.

From Minicrypt to Obfustopia via Private-Key Functional Encryption 425

Fig. 5. The t-input function AGGx0
�+t ,x

1
�+t ,�+t,Kmsk ,Kenc,v

.

• The encryption algorithm On input the master secret key msk, a message x and
an index � ∈ [2t], the encryption algorithm FE2t .E distinguished between the
following three cases:

– If � = 1, it samples a random string τ ∈ {0, 1}λ, and then outputs ct� defined
as follows.

ct� ← FEt .E(mskin, (x,⊥, τ, 1, 1, . . . , 1, 0
︸ ︷︷ ︸

t slots

), �).

– If 1 < � ≤ t , it samples a random string τ ∈ {0, 1}λ, and then outputs ct�
defined as follows.

ct� ← FEt .E(mskin, (x,⊥, τ, 1), �).

– If t < � ≤ 2t , it samples a PRF key K enc ← PRF.Gen(1λ) and outputs sk�

defined as follows.

sk� ← FEt .KG(mskin,AGGx,⊥,�,Kmsk,K enc,⊥),

where AGGx,⊥,�,Kmsk,K enc,⊥ is the t-input function that is defined in Fig. 5.

• The decryption algorithmOn input a functional key sk f and ciphertexts ct1, . . . ,
ctt , skt+1, . . . , sk2t , the decryption algorithm FEt .D computes

∀i ∈ {t + 1, . . . , 2t} : ct′i = FEt .D(ski , ct1, . . . , ctt),

sk′ = FEt .D(sk f , ct1, . . . , ctt),

and outputs FEt .D(sk′, ct′t+1, . . . , ct
′
2t).

Correctness For any λ ∈ N, f ∈ Fλ and (x1, . . . , x2t) ∈ (X1)λ × · · · × (X2t)λ, let sk f

denote a functional key for f and let ct1, . . . , ctt , skt+1, . . . , sk2t denote encryptions
of x1, . . . , x2t . Then, for every i ∈ {1, . . . , t}, it holds that

426 I. Komargodski, G. Segev

ct′i+t = FEt .D(ski+t , ct1, . . . , ctt)

= AGGxi+t ,⊥,i+t,Kmsk,K enc
i+t ,⊥((x1,⊥, τ1, 1, 1, . . . , 1, 0),

(x2,⊥, τ2, 1), . . . , (xt ,⊥, τt , 1))

= FEt .E(mskτ1,...,τt , (xi , xi+t), i;PRF.Eval(K enc
i+t , τ1 . . . τt))

and

sk′ = FEt .D(sk f , ct1, . . . , ctt)

= Gen
f,⊥,Kmsk,K key

f ,⊥((x1,⊥, τ1, 1, 1, . . . , 1, 0), (x2,⊥, τ2, 1), . . . , (xt ,⊥, τt , 1))

= FEt .KG(mskτ1,...,τt ,C f ;PRF.Eval(K key
f , τ1 . . . τt))

where mskτ1,...,τt = FEt .S(1λ,PRF.Eval(Kmsk, τ1 . . . τt)). Therefore,

FEt .D(sk′, ct′t+1, . . . , ct
′
2t) = C f ((x1, xt+1), . . . , (xt , x2t)) = f (x1, . . . , x2t).

Security The following theorem captures the security our transformation. The proof of
this theorem is given in Sect. 3.1.3.

Theorem 3.1. Let t = t (λ), T = T (λ), Qkey = Qkey(λ), Qenc = Qenc(λ) and
μ = μ(λ) be functions of the security parameter λ ∈ N, and assume that FEt is a
(T, Qkey, Qenc, μ)-selectively secure t-input functional encryption scheme and that
PRF is a (T, μ)-secure puncturable pseudorandom function family. Then, FE2t is
(T ′, Q′

key, Q
′
enc, μ

′)-selectively secure, where

• T ′(λ) = T (λ) − Qkey(λ) · poly(λ), for some fixed polynomial poly(·).
• Q′

key(λ) = Qkey(λ) − t (λ) · Qenc(λ).

• Q′
enc(λ) = Qenc(λ).

• μ′(λ) = 8t (λ) · (Qenc(λ))t (λ)+1 · Qkey(λ) · μ(λ).

3.1.3. Proof of Theorem 3.1 (Proof of Security)

Let t = t (λ) and let A be a valid 2t-input adversary that runs in time T ′ = T ′(λ),
and issues at most Q′

enc = Q′
enc(λ) encryption queries with respect to each index

i ∈ [2t], and at most Q′
key = Q′

key(λ) key-generation queries. We present a sequence
of experiments and upper bound A’s advantage in distinguishing each two consecutive
experiments. The first experiment is the experimentExpselFE2t

FE2t ,F ,A(λ) (seeDefinition 2.7),
and the last experiment is completely independent of the bit b. This enables us to prove
that

AdvselFE2t
FE2t ,F ,A(λ)

def=
∣
∣
∣
∣
Pr

[

ExpselFE2t
FE2t ,F ,A(λ) = 1

]

− 1

2

∣
∣
∣
∣

≤ 8t (λ) · (Q′
enc(λ))t (λ)+1 · Q′

key(λ) · μ(λ)

From Minicrypt to Obfustopia via Private-Key Functional Encryption 427

for all sufficiently large λ ∈ N. In what follows, we first describe the notation used
throughout the proof, and then describe the experiments.

Notation We denote the i th ciphertext with respect to each index 1 ≤ � ≤ t by ct�,i
and the i th ciphertext with respect to each index t < � ≤ 2t by sk�,i . We denote the
i th encryption query corresponding to each index � ∈ [2t] by (x0�,i , x

1
�,i). For the i th

ciphertext with respect to each index 1 ≤ � ≤ t , we denote it associated random string
by τ�,i . For the i th ciphertext with respect to each index t + 1 ≤ � ≤ 2t , we denote its
associated PRF key by K enc

�,i . Finally, we denote by (f 0i , f 1i) the i th the pair of functions

with which the adversary queries the key-generation oracle and by K key
i its associated

PRF key.
For ease of following the proof, we give an outline of the sequence of experiments.

By ∼ we denote computational indistinguishability and by ≡ we denote equivalence.
The core of the proof is a sequence of≈ (Q′

enc)
t hybrids calledH(2,k1,...,kt)(λ) for every

k1, . . . , kt ∈ [Q′
enc] ∪ {0}. The values k1, . . . , kt represent the current mskτ1,...,τt that

we are attacking, by identifying τ� with the k�
th encryption done with index � ∈ [t];

see Sect. 3.1.1. These experiments satisfy the following invariant:

H(2,k1...,ki−1,ki ,Q′
enc,0,...,0)(λ) ≡ H(2,k1...,ki−1,ki+1,0,...,0)(λ). (3.1)

We show that

H(2,k1,...,kt−1,kt)(λ) ∼ H(2,k1,...,kt−1,kt+1)(λ) (3.2)

using the following sequence of hybrids

H(2,k1,...,kt)(λ) ∼ H(3,k1,...,kt)(λ) ∼ . . . ∼ H(7,k1,...,kt)(λ) ≡ H(2,k1,...,kt−1,kt+1)(λ).

Using the sequences from (3.1) and (3.2) roughly (Q′
enc)

t times,weget thefinal sequence
of hybrids:

H(0)(λ) ∼ H(1)(λ) ≡ H(2,1,...,1,0)(λ) ∼ . . . ∼ H(2,Q′
enc,0,...,0)(λ) ∼ H(8)(λ),

whereH(0)(λ) is the original experiment corresponding to b ← {0, 1} chosen uniformly
at random and H(8)(λ) is an experiment that is independent of b.
In the description of the experiments below, we use boxes to highlight the differences

between an experiment and the previous one.

Experiment H(0)(λ) This is the original experiment corresponding to b ← {0, 1}
chosen uniformly at random, namely ExpselFE2t

FE2t ,F ,A(λ). Recall that in this experiment the
ciphertexts and the functional keys are generated as follows.

428 I. Komargodski, G. Segev

• Ciphertexts (i = 1, . . . , Q′
enc, 2 ≤ � ≤ t):

ct1,i ← FEt .E(mskin, (x
b
�,i ,⊥, τ�,i , 1, 1, . . . , 1, 0

︸ ︷︷ ︸

t slots

), 1),

ct�,i ← FEt .E(mskin, (x
b
�,i ,⊥, τ�,i , 1), �),

sk�+t,i ← FEt .KG(mskin,AGGxb�+t,i ,⊥,�+t,Kmsk,K enc
�+t,i ,⊥).

• Functional keys (i = 1, . . . , Q′
key):

sk fi ← FEt .KG(mskin,Gen
f bi ,⊥,Kmsk,K key

i ,⊥).

ExperimentH(1)(λ) This experiment is obtained from the experimentH(0)(λ) bymod-
ifying the ciphertexts as follows. Given inputs (x0�,i , x

1
�,i), instead of setting the field x1

to be⊥we set it to be x1�,i . In addition, we add a counter in every ciphertext. The scheme
has the following form:

• Ciphertexts (i = 1, . . . , Q′
enc, 2 ≤ � ≤ t):

ct1,i ← FEt .E(mskin, (x
b
�,i , x1�,i , τ�,i , i , 1, . . . , 1, 0

︸ ︷︷ ︸

t slots

), 1),

ct�,i ← FEt .E(mskin, (x
b
�,i , x1�,i , τ�,i , i), �),

sk�+t,i ← FEt .KG(mskin,AGG
xb�+t,i , x

1
�+t,i ,�+t,Kmsk,K enc

�+t,i ,⊥
).

• Functional keys (i = 1, . . . , Q′
key):

sk fi ← FEt .KG(mskin,Gen
f bi , f 1i ,Kmsk,K key

i ,⊥
).

Note that all ciphertexts are generated so that thr1, . . . , thrt−1 = 1 and thrt = 0, while
c1, . . . , ct ≥ 1 (afterweadded the counter). Thus, the circuitAGGxb�+t ,x

1
�+t ,�+t,Kmsk,K enc

�+t ,⊥
always sets xi = xbi and ignores the second input x1i (see Fig. 5). Similarly, the circuit
Gen f 0, f 1,Kmsk,K key,w always sets fi = f bi and ignores the second input f 1i (see Fig. 4).
Thus, the security of the underlying scheme FEt guarantees that the adversary A has
only a negligible advantage in distinguishing experiments H(0) and H(1). Specifically,
let F ′ denote the family of functions AGGx0�+t ,x

1
�+t ,�+t,Kmsk,K enc,v (as defined in Fig. 5)

and Gen f 0, f 1,Kmsk,K key,w (as defined in Fig. 4). In Sect. 3.1.4, we prove the following
claim:

Claim 3.2. There exists a valid t-input adversary B(0)→(1) that runs in time T ′(λ) +
(t (λ) · Q′

enc(λ) + Q′
key(λ)) · poly(λ) and issues at most Q′

enc(λ) encryption queries

From Minicrypt to Obfustopia via Private-Key Functional Encryption 429

with respect to each index i ∈ [t] and at most t (λ) · Q′
enc(λ) + Q′

key(λ) key-generation
queries, such that

∣
∣
∣Pr

[

H(0)(λ) = 1
]

− Pr
[

H(1)(λ) = 1
]∣
∣
∣ ≤ AdvselFEt

FEt ,F ′,B′(0)→(1) (λ).

Experiment H(2,k1,...,kt)(λ) This experiment is obtained from the experimentH(1)(λ)

bymodifying the ciphertexts as follows. In each ciphertext corresponding to index � = 1
we embed the tuple (k1, . . . , kt) instead of the tuple (1, . . . , 1, 0).

• Ciphertexts (i = 1, . . . , Q′
enc, 2 ≤ � ≤ t):

ct1,i ← FEt .E(mskin, (x
b
�,i , x

1
�,i , τ�,i , i, k1, . . . , kt), 1),

ct�,i ← FEt .E(mskin, (x
b
�,i , x

1
�,i , τ�,i , i), �),

sk�+t,i ← FEt .KG(mskin,AGGxb�+t,i ,x
1
�+t,i ,�+t,Kmsk,K enc

�+t,i ,⊥).

• Functional keys (i = 1, . . . , Q′
key):

sk fi ← FEt .KG(mskin,Gen
f bi , f 1i ,Kmsk,K key

i ,⊥).

Notice that H(2,1,...,1,0) = H(1).
Experiment H(3,k1,k2,...,kt)(λ). This experiment is obtained from the experiment
H(2,k1,...,kt)(λ) by modifying the ciphertexts and the functional keys as follows. First,
we compute mskτ1,k1 ,...,τt,kt

as

mskτ1,k1 ,...,τt,kt
= FEt .S(1λ;PRF.Eval(Kmsk, τ1,k1 . . . τt,kt)).

Then, for every � ∈ [t] and i ∈ [T], we compute

γ�+t,i = FEt .E(mskτ1,k1 ,...,τt,kt
, (xb�,k�

, xb�+t,i), �;PRF.Eval(K enc
�+t,i , τ1,k1 . . . τt,kt)),

δi = FEt .KG(mskτ1,k1 ,...,τt,kt
,C f bi

;PRF.Eval(K key
i , τ1,k1 . . . τt,kt)).

