
https://doi.org/10.1007/s00145-019-09323-1
J Cryptol (2019) 32:1200–1262

What Security Can We Achieve Within 4 Rounds?∗

Carmit Hazay
Faculty of Engineering, Bar-Ilan University, Ramat Gan, Israel

carmit.hazay@biu.ac.il

Muthuramakrishnan Venkitasubramaniam
University of Rochester, Rochester, NY14611, USA

muthuv@cs.rochester.edu

Communicated by Hugo Krawczyk.

Received 24 August 2016 / Revised 14 April 2019
Online publication 22 May 2019

Abstract. Katz and Ostrovsky (Crypto 2004) proved that five rounds are necessary for
stand-alone general black-box constructions of secure two-party protocols and at least
four rounds are necessary if only one party needs to receive the output. Recently, Ostro-
vsky, Richelson and Scafuro (Crypto 2015) proved optimality of this result by showing
how to realize stand-alone, secure two-party computation under general assumptions
(with black-box proof of security) in four rounds where only one party receives the
output, and an extension to five rounds where both parties receive the output. In this
paper, we study the question of what security is achievable for stand-alone two-party
protocols within four rounds and show the following results:

1. A 4-round two-party protocol for coin-tossing that achieves 1/p-security (i.e., simulation
fails with probability at most 1/p + negl), in the presence of malicious corruptions.

2. A 4-round two-party protocol for general functionalities where both parties receive the
output, that achieves 1/p-security and privacy in the presence of malicious adversaries
corrupting one of the parties, and full security in the presence of non-aborting malicious
adversaries corrupting the other party.

3. A 3-round oblivious-transfer protocol that achieves 1/p-security against arbitrary mali-
cious senders, while simultaneously guaranteeing a meaningful notion of privacy against
malicious corruptions of either party.

4. Finally, we show that the simulation-based security guarantees for our 3-round protocols
are optimal by proving that 1/p-simulation security is impossible to achieve against both
parties in three rounds or less when requiring some minimal guarantees on the privacy of
their inputs.

Keywords. Secure computation, Coin-tossing, Oblivious-transfer, Round complexity.

∗CarmitHazay: Research partially supported by a grant from the IsraelMinistry of Science andTechnology
(Grant No. 3-10883), by the European Research Council under the ERC consolidators Grant agreement
n. 615172 (HIPS), and by the BIU Center for Research in Applied Cryptography and Cyber Security in
conjunction with the Israel National Cyber Bureau in the Prime Minister’s Office.
Muthuramakrishnan Venkitasubramaniam: Research supported by Google Faculty Research Grant and NSF
Award CNS-1526377.

© International Association for Cryptologic Research 2019

http://crossmark.crossref.org/dialog/?doi=10.1007/s00145-019-09323-1&domain=pdf

What Security Can We Achieve Within 4 Rounds? 1201

1. Introduction

Secure two-party computation enables two parties to mutually run a protocol that com-
putes some function f on their private inputs, while preserving a number of security
properties. Two of the most important properties are privacy and correctness. The for-
mer implies data confidentiality, namely nothing leaks by the protocol execution but
the computed output. The latter requirement implies that the protocol enforces the in-
tegrity of the computations made by the parties, namely honest parties learn the correct
output. Feasibility results are well established [5,34,52,63], proving that any efficient
functionality can be securely computed under full simulation-based definitions (follow-
ing the ideal/real paradigm). Security is typically proven with respect to two adversarial
models: the semi-honest model (where the adversary follows the instructions of the
protocol but tries to learn more than it should from the protocol transcript) and the ma-
licious model (where the adversary follows an arbitrary polynomial-time strategy), and
feasibility holds in the presence of both types of attacks.

The Round Complexity of Multi-party Computation An important complexity measure
of secure computation that has been extensively studied in the literature, is the round
complexity of secure protocols, where by a round of communication we mean a single
message transmission from one party to another. In the stand-alone setting, Yao [63] pre-
sented the first constant-round secure two-party computation protocol in the semi-honest
model. In contrast, Goldreich, Micali and Wigderson [34] showed how to obtain proto-
cols that tolerate malicious adversaries which requires non-constant number of rounds,
followed by Lindell [47] who gave the first constant-round secure two-party protocol
tolerating such attacks. In an important characterization, Katz and Ostrovsky [45] de-
termined that the exact round complexity of achieving a (black-box) maliciously secure
two-party computation is five (and four if only one of the parties receives an output).
More precisely, they constructed a 5-round protocol to securely compute arbitrary func-
tionalities and showed that there cannot exist any 4-round black-box construction that
securely realizes the coin-tossing functionality with black-box simulation. A more re-
cent work by Garg et al. [32] studied the round complexity of secure protocols in the
simultaneous message model, where in a single round multiple parties are allowed to
simultaneously transmit messages. Garg et al. extended the Katz-Ostrovsky lower bound
to show that four rounds are necessary to realize the coin-tossing functionality in the
multi-party setting (where all parties receive the output). While these results only con-
sider the stand-alone model, assuming some trusted setup such as a common reference
string (CRS), it is possible to construct round-optimal (i.e., two-round) secure two-party
protocols; see [43] for example.
In this work, we are interested in understanding secure two-party computation with

four rounds such that both parties learn their outputs and study various security relax-
ations and their combinations.

The Round Complexity of Oblivious-Transfer (OT) At the heart of all multi-party pro-
tocols in the dishonest majority setting lies an oblivious-transfer protocol that serves
as a fundamental building block. Therefore, understanding the round complexity of
multi-party protocols requires understanding the round complexity of OT protocols. In

1202 C. Hazay, M. Venkitasubramaniam

the Random Oracle model, Naor and Pinkas [54] developed a 2-round OT protocol
that obtains one-sided simulation (w.r.t. the sender), whereas only privacy is guaranteed
against a malicious receiver. Halevi and Kalai in [40] showed how to construct 2-round
protocols for OT without the random-oracle where only privacy is guaranteed against
both the sender and receiver. When assuming setup, the work of Peikert, Vaikuntanathan
and Waters [59] shows how to construct highly efficient 2-round protocols for the OT
functionality in the CRS model. In the plain model, Ostrovsky, Richelson and Scafuro
[55] strengthened the [45] construction by demonstrating a 5-round protocol where ad-
ditionally the underlying cryptographic primitives are used only in a “black-box” way.
When restricting to black-box simulation (and non-simultaneous messages), fully

malicious secure computation cannot be achieved in less than four rounds. The main
question we address in this work is:

What security is achievable for stand-alonemalicious two-party computation
within four rounds when both parties receive the output?

Relaxed Notions of Security In this work, we focus on what security is achievable in
the standard communication model (i.e., not simultaneous message passing) in the two-
party setting. More precisely, we initiate the study of what security guarantees can be
achieved in round-efficient protocols. Toward that, we begin with an overview of some
relaxations to the standard notions of simulation-based security considered in this work.

1. 1/p-Security In our first relaxation, we weaken the indistinguishability require-
ment on the simulation. In the standard definition, the views of an adversary in the
real and ideal world needs to be indistinguishable except with negligible probabil-
ity. More concretely, in our relaxed variant, we require the two distributions to be
distinguishable with probability at most 1/p + negl, where p(·) is some arbitrary
but specified polynomial. This relaxation has been considered in the past in the
context of achieving coin-tossing [17,50] and fairness for arbitrary functionali-
ties [29]. We remark that there are two subtle variants of this basic notion. The
worst case guarantee with such a security notion can allow an adversary to com-
pletely violate the privacy of honest parties with 1/p. We present an OT protocol
with 1/p-security where there are explicit attacks with probability 1/p and one
where there are no attacks. A second consideration is whether the protocol depends
on p. Our main OT protocols depend on the polynomial p, while our coin-tossing
protocol is independent of p. Chung, Liu and Pass [19] have considered a similar
notion for zero-knowledge, referred to as ε-weak zero-knowledge. Furthermore,
they showed that a protocol that achieves ε-weak zero-knowledge for an inverse
polynomial ε implies super-polynomial simulation. We believe that a similar re-
sult can be obtained for our coin-tossing protocol, i.e., super-polynomial simulation
under standard (polynomial-time hardness) assumptions. Finally, we believe that
achieving 1/p-security can be seen as a first step for achieving super-polynomial
simulation from standard assumptions [18].

2. Privacy Only Loosely speaking, privacy is a weaker notion of simulation-based
definition for which no party should be able to distinguish two views generated
based on distinct set of inputs for the other party but yield the same output. Pri-
vate OT was formalized by Halevi and Kalai in [40] that considered two separate

What Security Can We Achieve Within 4 Rounds? 1203

definitions. Namely, receiver privacy requires that no malicious sender be able
to distinguish the cases when the receiver’s input is 0 or 1. On the other hand,
sender privacy requires that for every malicious receiver and honest sender with
input (s0, s1) there exists some input b for which the receiver cannot distinguish
an execution where s1−b is set to the correct value from an execution where s1−b

is sampled uniformly at random.
The notion of private OT is related to the notion of input-indistinguishable computation,
introduced byMicali et al. in [51],which considers aweaker security notion for two-party
computation. Formally, they require an “implicit input” function that can, from a tran-
script of the interaction, specify the input of a particular party. We prove in Appendix B
that one of our protocols, in fact, can be shown to satisfy input-indistinguishable secu-
rity. For simplicity, we will follow our definition for the protocols in the main body. We
remark that the notion of input-indistinguishability holds for any functionality, whereas
our definition is specified only for oblivious-transfer.

3. Non-aborting (malicious) Adversaries Non-aborting adversaries imply adversaries who
are guaranteed to not abort in the middle of the execution. Security against non-aborting
strategies implies that if an adversary deviates from the protocol it will be detected (ei-
ther because of an ill-formed1 message or the adversary aborts before delivering the
message). This notion is therefore stronger than semi-honest security where malicious
behavior can go undetected. It is further useful in settings that apply external measures
to ensure fairness, such as the recent work of [10] that has shown how to rely on external
mechanisms, such as bitcoins to ensure fairness. Another line of works considers “opti-
mistic” fairness where a trusted party can be used to compensate the loss of information
due to aborting adversaries [3,49]. In this setting, the trusted party is involved only if
one of the parties prematurely aborts and is not involved in the computation otherwise.
In such settings, it is a reasonable assumption to develop and analyze security in the
presence of non-aborting adversaries. Another motivation for considering non-aborting
adversaries arises from a long line of works [4,6,22,42,53] that have a preprocessing
(or an offline) phase followed by an online phase. The offline phase is independent of
the parties’ secret inputs and generates correlated randomness to be consumed in the
online phase. The key insight here is that since no private inputs are used in the first
phase of the computation an aborting adversary can at best stop from the computation
being performed and not violate privacy of the real inputs. Finally, we highlight that
security against non-aborting adversaries where the aborting party can be identified is
useful in protocols for parameter generation (e.g., common reference string). This is
sufficient and useful in cryptocurrency and blockchain applications where parties want
to generate ECDSA signing keys [21,48] or RSA modulus [25,41] in a distributed way.

In general, 1/p-security and privacy are incomparable.While privacy always guarantees
some form of input-indistinguishable security, 1/p-secure protocols could lose complete
security with probability 1/p. All our protocols that achieve 1/p-security additionally
satisfies privacy. We further remark that achieving 1/p-security has the added benefit
of easily composing with protocols to achieve a similar level security. We show how
to combine our 1/p-secure OT protocols with the 2-round secure computation protocol

1A message is considered ill-formed if the recipient of the message rejects the message.