Each γ�+t,i is embedded into sk�+t,i , and each δi is embedded into sk fi . Moreover,

instead of using Kmsk, K key
i , and K enc

�+t,i , we use Kmsk|{τ1,k1 ...τt,kt }, K
key
i |{τ1,k1 ...τt,kt },

and K enc
�+t,i |{τ1,k1 ...τt,kt }, which are the keys Kmsk, K key, and K enc

i all punctured at the
same point {τ1,k1 . . . τt,kt }. The scheme has the following form:

430 I. Komargodski, G. Segev

• Ciphertexts (i = 1, . . . , Q′
enc, 2 ≤ � ≤ t):

ct1,i ← FEt .E(mskin, (x
b
�,i , x

1
�,i , τ�,i , i, k1, . . . , kt), 1),

ct�,i ← FEt .E(mskin, (x
b
�,i , x

1
�,i , τ�,i , i), �),

sk�+t,i ← FEt .KG(mskin,AGG
xb�+t,i ,x

1
�+t,i ,�+t, Kmsk|{τ1,k1 ...τt,kt } , K enc

�+t,i |{τ1,k1 ...τt,kt } , γ�+t,i

),

mskτ1,k1 ,...,τt,kt
= FEt .S(1λ;PRF.Eval(Kmsk, τ1,k1 . . . τt,kt)),

γ�+t,i = FEt .E(mskτ1,k1 ,...,τt,kt
, (xb�,k�

, xb�+t,i), �;PRF.Eval(K enc
�+t,i , τ1,k1 . . . τt,kt)).

• Functional keys (i = 1, . . . , Q′
key):

sk fi ← FEt .KG(mskin,Gen
f bi , f 1i , Kmsk|{τ1,k1 ...τt,kt } , K key

i |{τ1,k1 ...τt,kt } , δi

),

δi = FEt .KG(mskτ1,k1 ,...,τt,kt
,C f bi

;PRF.Eval(K key
i , τ1,k1 . . . τt,kt)).

Let i∗1 , i∗2 . . . , i∗2t be a combination of index of inputs and let i∗ be an index of a
function key. If (τ1,i∗1 , . . . , τt,i∗t) �= (τ1,k1 , . . . , τt,kt), then by the definition of the cir-
cuits Gen f 0, f 1,Kmsk,K key,w and AGGx0�+t ,x

1
�+t ,�+t,Kmsk,K enc,v , the functionalities do not

change. Thus, let us assume that (τ1,i∗1 , . . . , τt,i∗t) = (τ1,k1 , . . . , τt,kt). In this case,
by the definition of the experiment, the outputs of Gen f 0, f 1,Kmsk,K key,w and each
AGGx0�+t ,x

1
�+t ,�+t,Kmsk,K enc,v are just δi∗ and γ�+t,i∗�+t

, respectively, which are defined
exactly as the original outputs. So, in any case functionality is preserved. Thus, the
security of the scheme FEt guarantees that the adversary A has only a negligible ad-
vantage in distinguishing experiments H(2,k1,...,kt) and H(3,k1,...,kt). Specifically, let F ′
denote the family of functions AGGx0�+t ,x

1
�+t ,�+t,Kmsk,K enc,v (as defined in Fig. 5) and

Gen f 0, f 1,Kmsk,K key,w (as defined in Fig. 4). In Sect. 3.1.4, we prove the following claim:

Claim 3.3. There exists a valid t-input adversary B(2,k1,...,kt)→(3,k1,...,kt) that runs in
time T ′(λ)+(t (λ) ·Q′

enc(λ)+Q′
key(λ)) ·poly(λ) and issues at most Q′

enc(λ) encryption

queries with respect to each index i ∈ [t] and at most t (λ) · Q′
enc(λ) + Q′

key(λ) key-
generation queries, such that

∣
∣
∣Pr

[

H(2,k1,...,kt)(λ) = 1
]

− Pr
[

H(3,k1,...,kt)(λ) = 1
]∣
∣
∣

≤ AdvselFEt
FEt ,F ′,B′(2,k1,...,kt)→(3,k1,...,kt)

(λ).

Experiment H(4,k1,...,kt)(λ) This experiment is obtained from the experiment
H(3,k1,...,kt)(λ) by modifying the ciphertexts and functional keys as follows. Instead
of sampling the randomness for mskτ1,k1 ,...,τt,kt

, γ�+t,i , and δi using a PRF, we sample
them uniformly at random.

From Minicrypt to Obfustopia via Private-Key Functional Encryption 431

• Ciphertexts (i = 1, . . . , Q′
enc, 2 ≤ � ≤ t):

ct1,i ← FEt .E(mskin, (xb�,i , x
1
�,i , τ�,i , i, k1, . . . , kt), 1),

ct�,i ← FEt .E(mskin, (xb�,i , x
1
�,i , τ�,i , i), �),

sk�+t,i ← FEt .KG(mskin,AGGxb
�+t,i ,x

1
�+t,i ,�+t,Kmsk |{τ1,k1 ...τt,kt },K

enc
�+t,i |{τ1,k1 ...τt,kt },γ�+t,i

),

mskτ1,k1 ,...,τt,kt
← FEt .S(1λ),

γ�+t,i ← FEt .E(mskτ1,k1 ,...,τt,kt
, (xb�,k� , x

b
�+t,i), �).

• Functional keys (i = 1, . . . , Q′
key):

sk fi ← FEt .KG(mskin,Gen
f bi , f 1i ,Kmsk |{τ1,k1 ...τt,kt },K

key
i |{τ1,k1 ...τt,kt },δi

),

δi ← FEt .KG(mskτ1,k1 ,...,τt,kt
,C f bi

).

The pseudorandomness of the PRF keys Kmsk, K key
i , and K enc

�+t,i at their respec-
tive punctured points enables us to bound A’s advantage in distinguishing experiments
H(3,k1,...,kt) andH(4,k1,...,kt). In total, there are 1+ t (λ) · Q′

enc(λ) + Q′
key(λ) PRF keys,

and in Sect. 3.1.4 we prove the following claim:

Claim 3.4. There exists an algorithm B(3,k1,...,kt)→(4,k1,...,kt) that runs in time T ′(λ)+
(t (λ) · Q′

enc(λ) + Q′
key(λ)) · poly(λ) and issues t (λ) · Q′

enc(λ) + Q′
key(λ) queries such

that

∣
∣
∣Pr

[

H(3,k1,...,kt)(λ) = 1
]

− Pr
[

H(4,k1,...,kt)(λ) = 1
]∣
∣
∣

≤ (1 + t (λ) · Q′
enc(λ) + Q′

key(λ)) · AdvpuPRF
PRF,B(3,k1,...,kt)→(4,k1,...,kt)

(λ).

Experiment H(5,k1,...,kt)(λ) This experiment is obtained from the experiment
H(4,k1,...,kt)(λ) by modifying the ciphertexts and functional keys as follows. Instead of
having (xb�,k�

, . . . , xb�+t,i) encrypted in γ�+t,i , we encrypt the value (x1�,k�
, . . . , x1�+t,i).

Similarly, instead of generating a key for C f bi
in δi , we generate a key for C f 1i

.

• Ciphertexts (i = 1, . . . , Q′
enc, 2 ≤ � ≤ t):

ct1,i ← FEt .E(mskin, (x
b
�,i , x

1
�,i , τ�,i , i, k1, . . . , kt), 1),

ct�,i ← FEt .E(mskin, (x
b
�,i , x

1
�,i , τ�,i , i), �),

sk�+t,i ← FEt .KG(mskin,AGGxb�+t,i ,x
1
�+t,i ,�+t,Kmsk |{τ1,k1 ...τt,kt },K enc

�+t,i |{τ1,k1 ...τt,kt },γ�+t,i
),

mskτ1,k1 ,...,τt,kt
← FEt .S(1λ),

γ�+t,i ← FEt .E(mskτ1,k1 ,...,τt,kt
, (x1�,k�

, x1�+t,i) , �).

432 I. Komargodski, G. Segev

• Functional keys (i = 1, . . . , Q′
key):

sk fi ← FEt .KG(mskin,Gen
f bi , f 1i ,Kmsk |{τ1,k1 ...τt,kt },K

key
i |{τ1,k1 ...τt,kt },δi

),

δi ← FEt .KG(mskτ1,k1 ,...,τt,kt
, C f 1i

).

We observe that this change only affects combinations of ciphertexts which con-
tain ct1,k1 , . . . , ctt,kt . Every such combination with every γt+1,it+1, . . . , γ2t,i2t and ev-
ery δ j results with f 1j (x

1
1,k1

, . . . , x1t,kt , x
1
t+1,it+1

, . . . , x12t,k2t) which must be equal to

f bj (x
b
1,k1

, . . . , xbt,kt , x
b
t+1,it+1

, . . . , xb2t,k2t) since the adversary is valid (seeDefinition2.6).
Thus, the security of the underlying FEt scheme guarantees that the adversary A has
only a negligible advantage in distinguishing experiments H(4,k1,...,kt) and H(5,k1,...,kt).
Specifically, let F ′ denote the family of functions C f as defined in Fig. 4. In Sect. 3.1.4,
we prove the following claim:

Claim 3.5. There exists a valid t-input adversary B(4,k1,...,kt)→(5,k1,...,kt) that runs in
time T ′(λ) + (t (λ) · Q′

enc(λ) + Q′
key(λ)) · poly(λ) and issues at most Q′

enc(λ) and

Q′
key(λ) encryption and key-generation queries, respectively, such that

∣
∣
∣Pr

[

H(4,k1,...,kt)(λ) = 1
]

− Pr
[

H(5,k1,...,kt)(λ) = 1
]∣
∣
∣

≤ AdvselFEt
FEt ,F ′,B′(4,k1,...,kt)→(5,k1,...,kt)

(λ).

Experiment H(6,k1,...,kt)(λ) This experiment is obtained from the experiment
H(5,k1,...,kt)(λ) by modifying the ciphertexts and functional keys as follows. Instead
of sampling the randomness formskτ1,k1 ,...,τt,kt

, γ�+t,i , and δi uniformly at random, we

sample them using PRFs (as in hybrid H(3,k1,...,kt)(λ)).

• Ciphertexts (i = 1, . . . , Q′
enc, 2 ≤ � ≤ t):

ct1,i ← FEt .E(mskin, (x
b
�,i , x

1
�,i , τ�,i , i, k1, . . . , kt), 1),

ct�,i ← FEt .E(mskin, (x
b
�,i , x

1
�,i , τ�,i , i), �),

sk�+t,i ← FEt .KG(mskin,AGGxb�+t,i ,x
1
�+t,i ,�+t,Kmsk |{τ1,k1 ...τt,kt },K enc

�+t,i |{τ1,k1 ...τt,kt },γ�+t,i
),

mskτ1,k1 ,...,τt,kt
= FEt .S(1λ;PRF.Eval(Kmsk, τ1,k1 . . . τt,kt)),

γ�+t,i = FEt .E(mskτ1,k1 ,...,τt,kt
, (x1�,k�

, x1�+t,i), �;PRF.Eval(K enc
�+t,i , τ1,k1 . . . τt,kt)).

• Functional keys (i = 1, . . . , Q′
key):

sk fi ← FEt .KG(mskin,Gen
f bi , f 1i ,Kmsk |{τ1,k1 ...τt,kt },K

key
i |{τ1,k1 ...τt,kt },δi

),

δi = FEt .KG(mskτ1,k1 ,...,τt,kt
,C f 1i

;PRF.Eval(K key
i , τ1,k1 . . . τt,kt)).

From Minicrypt to Obfustopia via Private-Key Functional Encryption 433

The pseudorandomness of the PRF keys Kmsk, K key
i , and K enc

�+t,i at their respec-
tive punctured points enables us to bound A’s advantage in distinguishing experiments
H(5,k1,...,kt) andH(6,k1,...,kt). In total, there are 1+ t (λ) · Q′

enc(λ) + Q′
key(λ) PRF keys,

and the proof of the following claim is analogous to the proof of Claim 3.4.

Claim 3.6. There exists an algorithm B(5,k1,...,kt)→(6,k1,...,kt) that runs in time T ′(λ)+
(t (λ) · Q′

enc(λ) + Q′
key(λ)) · poly(λ) and issues t (λ) · Q′

enc(λ) + Q′
key(λ) queries such

that
∣
∣
∣Pr

[

H(5,k1,...,kt)(λ) = 1
]

− Pr
[

H(6,k1,...,kt)(λ) = 1
]∣
∣
∣

≤ (1 + t (λ) · Q′
enc(λ) + Q′

key(λ)) · AdvpuPRF
PRF,B(5,k1,...,kt)→(6,k1,...,kt)

(λ).

Experiment H(7,k1,...,kt)(λ) This experiment is obtained from the experiment
H(6,k1,...,kt)(λ) by modifying the ciphertexts and functional keys as follows. The PRF
keys Kmsk|{τ1,k1 ...τt,kt }, K

key
i |{τ1,k1 ...τt,kt }, and K

enc
�+t,i |{τ1,k1 ...τt,kt } are “unpunctured” (namely,

we use the original keys rather than the punctured ones) and we replace each γ�+t,i and
δi with ⊥. Finally, we replace kt in ct1,i with kt + 1.

• Ciphertexts (i = 1, . . . , Q′
enc, 2 ≤ � ≤ t):

ct1,i ← FEt .E(mskin, (x
b
�,i , x

1
�,i , τ�,i , i, k1, . . . , kt), 1),

ct�,i ← FEt .E(mskin, (x
b
�,i , x

1
�,i , τ�,i , i), �),

sk�+t,i ← FEt .KG(mskin,AGG
xb�+t,i ,x

1
�+t,i ,�+t, Kmsk

, K enc
�+t,i , ⊥

).

• Functional keys (i = 1, . . . , Q′
key):

sk fi ← FEt .KG(mskin,Gen
f bi , f 1i , Kmsk

, K key
i , ⊥

).