1204 C. Hazay, M. Venkitasubramaniam

of Ishai et al. from [43] to get secure computation of general functionalities with 1/p-
security. Furthermore, 1/p-security can be easily specified for general functionalities
while extending the analogous privacy notion is harder.
We also study the combination of 1/p-security for OT in the presence of corrupted

senders and non-aborting receivers. In the case of security of non-aborting adversaries,
only one of our twoOTprotocols violates the sender’s privacywhen the adversary aborts.
As mentioned above, this is still meaningful in some scenarios. On the other hand, this
protocol is conceptually simpler than our protocol for which an aborting receiver cannot
violate the sender’s privacy. Moreover, since cheating is always detected, our protocol
can be used for computing random OTs where the sender’s inputs are random and
detecting cheating does not violate privacy. Random OTs are very useful in the context
of OT extensions and triples generation [46].

Related Work Aumann and Lindell introduced the notion of covert security in [2] as
a relaxation of standard simulation-based security. This notion models adversaries that
may deviate arbitrarily from the protocol specification in an attempt to cheat, but do not
wish to get caught doing so. They consider several formulations, one of which allows the
simulator to fail, as long as it is guaranteed that the real and ideal output distributions are
distinguishable with a probability that is related to the probability of detecting cheating.
While the 1/p-security notion does not imply covert security, combining 1/p-security
with privacy may archive a stronger notion than covert security. Roughly speaking, this
is because whenever an adversary misbehaves privacy is still preserved. In contrast,
covert adversary may violate privacy with some probability p (but is guaranteed to get
caught with a related probability, which is not ensured by 1/p-security). Moreover, if
we restrict the class of adversaries to be non-aborting then our protocols satisfy covert
security. We leave it as future work to concretely compare our definitions and protocols
with covert security.
Another related notion is that of super-polynomial-time simulation [13,56,58] which

allows the simulator to run in super-polynomial (potentially exponential) time. In the
context of zero-knowledge proofs, exponential time simulation is equivalent to witness
indistinguishability. However, more generally, for secure computation it seems that the
implication is only one-way where exponential time simulation implies privacy. Con-
cretely, the protocols in [23,40] and some of our protocols guarantee statistical privacy
against at least one party and hence cannot admit exponential time simulation.
In the context of (partial) fairness, Gordon and Katz [29] showed how to construct

secure protocols with 1/p-security which are fully private. The focus of their work is to
achieve a meaningful notion of fairness, while the round complexity incurred by their
protocols is high.We remark that our definition of privacy is weaker than the definition of
[29]. While their definition has a simulation-based flavor, ours is an indistinguishability-
based definition (where the combination of both guarantees is discussed above). Never-
theless, the focus of our work is not related to fairness rather to minimize the number
of rounds. More recently, Garay et al. [30] considered a utility-based security definition
that is both 1/p-secure and fully private (and in that sense, stronger than 1/p-security).

The work of Ishai et al. [43] shows how to construct a 2-round secure two-party
computation protocol in the so-called OT-hybrid model, where the parties are assumed
access to an ideal functionality implementing oblivious-transfer (OT). In essence, their

What Security Can We Achieve Within 4 Rounds? 1205

work shows that improving the round complexity of secure computation is closely related
to constructing round-efficient oblivious-transfer protocols.

1.1. Our Results

Coin-Tossing Our first result concerns with the coin-tossing functionality where we
show how to achieve 1/p-security. More precisely, we prove the following theorem:

Theorem 1.1. (Informal)Assuming the discrete logarithm problem is hard, there exists
a 4-round protocol that securely realizes the coin-tossing functionalitywith 1/p-security.

We remark that if we allow our simulator to run in expected polynomial-time, we actually
obtain perfect simulation against one of the parties and 1/p-security against the other
(even against aborting adversaries). On the other hand, if we require strict polynomial-
time simulation, where this polynomial is independent of the adversary’s running time,
our protocol achieves 1/p-security relative for both corruption cases.We further provide
an abstraction for this protocol using a 2-round cryptographic primitive denoted by
homomorphic trapdoor commitment scheme, where the commitment transcript, as well
as the trapdoor, are homomorphic. This abstraction captures a larger class of hardness
assumptions such as RSA and factoring.

Oblivious-Transfer and 2PC Next, we extend this idea to realize the oblivious-transfer
functionalitywith 1/p-simulation security and privacy. In our first result, we construct an
OT protocol that achieves 1/p-security and privacy against arbitrary (possibly aborting)
malicious senders and full simulation security against non-aborting receivers. More
precisely, an aborting receiver may violate the sender’s privacy and learn its both inputs.
We prove the following theorem:

Theorem 1.2. (Informal) Assuming the Decisional Diffie-Hellman (DDH) problem is
hard, there exists a 4-round oblivious-transfer protocol, where the receiver receives the
output at the end of the third round, which is 1/p-secure and private in the presence of
aborting senders and fully secure in the presence of non-aborting receivers.2

It is important to note here that, if the receiver is required to learn the output only at
the end of the fourth round, then the protocol of [55] already provides such a guarantee
with full simulation security against malicious (aborting) senders and receivers. Our
contribution is providing a protocol where the receiver learns the output in the third
round. Themain advantage of this protocol is that we can combine our oblivious-transfer
protocol with the 2-round protocol of [43] to obtain 4-round secure computation where
both parties receive the output with analogous security guarantees. Specifically, the
receiver in the above OT protocol obtains its input already in the third round. This
allows to apply the [43] protocol within the second and third OT rounds. More precisely,
we obtain the following corollary:

2By fully secure, we mean standard simulation-based security.

1206 C. Hazay, M. Venkitasubramaniam

Theorem 1.3. (Informal) Assuming the DDH problem is hard, there exists a 4-round
two-party secure protocol for any functionality, where both parties receive the output,
that is 1/p-secure and private in the presence of aborting senders and fully secure in
the presence of non-aborting receivers.

We remark that our protocol achieves a specific security level, namely 1/p-security
and privacy against (arbitrary) senders and full security against non-aborting receivers.
Our main motivation in this work is to understand what security is achievable in four
rounds and Theorems 1.2 and 1.3 demonstrate that we can achieve security better than
just privacy (as in [40]).
In our third protocol, we provide a different protocol for the oblivious-transfer func-

tionality that guarantees 1/p-security against malicious (possibly aborting) senders
while guaranteeing privacy against malicious (possibly aborting) senders and receivers
based on claw-free trapdoor permutations. More formally, we obtain the following the-
orem.

Theorem 1.4. (Informal) Assuming the existence of claw-free permutations, there ex-
ists a 3-round oblivious-transfer protocol that is 1/p-secure in the presence of aborting
senders and private in the presence of aborting senders and receivers.

Comparing our two OT protocols, we note that they achieve incomparable notions
of security with respect to malicious receivers. Specifically, the first protocol is fully
secure in the presence of non-aborting adversaries and requires four rounds, whereas
the second protocol requires only three rounds and achieves privacy against malicious
(possibly aborting) receivers but no additional security if the receiver is non-aborting.
Lower Bounds We complement our positive results with two lower bounds, where we
show that achieving 1/p-security against aborting receivers is impossible under black-
box simulation. Our first result is:

Theorem 1.5. (Informal) Assuming NP �⊆ BPP, there exists no 3-round secure pro-
tocol for arbitrary functionalities with black-box simulation, with 1/p-security in the
presence of malicious receivers and correctness with probability 1.

Our proof follows by extending the [28] lower bound, to show that 3-round black-box
zero-knowledge proofs (or arguments) with negligible soundness and 1/p-security exist
only for languages in BPP. Indeed, it is possible to construct zero-knowledge proofs
with 1/p-soundness and 1/p-zero-knowledge security (for instance by repeating the
Blum’s Hamiltonicity proof [12] log p times).
Our second lower bound is:

Theorem 1.6. (Informal)There exists no3-roundoblivious-transfer protocol that achieves
privacy in the presence of malicious senders and 1/p-security in the presence of mali-
cious receivers for p > 2.

What Security Can We Achieve Within 4 Rounds? 1207

Table 1. Security guarantees with three and four rounds.

1/p-Sender w/ 1/p-Receiver 1/p-Sender 1/p-Sender
Privacy for Both w/ Sender Privacy 1/p-Receiver Non-abort. Rec.

3-Rounds [Thm 1.4] BB impos. [Thm 1.5] ? ?
4-Rounds Same as above ? Coin-tossing [Thm 1.1] [Thm 1.3]

We remark that privacy against both parties is in some sense the minimal requirement
of any secure computation protocol. Our lower bound shows that under this minimal
requirement if we want to additionally achieve 1/p-security in three rounds, it can
be achieved only against a malicious sender, which matches our upper bound, thus
establishing its optimality (see Table 1).

1.2. Our Techniques

Toward understanding our relaxations and constructions, we beginwith the impossibility
result of Katz and Ostrovsky [45] of constructing 4-round two-party coin-tossing pro-
tocol via black-box simulation. On a high-level, given an arbitrary 4-round protocol for
coin-tossing, the impossibility proceeds in two steps. In the first step, they consider an
adversary A1 that corrupts the party that receives the output first (in the third round) and
aborts if the output belongs to some predetermined subset �. Next, using the simulator
S1 that exists for of A1, they construct an adversary A2 that corrupts the other party and
biases the output to be in �. In particular, they prove that A2 can force the output to be
in � with probability higher than what would occur in the ideal world. This contradicts
the security of the coin-tossing protocol. Looking a bit more closely, for the proof to
go through, they need to choose � depending on the number of oracle queries made by
the black-box simulator of A1. Our first relaxation to circumvent this lower bound is to
relax the simulation requirement to 1/p-indistinguishability. Now, we can argue that if
S1 makes more than p queries to A1 (which will be the case in our construction) then
the bias induced by A2 will be bounded by 1/p and this will not contradict our security.
Moving on to more general protocol, we describe the difficulty in achieving three (or

less) rounds protocols. Consider a three round protocol for oblivious-transfer. Since the
receiver sends only one message (i.e., the second message), it would be impossible to
rely on black-box techniques to extract the receiver’s input. In fact, we show that it is
impossible to achieve 1/p-simulation against malicious receivers. Therefore, for three
rounds protocols, we relax the receiver’s requirement to only privacy and demonstrate
positive results that achieve privacy against malicious receivers and 1/p-simulation of
malicious senders. Finally, we remark that another weakening of security that allows to
circumvent the impossibility results is by restricting to non-aborting adversaries.
In what follows, we briefly sketch the technical details of our constructions beginning

with our coin-tossing protocol.