Observe that since thrt in ct1,i is now kt + 1, then for computing on the challenge
(f 0j , f 1j) on inputs (x01,k1 , x

1
1,k1

), . . . , (x0t,kt , x
1
t,kt

), (x0t+1,i1
, x1t+1,i1

), . . . , (x02t,it , x
1
2t,it

),

when combining the ciphertexts and key, we get a key for f 1j which is combined with the

output ofAGG. The latter is triggering the output f 1j (x
1
1,k1

, . . . , x1t,kt , x
1
t+1,i1

, . . . , x12t,it),
as required. Thus, the security of the scheme FEt guarantees that the adversary A has
only a negligible advantage in distinguishing experiments H(6,k1,...,kt) and H(7,k1,...,kt).
Specifically, let F ′ denote the family of functions AGGx0,x1,τ,Kmsk,K enc,v and
Gen f 0, f 1,,Kmsk,K key,w as defined in Figs. 5 and 4, respectively. The proof of the follow-
ing claim is analogous to the proof of Claim 3.3.

Claim 3.7. There exists a valid t-input adversary B(6,k1,...,kt)→(7,k1,...,kt) that runs in
time T ′(λ)+(t (λ) ·Q′

enc(λ)+Q′
key(λ)) ·poly(λ) and issues at most Q′

enc(λ) encryption

queries with respect to each index i ∈ [t] and at most t (λ) · Q′
enc(λ) + Q′

key(λ) key-
generation queries, such that

434 I. Komargodski, G. Segev

∣
∣
∣Pr

[

H(6,k1,...,kt)(λ) = 1
]

− Pr
[

H(7,k1,...,kt)(λ) = 1
]∣
∣
∣

≤ AdvselFEt
FEt ,F ′,B(6,k1,...,kt)→(7,k1,...,kt)

(λ).

Next, we observe that H(7,k1,...,kt)(λ) = H(2,k1...,kt−1,kt+1)(λ) and that
H(2,k1,...,kt−1,Q′

enc)(λ) = H(2,k1,...,kt−1+1,0)(λ). More generally, it holds that
H(2,k1...,ki ,Q′

enc,0,...,0)(λ) = H(2,k1...,ki+1,0,...,0)(λ).

Experiment H(8)(λ) This experiment is obtained from the experiment
H(2,Q′

enc+1,0,...,0)(λ) by modifying the ciphertexts and functional keys as follows. In
sk fi we replace f bi with ⊥. Moreover, in sk�+t,i and all ct�,i we replace xbi with
⊥. Notice that this experiment is completely independent of the bit b, and therefore
Pr[H(8)(λ) = 1] = 1/2.

• Ciphertexts (i = 1, . . . , Q′
enc, 2 ≤ � ≤ t):

ct1,i ← FEt .E(mskin, (⊥ , x1�,i , τ�,i , i, T + 1, 0, . . . , 0), 1),

ct�,i ← FEt .E(mskin, (⊥ , x1�,i , τ�,i , i), �),

sk�+t,i ← FEt .KG(mskin,AGG ⊥ ,x1�+t,i ,�+t,Kmsk,K enc
�+t,i ,⊥

).

• Functional keys (i = 1, . . . , Q′
key):

sk fi ← FEt .KG(mskin,Gen ⊥ , f 1i ,Kmsk,K key
i ,⊥).

We observe that since thr1 = Q′
enc + 1, it is always the case that the functions

AGGx0,x1,τ,Kmsk,K enc,v and Gen f 0, f 1,,Kmsk,K key,w use x1 and f 1 as their inputs and
ignore their first input. Thus, the security of the underlying schemes FEt enables us to
bound A’s advantage in distinguishing between the experiments H(2,Q′

enc+1,0,...,0) and
H(8). Specifically, let F ′ denote the family of functions AGGx0�+t ,x

1
�+t ,�+t,Kmsk,K enc,v

(as defined in Fig. 5) and Gen f 0, f 1,Kmsk,K key,w (as defined in Fig. 4). The proof of the
following claim is similar to the proof of Claim 3.2.

Claim 3.8. There exists a valid t-input adversary B(2,Q′
enc+1,0,...,0)→(8) that runs in

time T ′(λ)+(t (λ) ·Q′
enc(λ)+Q′

key(λ)) ·poly(λ) and issues at most Q′
enc(λ) encryption

queries with respect to each index i ∈ [t] and at most t (λ) · Q′
enc(λ) + Q′

key(λ) key-
generation queries, such that

∣
∣
∣Pr

[

H(2,Q′
enc+1,0,...,0)(λ) = 1

]

− Pr
[

H(8)(λ) = 1
]∣
∣
∣

≤ AdvselFEt

FEt ,F ′,B(2,Q′
enc+1,0,...,0)→(8)

(λ).

Putting togetherClaims3.2–3.8with the assumptions thatFEt is a (T, Q′
key, Q

′
enc, μ)-

selectively secure t-input functional encryption scheme and that PRF is a (T, μ)-
secure puncturable pseudorandom function family, and with the facts that H(0)(λ) =

From Minicrypt to Obfustopia via Private-Key Functional Encryption 435

ExpselFEt
FEt ,F ,A(λ), H(1)(λ) = H(2,1,...,1,0)(λ), and Pr

[H(8)(λ) = 1
] = 1/2, we observe

that

AdvselFE2t
FE2t ,F ,A

def=
∣
∣
∣
∣
Pr

[

ExpselFE2t
FE2t ,F ,A(λ) = 1

]

− 1

2

∣
∣
∣
∣

=
∣
∣
∣Pr

[

H(0)(λ) = 1
]

− Pr
[

H(8)(λ) = 1
]∣
∣
∣

≤
∣
∣
∣Pr

[

H(0)(λ) = 1
]

− Pr
[

H(1)(λ) = 1
]∣
∣
∣

+
Q′
enc∑

k1=1

Q′
enc∑

k2=0

· · ·
Q′
enc∑

kt=0

6
∑

i=2

∣
∣
∣Pr

[

H(i,k1,...,kt)(λ) = 1
]

−Pr
[

H(i+1,k1,...,kt)(λ) = 1
]∣
∣
∣

+
∣
∣
∣Pr

[

H(2,Q′
enc+1,0,...,0)(λ) = 1

]

− Pr
[

H(8)(λ) = 1
]∣
∣
∣

≤ (2 + (4 + t · Q′
enc + Q′

key) · (Q′
enc)

t) · μ

≤ 8t · (Q′
enc)

t+1 · Q′
key · μ. (3.3)

3.1.4. Proofs of Claims 3.2–3.5

Proof of Claim 3.2. The adversary B(0)→(1) = B given input 1λ is defined as fol-
lows. First, B samples Kmsk ← PRF.Gen(1λ), b ← {0, 1} and emulates the execu-
tion of A1 on input 1λ by simulating the encryptions as follows: When A1 requests
the i th encryption of the pair (x0, x1) ∈ Xλ with respect to index � = 1, B sam-
ples τ ∈ {0, 1}λ, queries the encryption oracle FEt .Eσ (mskin, ·, ·, ·) with the triple
((xb,⊥, τ, 1, 1, . . . , 1, 0), (xb, x1, τ, i, 1, . . . , 1, 0), 1) and returns the output to A1.
WhenA1 requests the i th encryption of the pair (x0, x1) ∈ Xλ with respect to index 1 <

� ≤ t , B samples τ ∈ {0, 1}λ, queries the encryption oracle FEt .Eσ (mskin, ·, ·, ·) with
the triple ((xb,⊥, τ, 1), (xb, x1, τ, i), �) and returns the output toA1.WhenA1 requests
the i th encryption of the pair (x0, x1) ∈ Xλ with respect to index t < � ≤ 2t , B samples
K enc ← PRF.Gen(1λ), queries the key-generation oracle FEt .KGσ (mskin, ·, ·) with
the pair (AGGxb,⊥,�,Kmsk,K enc,⊥,AGGxb,x1,�,Kmsk,K enc,⊥) and returns the output toA1.
We do the above with all input triples until A1 outputs state and halts.
Then, we emulate the execution of A2 on input 1λ, state and all the ciphertexts

that were already generated by simulating the key-generation oracle as follows: When
A2 requests a functional key for (f 0, f 1) ∈ F × F , B samples a random K key ←
PRF.Gen(1λ), queries the key-generation oracle FEt .KGσ (mskin, ·, ·) with the pair of
circuits (Gen f b,⊥,Kmsk,K key,⊥,Gen f b, f 1,Kmsk,K key,⊥) and returns the output toA2. We
do the above untilA2 outputs b′ and halts. Finally, B outputs 1 if b′ = b and otherwise it
outputs 0. The adversary B is valid since by definitionGen f b,⊥,Kmsk,K key,⊥ on input of

the form ((xb1 ,⊥, τ1, 1, 1, . . . , 1, 0), (xb2 ,⊥, τ2, 1), . . . , (xbt ,⊥, τt , 1)) is always equal
to Gen f b, f 1,Kmsk,K key,⊥ on any input of the form ((xb1 , x

1
1 , τ1, i1, 1, . . . , 1, 0), (x

b
2 , x

1
2 ,

τ2, i2), . . . , (xbt , x
1
t , τt , it)).

436 I. Komargodski, G. Segev

Note that when σ = 0 then A’s view is identical to its view in the experiment H(0),
and when σ = 1 then A’s view is identical to its view in the modified experiment H(1)

described above. Therefore,
∣
∣
∣Pr

[

H(0)(λ) = 1
]

− Pr
[

H(1)(λ) = 1
]∣
∣
∣ ≤ AdvselFEt

FEt ,F ′,B′(0)→(1) (λ).

�

Proof of Claim 3.3. The adversary B(2,k1,...,kt)→(3,k1,...,kt) = B given input 1λ is de-
fined as follows. First, B samples Kmsk ← PRF.Gen(1λ), τ1,k1 , . . . , τt,kt ← {0, 1}λ,
b ← {0, 1}, computed the punctured PRF key Kmsk|τ1,k1 ,...,τt,kt

= PRF.Punc

(Kmsk, τ1,k1 , . . . , τt,kt), and emulates the execution ofA1 on input 1λ by simulating the
encryptions as follows: When A1 requests the i th encryption of the pair (x0, x1) ∈ Xλ

with respect to index � = 1, B samples τ ∈ {0, 1}λ (if i = k1, we use τ1,k1 that
was sampled in the beginning), queries the encryption oracle FEt .Eσ (mskin, ·, ·, ·)with
the triple ((xb, x1, τ, i, k1, . . . , kt), (xb, x1, τ, i, k1, . . . , kt), 1) and returns the output
to A1. When A1 requests the i th encryption of the pair (x0, x1) ∈ Xλ with respect to
index 1 < � ≤ t , B samples τ ∈ {0, 1}λ (if i = k�, we use τ�,k�

that was sampled
in the beginning), queries the encryption oracle FEt .Eσ (mskin, ·, ·, ·) with the triple
((xb, x1, τ, i), (xb, x1, τ, i), �) and returns the output to A1. When A1 requests the i th
encryption of the pair (x0, x1) ∈ Xλ with respect to index t ≤ � + t ≤ 2t , B sam-
ples K enc ← PRF.Gen(1λ), computes a punctured key K enc|τ1,k1 ,...,τt,kt

= PRF.Gen
(K enc, τ1,k1 , . . . , τt,kt), queries the key-generation oracle FEt .KGσ (mskin, ·, ·) with
the pair (AGGxb,x1,�,Kmsk,K enc,⊥,AGGxb,x1,�,Kmsk |τ1,k1 ,...,τt,kt

,K enc|τ1,k1 ,...,τt,kt
,γ�,t

), where

γ = FEt .E(mskτ1,k1 ,...,τt,kt
, (xb�,k�

, xb);PRF.Eval(K enc, τ1,k1 . . . τt,kt)), and returns
the output to A1. We do the above with all input triples until A1 outputs state and
halts.
Then, we emulate the execution of A2 on input 1λ, state and all the ciphertexts

that were already generated by simulating the key-generation oracle as follows: When
A2 requests a functional key for (f 0, f 1) ∈ F × F , B samples a random K key ←
PRF.Gen(1λ), computes K key|τ1,k1 ...τt,kt

= PRF.Punc(K key, τ1,k1 . . . τt,kt), queries
the key-generation oracle FEt .KGσ (mskin, ·, ·) with the pair of circuits
(Gen f b, f 1,Kmsk,K key,⊥,Gen f b, f 1,Kmsk |τ1,k1 ...τt,kt

,K key|τ1,k1 ...τt,kt
,δ), where δ = FEt .KG

(mskτ1,k1 ...τt,kt
,C f b ;PRF.Eval(K key, τ1,k1 . . . τt,kt)), and returns the output toA2. We

do the above until A2 outputs b′ and halts. Finally, B outputs 1 if b′ = b and otherwise
it outputs 0.
Note that when σ = 0 then A’s view is identical to its view in the experiment

H(2,k1,...,kt), and when σ = 1 then A’s view is identical to its view in the modified
experiment H(3,k1,...,kt) described above. Therefore,

∣
∣
∣Pr

[

H(2,k1,...,kt)(λ) = 1
]

− Pr
[

H(3,k1,...,kt)(λ) = 1
]∣
∣
∣

≤ AdvselFEt
FEt ,F ′,B′(2,k1,...,kt)→(3,k1,...,kt)

(λ).