Coin-Tossing (Section 3)We begin with a simple coin-tossing protocol. Party P1 com-
mits to a random string s1, P2 responds with random string s2, followed by P1 de-
committing to s1 to yield s1 ⊕ s2 as the result of the coin-tossing. Simulating such a

1208 C. Hazay, M. Venkitasubramaniam

coin-toss requires the commitment to have two properties: extraction and equivocation.
Extraction will allow simulating a corrupted P1 by first extracting s1 and then setting
s2 = c⊕ s1 where c is the coin-toss received from the ideal functionality. Equivocation,
on the other hand, will allow simulating a corrupted P2 by equivocating s1 = c ⊕ s2
in the decommitment. Therefore, the goal is to construct such a commitment scheme.
Note that the extractable trapdoor commitment scheme from Pass and Wee [60] yields
a 4-round commitment scheme resulting in a 6-round coin-tossing protocol with full
security based on one-way permutations. In order to reduce the round complexity, one
approach would be to run the last two-rounds of the our intuitive protocol in parallel with
the 4-round commitment protocol; however, it is unclear how to demonstrate the secu-
rity of such a protocol. Instead, we simply construct an equivocal commitment scheme
based on the discrete logarithm assumption. In slight more detail, consider the following
4-round protocol based on the Pedersen’s trapdoor commitment scheme [57]:

• P1 samples g, t0, t1 and sends g, h0, h1 where hi = gti .
• P2 sends g′ = gs1(h0h1)r for randomly chosen r and s1. Furthermore it sends a
challenge bit b.

• P1 sends tb and s2.
• P2 checks if hb = gtb and then reveals s1 and r .

Finally, P1 checks if g′ = gs1(h0h1)r and outputs s1 ⊕ s2 as the result of the coin-toss.
Wefirst demonstrate security against non-aborting adversaries. Simulating a corrupted

P1 involves extracting t0 and t1 by rewinding and then equivocating g′ to any ŝ1 by setting
r̂ = (s1 − ŝ1)/(t0 + t1)+ r mod p and revealing ŝ1, r̂ . Indistinguishability follows from
perfect hiding property of the Pedersen commitment. Simulating a corrupted P2 involves
obtaining s1 from the last message and then rewinding to set s2 = c−s1 mod p. Security
here follows from the fact that if P2 can equivocate, then we can use P2 to extract the
discrete logarithm of h1−b w.r.t. g.
This simple protocol can, in fact, achieve 1/p-security against a corrupted (aborting)

P2 by slightlymodifying the simulator to rewind P2 np times to extract s1.On ahigh level,
security can be argued by considering two cases. If P2 aborts with probability higher
than 1 − 1/p, then the simulator can simply output an aborting views which already
achieves 1/p-indistinguishability. Otherwise, if it aborts with probability smaller than
1 − 1/p, then rewinding will succeed except with negligible probability and we can
perfectly simulate P2’s view (conditioned on extracting s1).
Our final protocol upgrades the security of this basic protocol to achieve full secu-

rity against P1 via parallel repetition. Instead of having one pair of generators h0, h1,
we will have P1 send n pairs {(hi0, hi1)}i∈[n] and require P2 to commit to its input as
gm(h10h

1
1)

r1(h20h
2
1)

r2 · · · (hn0hn1)rn and send an n-bit challenge e1, . . . , en . P1 responds
with s2 and logg(h

i
ei) for i ∈ [n] followed by P2 decommitting to s1. The reason we get

full security against a corrupted P1 is because we can with very high probability extract
both t i0 and t i1 for some i by rewinding.

4-Round 2PC Against Non-aborting Adversaries (Section 4) Our first OT protocol
employs a common paradigm for securely realizing this functionality. Namely, the re-
ceiver picks two public keys for which it knows only one of the corresponding secret
keys and sends them to the sender that uses these keys to encrypt its OT inputs. If indeed

What Security Can We Achieve Within 4 Rounds? 1209

the receiver knows only one of the secret keys, then it will not be able to decrypt both
inputs. In slight more detail, a basic version of our protocol proceeds as follows:

• S samples g, t0, t1 and sends hi = gti .
• R with input b computes PKb = gm and PK1−b = (h0h1)m̃ for randomly chosen
m, m̃.

• S with input s0, s1 encrypts s0 and s1 with public keys PK0 and PK1 using the El
Gamal encryption scheme.

• R decrypts PKb using SKb = m.

This protocol is essentially secure against a malicious sender as the receiver’s message
information theoretically hides its bit b. The main challenge to make this secure in the
presence of a malicious receiver is in designing a mechanism to enforce the receiver to
choose its public keys correctly. In the preceding protocol, the receiver is asked to send
a public key for the unknown secret key to take a particular form, for which the receiver
does not know the trapdoor associated with it (concretely, this trapdoor is a discrete
logarithm of a generator picked by the sender). We can enforce such a requirement by
including a witness-indistinguishable proof-of-knowledge (WI-PoK) from the receiver.
This further will allow to extract the bit b for which the receiver indeed knows the
corresponding secret key (which implies input extraction of the receiver’s input).
Slightly more formally, to argue security against non-aborting parties we observe that

we can extract t0 and t1 from a non-aborting sender. This will allow us to equivocate the
receiver’s input and learn both s0, s1. To simulate a non-aborting receiver, we extract the
bit b from the PoK by rewinding and then simulate.

Finally, to obtain secure computation for general functionalities, we combine our
OT with the 2-round protocol of [43] which is specified in the OT-hybrid model. This
protocol provides an output to only one of the parties (namely, the receiver of the OT
instances). Yet, we run this protocol in parallel with our OT protocol where the second
and third messages of the OT protocol run in parallel with the [43] protocol. As a result,
the receiver of the OT receives the output of the computation at the end of third round.
Finally, to extend this protocol to have outputs delivered to both parties, we can rely on
the fourth round where the receiver transmits the output to the sender.

4-Round 2PC with 1/p-Security Against Aborting Senders and Full Security Against
Non-aborting Receivers (Section 5)

Next, we upgrade the security of our OT to handle aborting adversaries. We begin
with the observation that our previous OT protocol is already 1/p-secure for p = 1+ 1

3
against malicious aborting senders. To see this, suppose that for some trapdoor the sender
aborts with probability at most 1

2 , then in expectation the simulator needs to rewind the
sender just twice in order to extract this trapdoor. If both trapdoors satisfy this condition,
then the simulator can easily extract both of them. Now, suppose that the sender aborts
with probability at least 1

2 when it is asked to open one of the trapdoors. Then, the
overall probability with which the sender aborts is 1

4 (as each trapdoor is requested to
be revealed with probability 1

2). In order to achieve 3
4 security, it suffices to output a

distribution that is 3
4 -close to the real distribution. As the sender aborts with probability

1210 C. Hazay, M. Venkitasubramaniam

at least 14 a simulator that simply outputs all the views on which the sender aborts already
achieves 3

4 security.
With this observation, we show that 1/p-security for an arbitrary polynomial p can be

achieved by amplifying the indistinguishability argument via parallel repetition. More
precisely, by repeating the basic protocol O(κp) times, where κ is the security parameter,
we can show, using a careful application of Yao-type amplification [62], that if the
adversary does not abort with probability at least�(1/p), then the simulation can extract
most of the trapdoors. This idea is used in conjunction with the combiner of Ostrovsky,
Richelson and Scafuro [55] to ensure that the simulator extracts the sender’s inputs if
and only if the receiver successfully extracts it, or in other words, prevents any form of
input dependent attacks. As in the previous construction, the current OT is also private
in the presence of aborting senders.

3-Round OT with 1/p-Security Against Aborting Senders and Privacy Against Aborting
Receivers (Section 6)We conclude with our third OT protocol which demonstrates the
feasibility of 1/p sender security and privacy against aborting receivers in three rounds.
We begin with a basic protocol that only achieves privacy and then amplify it security
to get 1/p sender simulation. Our protocol is based on claw-free trapdoor permutations.
Namely, the sender samples a pair of functions f0, f1 from a claw-free family and
provides the description to the receiver. The receiver then samples y = fb(x) for a
random x and returns y to the sender. Finally, the sender uses the trapdoors for f0 and
f1 to obtain xb = f −1

b (x) and masks its inputs (s0, s1) with the Goldreich-Levin hard-
core predicate of xb. To prove receiver privacy, we need to show it is impossible for the
receiver to distinguish both the games where the sender’s input are sampled according to
(s0,U) and (U, s1) from the real-game (whereU is the uniform distribution over {0, 1}).
We argue that if such a receiver exists, then using the list-decodable extractor guaranteed
by the Goldreich-Levin Theorem we can extract x0 and x1, thus finding a claw, i.e., x0
and x1 such that f0(x0) = f1(x1). This reduction is subtle and requires using a careful
averaging argument. We next amplify this protocol to achieve 1/p sender simulation
based on a similar amplifying technique as in the previous construction. Our protocol
can be implemented based on the RSA claw-free collection of functions.

1.3. Subsequent Work

Following our work, the area of round complexity has become an active area of research.
We summarize briefly the results that have appeared since our publication. In the two-
party and non-simultaneous message model, Ciampi et al. [20] showed how to obtain
a 4-round protocol based on trapdoor permutations. Garg et al. [32] studied the exact
round complexity of multiparty computation in the simultaneous message model. In the
case of semi-honest adversaries (or even the slightly stronger setting of semi-malicious3

adversaries), three round protocols based on the Learning With Errors assumption were
constructed by Brakerski et al. [9]. Ananth et al. [1] gave a 5-round multiparty protocol
against malicious adversaries based on DDH. Under sub-exponential hardness assump-

3A semi-malicious adversary is allowed to invoke a corrupted partywith arbitrary chosen input and random
tape, but otherwise follows the protocol specification honestly as a passive adversary.

What Security Can We Achieve Within 4 Rounds? 1211

tions, 4-round constructions were demonstrated in [1,9]. Under some relaxations of
super-polynomial simulation, the work of Badrinarayanan et al. [7] showed how to ob-
tain 3-round concurrently secure multi-party protocol assuming subexponentially secure
LWEandDDH. For specificmulti-party functionalities, 4-round constructions have been
obtained, e.g., coin-tossing by Ciampi et al. [20]. In two recent works, Benhamouda and
Lin [11] and Garg and Srinivasan [36], the round complexity of multiparty computa-
tion in the semi-honest model was completely resolved, where they provide a 2-round
constructions (based on 2-round OT). Additionally, the work of [11] provided a 5-round
multi-party protocol against malicious adversaries-based standard assumptions. Finally,
Halevi et al. [38] and Badrinarayanan et al. [8] designed the first 4-round multi-party
protocol (i.e., round-optimal) based on standard polynomial-time hardness assumptions
and black-box simulation in the plain model. Interestingly, the work of [8] introduces
the notion of promise-ZK which essentially considers security in the presence of non-
aborting adversaries as a stepping stone toward achieving full security.

2. Preliminaries

2.1. Basic Notations

We denote the security parameter by n. We say that a functionμ : N → N is negligible if
for every positive polynomial p(·) and all sufficiently large n it holds that μ(n) < 1

p(n)
.

We use the abbreviation PPT to denote probabilistic polynomial-time.We further denote
by a ← A the random sampling of a from a distribution A, and by [n] the set of elements
{1, . . . , n}.

Computational Indistinguishability We specify the definitions of computational indis-
tinguishability and computational 1

p -indistinguishability.

Definition 2.1. Let X = {X (a, n)}a∈{0,1}∗,n∈N and Y = {Y (a, n)}a∈{0,1}∗,n∈N be two
distribution ensembles. We say that X and Y are computationally indistinguishable,

denoted X
c≈ Y , if for every PPT distinguisher D there exists a negligible function μ(·)

such that for every a ∈ {0, 1}∗ and all sufficiently large n

∣

∣Pr
[

D(X (a, n), 1n) = 1
] − Pr

[

D(Y (a, n), 1n) = 1
] ∣

∣ < μ(n).

Definition 2.2. Let X = {X (a, n)}a∈{0,1}∗,n∈N and Y = {Y (a, n)}a∈{0,1}∗,n∈N be two
distribution ensembles.We say that X andY are computationally 1/p-indistinguishable,

denoted X
1/p≈ Y , if for every PPT distinguisher D there exists a negligible function μ(·)

such that for every a ∈ {0, 1}∗ and all sufficiently large n

∣

∣Pr
[

D(X (a, n), 1n) = 1
] − Pr

[

D(Y (a, n), 1n) = 1
] ∣

∣ <
1

p(n)
+ μ(n).

Statistical Distance Next we specify the distance measure of statistical closeness.

1212 C. Hazay, M. Venkitasubramaniam

Definition 2.3. Let Xn and Yn be random variables accepting values taken from a finite
domain � ⊆ {0, 1}n . The statistical distance between Xn and Yn is

SD(Xn,Yn) = 1

2

∑

ω∈�

|Pr[Xn = ω] − Pr[Yn = ω]|.

We say that Xn and Yn are ε-close if their statistical distance is at most SD(Xn,Yn) ≤
ε(n).We say that Xn andYn are statistically close, denoted Xn ≈s Yn , if ε(n) is negligible
in n.

2.2. Hardness Assumptions

Our constructions rely on the following hardness assumptions.

Discrete Logarithm The classic discrete logarithm assumption is stated as follows.

Definition 2.4. (DL) We say that the discrete logarithm (DL) problem is hard relative
to G, if for any PPT adversary A there exists a negligible function negl such that

Pr
[

x ← A(G, p, g, gx)
] ≤ negl(n),

where (G, p, g) ← G(1n) and the probability is taken over the choice of x ← Zq .

Decisional Diffie-Hellman The decisional Diffie-Hellman assumption is stated as fol-
lows.

Definition 2.5. (DDH) We say that the decisional Diffie-Hellman (DDH) problem is
hard relative to G, if for any PPT distinguisher D there exists a negligible function negl
such that
∣

∣

∣Pr
[

D(G, p, g, gx , gy, gz) = 1
] − Pr

[

D(G, p, g, gx , gy, gxy) = 1
]

∣

∣

∣ ≤ negl(n),

where (G, p, g) ← G(1n) and the probabilities are taken over the choices of x, y, z ←
Zq .

2.3. Commitment Schemes

Statistically hiding commitment schemes maintains two important security properties of
hiding and biding, where the flavor of the hiding property is statistical. More formally,

Definition 2.6. A commitment scheme is a pair of probabilistic polynomial-time al-
gorithms, denoted (Sen,Rec) (for sender and receiver), satisfying the following:

• Inputs The common input is a security parameter 1n . The sender has a secret input
m ∈ Mn where Mn is the message space of the sender’s input.

What Security Can We Achieve Within 4 Rounds? 1213

• Hiding For every probabilistic polynomial-time algorithms Rec∗ interacting with
Sen and every twomessagesm,m′ ∈ Mn , the random variables describing the out-
put of Rec∗ in the two cases, namely 〈Sen(m),Rec∗〉(1n) and 〈Sen(m′),Rec∗〉(1n),
are statistically close.

• BindingA receiver’s view of an interactionwith the sender, denoted (r, m̄), consists
of the random coins used by the receiver (namely, r) and the sequence of messages
received from the receiver (namely, m̄).

Letm,m′ ∈ Mn .We say that the receiver’s view (of such interaction), (r, m̄), is a possible
m-commitment if there exists a string s such that m̄ describes the messages received by
Rec when Rec uses local coins r and interacts with Sen which uses local coins s and has
input (1n,m). We denote m̄ by View〈Sen(m),Rec〉(1n).
We say that the receiver’s view (r, m̄) is ambiguous if is it both a possiblem-commitment
and a possible m′-commitment.
The binding property asserts that, for all but a negligible fraction of the coins toss of
the receiver, there exists no sequence of messages (from the sender) which together with
these coin toss forms an ambiguous receiver view. Namely, that for all but a negligible
function of the r ∈ {0, 1}polyn there is no m̄ such that (r, m̄) is ambiguous.

2.3.1. Trapdoor Commitment Schemes

Loosely speaking, a trapdoor commitment scheme is a commitment scheme that meets
the classic binding and hiding security properties specified in Definition 2.6, yet it allows
to decommit a commitment into any value from the message space given some trapdoor
information. In this paper, we view the commit phase of the trapdoor commitment
schemes as a 2-round protocol πCOM = (πRec, πSen) where the receiver sends the first
message πRec and the sender responds with message πSen (that is, in a real execution
the receiver knows the trapdoor, whereas in the simulation the simulator extracts this
trapdoor from the receiver in order to equivocate its commitment). Formally stating,

Definition 2.7. A 2-round trapdoor commitment scheme is a pair of probabilistic
polynomial-time algorithms, denoted (Sen,Rec) (for sender and receiver), satisfying
the following:

• Inputs The common input is a security parameter 1n . The sender has a secret input
m ∈ Mn .

• (Sen,Rec) is a commitment scheme in the sense of Definition 2.6 with perfect
hiding.

• For any probabilistic polynomial-time algorithm Rec∗, there exists a polynomial-
time algorithm S = (S1,S2) such that for any sequence of messages {mn}n∈N
where mn ∈ Mn for all n, the following holds:

On input 1n simulator S1 (playing the receiver) outputs πRec and a trapdoor td.
Simulator S2 is defined as follows:

– First, on input 1n and randomness R, S2 outputs π
S2
Sen in response to πRec

such that the distributions of {πS2
Sen}n∈N and {πSen}n∈N are identical.

– Next, on input td, message mn and randomness R, simulator S2 outputs
coins s such that πS

Sen = Sen(1n, πRec,mn; s).

1214 C. Hazay, M. Venkitasubramaniam

Homomorphic Trapdoor Commitment Schemes We consider trapdoor commitments that
are homomorphic in the sense that given two receiver’s messages π1

Rec and π2
Rec that are

defined relative to some group G, it is possible to combine them into a single receiver’s
message πRec = π1

Rec ·π2
Rec.Moreover, the trapdoor can be homomorphically updated as

well. One such example is Pedersen’s commitment scheme that is based on the hardness
ofDiscrete logarithm [57]. Loosely speaking, given a group descriptionG of prime order
q, and two generators g, h, a commitment of m ∈ Zq is computed by c = gmhr for a
random r ← Zq . Moreover, the knowledge of logg h enables to open c into any message
in Zq . Note that given two generators h0 and h1 one can assemble a new generator h0h1
for which the trapdoor will be logg h0 + logg h1.

Two additional trapdoor commitment schemes that fit into our framework are number-
theoretic-based constructions in composite order groups. Concretely, we consider two
constructions inZ

∗
N for RSA composite N with security based on the RSA and factoring

hardness assumptions. The trapdoor information of these constructions does not require
the knowledge of the factorization of N ; thus, N can be part of the group description
handed to the parties at the onset of the protocol (similarly to the group description G in
the prior example). Loosely speaking, a commitment to a message m ∈ Ze in the RSA-
based construction is computed by gmre mod N , where r is picked at random from Z

∗
N ,

g = xe mod N and (N , e) can be considered as the public parameters (such that e is
relatively prime to ϕ(N)). Moreover, the trapdoor picked by the receiver is x . Clearly,
given g1 = xe1 mod N and g2 = xe2 mod N , then g1g2 = (x1x2)e mod N .
An additional factoring-based trapdoor construction implies a commitment to a mes-

sage m ∈ Z2t by gmr2
τ+t

mod N for a random r , such that g = x2
τ+t

mod N and
(N , τ, t) can be considered as the public parameters. Moreover, the trapdoor picked by
the receiver is x . The detailed descriptions of these commitment schemes can be found
in [24].

2.4. Witness Indistinguishability

A proof system between a prove and a verifier is witness indistinguishable if the proof
does not leak information about which witness the prover is using, even if the verifier is
malicious. In the following, we let 〈P(y),V(z)(x)〉 denote the view of verifier V when
interacting with prover P on common input x , when P has auxiliary input y and V has
auxiliary input z.

Definition 2.8. [26] Let L ∈ NP and let (P,V) be an interactive proof system for
L with perfect completeness. We say that (P,V) is witness-indistinguishable (WI) if
for every PPT algorithm V∗ and every two sequences {w1

x }x∈L and {w2
x }x∈L such that

w1
x and w2

x are both witnesses for x ∈ L , the following ensembles are computationally
indistinguishable:

1. {〈P(w1
x),V(z)〉(x)}x∈L ,z∈{0,1}.

2. {〈P(w2
x),V(z)〉(x)}x∈L ,z∈{0,1}.

What Security Can We Achieve Within 4 Rounds? 1215

2.5. Secret Sharing

A secret-sharing scheme allows distribution of a secret among a group of n players,
each of whom in a sharing phase receive a share (or piece) of the secret. In its simplest
form, the goal of secret sharing is to allow only subsets of players of size at least t + 1
to reconstruct the secret. More formally a t + 1-out-of-n secret-sharing scheme comes
with a sharing algorithm that on input a secret s outputs n shares s1, . . . , sn and a
reconstruction algorithm that takes as input (si)i∈S, S where |S| > t and outputs either
a secret s′ or ⊥. In this work, we will use the Shamir’s secret-sharing scheme [61] with
secrets in F = GF(2n). We present the sharing and reconstruction algorithms below:

Sharing Algorithm For any input s ∈ F, pick a random polynomial f (·) of de-
gree t in the polynomial-field F[x] with the condition that f (0) = s and output
f (1), . . . , f (n).
Reconstruction Algorithm For any input (s′

i)i∈S where none of the s′
i are ⊥ and

|S| > t , compute a polynomial g(x) such that g(i) = s′
i for every i ∈ S. This is

possible using Lagrange interpolation where g is given by

g(x) =
∑

i∈S
s′
i

∏

j∈S/{i}

x − j

i − j
.

Finally the reconstruction algorithm outputs g(0).

We will additionally rely on a property of this secret-sharing scheme that has been ob-
served by Ostrovsky, Richelson and Scafuro in [55]. Toward that, we view the Shamir
secret-sharing scheme as a linear code generated by the following n × (t + 1) Vander-
monde matrix

A =

⎛

⎜

⎜

⎜

⎝

1 12 · · · 1t
1 22 · · · 2t
...

...
...

...

1 n2 · · · nt

⎞

⎟

⎟

⎟

⎠

More formally, the shares of a secret s that are obtained via a polynomial f in the Shamir
scheme can be obtained by computing Acwhere c is the vector containing the coefficients
of f . Next, we recall that for any linear code A, there exists a parity check matrix H of
dimension (n− t −1)×n which satisfies the equation H A = 0(n−t−1)×(t+1), i.e., the all
0’s matrix. We thus define the linear operator φ(v) = Hv for any vector v. Then it holds
that any set of shares s is valid if and only if it satisfies the equation φ(s) = 0n−t−1.