�

From Minicrypt to Obfustopia via Private-Key Functional Encryption 437

Proof of Claim 3.4. The proof of this claim proceeds by (1+t (λ)·Q′
enc(λ)+Q′

key(λ))

hybrid experiments, where in each we replace only one PRF evaluation with sampling
a string uniformly at random. Since all indistinguishability proofs of the experiments
are very similar, we provide the proof for one and omit the missing details. In what fol-
lows, we prove that the experimentH(3,k1,...,kt) is indistinguishable from an experiment
H′(3,k1,...,kt) where the randomness for mskτ1,k1 ...τ1,k1

is chosen uniformly at random

(rather than using Kmsk).
The adversary B given input 1λ is defined as follows. First, B samples mskin ←

FEt .S(1λ), τ1,k1 , . . . , τt,kt ← {0, 1}λ and b ← {0, 1}. Now,A is given R(τ1,k1 . . . τt,kt)

and a punctured PRF key Kmsk|τ1,k1 ...τt,kt
and its goal is to guess if R(τ1,k1 . . . τt,kt)

is uniformly random or the output of a PRF. First, B computes mskτ1,k1 ,...,τt,kt
=

FEt .S(1λ; R(τ1,k1 . . . τt,kt)). Then, B emulates the execution of A on input 1λ by sim-
ulating the encryption oracle as follows: When A1 requests the i th encryption of the
pair (x0, x1) ∈ Xλ with respect to index � = 1, B samples τ ∈ {0, 1}λ (if i = k1,
we use τ1,k1 that was sampled in the beginning), computes FEt .E(mskin, ·, ·) with the
pair ((xb, x1, τ, i, k1, . . . , kt), 1) and returns the output to A1. When A1 requests the
i th encryption of the pair (x0, x1) ∈ Xλ with respect to index 1 < � ≤ t , B sam-
ples τ ∈ {0, 1}λ (if i = k�, we use τ�,k�

that was sampled in the beginning), com-
putes the encryption FEt .E(mskin, ·, ·) with the pair ((xb, x1, τ, i), �) and returns the
output to A1. When A1 requests the i th encryption of the pair (x0, x1) ∈ Xλ with
respect to index t ≤ � + t ≤ 2t , B samples K enc ← PRF.Gen(1λ), computes a punc-
tured key K enc|τ1,k1 ,...,τt,kt

= PRF.Gen(K enc, τ1,k1 , . . . , τt,kt), computes the functional
key FEt .KG(mskin, ·) with the function AGGxb,x1,�,Kmsk |τ1,k1 ,...,τt,kt

,K enc|τ1,k1 ,...,τt,kt
,γ�,t

,

where γ = FEt .E(mskτ1,k1 ,...,τt,kt
, (xb�,k�

, xb);PRF.Eval(K enc, τ1,k1 . . . τt,kt)), and re-
turns the output toA1. We do the above with all input triples untilA1 outputs state and
halts.
Then, we emulate the execution of A2 on input 1λ, state and all the ciphertexts that

were already generated by simulating the key-generation oracle as follows: When A2
submits a key-generation query (f 0, f 1) ∈ F×F ,B samples a K key ← PRF.Gen(1λ),
computes K key|τ1,k1 ...τt,kt

= PRF.Punc(K key, τ1,k1 . . . τt,kt), computes a functional for
Gen f b, f 1,Kmsk |τ1,k1 ...τt,kt

,K key|τ1,k1 ...τt,kt
,δ using the algorithm FEt .KG(mskin, ·), where

δ = FEt .KG(mskτ1,k1 ...τt,kt
,C f b ;PRF.Eval(K key, τ1,k1 . . . τt,kt)), and returns the out-

put to A2. We do the above until A2 outputs b′ and halts. Finally, B outputs 1 if b′ = b
and otherwise it outputs 0.
Note that when the value R(τ1,k1 . . . τt,kt) is sampled using Kmsk, then A’s view is

identical to its view in the experimentH(3,k1,...,kt), and when R(τ1,k1 . . . τt,kt) is sampled
uniformly at random, then A’s view is identical to its view in the modified experiment
H′(3,k1,...,kt) described above. Therefore,

∣
∣
∣Pr

[

H(3,k1,...,kt)(λ) = 1
]

− Pr
[

H′(3,k1,...,kt)(λ) = 1
]∣
∣
∣ ≤ AdvpuPRFPRF,B(λ).

An analogous argument shows that every two consecutive experiments are indistin-
guishable (with the same advantage). Thus,

438 I. Komargodski, G. Segev

∣
∣
∣Pr

[

H(3,k1,...,kt)(λ) = 1
]

− Pr
[

H(4,k1,...,kt)(λ) = 1
]∣
∣
∣

≤ (1 + t (λ) · Q′
enc(λ) + Q′

key(λ)) · AdvpuPRF
PRF,B(3,k1,...,kt)→(4,k1,...,kt)

(λ).

�

Proof of Claim 3.5. The adversary B(4,k1,...,kt)→(5,k1,...,kt) = B given input 1λ is de-
fined as follows. First, B samples mskin ← FEt .S(1λ), Kmsk ← PRF.Gen(1λ),
τ1,k1 , . . . , τt,kt ← {0, 1}λ,b ← {0, 1}, computed thepuncturedPRFkey Kmsk|τ1,k1 ,...,τt,kt

= PRF.Punc(Kmsk, τ1,k1 , . . . , τt,kt), and emulates the execution ofA1 on input 1λ by
simulating the encryptions as follows: When A1 requests the i th encryption of the pair
(x0, x1) ∈ Xλ with respect to index � = 1, B samples τ ∈ {0, 1}λ (if i = k1, we use
τ1,k1 that was sampled in the beginning), computes the encryption FEt .E(mskin, ·, ·)
with the pair ((xb, x1, τ, i, k1, . . . , kt), 1) and returns the output to A1. When A1 re-
quests the i th encryption of the pair (x0, x1) ∈ Xλ with respect to index 1 < � ≤ t ,
B samples τ ∈ {0, 1}λ (if i = k�, we use τ�,k�

that was sampled in the beginning),
computes the encryption FEt .E(mskin, ·, ·) with the pair ((xb, x1, τ, i), �) and returns
the output to A1. When A1 requests the i th encryption of the pair (x0, x1) ∈ Xλ with
respect to index t ≤ � + t ≤ 2t , B samples K enc ← PRF.Gen(1λ), computes a punc-
tured key K enc|τ1,k1 ,...,τt,kt

= PRF.Gen(K enc, τ1,k1 , . . . , τt,kt), computes the functional
key FEt .KG(mskin, ·) with the function AGGxb,x1,�,Kmsk |τ1,k1 ,...,τt,kt

,K enc|τ1,k1 ,...,τt,kt
,γ�,t

,

where γ is the output of the output of the encryption oracle FEt .Eσ (mskτ1,k1 ...τt,kt
, ·, ·, ·)

on input the triple ((xb�,k�
, xb), (x1�,k�

, x1), �), and returns the output to A1. We do the
above with all input triples until A1 outputs state and halts.

Then, we emulate the execution of A2 on input 1λ, state and all the ciphertexts that
were already generated by simulating the key-generation oracle as follows: When A2
submits a key-generation query (f 0, f 1) ∈ F × F , B samples a random K key ←
PRF.Gen(1λ), computes K key|τ1,k1 ...τt,kt

= PRF.Punc(K key, τ1,k1 . . . τt,kt), computes
a functional key using FEt .KG(mskin, ·) for the t-input circuit
Gen f b, f 1,Kmsk |τ1,k1 ...τt,kt

,K key|τ1,k1 ...τt,kt
,δ), where δ is the value returned by the key-gene-

ration oracle FEt .KGσ (mskτ1,k1 ...τt,kt
, ·, ·) on input the pair of functions (C f b ,C f 1),

and returns the output to A2. We do the above until A2 outputs b′ and halts. Finally, B
outputs 1 if b′ = b and otherwise it outputs 0.

Note that when σ = 0 then A’s view is identical to its view in the experiment
H(4,k1,...,kt), and when σ = 1 then A’s view is identical to its view in the modified
experiment H(5,k1,...,kt) described above. Therefore,

∣
∣
∣Pr

[

H(4,k1,...,kt)(λ) = 1
]

− Pr
[

H(5,k1,...,kt)(λ) = 1
]∣
∣
∣

≤ AdvselFEt
FEt ,F ′,B′(4,k1,...,kt)→(5,k1,...,kt)

(λ).

�

From Minicrypt to Obfustopia via Private-Key Functional Encryption 439

3.2. Efficiency Analysis

In this section, we analyze the overhead incurred by our transformation by analyzing the
running time of each procedure given an instantiation of a given single-input scheme.
Specifically, for a message space X1 × · · · × X2t and a function space F that consists
of 2t-input functions, we instantiate our scheme (by applying our transformation log t
times) and analyze the size of a master secret key, the size of a functional key, the size
of a ciphertext and the time it takes to evaluate a functional key with 2t ciphertexts. We
assume that the initial single-input scheme FE1 is efficient in the following sense. Setup
with security parameter 1λ runs in time poly(λ), key generation for a function of size
s takes time poly(s, λ), encryption of a message of size m takes time poly(m, λ), and
decryption also runs in fixed polynomial time.
Let λ ∈ N be a security parameter with which we instantiate the 2t-input scheme, let

us assume thatF consists of functions of size at most s = s(λ) and that eachXi consists
of messages of size at most m = m(λ). Assuming that log t ≤ poly(λ) (to simplify
notation), we show that there exists a fixed constant c ∈ N such that:

• the setup procedure takes time λc,
• the key-generation procedure takes time (s · λ)t

log c
,

• the encryption procedure takes time (m · λ)t
log c

, and
• the decryption procedure takes time t log t · λc.

For a circuit A that receives inputs of lengths x1 . . . , xm , we denote by Time(A, x1,
. . . , xm) the size of the circuit when applied to inputs of length

∑m
i=1 xi . For a function

familyF , we denote by Size(F) the maximal size of the circuit that implements a func-
tion from F .

The Setup Procedure The setup procedure of FE2t is composed of sampling a key for
a scheme FEt and generating a PRF key. Iterating this, we see that a master secret key
in our final scheme consists of a single master secret key for a single-input scheme and
log t additional PRF keys. Namely,

Time(FE2t .S, 1λ) = Time(FEt .S, 1λ) + p1(λ),

where p1 is a fixed polynomial that depends on the key-generation time of the PRF, and
thus

Time(FE2t .S, λ) = Time(FE1.S, λ) + log t · p1(λ).

TheKey-Generation Procedure The key-generation procedure of FE2t depends on the
complexity of the key-generation procedure of the FEt scheme. Let F2t be the function
family that is supported by the scheme FE2t .

Time(FE2t .KG, λ,Size(FE2t .S, λ),Size(F2t)) =
Time(FEt .KG, λ, 2Size(F2t),

Time(FEt .S, λ),Time(FEt .KG,Size(F2t)), p2(λ))) + p3(λ),

440 I. Komargodski, G. Segev

where p2 subsumes the size of the embedded PRF keys and the complexity of the simple
operations that are done inGen, and p3 subsumes the running time of the generation of
the PRF key K key.
The dominant part in the above equation is that the time it takes to generate a key with

respect to FE2t for a function whose size isSize(F2t) depends on the circuit size of key-
generation in the scheme FEt for a function whose size is Time(FEt .KG,Size(F2t))

(namely, it is a function that outputs a functional key for a function whose size is
Size(F2t)). Thus, applying this equation recursively, we get that for large enough c ∈ N

(that depends on the exponents of p2 and p3), it holds that

Time(FE2t .KG, λ,Time(FE2t .S, λ),Size(F2t)) ≤ (Size(F2t) · λ)c
log t

= (Size(F2t) · λ)t
log c

.

The Encryption Procedure The encryption procedure of FE2t depends on the com-
plexity of encryption and key-generation of the FEt scheme. Let m be the length of a
message to encrypt. For � ≤ t , the complexity is at most

Time(FE2t .E, λ,Size(FE2t .S, λ),m) ≤ Time(FEt .E, λ, 2m, (t + 2)λ).

For t + 1 ≤ � ≤ 2t , the complexity of encryption is

Time(FE2t .E, λ,Size(FE2t .S, λ),m) ≤
Time(FEt .KG, λ,Time(FEt .S, λ),Time(FEt .E, 2m), p4(λ)),

where p4 subsumes the running time of the key-generation procedure of the PRF and
the various other simple operations made by AGG.

The dominant part is that an encryption of a message with respect to the scheme FE2t
requires generating a key with respect to the scheme FEt for a function whose size is
Time(FEt .E, 2m). Thus, similarly to the analysis of the key-generation procedure, we
get that for some fixed c ∈ N (that depends on the exponents of p4 and the time it takes
to encrypt a message with respect to FE1), we get that

Time(FE2t .E, λ,Size(FE2t .S, λ),m) ≤ (m · λ)t
log c

.

The Decryption Procedure Decryption in the scheme FE2t requires t + 2 decryption
operationswith respect to the schemeFEt . Letct(t) andsk(t)be the length of a ciphertext
and a key in the scheme FEt , respectively. We get that

Time(FE2t .D, sk(t), 2t · ct(t)) = (t + 2) · Time(FEt .D, sk(t), t · ct(t))
≤ (t + 2)log t · p5(λ),

where p5 is a polynomial that subsumes the complexity of decryption in FE1.

From Minicrypt to Obfustopia via Private-Key Functional Encryption 441

3.3. Iteratively Applying Our Transformation

In this section, we show that by iteratively applying our transformation O(log log λ)

times we obtain a t-input scheme, where t = (log λ)δ for some constant 0 < δ < 1. We
prove the following two theorems:

Lemma 3.9. Let T = T (λ), Qkey = Qkey(λ), Qenc = Qenc(λ) and μ = μ(λ) be
functions of the security parameterλ ∈ Nand let ε ∈ (0, 1). Assumeany

(

T, Qkey, Qenc, μ
)

-
selectively secure single-input private-key functional encryption scheme with the follow-
ing properties:

1. it supports circuits and messages of size poly(2(log λ)2ε) and
2. the size of a ciphertext and a functional key is bounded by poly(2(log λ)2ε),

then for some constant δ ∈ (0, 1), there exists a
(

T ′, Q′
key, Q

′
enc, μ

′
)

-selectively secure

(log λ)δ-input private-key functional encryption scheme with the following properties:

1. it supports circuits and messages of size poly(2(log λ)ε),
2. T ′(λ) ≥ T (λ) − (log log λ) · p(λ),
3. Q′

key(λ) ≥ Qkey(λ) − (2 log λ) · Qenc(λ),

4. Q′
enc(λ) = Qenc(λ), and

5. μ′(λ) ≤ 2(3 log log λ)2 · (Qenc(λ))2(log λ)δ+2 · (Qkey(λ))log log λ · μ(λ).

Proof. Let FE1 be a
(

T, Qkey, Qenc, μ
)

-selectively secure single-input scheme with
the properties from the statement.
Let us analyze the complexity of the t-input scheme where t (λ) = (log λ)δ , where

δ > 0 is some fixed constant that we fix later. In terms of complexity, using the properties
of the single-input scheme and our efficiency analysis from Sect. 3.2, we have that setup
takes a polynomial time in λ, key-generation for a function of size s takes time at most
(s · λ)t

log c
and encryption of a message of length m takes time (m · λ)t

log c
for some

large enough constant c > 1 (recall that c is an upper bound on the exponents of the
running time of key generation and encryption procedures of the underlying single-input
scheme). Plugging in t = (log λ)δ , where δ = 2ε/(3 log c), and s,m ≤ 2c

′·(log λ)ε for
any c′ ∈ N, we get that key-generation and encryption take time at most

(

2c
′·(log λ)ε · λ

)t log c =
(

2c
′·(log λ)ε · λ

)(log λ)2ε/3

= 2c
′·(log λ)5ε/3 · 2(log λ)5ε/3 = 2(c′+1)·(log λ)5ε/3 .

For large enough λ, decryption of such a key-message pair takes time at most poly
(2(log λ)5ε/3) · (t + 2)log t ≤ 2(log λ)2ε .
In terms of security, by Theorem 3.1, we have that if FEt is (T (t), Q(t)

key, Q
(t)
enc, μ

(t))-

selectively secure and PRF is a (T (t), μ(t))-secure puncturable pseudorandom function
family, then FE2t is (T (2t), Q(2t)

key , Q
(2t)
enc, μ

(2t))-selectively secure, where

1. T (2t)(λ) = T (t)(λ) − p(λ),
2. Q(2t)

key (λ) = Q(t)
key(λ) − t (λ) · Q(t)

enc,

442 I. Komargodski, G. Segev

3. Q(2t)
enc(λ) = Q(t)

enc(λ), and
4. μ(2t)(λ) = 8t (λ) · (Qenc(λ))t (λ)+1 · Qkey(λ) · μ(t)(λ).

Iterating these recursive equations, using the fact that Q(2t)
key ≤ Q(t)

key, and plugging in
our initial scheme parameters, we get that

Q′
enc(λ) = Q(1)

enc(λ) = Qenc(λ),

Q′
key(λ) = Q(t)

key(λ) − t (λ) · Qenc(λ)

≥ Qkey(λ) − 2t (λ) · Qenc(λ)

≥ Qkey(λ) − (2 log(λ)) · Qenc(λ),

T ′(λ) ≥ T (λ) − log t (λ) · p(λ)

≥ T (λ) − (log log λ) · p(λ),

μ′(λ) ≤ (8t (λ))log t (λ) · (Qenc(λ))2t (λ)+2 · (Qkey(λ))log t (λ) · μ(λ)

≤ 2(3 log t (λ))2 · (Qenc(λ))2t (λ)+2 · (Qkey(λ))log t (λ) · μ(λ)

≤ 2(3 log log λ)2 · (Qenc(λ))2(log λ)δ+2 · (Qkey(λ))log log λ · μ(λ),

as needed. �

Claim 3.10. Let λ ∈ N be a security parameter and fix any constant ε ∈ (0, 1). Assum-
ing any (22·(log λ)1/ε , 22·(log λ)1/ε , 2(log λ)1/ε , 2−(log λ)1.5/ε)-selectively secure single-input
private-key functional encryption scheme supporting polynomial-size circuits, there ex-
ists a (22·(log λ)2 , 22·(log λ)2 , 2(log λ)2 , 2−(log λ)3)-selectively secure single-input private-
key functional encryption scheme with the following properties

1. it supports circuits and messages of size poly(2(log λ)2ε) and
2. the size of a ciphertext and a functional key is bounded by poly(2(log λ)2ε).

Proof. We instantiate the given scheme with security parameter λ̃ = 2(log λ)2ε . The

resulting scheme is
(

22·(log λ)2 , 22·(log λ)2 , 2(log λ)2 , 2−(log λ)3
)

-selectively secure and for

a circuit (resp., message) of size λ̃, the size of a functional key (resp., ciphertext) is
bounded by poly(λ̃). �

Combining Claim 3.10 and Theorem 3.9, we get the following theorem.

Theorem 3.11. Let λ ∈ N be a security parameter and fix any constant ε ∈ (0, 1).
Assuming any (22·(log λ)1/ε , 21·(log λ)2/ε , 2(log λ)1/ε , 2−(log λ)1.5/ε)-selectively secure single-
input private-key functional encryption scheme supporting polynomial-size circuits, then
for some δ ∈ (0, 1), there exists a (2(log λ)2 , 2(log λ)2 , 2(log λ)2 , 2−(log λ)2)-selectively se-
cure (log λ)δ-input private-key functional encryption scheme supporting circuits of size
2(log λ)ε .

Proof. Assuming any
(

22·(log λ)1/ε , 22·(log λ)1/ε , 2(log λ)1/ε , 2−(log λ)1.5/ε
)

-selectively se-

cure single-input private-key functional encryption scheme supporting polynomial-size

From Minicrypt to Obfustopia via Private-Key Functional Encryption 443

circuits. ByClaim3.10, it implies a
(

22·(log λ)2 , 22·(log λ)2 , 2(log λ)2 , 2−(log λ)3
)

-selectively

secure single-input private-key functional encryption scheme with the following prop-
erties:

1. it supports circuits and messages of size poly(2(log λ)2ε) and
2. the size of a ciphertext and a functional key is bounded by poly(2(log λ)2ε).

Using Theorem3.9, we get that for some constant δ ∈ (0, 1), there exists a
(

T ′, Q′
key,

Q′
enc, μ

′)-selectively secure (log λ)δ-input private-key functional encryption scheme
with the following properties:

1. it supports circuits and messages of size at most poly(2(log λ)ε/2),
2. T ′(λ) ≥ 22·(log λ)2 − (log log λ) · p(λ) ≥ 2(log λ)2 ,
3. Q′

key(λ) ≥ 22·(log λ)2 − (2 log λ) · 2(log λ)2 ≥ 2(log λ)2 ,

4. Q′
enc(λ) = 2(log λ)2 , and

5. μ′(λ) ≤ 2(3 log log λ)2 · (2(log λ)2)2(log λ)δ+2 · (2(log λ)2)log log λ ·2−(log λ)3 ≤ 2−(log λ)2 .

�

4. Applications of Our Construction

In this section, we present our construction of an indistinguishability obfuscator for cir-
cuits with inputs of poly-logarithmic length, and its applications to public-key functional
encryption and average-case PPAD hardness.

4.1. Obfuscation for Circuits with Poly-logarithmic Input Length

We show that any selectively secure t-input private-key functional encryption scheme
that supports circuits of size s can be used to construct an indistinguishability obfuscator
that supports circuits of size s that have at most t · log λ inputs, where λ ∈ N is the
security parameter. This is similar to the proof of Goldwasser et al. [32] that showed that
private-key multi-input functional encryption for a polynomial number of inputs implies
indistinguishability obfuscation (and a follow-up refinement of Bitansky et al. [15]).
We consider the following restricted class of circuits:

Definition 4.1. Let λ ∈ N and let s(·) and t ′(·) be functions. Let Cs,t ′λ denote the class
of all circuits of size at most s(λ) that get as input t ′(λ) bits.

Lemma 4.2. Let t = t (λ), s = s(λ), T = T (λ), Qkey = Qkey(λ), Qenc = Qenc(λ)

and μ = μ(λ) be functions of the security parameter λ ∈ N, and assume a (T, Qkey,

Qenc, μ)-selectively secure t-input private-key functional encryption scheme for func-
tions of size at most s, where Qkey(λ) ≥ 1 and Qenc(λ) ≥ λ. Then, there exists a
(T (λ)−λ · t (λ) · p(λ), μ(λ))-secure indistinguishability obfuscator for the circuit class

Cs,t ′λ , where p(·) is some fixed polynomial and t ′(λ) = t (λ) · log λ.

444 I. Komargodski, G. Segev

Proof. Let FEt be a t-input scheme as in the statement of the lemma. We construct an
obfuscator for circuits of size at most s(λ) that receive t (λ) · log λ bits as input. On input
a circuit C ∈ Cs,t ′λ , the obfuscator works as follows:

1. Sample a master secret key msk ← FEt .S(1λ).
2. Compute cti, j = FEt .E(msk, i, j) for every i ∈ {0, 1}log λ and j ∈ [t (λ)].
3. Compute skC = FEt .KG(msk,C)

4. Output Ĉ = {skC } ∪ {cti, j }i∈{0,1}log λ, j∈[t (λ)].

Evaluation of an obfuscated circuit Ĉ on an input x ∈ ({0, 1}log λ)t , where we view x
as x = x1 . . . xt and xi ∈ {0, 1}log λ, is done by outputting the result of a single execu-
tion of the decryption procedure of the t-input scheme FEt .D(skC , ctx1,1, . . . , ctxt ,t).
Notice that the description size of the obfuscated circuit is upper bounded by some fixed
polynomial in λ.

For security, notice that a single functional key is generated and it is for a circuit
of size at most s(λ). Moreover, the number of ciphertexts is bounded by λ ciphertexts
per coordinate. Thus, following [32], one can show that an adversary that can break the
security of the above obfuscator can be used to break the security of the FEt scheme
with the same success probability (it can even break FEt that satisfies a weaker security
notion in which the functional keys are also fixed ahead of time, before seeing any
ciphertext). �

Applying Lemma 4.2 with the t-input scheme from Theorem 3.11, we obtain the
following corollary.

Corollary 4.3. Let λ ∈ N be a security parameter and fix any constant ε ∈ (0, 1).
Assume a (22(log λ)1/ε , 22(log λ)1/ε , 2(log λ)1/ε , 2−(log λ)1.5/ε)-selectively secure single-input
private-key functional encryption scheme for all functions of polynomial size. Then, for
some constant δ ∈ (0, 1), there exists a (2(log λ)2 , 2−(log λ)2)-secure indistinguishability

obfuscator for the circuit class C2O((log λ)ε),(log λ)1+δ

λ .

4.2. Public-Key Functional Encryption

In this section, we present a construction of a public-key functional encryption scheme
based on our multi-input private-key scheme.

Theorem 4.4. Let λ ∈ N be a security parameter and fix any ε ∈ (0, 1). There ex-
ists a constant δ > 0 for which the following holds. Assume a (22(log λ)1/ε , 22(log λ)1/ε ,

2(log λ)1/ε , 2−(log λ)1.5/ε)-selectively secure single-input private-key functional encryption

scheme for all functions of polynomial size, and that (22λ
ε′
, 2−2λε′

)-secure one-way
functions exist for ε′ > 1/(1 + δ). Then, for some constant ζ > 1, there exists a
(2(log λ)ζ , 2(log λ)ζ , 2−(log λ)ζ)-selectively secure public-key encryption scheme for the cir-

cuit class C2O((log λ)ε),(log λ)1+δ

λ .

Our construction is essentially the construction of Waters [54], who showed how to
construct a public-key functional encryption scheme for the set of all polynomial-size

From Minicrypt to Obfustopia via Private-Key Functional Encryption 445

circuits assuming indistinguishability obfuscation for all polynomial-size circuits. Here,
we make a more careful analysis of his scheme and show that for a specific range of
parameters, it suffices to use the obfuscator we have obtained in Corollary 4.3.
Waters’ construction builds upon his notion of puncturable deterministic encryption

which we review in Sect. 4.2.1. In Sect. 4.2.2, we present the construction and analyze
its security. In Sect. 4.2.3, we prove Theorem 4.4.