2.6. Hardcore Predicates

Definition 2.9. (Hardcore predicate) Let f : {0, 1}n → {0, 1}∗ and H : {0, 1}n →
{0, 1} be a polynomial-time computable functions. We say H is a hardcore predicate of
f , if for every PPT machine A, there exists a negligible function negl(·) such that

Pr[x ← {0, 1}n; y = f (x) : A(1n, y) = H(x)] ≤ 1

2
+ negl(n).

1216 C. Hazay, M. Venkitasubramaniam

An important theorem by Goldreich and Levin [31] states that if f is a one-way
function over {0, 1}n then the one-way function f ′ over {0, 1}2n , defined by f ′(x, r) =
(f (x), r), admits the following hardcore predicate b(x, r) = 〈x, r〉 = �xiri mod 2,
where xi , ri is the i th bit of x, r respectively. In the following, we refer to this predicate
as the GL bit of f . We will use the following theorem that establishes the list-decoding
property of the GL bit.

Theorem 2.10. ([31]) There exists a PPT oracle machine Inv that on input (n, ε) and

oracle access to a predictor PPT B, runs in time poly(n, 1
ε
), makes at most O(n

2

ε2
)

queries to B and outputs a list L with |L| ≤ 4n
ε2

such that if

Pr[r ← {0, 1}n : B(r) = 〈x, r〉] ≥ 1

2
+ ε

2

then

Pr[L ← InvB(n, ε) : x ∈ L] ≥ 1

2
.

2.7. Oblivious-Transfer

In this section, we consider an extension of the privacy definition in the presence of
malicious receivers and senders shown in [40]. In the definitions presented below, we
denote the honest sender and receiver algorithms by Sen andRec respectively. Recall that
the oblivious-transfer functionality is specified by the function. FOT : ((s0, s1), b) �→
(−, sb) that takes as input (s0, s1) from the sender a bit b from the receiver. We say that
a protocol π = 〈Sen,Rec〉 realizes the OT functionality if the protocol computes FOT

correctly.
We will let ViewA[A(1n),Rec(1n, b)] is the r.v. representing the view of the adver-

saryAwhen interacting with Rec(1n, b) andViewA[Sen(1n, (s0, s1)),A(1n)] is the r.v.
representing the view of the adversary A when interacting with Sen(1n, (s0, s1)). First,
we recall the definition of defensibly private oblivious-transfer and then proceed to our
definition.

2.7.1. Defensibly Private Oblivious-Transfer

The notion of defensible privacy was introduced by Haitner in [37,39]. A defense in a
two-party protocol π = (P1, P2) execution is an input and random tape provided by
the adversary after the execution concludes. A defense for a party controlled by the
adversary is said to be good, if this party participated honestly in the protocol using this
very input and random tape, then it would have resulted in the exact same messages
that were sent by the adversary. In essence, this defense serves as a proof of honest
behavior. It could very well be the case that an adversary deviates from the protocol in
the execution but later provides a good defense. The notion of defensible privacy says
that a protocol is private in the presence of defensible adversaries if the adversary learns
nothing more than its prescribed output when it provides a good defense.

What Security Can We Achieve Within 4 Rounds? 1217

We begin with informally describing the notion of good defense for a protocol π ; we
refer to [39] for the formal definition. Let trans = (q1, a1, . . . , q
, a
) be the transcript
of an execution of a protocol π that is engaged between P1 and P2 and let A denote an
adversary that controls P1, where qi is the i th message from P1 and ai is the i th message
from P2 (that is, ai is the response for qi). Then we say that (x, r) constitutes a good
defense ofA relative to trans if the transcript generated by running the honest algorithm
for P1 with input x and random tape r against P2’s messages a1, . . . , a
 results exactly
in trans.

The notion of defensible privacy can be defined for any secure computation protocol.
Nevertheless, since we are only interested in oblivious-transfer protocols, we present
a definition below that is restricted to oblivious-transfer protocols. The more general
definition can be found in [39]. At a high-level, an OT protocol is defensibly private
with respect to a corrupted sender if no adversary interacting with an honest receiver
with input b should be able to learn b, if at the end of the execution the adversary
produces any good defense. Similarly, an OT protocol that is defensibly private with
respect to malicious receivers requires that any adversary interacting with an honest
sender with input (s0, s1) should not be able to learn s1−b, if at the end of the execution
the adversary produces a good defense with input b. Below we present a variant of the
definition presented in [39]. We stress that while the [39] definition only considers bit
OT (i.e., sender’s inputs are bits) we consider string OT.

Definition 2.11. (Defensible-Private String OT) Let π = 〈Sen,Rec〉 be a two-party
protocol that between a sender Sen and a receiver Rec that realizes the OT functionality.
Malicious SenderWe say thatπ is a defensibly private string oblivious-transfer protocol
w.r.t a malicious sender, if for every PPT adversary A the following holds,

{�(ViewA[A(1n),Rec(1n,U)],U)} c≈ {�(ViewA[A(1n),Rec(1n,U)],U ′)}

where � is the function that on input (v, σ) outputs (v, σ) if following the execution A
outputs a good defense for π , and ⊥ otherwise, and U and U ′ are independent random
variables uniformly distributed over {0, 1}.
Malicious Receiver We say that π is a defensibly private string oblivious-transfer pro-
tocol w.r.t a malicious receiver, if for every PPT adversary A the following holds,

{�(ViewA[Sen(1n, (Un
0 ,Un

1)),A(1n)],Un
1−b)}

c≈ {�(ViewA[Sen(1n, (Un
0 ,Un

1)),A(1n)], Ū n)}

where � is the function that on input (v, σ) outputs (v, σ) if following the execution A
outputs a good defense for π , and ⊥; otherwise, b is the Rec’s input in this defense and
Un
0 ,Un

1 , Ū n are independent random variables uniformly distributed over {0, 1}n .
2.7.2. Private Oblivious-Transfer

In this section, we present our definition. We will focus on the case of a 3-round protocol
where the sender sends the first message. Furthermore, our definition will restrict the

1218 C. Hazay, M. Venkitasubramaniam

honest sender’s algorithm to be described by a pair of algorithms Sen = (Sen1,Sen2)
where Sen1 on input 1n outputs the first message m1

s of the OT protocol and state σ and
Sen2 on input (σ,mr , (s0, s1)) generates the third message of the OT protocol wheremr

is the response from the receiver and (s0, s1) is the sender’s input.
Then, for a malicious receiver Rec∗ let PExecRec∗(1n) = ((a, q), σ, rRec) be the r.v.

where (m1
s ,mr) represent the first two messages exchanged in the interaction between

Sen1 on input 1n and a receiver Rec∗ with input 1n and randomness rRec and σ is the
state output by Sen1. We now define privacy against a malicious receiver as follows. In
essence, PExec represents the state of the execution after the first two messages have
been exchanged.

Definition 2.12. (Sender’s Privacy) A protocol π that realizes the OT functionality
is private with respect to a malicious receiver if for any PPT adversary Rec∗ and PPT
distinguisher D there exists a negligible function μ(·) such that for all n, except with
probability μ(n) over PExecRec∗(1n) = ((m1

s ,mr), σ, rRec), there exists a bit b, such
that for any strings s0, s1 and s∗ and auxiliary input z,

∣

∣Pr[m2
s ← Sen2(σ,mr , (s0, s1)) : D(1n, z, rRec, (m

1
s ,m

2
s)) = 1]

− ∣

∣ Pr[(xb ← sb; x1−b ← {0, 1}
(n);m2
s ← Sen2(σ,mr , (x0, x1)) :

D(1n, z, rRec, (m
1
s ,m

2
s)) = 1

∣

∣ ≤ μ(n)

Next, let 〈Sen∗(s0, s1),Rec(b)〉(1n) denote the random variable describing the cor-
rupted sender’s output when interacting with Rec that is invoked on inputs b.

Definition 2.13. (Receiver’s privacy) A protocol π that realizes the OT functionality
is private with respect to a malicious sender if for any PPT adversary Sen∗ corrupting
Sen the following distributions are indistinguishable

{ViewSen∗ [Sen∗(1n),Rec(1n, 0)])} c≈ {ViewSen∗ [Sen∗(1n),Rec(1n, 1)]}

3. 4-Round Coin-Tossing from Discrete Logarithm

In this section, we present a 4-round coin-tossing protocol, computing the functionality
(1n, 1n) �→ (Ut ,Ut) where Ut is a random element in Zq , that is based on the hardness
of the discrete logarithm problem. Namely, the parties use an extension of Pedersen’s
trapdoor commitment scheme [57] that is based on n generators. Basically, party P1
computes the generators for P2’s commitment scheme using pairs of shares and then
reveals the discrete logarithm of half of the shares by responding to a random challenge
given by P2. Looking ahead, this allows to construct a simulator that extracts a trapdoor
for this commitment scheme using rewinding which, in turn, allows the equivocation of
the committed message. Forcing a particular outcome when P2 is corrupted is carried
out by first observing the decommitted value of P2 and then rewinding, where in the
second execution the simulator programs its input according to the outcome it received
from the trusted party.

What Security Can We Achieve Within 4 Rounds? 1219

We note that for both corruption cases, we construct universal simulators (namely,
simulators that do not depend on the code of the adversary), that run in strict polynomial-
time and induce 1/p-security. The simulator for a corrupted P1 can be modified into an
expected time simulator with full security as in the usual sense. The security of P2 cannot
be further enhanced as it learns the coin-tossing outcome after the third round and may
choose to abort right after. Essentially, the problem is acute when the adversary’s non-
aborting probability in the last message is negligible, as it prevents from generating a
view that is consistent with the coin-tossing outcome even using rewinding. Conditioned
on this event, we prove that the difference between the simulated and real views is at
most 1/p(n).
We are now ready to present our protocol in details.

Protocol 1. (Protocol πCOIN)
Public Parameters The description of a group G of prime order q and a generator

g.
The protocol

1. P1 → P2 Pick random elements t10 , t11 , . . . , tn0 , tn1 ← Zq and sends P2 the pairs

(h10, h
1
1), . . . , (h

n
0, h

n
1), where h

i
b = gt

i
0 for all b ∈ {0, 1} and i ∈ [n].

2. P2 → P1 Pick randomelementsm, s1, . . . , sn ← Zq and computeσ = gm(h10h
1
1)

s1

· · · (hn0hn1)sn . Select random bits e1, . . . , en and send σ, e1, . . . , en to P1.
3. P1 → P2 Pick a random m′ ← Zq and send m′, t1e1 , . . . , t

n
en to P2.

4. P2 → P1Compute the coin-tossingoutcomeasm+m′ mod p and sendm, s1, . . . , sn
to P1.

Theorem 3.1. Assume that the discrete logarithm assumption holds in G. Then Pro-
tocol 2 securely realizes FCOIN in four rounds with 1/p-security.

Proof. We consider each corruption case separately.
P1 is corrupted On a high level, in order to simulate P1 we construct a simulator S
that extracts the trapdoor for one of the pairs hi0, h

i
1 sent in the first message, namely the

discrete logarithm of both elements in the pair with respect to g, and then uses that to
equivocate P2’s commitment in the last message. More precisely, for any probabilistic
polynomial-time adversary A controlling P1 we define a simulator S that is given an
input mo from FCOIN and proceeds as follows:

1. S internally invokesA. Upon receiving the first message fromA, it feedsAwith a
second message generated using the honest P2’s strategy. Let σ, e1, . . . , en be the
message fed to A and m, s1, . . . , sn be the randomness used to generate the forth
message (which is determined by the second message).