4.2.1. Puncturable Deterministic Encryption

Here, we review the functionality and security of puncturable deterministic encryption
(PDE) as put forward by Waters [54]. LetM = {Mλ}λ∈N be a message space andK =
{Kλ}λ∈N be a key space. A PDE scheme consists of four probabilistic polynomial time
algorithms PDE = (PDE.S,PDE.E,PDE.D,PDE.P). The setup procedure PDE.S
gets as input a security parameter (in unary representation) and generates a key K ∈ Kλ.
The encryption procedure PDE.E is a deterministic procedure that takes as input a key
K ∈ Kλ and a message m ∈ Mλ, and output a ciphertext ct. The decryption procedure
PDE.D takes as input a key K ∈ Kλ and a ciphertext ct and outputs either a message
m ∈ Mλ or ⊥. The puncturing procedure PDE.P takes as input a key K ∈ Kλ as well
as a pair of messages x0, x1 ∈ Mλ, and output a “punctured” key K |{x0,x1}.
Definition 4.5. (Correctness) A PDE scheme PDE = (PDE.S,PDE.E,PDE.D,

PDE.P) is ρ-correct if for all λ ∈ N, all x0, x1 ∈ Mλ, all m ∈ Mλ, it holds that

Pr
[

PDE.D(K ,PDE.E(K ,m)) �= m
] ≤ ρ(λ),

and for all m ∈ Mλ \ {x0, x1}

Pr
[

PDE.D(K |{x0,x1},PDE.E(K ,m)) �= m
] ≤ ρ(λ),

where K ← PDE.S(1λ), K |{x0,x1} ← PDE.P(K , x0, x1), and the probabilities are
taken over the internal randomness of PDE.S and of PDE.P.

Definition 4.6. (PDE security) A PDE scheme PDE = (PDE.S,PDE.E,PDE.D,

PDE.P) over a message space M = {Mλ}λ∈N is (t, μ)-secure if for any adversary
A = (A1,A2) that runs in time t = t (λ) it holds that

AdvPDEPDE,A(λ)
def=

∣
∣
∣
∣
Pr

[

ExpPDEPDE,A(λ) = 1
]

− 1

2

∣
∣
∣
∣
≤ μ(λ),

for all sufficiently large λ ∈ N, where the random variable ExpPDEPDE,A(λ) is defined via
the following experiment:

1. x0, x1 ← A1(1λ).
2. K ← PDE.S(1λ), K |{x0,x1} ← PDE.P(K , x0, x1).
3. ct0 = PDE.E(K , x0), ct1 = PDE.E(K , x1), b ← {0, 1}.
4. b′ ← A2(K |{x0,x1}, ctb, ct1−b)).
5. If b′ = b then output 1, and otherwise output 0.

446 I. Komargodski, G. Segev

We say thatPDE is secure if it is (t, μ)-secure for some t = t (λ) that is super-polynomial
and μ = μ(λ) that is negligible. We say that PDE is sub-exponentially secure if t (λ) =
1/μ(λ) = 2λε

for some constant 0 < ε < 1.

Waters [54] presented an elegant construction of a PDE scheme assuming any punc-
turable PRF family (which, in turn, is known to exist based on any one-way function
[12,23,45,53]). Here, we state a parameterized version of his result.

Lemma 4.7. Assume the existence of a (TOWF, μOWF)-secure one-way function f :
{0, 1}λ → {0, 1}λ. Then, there exists a 2−λ-correct (TOWF − p1(λ), μOWF − p2(λ))-
secure PDE scheme, where p1(·) and p2(·) are two fixed polynomials, with the following
properties:

1. Mλ = {0, 1}λ and Kλ = {0, 1}2λ.
2. For everym ∈ {0, 1}λ and K ∈ {0, 1}2λ it holds thatPDE.E(K ,m) ∈ {0, 1}3λ+λ =

{0, 1}4λ.
3. PDE.D gets as input elements in {0, 1}2λ × {0, 1}4λ and runs in fixed polynomial

time in λ.
4. PDE.P gets as input elements in {0, 1}2λ×{0, 1}λ×{0, 1}λ and outputs an element

which is of fixed polynomial size in λ.

4.2.2. The Construction

In this section, we present our construction of a public-key functional encryption scheme
for the class Cs,tλ of circuits, where s(λ) = 2O((log λ)ε) and t (λ) = (log λ)1+δ for some
fixed constants ε, δ > 0. Our construction relies on the following building blocks:

1. An indistinguishability obfuscator iO for the class of circuits Cs,tλ .
2. A puncturable deterministic encryption PDE = (PDE.S,PDE.E,PDE.D,

PDE.P) for the message space Mλ = {0, 1}t (λ)/6.
3. A puncturable pseudorandom function family PRF = (PRF.Gen,PRF.Eval,

PRF.Punc) with key space {0, 1}t (λ), domain {0, 1}t (λ)/3, and range {0, 1}t (λ)/3.
4. A length-doubling pseudorandom generation PRG : {0, 1}t (λ)/6 → {0, 1}t (λ)/3.

Our scheme pkFE = (pkFE.S,pkFE.KG,pkFE.E,pkFE.D) is defined as follows.

• The setup algorithm On input the security parameter 1λ the setup algorithm
pkFE.S samples a PRF key K ← PRF.Gen(1λ) and computes ĈK = iO(CK),
where the circuit CK that is defined in Fig. 6. The output of the procedure is
msk = K and mpk = ĈK .

Fig. 6. The functions CK and Pf,K ,z∗,c0,c1,y,k′ .

From Minicrypt to Obfustopia via Private-Key Functional Encryption 447

• The key-generation algorithmOn input the master secret keymsk and a function
f ∈Fλ, the key-generation algorithmpkFE.KGoutputssk f = iO(Pf,K ,⊥,⊥,⊥,⊥,⊥),
where the circuit Pf,K ,z∗,c0,c1,y,k′ is defined in Fig. 6.

• The encryption algorithm On input the master public key mpk = ĈK and a
message x , the encryption algorithm pkFE.E chooses a random r ∈ {0, 1}t (λ)/6

and runs the obfuscated program ĈK on r to get (z, k). It then computes c =
PDE.E(k, x) and outputs ct = (z, c).

• The decryption algorithmOn input a functional key sk f = P̂ f,K and a ciphertext

ct = (t, c) the decryption procedure pkFE.D runs the obfuscated program P̂ f,K on
input (z, c) and outputs the response.

Correctness and Security We argue that the assumed indistinguishability obfuscator
can be used in the scheme above. The input size of CK is t (λ)/6 < t (λ) and its size
is bounded by poly(t (λ)) < s(λ). To analyze the size of Pf,K ,z∗,c0,c1,y,k′ we have to
analyze the parameters of the underlying PDE scheme. By Lemma 4.7, its key space is
{0, 1}t (λ)/3 and its ciphertext space is {0, 1}2t (λ)/3. Thus, the input size of Pf,K ,z∗,c0,c1,y,k′
is t (λ)/3+2t (λ)/3 = t (λ) and for a function f ∈ Cs,tλ of size 2c·(log λ)ε its size is bounded
by poly(s(λ), t (λ)) = poly(2c·(log λ)ε , (log λ)1+δ) ≤ s(λ). Thus, the obfuscator can be
used. Now, the fact that the scheme is correct follows directly from the correctness of
the underlying indistinguishability obfuscator and the puncturable deterministic scheme
(see [54] for more details).
The following theorem, which is proved in Sect. 4.2.4, captures the security of the

scheme (note that given the generic transformation of Ananth et al. [3] it suffices to prove
selective security, as any such scheme can be transformed into an adaptively secure one).

Lemma 4.8. Let TiO = TiO(λ),μiO = μiO(λ), TPDE = TPDE(λ),μPDE = μPDE(λ),
TPRF = TPRF(λ),μPRF = μPRF(λ), TPRG = TPRG(λ), andμPRG = μPRG(λ) be func-
tions of the security parameter λ ∈ N. If iO is a (TiO, μiO)-secure indistinguishabil-
ity obfuscator, PDE is a ηPDE-correct (TPDE, μPDE)-deterministic encryption scheme,
PRF is a (TPRF, μPRF)-secure puncturable pseudorandom function, and PRG is a
(TPRG, μPRG)-secure pseudorandom generator, then pkFE is a (TpkFE, Qkey, μpkFE)-
selectively secure public-key functional encryption scheme, where:

1. TpkFE(λ) = min{TiO(λ), TPDE(t (λ)/6), TPRF(t (λ)), TPRG(t (λ)/6)} − p(λ) for
some fixed polynomial p(λ).

2. Qkey(λ) = TpkFE(λ).
3. μpkFE(λ) = μPRG(t (λ)/6) + μiO(λ) + 1/2t (λ)/6 + Qkey(λ) · (μiO(λ) + ηPDE

(t (λ)/6)) + μPRF(t (λ)) + μPDE(t (λ)/6).

4.2.3. Proof of Theorem 4.4

Assume a (22(log λ)1/ε , 22(log λ)1/ε , 2(log λ)1/ε , 2−(log λ)1.5/ε)-selectively secure single-input
private-key functional encryption scheme for all functions of polynomial size. By Corol-
lary 4.3, for every ε > 0, there exists a δ > 0 such that there exists a (2(log λ)2 , 2−(log λ)2)-

secure indistinguishability obfuscator for the circuit class C2O((log λ)ε),(log λ)1+δ

λ .

448 I. Komargodski, G. Segev

Assume a (22λ
ε′
, 2−2λε′

)-secure one-way function for some constant 1/(1 + δ) <

ε′ < 1. Thus, the following primitives exist:

1. a (2λε′
, 2−λε′

)-secure PDE scheme (by Lemma 4.7),

2. a (2λε′
, 2−λε′

)-secure puncturable pseudorandom function family, and

3. a (2λε′
, 2−λε′

)-secure pseudorandom generator.

Recall that t (λ) = (log λ)1+δ and let ε′′ = (1 + δ) · ε′. Notice that ε′′ > 1 by the
choice of ε′. Plugging these primitives in Lemma 4.8, we get that there exist constants
1 < ζ ′, ζ ′′ < ε′′ for which the public-key functional encryption scheme is (TpkFE,

Qkey, μpkFE)-secure where

1. TpkFE(λ) ≥ min{22(log λ)2 , 2((log λ)(1+δ)/6)ε
′ } − p(λ) = 2((log λ)ε

′′
/6ε′ − p(λ) ≥

2(log λ)ζ
′
.

2. Qkey(λ) = TpkFE(λ).

3. μpkFE(λ) ≤ 2((log λ)ε
′′
/6ε′ + 2−(log λ)2 + 2−(log λ)1+δ/6 + Qkey(λ)(2−(log λ)2 +

2((log λ)ε
′′
/6ε′

) + 2((log λ)ε
′′
/6ε′ + 2((log λ)ε

′′
/6ε′ ≤ 2−(log λ)ζ

′′
.

Finally, we set ζ = min{ζ ′, ζ ′′} and obtain the result.

4.2.4. Proof of Lemma 4.8

Let A = (A1,A2) be a valid adversary that runs in time T = T (λ) and issues at
most Qkey = Qkey(λ) key-generation queries. Following [54], we present a sequence
of experiments and upper bound A’s advantage in distinguishing each two consecutive
experiments. The first experiment is the experiment Expsel-pkFEpkFE,F ,A (see Definition 2.10),
and the last experiment is completely independent of the bit b. This enables us to prove
that

Advsel-pkFE
�,F ,A (λ)

def=
∣
∣
∣
∣
Pr

[

Expsel-pkFE
�,F ,A (λ) = 1

]

− 1

2

∣
∣
∣
∣
≤ μ(λ),

for all sufficiently large λ ∈ N. We denote by (x0, x1) the challenge ciphertext and by
fi the i th function with which the adversary queries the key-generation oracle with.
To ease notation and without loss of generality, instead of running PDE.S(1λ) and

PRF.Gen(1λ) to generate PDE and PRF keys, respectively, we generate both of them by
simply sampling a uniformly random string from {0, 1}λ. (This was done also in [54].)
Experiment H(0)(λ) This is the original experiment Expsel-pkFEpkFE,F ,A corresponding to
b ← {0, 1} chosen uniformly at random. Recall that in this experiment the ciphertexts
and the functional keys are generated as follows.

1. Public parameters:

mpk ← iO(CK)

K ← PRF.Gen(1λ) (This ismsk)

From Minicrypt to Obfustopia via Private-Key Functional Encryption 449

2. Challenge ciphertext:

ct∗ = (z∗, c∗)
r∗ ← {0, 1}t (λ)/6,

z∗ = PRG(r∗),
k∗ = PRF.Eval(K , z∗),
c∗ = PDE.E(k∗, xb)

3. Functional keys (i = 1, . . . , Qkey):

sk fi ← iO(Pfi ,K ,⊥,⊥,⊥,⊥,⊥).

ExperimentH(1)(λ) This experiment is obtained from the experimentH(1)(λ) bymod-
ifying the challenge ciphertexts to sample z∗ uniformly at random rather than using a
PRG.

1. Public parameters:

mpk ← iO(CK)

K ← PRF.Gen(1λ).

2. Challenge ciphertext:

ct∗ = (z∗, c∗)
r∗ ← {0, 1}t (λ)/6,

z∗ ← {0, 1}t (λ)/3 ,

k∗ = PRF.Eval(K , z∗),
c∗ = PDE.E(k∗, xb)

3. Functional keys (i = 1, . . . , Qkey):

sk fi ← iO(Pfi ,K ,⊥,⊥,⊥,⊥,⊥).

By the pseudorandomness of PRG, we have the following claim.

Claim 4.9. There exists an adversary B(0)→(1) that runs in time T (λ) · poly(λ), such
that

∣
∣
∣Pr

[

H(0)(λ) = 1
]

− Pr
[

H(1)(λ) = 1
]∣
∣
∣ ≤ AdvPRGPRG,B(0)→(1) (t (λ)/6).

ExperimentH(2)(λ) This experiment is obtained from the experimentH(1)(λ) bymod-
ifying the master public key as follows. Instead of obfuscating the circuit CK , we obfus-

450 I. Komargodski, G. Segev

cate a circuit CK |{z∗} in which instead of embedding the PRF key K , we the punctured
PRF key K |{z∗} at the point z∗.

1. Public parameters:

mpk ← iO(C
K |{z∗})

K ← PRF.Gen(1λ).

2. Challenge ciphertext:

ct∗ = (z∗, c∗)
r∗ ← {0, 1}t (λ)/6,

z∗ ← {0, 1}t (λ)/3,

k∗ = PRF.Eval(K , z∗),
c∗ = PDE.E(k∗, xb)

3. Functional keys (i = 1, . . . , Qkey):

sk fi ← iO(Pfi ,K ,⊥,⊥,⊥,⊥,⊥).

For any adversary, with very high probability, it is impossible to distinguish iO(CK)

from iO(CK |{z∗}) since CK is functionally equivalent to CK |{z∗} . Indeed, for any input to
CK , we apply the PRF on an input which is the output of PRG. Since z∗ /∈ Im(PRG)

with probability 1− 2t (λ)/6, for every input to CK |{z∗} , the PRF is never evaluated at the
point z∗. Thus, from the security of iO, we have the following claim.

Claim 4.10. There exists an adversary B(1)→(2) that runs in time T (λ) · poly(λ), such
that

∣
∣
∣Pr

[

H(1)(λ) = 1
]

− Pr
[

H(2)(λ) = 1
]∣
∣
∣ ≤ AdviOiO,B(1)→(2) (λ) + 1/2t (λ)/6.

ExperimentH(3)(λ) This experiment is obtained from the experimentH(2)(λ) bymod-
ifying the functional keys as follows. In each such key for a function fi , we replace in
the circuit Pfi ,K ,⊥,⊥,⊥,⊥,⊥ the PRF key K with the punctured key K |{z∗} and also em-
bed the values k′ = PDE.P(k∗, x0, x1), c′

0 = PDE.E(k∗, x0), c′
1 = PDE.E(k∗, x1),

c0 = c′
b′ , c1 = c′

1−b′ for b′ ← {0, 1}, and y = fi (x0) = fi (x1).

1. Public parameters:

mpk ← iO(CK |{z∗})

K ← PRF.Gen(1λ).

From Minicrypt to Obfustopia via Private-Key Functional Encryption 451

2. Challenge ciphertext:

ct∗ = (z∗, c∗)
r∗ ← {0, 1}t (λ)/6,

z∗ ← {0, 1}t (λ)/3,

k∗ = PRF.Eval(K , z∗),
c∗ = PDE.E(k∗, xb)

3. Functional keys (i = 1, . . . , Qkey):

sk fi ← iO(P
fi , K |{z∗} , z∗ , c0 , c1 , y , k′)

k′ = PDE.P(k∗, x0, x1),
c′
0 = PDE.E(k∗, x0),
c′
1 = PDE.E(k∗, x1),
c0 = c′

b′ , c1 = c′
1−b′ for b′ ← {0, 1},

y = fi (x
0) = fi (x

1).

The only difference between iO(Pfi ,K ,⊥,⊥,⊥,⊥,⊥) and iO(Pfi ,K |{z∗},z∗,c0,c1,y,k′) is
that the output of the circuit is hardwired for two inputs. Thus, if the PDE is correct, then
the two circuits are equivalent. Using the security of iO and a standard hybrid argument
(over the sequence of functional keys), we have the following claim.

Claim 4.11. There exists an adversary B(2)→(3) that runs in time T (λ) · poly(λ), such
that

∣
∣
∣Pr

[

H(2)(λ) = 1
]

− Pr
[

H(3)(λ) = 1
]∣
∣
∣ ≤ Qkey · (AdviOiO,B(2)→(3) (λ) + ηPDE(t (λ)/6)).

ExperimentH(4)(λ) This experiment is obtained from the experimentH(3)(λ) bymod-
ifying the challenge ciphertext as follows. Instead of computing k∗ using a PRF with
key K , we sample it uniformly at random.

1. Public parameters:

mpk ← iO(CK |{z∗})

K ← PRF.Gen(1λ).

452 I. Komargodski, G. Segev

2. Challenge ciphertext:

ct∗ = (z∗, c∗)
r∗ ← {0, 1}t (λ)/6,

z∗ ← {0, 1}t (λ)/3,

k∗ ← {0, 1}t (λ)/3 ,

c∗ = PDE.E(k∗, xb)

3. Functional keys (i = 1, . . . , Qkey):

sk fi ← iO(Pfi ,K |{z∗},z∗,c0,c1,y,k′)

k′ = PDE.P(k∗, x0, x1),
c′
0 = PDE.E(k∗, x0),
c′
1 = PDE.E(k∗, x1),
c0 = c′

b′ , c1 = c′
1−b′ for b′ ← {0, 1},

y = fi (x
0) = fi (x

1).

We observe that the key K does not exist in the scheme anymore and is replaced with
a punctured key K |{z∗}. Thus, by the pseudorandomness at a punctured point property
of the PRF, we have the following claim.

Claim 4.12. There exists an adversary B(3)→(4) that runs in time T (λ) · poly(λ), such
that

∣
∣
∣Pr

[

H(3)(λ) = 1
]

− Pr
[

H(4)(λ) = 1
]∣
∣
∣ ≤ AdvpuPRF

PRF,B(3)→(4) (t (λ)).

ExperimentH(5)(λ) This experiment is obtained from the experimentH(4)(λ) bymod-
ifying the challenge ciphertext as follows. Instead of encrypting xb, we encrypt x0.
Notice that this experiment is completely independent of the bit b, and therefore

Pr[H(5)(λ) = 1] = 1/2.

1. Public parameters:

mpk ← iO(CK |{z∗})

K ← PRF.Gen(1λ).

2. Challenge ciphertext:

ct∗ = (z∗, c∗)
r∗ ← {0, 1}t (λ)/6,

z∗ ← {0, 1}t (λ)/3,

From Minicrypt to Obfustopia via Private-Key Functional Encryption 453

k∗ ← {0, 1}t (λ)/3,

c∗ = PDE.E(k∗, x0)

3. Functional keys (i = 1, . . . , Qkey):

sk fi ← iO(Pfi ,K |{z∗},z∗,c0,c1,y,k′)

k′ = PDE.P(k∗, x0, x1),
c′
0 = PDE.E(k∗, x0),
c′
1 = PDE.E(k∗, x1),
c0 = c′

b′ , c1 = c′
1−b′ for b′ ← {0, 1},

y = fi (x
0) = fi (x

1).

We observe that the security of the PDE gives the following claim.

Claim 4.13. There exists an adversary B(4)→(5) that runs in time T (λ) · poly(λ), such
that

∣
∣
∣Pr

[

H(3)(λ) = 1
]

− Pr
[

H(4)(λ) = 1
]∣
∣
∣ ≤ AdvPDEPDE,B(4)→(5) (t (λ)/6).

Putting together Claims 4.9–4.13, we get that

Advsel-pkFE
�,F ,A

def=
∣
∣
∣
∣
Pr

[

Expsel-pkFE
�,F ,A (λ) = 1

]

− 1

2

∣
∣
∣
∣

=
∣
∣
∣Pr

[

H(0)(λ) = 1
]

− Pr
[

H(5)(λ) = 1
]∣
∣
∣

≤ AdvPRGPRG,B(0)→(1) (t (λ)/6) + AdviOiO,B(1)→(2) (λ) + 1/2t (λ)/6

+ Qkey · (AdviOiO,B(2)→(3) (λ) + ηPDE(t (λ)/6)) + AdvpuPRF
PRF,B(3)→(4) (t (λ))

+ AdvPDEPDE,B(4)→(5) (t (λ)/6)

≤ μPRG(t (λ)/6) + μiO(λ) + 1/2t (λ)/6

+ Qkey(λ)(μiO(λ) + ηPDE(t (λ)/6)) + μPRF(t (λ)) + μPDE(t (λ)/6).

4.3. Average-Case PPAD Hardness

We present a construction of a hard-on-average distribution of sink-of-verifiable-line
(SVL) instances assuming any quasi-polynomially secure private-key (single-input)
functional encryption scheme and sub-exponentially secure one-way function. Follow-
ing the work of Abbot et al. [7] and Bitansky et al. [16], this shows that the complexity
class PPAD [24,29,30,50] contains complete problems that are hard on average (we re-
fer the reader to [16] for more details). In what follows, we first recall the SVL problem,
and then state and prove our hardness result.

454 I. Komargodski, G. Segev

Fig. 7. The functions VSK .

Definition 4.14. (Sink-of-verifiable-line) An SVL instance (S,V, xs, T) consists of a
source xs ∈ {0, 1}λ, a target index T ∈ [2λ], and a pair of circuits S : {0, 1}λ → {0, 1}λ
and V : {0, 1}λ × [T] → {0, 1}, such that for (x, i) ∈ {0, 1}λ × [T], it holds that
V(x, i) = 1 if and only if x = xi = Si−1(xs), where x1 = xs . A string w ∈ {0, 1}λ is a
valid witness if and only if V(w, T) = 1.

Theorem 4.15. Let λ ∈ N be a security parameter and fix any constant ε ∈ (0, 1).
Assume a (22(log λ)1/ε , 22(log λ)1/ε , 2(log λ)1/ε , 2−(log λ)1.5/ε)-selectively secure single-input
private-key functional encryption scheme for all functions of polynomial size, and that

(2λ2ε
′
, 2−λ2ε

′
)-secure injective one-way functions exist for some large enough constant

ε′ ∈ (0, 1). Then, there exists a distribution with an associated efficient sampling proce-
dure that generates instances of sink-of-verifiable-line which are hard to solve for any
polynomial-time algorithm.

We present the construction of a hard-on-average SVL distribution. This distribution
is efficiently samplable, and we later show that under appropriate cryptographic assump-
tions, it is hard to solve it in polynomial time. The construction relies on the following
building blocks:

1. An indistinguishability obfuscator iO for the class of circuits Cs,tλ , where s(λ) =
2O(log λ)ε and t (λ) = (log λ)1+δ for some fixed constants ε, δ > 0.

2. A puncturable pseudorandom function family PRF = (PRF.Gen,PRF.Eval)
with key space {0, 1}t (λ), domain [T (λ)] and range {0, 1}t (λ)/2, where T (λ) =
2(log λ)1+δ/3

.
3. An injective one-way function OWF : {0, 1}t (λ)/2 → {0, 1}�(t (λ)), where �(λ) is

any fixed polynomial.9

The construction consists of an obfuscation of a (padded) circuit VS that given a valid
signature on an index i produces a signature on the next index i + 1, where signatures
will be implemented by the puncturable PRF. The circuit is formally described in Fig. 7.

More precisely, an instance in the distribution is composed of V̂SK ← iO(VSK),
an obfuscation of the circuit VSK , where K ← PRF.Gen(1t (λ)) and a signature σ1 =

9The injective one-way function can be relaxed to be a family of one-way functions such that a random
element is an injective function with high probability. Furthermore, this primitive will not be used in the
construction, but rather only in the proof of security.

From Minicrypt to Obfustopia via Private-Key Functional Encryption 455

PRFK (1). This induces an SVL instance (S,V, xs, T) where the successor circuit S
computes V̂SK , the verification circuit V uses V̂SK to test inputs along the chain from
the source input xs = (1, σ1) to the target input (T, σT).
We observe that the circuit VSK has input of length t (λ)/2 + t (λ)/2 = t (λ) and the

size of VSK is bounded by some fixed polynomial in t (λ) which is smaller than s(λ).
For security, we rely on sub-exponentially secure injective one-way functions and the

iO we obtained in Corollary 4.3. We use a parameterized version of the main result of
[16].

Theorem 4.16. ([16]) Let TiO = TiO(λ), μiO = μiO(λ), TPRF = TPRF(λ), μPRF =
μPRF(λ), and μOWF = μOWF(λ) be functions of the security parameter λ ∈ N. Assume
that iO is a (TiO, μiO)-secure indistinguishability obfuscator for the class Cs,tλ ,PRF be
a (TPRF, μPRF)-secure puncturable pseudorandom function,OWF be a (TOWF, μOWF)-
secure family of injective one-way functions, then for any distinguisher D that runs in
time atmostmin{TiO(λ), TPRF(t (λ)), TOWF(t (λ)/2)}, the probability of solving the SVL
problem is at most

μOWF(log T (λ)) + T (λ) · (μiO(λ) + μPRF(t (λ)) + μOWF(t (λ)/2)).

We are now ready to prove Theorem 4.15.

Proof of Theorem 4.15. Assume a (22(log λ)1/ε , 22(log λ)1/ε , 2(log λ)1/ε , 2−(log λ)1.5/ε)-
selectively secure single-input private-key functional encryption scheme for all func-
tions of polynomial size. By Corollary 4.3, for every ε > 0, there exists a δ > 0 such
that there exists a (2(log λ)2 , 2−(log λ)2)-secure indistinguishability obfuscator for the cir-

cuit class C2O((log λ)ε),(log λ)1+δ

λ .

Assume a (22λ
ε′
, 2−2λε′

)-secure (injective) one-way function for some large enough

constant ε′ such that (1+δ/2)/(1+δ) ≤ ε′ < 1. Thus, there exists a (2λε′
, 2−λε′

)-secure
puncturable pseudorandom function family.
Recall that T (λ) = 2(log λ)1+δ/3

and t (λ) = (log λ)1+δ . Plugging these primitives
in Lemma 4.8 we get that for some (small enough) constants ζ ′, ζ ′′ ∈ (0, 1), every
adversary that runs in time

min{TiO(λ), TPRF(t (λ)), TOWF(t (λ)/2)} ≥ 2(log λ)1+ζ ′
,

its probability of solving the SVL problem is at most

μOWF(log T (λ)) + T (λ) · (μiO(λ) + μPRF(t (λ)) + μOWF(t (λ)/2))

= μOWF((log λ)1+δ/3) + 2(log λ)1+δ/3

· (2−(log λ)2 + μPRF((log λ)1+δ) + μOWF((log λ)1+δ/2))

456 I. Komargodski, G. Segev

≤ 2−2(log λ)(1+δ/3)·ε′ + 2(log λ)1+δ/3 · (2−(log λ)2 + 2−(log λ)(1+δ)·ε′ + 2−2(log λ)(1+δ)·ε′/2ε′
)

≤ 2−(log λ)1+ζ ′′
.