2. If A aborts before providing the third message, S halts outputting ⊥. If A pro-
vides a third message, then S stalls the main execution and proceeds to rewindA.
Specifically, S rewinds A to the second message and supplies a different second
message by sampling uniformly random coins for the honest P2’s strategy. Let
ẽ1, . . . , ẽn be the bits sent within the rewinded second message. If A responds,
then S finds an index j such that ẽ j �= e j . Note that such an index j implies that S
now has t0 and t1 such that h

j
0 = gt0 and h j

1 = gt1 . Else, ifA aborts then S rewinds

1220 C. Hazay, M. Venkitasubramaniam

A to the second message and tries another freshly generated second message. S
repeats this procedure np(n) times and outputs fail if (1) the challenges ẽ1, . . . , ẽn
are identical to e1, . . . , en in any of the attempts or, (2) in case all the attempts
were unsuccessful.

3. Finally, S proceeds to complete the main execution conditioned on not outputting
fail. Let m′ be part of the third message supplied by A and let σ be the message
fed to A as part of the second message. S computes

s̃ j = (m − mo + m′ + (t0 + t1)s j)/(t0 + t1) mod p

and for all other i , s̃i = si . As the final message S feeds A with (mo − m′), s̃1, . . . , s̃n .
We first argue for the correctness of the simulation. This follows from the ability to

equivocate the commitment employed by P2 once the discrete logarithm of one of the
hi0h

i
1 elements is known to the simulator. More formally, let j be as in the simulation

for which the simulator obtains t0 and t1 such that h
j
0 = gt0 and hi1 = gt1 . Moreover, let

σ = gm(h10h
1
1)

s1 · · · (hn0hn1)sn as computed by the simulator in the secondmessage of the
simulation (note that σ is fixed once for the entire simulation and is never modified). We
focus our attention on the product gm(h j

0h
j
1)

s j , where s j is the randomness revealed by
the simulator in the third message. An important observation here is that it is sufficient
to equivocate this product in order to equivocate the entire commitment. Namely, if the
simulator can comeupwith twodistinct pairs (m, s j) and (m̃, s̃ j) such that gm(h j

0h
j
1)

s j =
gm̃(h j

0h
j
1)

s̃ j , then it is possible to conclude two distinct openings with respect to the
commitment used by P2 by reusing the same {si }i �= j . Finally, since the simulator obtains

t0 and t1 as above, it can conclude the discrete logarithm of h j
0h

j
1 relative to g which

corresponds to t0 + t1. Putting it all together, the simulator can easily equivocate
 =
gm(h j

0h
j
1)

s j into the message mo − m′ (which will imply that the two shares yield mo),
by computing s̃ j as follows. Consider the linear equation implied in the exponent of

which equals m + (t0 + t1)s j , then m + (t0 + t1)s j = mo − m′ + (t0 + t1)s̃ j , which
implies that s̃ j = (m −mo +m′ + (t0 + t1)s j)/(t0 + t1) mod p. Next we prove that. �

Claim 3.1. There exists a negligible function negl(·) for which S outputs fail with
probability at most 1

p(n)
+ negl(n).

Proof. First, we consider a hybrid simulator S̃ that instead of rewinding only np(n)

times, repeatedly rewinds until it successfully obtains two responses from A relative to
the third message. Moreover, S̃ does not abort if the same challenge message occurs for
a second time. We will next argue that the expected running time of S̃ is polynomial. Let
ε denote the probability thatA answers correctly on the third message. We consider two
cases: (1) A aborts in the first simulated run (which occurs with probability 1 − ε). In
this case, the simulator outputs ⊥. (2)A does not abort in the first simulated run (which
occurs with probability ε). In this case, the expected number of rewinding attempts S̃
performs before A provides another valid third message is 1

ε
. Therefore, the expected

number of times of S̃ rewinds A is

What Security Can We Achieve Within 4 Rounds? 1221

(1 − ε) + ε
1

ε
= O(1).

Next, we bound the probability of the strict simulator S outputting fail by computing the
probability that it outputs fail in each of the cases. (1) The probability that A does not
provide a third message within the np(n) attempts can be bounded using the Markov
inequality, as the probability that S̃ carries out more than np(n) rewinding attempts is at
most O(1)

np(n)
< 1

2p(n)
; (2) Next, the probability that S fails due to the event that the same

challenge occurred twice can be bounded using a union bound argument which yields a
value bounded by np(n) × 1

2n . We conclude that the overall probability that S outputs

fail is bounded by 1
2p(n)

+ np(n)
2n < 1

p(n)
. �

Claim 3.2. The following two distribution ensembles are computationally 1
p(n)

-
indistinguishable,

{

ViewπCOIN,A(z)(n)
}

n∈N,z∈{0,1}∗
1/p≈ {

ViewFCOIN,S(z)(n)
}

n∈N,z∈{0,1}∗ .

Proof. Finally, we wish to claim that the adversary’s view in both real and simulated
executions is identically distributed conditioned on the event that S does not output fail
or abort. Note that the adversary’s view is comprised from σ, e1, . . . , en in the second
message, and mo −m′, s1, . . . , s j−1, s̃ j , s j+1, . . . , sn in the fourth message. Moreover,
the secondmessage is generated as in the real execution (and thus is distributed identically
to the corresponding message in the real execution), whereas the fourth message is
generated by first producing a real executionmessage and then equivocating the outcome
commitment. We claim that the fourth simulated message is identically distributed to
the fourth real message. On a high level, this is due to the fact that mo and m′ are
picked uniformly at random byFCOIN and S, respectively, and somo −m′ is a uniformly
distributed element in Zq . Moreover, s̃ j depends on the distribution of s j which is
uniformly random in Zq as well.
More formally, our construction implies that the real and simulated views are indis-

tinguishable relative to the partial views where the adversary aborts before sending the
third message. It therefore suffices to show that the adversary’s views are indistinguish-
able conditioned on not aborting in the simulation. More precisely, we prove that the
distribution of mo − m′, s̃1, . . . , s̃n in the simulated view is identically distributed to
the real view conditioned on mo being the outcome of the coin-tossing functionality, m′
being the adversary’s share, σ being the second message and the adversary not aborting
in the third message. It follows from our simulation that the distributions of s̃i for i �= j
are identical as in both executions these values are sampled uniformly. Now, given that
these values are already fixed, there exist unique values m and s̃ j that can be sent as
part of the fourth message, which yield a consistent view with mo. Hence, the views are
identically distributed.
From Claim 3.1, we know that the probability S aborts is at most 1

p(n)
+ negl(n).

Therefore,

1222 C. Hazay, M. Venkitasubramaniam

Pr[ViewFCOIN,S(z)(n) �= ⊥] ≥ 1 − 1

p(n)
− negl(n).

Combining this claim with the fact that the simulated non-aborted view is identical to
the real view, we obtain for every PPT distinguisher D there exists a negligible function
negl(·) such that for all sufficiently large n

∣

∣Pr
[

D(ViewFCOIN,S(z)(n))=1
] − Pr

[

D(ViewπCOIN,A(z)(n)) = 1
] ∣

∣<
1

p(n)
+ 1

negl(n)
.

�

P2 is corrupted Informally, in case P2 is corrupted the simulator extracts the committed
message from A and then provides a share in the third message that is consistent with
mo and A’s share. More precisely, for any probabilistic polynomial-time adversary A
controlling P2 we define a simulator S that is given an inputmo fromFCOIN and proceeds
as follows:

1. S internally invokesA and computes the firstmessage of the protocol aswould have
computed by the honest P1. Namely,S picks random elements t10 , t11 , . . . , tn0 , tn1 ←
Zq and sends A the pairs (h10, h

1
1), . . . , (h

n
0, h

n
1), where hib = gt

i
0 for every b ∈

{0, 1} and i ∈ [n]. Let σ, e1, . . . , en be the message replied by A.
2. Next, S performs the following np(n) times:

• S picks a random m′ ← Zq and sends m′, t1e1 , . . . , t
n
en to P2.

If at any iterationA provides a valid fourth messagem, s1, . . . , sn , then S rewinds
A to the third message. Next, upon receiving mo from the ideal functionality, S
suppliesAwith a third messagemo −m, t1e1 , . . . , t

n
en and completes the execution.

IfA aborts in all the np(n) attempts, S simply outputs the transcript from the first
iteration.

We first prove that if the discrete logarithm assumption is hard in G then A cannot
open σ in two different valid ways as it violates this hardness assumption.

Claim 3.3. Assume that the discrete logarithm assumption holds in G. Then, except
with negligible probability,A cannot provide two tuplesm1, s11 , . . . , s

1
n andm2, s21 , . . . , s

2
n

for which m1 �= m2, that correspond to valid openings of σ .

Proof. Assume for contradiction that there exists an adversaryA that can provide two
valid distinct decommitments in the fourth round of the protocol with non-negligible
probability.We show how to construct an adversaryB that violates the discrete logarithm
assumption relative to G. On a high-level, upon given input (g′, h′), B sets g = g′ and
picks all (hi0, h

i
1) pairs honestly with the exception that h j

b = h′ for a randomly chosen
b ∈ {0, 1} and j ∈ [n]. Next, given two openings m1, s11 , . . . , s

1
n and m2, s21 , . . . , s

2
n , B

computes the discrete logarithm of h′ with respect to g = g′. More precisely, denote
by t ib the discrete logarithm of hib with respect to g for all b ∈ {0, 1} and i ∈ [n], i.e.,
hib = gt

i
b . Then it must hold that

What Security Can We Achieve Within 4 Rounds? 1223

m1 + (t10 + t11)s11 + · · · + (tn0 + tn1)s1n = m2 + (t10 + t11)s21 + · · · + (tn0 + tn1)s2n

as A provides two openings to the same commitment σ . Therefore, it is simple to
compute

t jb = [

m1 − m2 +
∑

i �= j

(t i0 + t i1)(s
1
i − s2i) + t j1−b(s

1
j − s2j)

]/

(s2j − s1j)

which implies that B violates the discrete logarithm assumption relative to G. �

Claim 3.4. The following two distribution ensembles are computationally 1
p -

indistinguishable,

{

ViewπCOIN,A(z)(n)
}

n∈N,z∈{0,1}∗
1/p≈ {

ViewFCOIN,S(z)(n)
}

n∈N,z∈{0,1}∗ .

Proof. Let δ be the probability of whichA sends the fourth message. We consider two
cases:

Case δ > 1
p(n)

In this case, the probability thatS fails to extractm within the np(n) trials
is negligible inn.Moreover, it is easy to argue thatwheneverS extractsm,
then the distribution generated by S is identically distributed to the real
view conditioned on the adversary not equivocating. Specifically, as this
event only occurs with negligible probability (as shown in Claim 3.3),
the real and ideal views are statistically close.

Case δ < 1
p(n)

In this case, let ε be the probability that S fails to extract m within the
np(n) trials. Let Da be the distribution of the real view of the adversary
conditioned on it aborting in the fourth step, and let Db be the real view
conditioned on the adversary not aborting. Then we can express the
distribution of A’s real view as a mixture of distributions as follows:4

(1 − δ)Da + δDb.

The simulator on the other hand will generate a distribution as follows:

(1 − ε)Da + ε((1 − δ)Da + δDb).