�

Acknowledgements

We thank Zvika Brakerski and the anonymous referees for many valuable comments.
The first author thanks his advisor Moni Naor for his support and guidance.

References

[1] S.Agrawal, S.Agrawal, S. Badrinarayanan,A.Kumarasubramanian,M. Prabhakaran,A. Sahai, Function
private functional encryption and property preserving encryption: new definitions and positive results.
Cryptology ePrint Archive, Report 2013/744 (2013)

[2] P. Ananth, D. Boneh, S. Garg, A. Sahai, M. Zhandry, Differing-inputs obfuscation and applications.
Cryptology ePrint Archive, Report 2013/689 (2013)

[3] P. Ananth, Z. Brakerski, G. Segev, V. Vaikuntanathan, From selective to adaptive security in functional
encryption, in Advances in Cryptology—CRYPTO ’15 (2015), pp. 657–677

[4] P. Ananth, A. Jain, Indistinguishability obfuscation from compact functional encryption, in Advances in
Cryptology—CRYPTO ’15 (2015), pp. 308–326

[5] P. Ananth, A. Jain, M. Naor, A. Sahai, E. Yogev, Universal constructions and robust combiners for indis-
tinguishability obfuscation and witness encryption, in Advances in Cryptology—CRYPTO ’16 (2016),
pp. 491–520

[6] P. Ananth, A. Jain, A. Sahai, Achieving compactness generically: indistinguishability obfuscation from
non-compact functional encryption. Cryptology ePrint Archive, Report 2015/730 (2015)

[7] T. Abbot, D. Kane, P. Valiant, On algorithms for Nash equilibria (2004)
[8] G. Asharov, G. Segev, Limits on the power of indistinguishability obfuscation and functional encryption.

SIAM J. Comput., 45(6), 2117–2176 (2016)
[9] E. Boyle, K. Chung, R. Pass, On extractability obfuscation, in Proceedings of the 11th Theory of Cryp-

tography Conference, TCC (2014), pp. 52–73
[10] Z. Brakerski, C. Gentry, S. Halevi, T. Lepoint, A. Sahai, M. Tibouchi, Cryptanalysis of the quadratic

zero-testing of GGH. Cryptology ePrint Archive, Report 2015/845 (2015)
[11] B.Barak,O.Goldreich,R. Impagliazzo, S.Rudich,A. Sahai, S. P.Vadhan,K.Yang,On the (im)possibility

of obfuscating programs. J. ACM, 59(2), 6 (2012)
[12] E. Boyle, S. Goldwasser, I. Ivan, Functional signatures and pseudorandom functions, in Proceedings

of the 17th International Conference on Practice and Theory in Public-Key Cryptography (2014), pp.
501–519

[13] Z. Brakerski, I. Komargodski, G. Segev, Multi-input functional encryption in the private-key setting:
stronger security from weaker assumptions. J. Cryptol., 31(2), 434–520 (2018)

[14] D. Boneh, K. Lewi, M. Raykova, A. Sahai, M. Zhandry, J. Zimmerman, Semantically secure
order-revealing encryption: Multi-input functional encryption without obfuscation, in Advances in
Cryptology—EUROCRYPT ’15 (2015), pp. 563–594

[15] N. Bitansky, R. Nishimaki, A. Passelègue, D. Wichs, From Cryptomania to Obfustopia through secret-
key functional encryption, in Theory of Cryptography—14th International Conference, TCC 2016-B
(2016), pp. 391–418

[16] N. Bitansky, O. Paneth, A. Rosen, On the cryptographic hardness of finding a Nash equilibrium, in
Proceedings of the 56th Annual IEEE Symposium on Foundations of Computer Science (2015), pp.
1480–1498

From Minicrypt to Obfustopia via Private-Key Functional Encryption 457

[17] D. Boneh, A. Raghunathan, G. Segev, Function-private identity-based encryption: hiding the function
in functional encryption, in Advances in Cryptology—CRYPTO ’13 (2013), pp. 461–478

[18] D. Boneh, A. Raghunathan, G. Segev, Function-private subspace-membership encryption and its appli-
cations, in Advances in Cryptology—ASIACRYPT ’13 (2013), pp. 255–275

[19] Z. Brakerski, G. Segev, Function-private functional encryption in the private-key setting, in Proceedings
of the 12th Theory of Cryptography Conference, TCC (2015), pp. 306–324

[20] D. Boneh, A. Sahai, B. Waters, Functional encryption: definitions and challenges, in Proceedings of the
8th Theory of Cryptography Conference, TCC (2011), pp. 253–273

[21] D. Boneh, A. Sahai, B. Waters, Functional encryption: a new vision for public-key cryptography. Com-
mun. ACM, 55(11), 56–64 (2012)

[22] N. Bitansky, V. Vaikuntanathan, Indistinguishability obfuscation from functional encryption, in Pro-
ceedings of the 56th Annual IEEE Symposium on Foundations of Computer Science (2015), pp. 171–190

[23] D. Boneh, B. Waters, Constrained pseudorandom functions and their applications, in Advances in
Cryptology—ASIACRYPT ’13 (2013), pp. 280–300

[24] X. Chen, X. Deng, S. Teng, Settling the complexity of computing two-player Nash equilibria. J. ACM,
56(3), 14 (2009)

[25] J.H. Cheon, P. Fouque, C. Lee, B. Minaud, H. Ryu, Cryptanalysis of the new CLT multilinear map over
the integers, in Advances in Cryptology—EUROCRYPT (2016), pp. 509–536

[26] J. Coron, C. Gentry, S. Halevi, T. Lepoint, H.K. Maji, E. Miles, M. Raykova, A. Sahai, M. Tibouchi, Ze-
roizing without low-level zeroes: newMMAP attacks and their limitations, in Advances in Cryptology—
CRYPTO ’15 (2015), pp. 247–266

[27] J.H. Cheon, K. Han, C. Lee, H. Ryu, D. Stehlé, Cryptanalysis of the multilinear map over the integers,
in Advances in Cryptology—EUROCRYPT ’15 (2015), pp. 3–12

[28] J.H. Cheon, J. Jeong, C. Lee, An algorithm forNTRUproblems and cryptanalysis of theGGHmultilinear
map without an encoding of zero. Cryptology ePrint Archive, Report 2016/139 (2016)

[29] C. Daskalakis, P. W. Goldberg, C.H. Papadimitriou, The complexity of computing a Nash equilibrium.
Commun. ACM, 52(2), 89–97 (2009)

[30] C. Daskalakis, P.W. Goldberg, C.H. Papadimitriou, The complexity of computing a Nash equilibrium.
SIAM J. Comput., 39(1), 195—259 (2009)

[31] C. Daskalakis, C.H. Papadimitriou, Continuous local search, in Proceedings of the 22nd Annual ACM-
SIAM Symposium on Discrete Algorithms (2011), pp. 790–804

[32] S. Goldwasser, S.D. Gordon, V. Goyal, A. Jain, J. Katz, F.-H. Liu, A. Sahai, E. Shi, H.-S. Zhou, Multi-
input functional encryption, in Advances in Cryptology—EUROCRYPT ’14 (2014), pp. 578–602

[33] S. Garg, C. Gentry, S. Halevi, M. Raykova, A. Sahai, B. Waters, Candidate indistinguishability obfus-
cation and functional encryption for all circuits, in Proceedings of the 54th Annual IEEE Symposium on
Foundations of Computer Science (2013), pp. 40–49

[34] S. Garg, C. Gentry, S. Halevi, M. Zhandry, Functional encryption without obfuscation, in Proceedings
of the 13th Theory of Cryptography Conference, TCC (2016), pp. 480–511

[35] O. Goldreich, S. Goldwasser, S. Micali, How to construct random functions. J. ACM, 33(4), 792-807
(1986)

[36] S. Goldwasser, Y. Kalai, R.A. Popa, V. Vaikuntanathan, N. Zeldovich, Reusable garbled circuits and suc-
cinct functional encryption, inProceedings of the 45th Annual ACMSymposium on Theory of Computing
(2013), pp. 555–564

[37] S. Garg, O. Pandey, A. Srinivasan, Revisiting the cryptographic hardness of finding a Nash equilibrium,
in Advances in Cryptology—CRYPTO ’16 (2016), pp. 579–604

[38] S. Garg, A. Srinivasan, Single-key to multi-key functional encryption with polynomial loss, in Theory
of Cryptography—14th International Conference, TCC (2016), pp. 419–442

[39] S. Gorbunov, V. Vaikuntanathan, H.Wee, Functional encryption with bounded collusions via multi-party
computation, in Advances in Cryptology—CRYPTO ’12 (2012), pp. 162–179

[40] Y. Hu, H. Jia, Cryptanalysis of GGH map, in Advances in Cryptology—EUROCRYPT (2016), pp. 537–
565

[41] P. Hubácek, E. Yogev, Hardness of continuous local search: Query complexity and cryptographic lower
bounds, in Proceedings of the 28th Annual ACM-SIAM Symposium on Discrete Algorithms, SODA
(2017), pp. 1352–1371

458 I. Komargodski, G. Segev

[42] R. Impagliazzo,A personal viewof average-case complexity, inProceedings of the 10th Annual Structure
in Complexity Theory Conference (1995), pp. 134–147

[43] I. Komargodski, T. Moran, M. Naor, R. Pass, A. Rosen, E. Yogev, One-way functions and (im)perfect
obfuscation, in Proceedings of the 55th Annual IEEE Symposium on Foundations of Computer Science
(2014), pp. 374–383

[44] F. Kitagawa, R. Nishimaki, K. Tanaka, Obfustopia built on secret-key functional encryption, inAdvances
in Cryptology—EUROCRYPT (2018), pp. 603–648

[45] A. Kiayias, S. Papadopoulos, N. Triandopoulos, T. Zacharias, Delegatable pseudorandom functions and
applications, in Proceedings of the 20th Annual ACM Conference on Computer and Communications
Security (2013), pp. 669–684

[46] I. Komargodski, G. Segev, E. Yogev, Functional encryption for randomized functionalities in the private-
key setting from minimal assumptions. J. Cryptol., 31(1), 60–100 (2018)

[47] B. Li, D. Micciancio, Compactness vs collusion resistance in functional encryption, in Theory of
Cryptography—14th International Conference, TCC (2016), pp. 443–468

[48] E. Miles, A. Sahai, M. Zhandry, Annihilation attacks for multilinear maps: cryptanalysis of indistin-
guishability obfuscation over GGH13, in Advances in Cryptology—CRYPTO (2016), pp. 629–658

[49] A. O’Neill, Definitional issues in functional encryption. Cryptology ePrint Archive, Report 2010/556
(2010)

[50] C.H. Papadimitriou, On the complexity of the parity argument and other inefficient proofs of existence.
J. Comput. Syst. Sci., 48(3), 498-532 (1994)

[51] E. Shen, E. Shi, B. Waters, Predicate privacy in encryption systems, in Proceedings of the 6th Theory of
Cryptography Conference, TCC (2009), pp. 457–473

[52] A. Sahai, B. Waters, Slides on functional encryption (2008). http://www.cs.utexas.edu/~bwaters/
presentations/files/functional.ppt

[53] A. Sahai, B. Waters, How to use indistinguishability obfuscation: deniable encryption, and more, in
Proceedings of the 46th Annual ACM Symposium on Theory of Computing (2014), pp. 475–484

[54] B. Waters, A punctured programming approach to adaptively secure functional encryption, in Advances
in Cryptology—CRYPTO ’15 (2015), pp. 678–697

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

http://www.cs.utexas.edu/~bwaters/presentations/files/functional.ppt
http://www.cs.utexas.edu/~bwaters/presentations/files/functional.ppt

	From Minicrypt to Obfustopia via Private-Key Functional Encryption
	1. Introduction
	1.1. Our Contributions
	1.2. Overview of Our Constructions
	1.3. Additional Related Work
	1.4. Paper Organization

	2. Preliminaries
	2.1. One-Way Functions and Pseudorandom Generators
	2.2. Pseudorandom Functions
	2.3. Private-Key Multi-input Functional Encryption
	2.4. Public-Key Functional Encryption
	2.5. Indistinguishability Obfuscation

	3. Private-Key MIFE for a Poly-Logarithmic Number of Inputs
	3.1. From t Inputs to 2t Inputs
	3.1.1. Overview of Our Construction
	3.1.2. The Construction
	3.1.3. Proof of Theorem 3.1 (Proof of Security)
	3.1.4. Proofs of Claims 3.2–3.5

	3.2. Efficiency Analysis
	3.3. Iteratively Applying Our Transformation

	4. Applications of Our Construction
	4.1. Obfuscation for Circuits with Poly-logarithmic Input Length
	4.2. Public-Key Functional Encryption
	4.2.1. Puncturable Deterministic Encryption
	4.2.2. The Construction
	4.2.3. Proof of Theorem 4.4
	4.2.4. Proof of Lemma 4.8

	4.3. Average-Case PPAD Hardness

	Acknowledgements
	References