Then the statistical distance between the two distributions can be com-
puted as the difference

||(δ − εδ)Da + (εδ − δ)Db||1 = δ(1 − ε)||(Da − Db)||1
4More precisely, the real view can be obtained by first selecting Da with probability δ and Db otherwise,

and then the selecting a random view in the particular distribution.

1224 C. Hazay, M. Venkitasubramaniam

which is bounded from above by δ < 1
p(n)

. Hence the real and simulated

view are 1
p -indistinguishable.

�

3.1. An Abstraction Using Homomorphic Trapdoor Commitment Schemes

We further demonstrate how to abstract the protocol from Sect. 3 based on an homo-
morphic two-round trapdoor commitment scheme (cf. Sect. 2.3.1), denoted by πCOM =
(πSen, πRec).

Protocol 2. (Protocol πCOIN)
The protocol:

1. P1 (playing the role of the receiver) generates 2n pairs of instances of the first
message in πCOM denoted by ((π0

Rec1
, π1

Rec1
), . . . , (π0

Recn
, π1

Recn
)) (with indepen-

dent fresh randomness), and sends these pairs to P2.
2. For all j ∈ [n], P2 first combines each pair (π0

Rec j
, π1

Rec j
) into a single instance

π̃Rec j (relying on the homomorphic property of πCOM). Next, it shares its coin-
tossing share m2 into n shares m1

2, . . . ,m
n
2 and commits to these shares by com-

puting the response to π̃Rec j , denote these responses by (πSen1 , . . . , πSenn). P2
additionally sends a random challenge e ← {0, 1}n.

3. Let e = (e1, . . . , en). Then P1 reveals the randomness it used for computing π
e j
Rec j

for all j ∈ [n], and further sends its coin-tossing share m1.
4. P2 verifies that P1 generated the first message correctly with respect to challenge

e. If all the verifications are accepting P2 opens its commitments from Step 2 and
P1 verifies the validity of this opening. If all the verifications are accepting the
parties output m1 +m2 (where addition is computed in the corresponding group).
Otherwise, P1 aborts.

Intuitively speaking, Protocol 2 is proven similarly to the proof of Protocol 1. Namely,
when P1 is corrupted the simulator extracts one of the trapdoor pairs of the commitment
scheme that enables to equivocate the corresponding receiver’s share. On the other hand,
when P2 is corrupted, then the simulator behaves identically to the simulator of P2 for
Protocol 1. That is, the simulator extracts the committedmessage from the adversary and
then rewinds it, providing a new third message that is consistent with mo. It is simple to
verify that the proof follows as for Protocol 1, described above in Sect. 3. Two additional
constructions with security under the RSA and the factoring hardness assumptions are
captured by our abstraction as well; see Sect. 2.3.1 for more details.

4. Warmup: 4-Round 2PC Against Non-aborting Adversaries

In this section, as a warmup, we present a 4-round two-party protocol for arbitrary func-
tionalities, where both parties receive the output, in the presence of arbitrary malicious
adversaries that are restricted to be non-aborting. We first introduce a 4-round oblivious-

What Security Can We Achieve Within 4 Rounds? 1225

transfer protocol that securely computes functionality FOT : ((s0, s1), b) �→ (−, sb) in
the presence of non-aborting senders and receivers,where the receiver receives the output
in the third round. Next, we obtain a 4-round two-party protocol with the same security
guarantees by combining our oblivious-transfer protocol with [43]. In the following sec-
tion, we rely on this protocol as a building block to construct another OT protocol that
achieves 1/p-security against malicious (aborting) senders and full simulation-based
security against non-aborting receivers.
First, we begin with a brief discussion on non-aborting adversaries. To model such

adversaries,wewill require parties to output a special rejectmessage to indicate rejecting
a conversation. Formally, a PPT adversary A controlling party P1 (resp., P2) in an
interaction using protocol π = 〈P1, P2〉 with an honest party P2 (resp. P1), is said to
be non-aborting in an execution of the protocol if at the end of the protocol P2 (resp.
P1) does not reject the conversation. An adversary is said to be non-aborting if the
probability with which the other party outputs reject is negligible.
We proceed with our oblivious-transfer protocol followed by our general two-party

computation in Section 4.3.

4.1. Building Blocks

Our protocol relies on the following cryptographic building blocks:

Proof of Validity The receiver in our protocol uses a standard �-protocol WI-PoK for
proving the knowledge of the discrete logarithm of one of the public keys it forwards the
sender. The protocol ensures that there is at least one public key for which the receiver
knows the discrete logarithm relative to some generator (where this corresponds to the
public key for which the receiver does not know the secret key). Concretely, we consider
a �-protocol πWI

DL for the following language [16],

LDL = {(g, h, G, q)| ∃u ∈ Zq such that h = gu}.

We note that this proof is given for compound statements. Namely, the parties hold
two statements for which the prover only knows one of the witnesses, but not both. It
is a common technique by now to combine two �-protocols (even distinct ones) in a
way that ensures that the prover knows at least one of the witnesses [15]. We note that
the compound proof implies a perfect WI-PoK (namely, the view that is produced with
respect to one witness is identical to a view that is produced with respect to the other
witness). Consequently, even an unbounded verifier cannot tell which witness is used
by the prover for proving the compound statement.
The El Gamal PKE [27] (see Appendix A.1.1) Intuitively speaking, the receiver
chooses group elements that will be later viewed by the sender as El Gamal public
keys. The key point is that the receiver must pick these elements in two distinct ways,
which will be verified by the sender using the WI-PoK πWI

DL . If indeed the receiver com-
pletes this proof correctly, then we can prove that there exists a public key for which the
receiver does not know the trapdoor secret key. This will allow us to claim the privacy
of one of the sender’s inputs. On the other hand, if the receiver cheats then it may learn
both of the sender’s inputs. Nevertheless, in this case it will always be caught.

1226 C. Hazay, M. Venkitasubramaniam

4.2. 4-Round OT Against Non-aborting Adversaries

In this section, we construct a 4-roundOTprotocol that guarantees full security assuming
non-aborting adversaries. We note that an aborting receiver may violate the privacy of
the sender and learn its both inputs while an aborting sender cannot violate the privacy
of the receiver.

Protocol 3. (Protocol πOT)
Public Parameters The description of a group G of prime order q.
Inputs The sender Sen holds s0, s1 and the receiver Rec holds a bit b.
The protocol:

1. Sen → Rec

(a) Sen picks a random generator g ← G and computes h0 = gr0 and h1 = gr1

where r0, r1 ← Zq .
(b) Sen sends g, h0, h1 to Rec.

2. Rec → Sen

(a) Rec generates two public keys according to the El Gamal PKE as follows:
PKb = gm and PK1−b = (h0h1)m̃ where m, m̃ ← Zq . Rec sets SK = m.

(b) Rec sends PK0,PK1 to Sen.
(c) Rec sends the first message of the WI-PoK for proving the knowledge of the

discrete logarithms of either PK0 or PK1 with respect to (h0h1) (namely, Rec
sends the first message with respect to πWI

DL for the compound statement with
PK0 and PK1 being the statements).

(d) Rec sends a challenge bit β.

3. Sen → Rec

(a) Sen computes ciphertexts c0, c1 as follows: c0 = (gu0 ,PKu0
0 · s0) and c1 =

(gu1,PKu1
1 · s1) where u0, u1 ← Zq .

(b) Sen sends c0, c1 to Rec
(c) Sen sends the second message eSen for the WI-PoK protocol πWI

DL given by the
receiver (recall that this message is a random challenge).

(d) Sen sends rβ = logg(hβ)

4. Rec → Sen

(a) Upon receiving the sender’smessage, the receiver first checks if rβ = logg(hβ).
If this is not the case, it outputs reject and halts. Otherwise, it takes the cipher-
texts c0 = 〈c0[1], c0[2]〉 and c1 = 〈c1[1], c1[2]〉 and computes sb by decrypting
cb under SKb. More precisely, it computes sb = cb[2]/(cb[1])SK.

(b) Rec sends the last message for the WI-PoK protocol πWI
DL .

Finally, if the proof using πWI
DL is not convincing (or if any of the messages from

Rec were ill-formed), Sen outputs reject. Similarly if any of the messages from
Rec were ill-formed then Rec outputs reject.

Theorem 4.1. (Warmup)Assume that theDecisional Diffie-Hellman assumption holds
in G and that πWI

DL is a perfectly 3-round WI-PoK protocol. Then, Protocol 3 is a 4-round

What Security Can We Achieve Within 4 Rounds? 1227

protocol, where the receiver receives the output in the third round, that securely realizes
FOT in the presence of non-aborting senders and non-aborting receivers. Furthermore,
the protocol is receiver private according to Definition 2.13 (i.e., private against an
(aborting) malicious sender).

Proof Overview First, in case the sender is corrupted the simulator plays the role of
the honest receiver with input b = 0 and extracts both r0 and r1. Next, the simulator
uses these values in order to equivocate the public keys it sends to the adversary in the
second message. Namely, upon extracting the discrete logarithms of both h0 and h1 the
simulator knows the secret keys for both public keys and can decrypt both ciphertexts.
On the other hand, in case the receiver is corrupted, security is proven via a reduction to

the IND-CPA security game of the El Gamal PKE. Namely, the simulator first extracts
the receiver’s secret exponent m̃ and the bit b (from the WI-PoK πWI

DL) and uses that
information to complete the IND-CPA reduction by plugging in an external public key
instead of (h0h1)m̃ and a ciphertext that either encrypts s1−b or a random independent
message.

Correctness On a high-level, correctness follows from the correctness of the El Gamal
PKE. Namely, given that the receiver knows the secret key m for PKb, it can decrypt
ciphertext cb.

Proof. We consider each corruption case separately.
Sen is corruptedRecall that when the sender is corrupted we need to prove that it cannot
learn anything about the bit b while extracting both s0 and s1. More precisely, consider
a non-aborting probabilistic polynomial-time adversary A controlling Sen. We define a
simulator S that proceeds as follows:

1. S invokes A on its input and randomness of appropriate length.
2. Upon receiving fromA the first message,S computes the secondmessage honestly

with input b = 0.
3. Upon receivingA’s third message, S records rβ . Next, it stalls the main execution

and proceeds to rewind A. Specifically, S rewinds A to the second message and
supplies a bit 1−β. Upon receiving r1−β ,S completes themain execution honestly
using b = 0 and decrypts both ciphertexts as follows. S uses SK0 = SK to decrypt
c0 as the honest receiver would do. Moreover, S fixes SK1 = (r0 + r1)m̃ and uses
SK1 to decrypt c1.

4. Finally, S forwards (s0, s1) to FOT and halts, outputting whatever A does.

Clearly, S runs in strict polynomial-time. We first prove the correctness of simulation.
First, we know that except with negligible probability the simulator obtains the correct
discrete logarithm of hβ . This is because the probability with which a non-aborting
adversary fails to give the correct discrete logarithm is negligible. Therefore, it suffices
to show that the simulator correctly extracts s1. Recall that for b = 1 the honest receiver
computes s1 = c1[2]/(c1[1])SK1 . Thenwe claim that this is equivalent to the computation
carried out by the simulator, as SK1 amounts in this case to the discrete logarithm of
PK1 relative to generator g. Next, we prove that,

1228 C. Hazay, M. Venkitasubramaniam

Claim 4.1. The following two distribution ensembles are identical,

{

ViewπOT,A(z)(n, (s0, s1), b)
}

n∈N,s0,s1,b,z∈{0,1}∗
≡ {

ViewFOT,S(z)(n, (s0, s1), b)
}

n∈N,s0,s1,b,z∈{0,1}∗ .

Proof. The proof follows due to the fact that the receiver’s bit b is information theo-
retically hidden given PK0, PK1 and the WI-PoK transcript of πWI

DL . More concretely,
given any pair (PK0,PK1) there always exist m0, m̃0 and m1, m̃1 for which PK0 =
gm0 = (h0h1)m̃0 and PK1 = gm1 = (h0h1)m̃1 . Moreover, the WI-PoK πWI

DL is a perfect
witness-indistinguishable proof, which implies that even an unbounded verifier cannot
extract b (as discussed above, this is the case even for the compound proof, since the
receiver proves that it knows a discrete logarithm relative to either PK0 or PK1). �

It therefore holds that even if the sender aborts prematurely, it cannot obtain any
information about b. This also proves that the protocol is receiver private.
Rec is corrupted In this case, we need to prove that the corrupted receiver cannot learn
anything about the sender’s other input s1−b while extracting b. More precisely, for any
non-aborting probabilistic polynomial-time adversary A controlling Rec we define a
simulator S that proceeds as follows:

1. S invokes A on its input and randomness of the appropriate length.
2. S plays the role of the honest senderwith arbitrary inputs (s′

0, s
′
1). Upon completing

the execution successfully, S stalls the main execution and proceeds to rewind A.
Specifically, S rewinds A to the third message and supplies a different second
message forπZK

DL by sampling uniformly randomnewchallenge e′
Sen. If eSen = e′

Sen,
i.e., the challenge is identical, then S aborts. Otherwise, it feeds the challenge to
A as part of the second message. Finally, S runs the extractor for the WI-PoK πWI

DL

and extracts the bit b and the discrete logarithm of PK1−b.
Specifically, let γ be such that the simulator extracts m̃ with respect to PKγ . Then S
fixes the bit b = 1 − γ .

3. S submits b to FOT, and receives sb.
4. S rewinds A to the third message and computes it based on sb and random s1−b.
5. S halts, outputting whatever A does.

Note first that the simulator runs in polynomial-time and that the probability it aborts is
negligible. Moreover, we prove that the simulated and real views are computationally
indistinguishable via a reduction to the security of the El Gamal PKE. Namely, we prove
the following claim,

Claim 4.2. The following two distribution ensembles are computationally indistin-
guishable,

{

ViewπOT,A(z)(n, (s0, s1), b)
}

n∈N,s0,s1,b,z∈{0,1}∗
c≈ {

ViewFOT,S(z)(n, (s0, s1), b)
}

n∈N,s0,s1,b,z∈{0,1}∗ .

What Security Can We Achieve Within 4 Rounds? 1229

Proof. Assume by contradiction that these two views are distinguishable by a PPT
distinguisher D. We construct an adversary A′ that breaks the security of the El Gamal
PKE as follows. Recall thatA′ externally communicates with a challenger that provides
to it a public key PK = 〈g, h〉. Upon receiving PK and (s0, s1) as the auxiliary input,
A′ picks a random bit β ′ and sets hβ ′ = gx for some random x ← Zq . In addition,
A′ sets h1−β ′ = h/hβ ′ . A′ invokes A internally and forwards it the first message of
the protocol g, h0, h1. Upon receiving A’s second message, A′ aborts if β ′ �= β. Else,
A′ completes the execution using arbitrary (s0, s1). Upon completing the execution
successfully, A′ extracts b and the discrete logarithm of PK1−b exactly as done in the
simulation. This is possible except with negligible probability because the receiver is
non-aborting. Finally, A′ submits to its challenger the two messages sm̃

−1

1−b and t for
t ← Zq , receiving back a challenge ciphertext c = 〈c′

0, c
′
1〉 that encrypts one of these

plaintexts at random. A′ computes 〈(c′
0)

m̃, (c′
1)

m̃〉 (and rerandomizes the ciphertext by
multiplying the outcome with a random encryption of zero), and plugs the outcome as
the ciphertext that encrypts s1−b and halts. Finally,A′ invokes D on the joint distribution
of (s0, s1) and the adversary’s output and outputs whatever D does.
We now consider two cases:

1. In the first case the challenge c′ is an encryption of sm̃
−1

1−b . We claim that in this
case the adversary’s view is distributed as in the real execution. This is because
the challenge ciphertext 〈(c′

0)
m̃, (c′

1)
m̃〉 corresponds to a random ciphertext that

encrypts the plaintext s1−b relative to PK1−b.
2. On the other hand, in case the challenge c′ is an encryption of a random element t ,

then the adversary’s view is distributed as in the simulation, as the simulator does
not know s1−b and hence uses a random input instead of the real value.

In both cases, the first message of the reduction is identically distributed to the first
message in the corresponding execution. Moreover, the distribution of the first message
for β ′ = 0 is identical to the distribution for the case that β ′ = 1.

More formally, assume that

∣

∣

∣ Pr[D(ViewπOT,A(z)(n, (s0, s1), b)) = 1]
−Pr[D(ViewFOT,S(z)(n, (s0, s1), b)) = 1]

∣

∣

∣ ≥ ε(n).

Then, it holds that

Pr[Adv�,A′(n) = 1] ≥ 1

2
+ ε(n)

2

condition on the event for which β ′ = β. This is proven as follows,

Pr[Adv�,A′(n) = 1]
= 1

2

(

Pr[Adv�,A′(n) = 1|b = 0] + Pr[Adv�,A′(n) = 1|b = 1]
)

= 1

2

(

Pr[D(ViewπOT,A(z)(n, (s0, s1), b)) = 0]

1230 C. Hazay, M. Venkitasubramaniam

+ Pr[D(ViewFOT,S(z)(n, (s0, s1), b)) = 1]
)

= 1

2

(

1 − Pr[D(ViewπOT,A(z)(n, (s0, s1), b)) = 1]

+ Pr[D(ViewFOT,S(z)(n, (s0, s1), b)) = 1]
)

= 1

2
+ 1

2

∣

∣

∣Pr[D(ViewFOT,S(z)(n, (s0, s1), b)) = 1]
− Pr[D(ViewπOT,A(z)(n, (s0, s1), b)) = 1]

∣

∣

∣

≥ 1

2
+ ε(n)

2
.

�

4.3. 4-Round 2PC Against Non-aborting Adversaries

First, we observe that we can repeat our OT protocol in parallel while guaranteeing
the same security. This is because in case the sender is corrupted, information theoretic
privacy is still maintained under parallel execution (as each OT execution is carried
out with respect to an independent pair of keys). Moreover, the basic simulator can be
extended for a simulator for the parallel execution, as input extraction follows easily in
the presence of non-aborting adversaries. Using a standard hybrid argument, simulation-
based security is further maintained in case the receiver is corrupted.
Next, obtaining general secure two-party computation is carried out by embedding

the 2-round protocol of [43] within our second/third messages of our OT protocol. We
briefly recall the high-level structure of the protocol in [43]. The authors provide a non-
interactive protocol for securely computing any functionality between a sender and a
receiver in the OT-hybrid, where both parties have inputs and only the receiver receives
the output. Moreover, the sender is the sender in all OT invocations. More precisely, in a
single message, the sender sends one message to the receiver and provides inputs to all
OT instances in parallel. Whereas the receiver bases the queries to the OT functionality
on its input, playing the receiver in all parallel instances. Next, based on the one-message
received from the sender and the outputs from all OT instances, the receiver computes
the result of the computation. Formally, we can capture the result in [43] in the following
theorem statement.

Theorem 4.2. (Implicit in [43]) Assuming one-way functions, for every (one output)
two-party functionality f : {0, 1}∗ ×{0, 1}∗ → {0, 1}∗ between a sender and a receiver,
there is a protocol that securely realizes f in the parallel OT-hybrid with the following
features:

• The protocol involves a single message from the sender to the receiver.
• The receiver receives the output.
• The protocol makes black-box use of the underlying one-way function.

What Security Can We Achieve Within 4 Rounds? 1231

Description of our Protocol We obtain a secure protocol by instantiating [43] with our
four-message protocol from the previous section. All OT instances will be executed in
parallel and the one-message sent by the sender is sent along with the third message of
the OT protocol. Since the receiver obtains the result of the OT after receiving the third
message of the protocol, along with the one-message sent as part of the [43] protocol,
the receiver can compute the result after the third message.
We remark that we obtain a secure two-party protocol with the same security guaran-

tees, namely security againstmalicious non-aborting senders andmalicious non-aborting
receivers. In the description above, only one party, namely the receiver, receives the out-
put. However, if we want both parties to receive the output, the receiver can simply
provide the output along with the fourth message to the sender.5

Formally, we obtain the following theorem.

Theorem 4.3. Assuming the Decisional Diffie-Hellman problem is hard, there exists a
4-round two-party protocol for any functionality, where both parties receive the output,
that is fully secure in the presence non-aborting senders and non-aborting receivers.

Proof Sketch We consider each corruption case separately. When the receiver is cor-
rupted, we will rely on the simulation provided by Theorem 4.2. Namely, the authors of
[43] provide a simulator that upon receiving the inputs of the receiver to the parallel OT
protocol obtains the output of the computation under f from the ideal functionality and
simulates the message sent from the sender to the receiver. Since we have a non-aborting
receiver that provides a WI-PoK, following the receiver’s simulation strategy of the pre-
vious section, we can extract the inputs of the receiver for the parallel OT invocations. In
more detail, we consider a simulator that honestly generates the sender’s messages with
arbitrary inputs for the functionality being computed and then extracts the receiver’s
inputs to the OT by rewinding the WI-PoK. Then, we follow the simulation strategy of
[43] to complete the simulation.
In order to achieve simulation when the sender is corrupted, we observe that, upon

extracting the trapdoors, it is possible to set up the OT part in the second message from
the receiver in such a way that the sender’s inputs to the OT can be extracted with perfect
simulation. Then relying on the simulation of the [43] simulator in the FOT-hybrid we
can obtain the real input of the sender which is forwarded to the ideal functionality.
Internally, to complete the execution, the simulator uses a random input as the witness in
the WI-PoK. Indistinguishability follows directly from the WI property of the WI-PoK
and the sender privacy within the OT protocol.

5In order to ensure correctness, we can make sure that the computed function additionally outputs a MAC
so that the sender is assured of the output the receiver sends. Alternatively, the output can also be encrypted
(in case of an asymmetric function) under the sender’s key, which the receiver can relay back to the sender.

1232 C. Hazay, M. Venkitasubramaniam

5. 4-Round 2PC with 1/p Sender Security and Full Security Against
Non-aborting Receivers

In this section, we extend our OT protocol from Sect. 4 and demonstrate how to achieve
1/p-simulation with respect to corrupted aborting senders while retaining the same
guarantees against non-aborting receivers. Next, in Sect. 5.2, we show how to induce
a general 2PC protocol with the same security guarantees. Our OT protocol is inspired
by the recent result of Ostrovsky, Richelson and Scafuro [55]. Roughly speaking, the
protocol in [55] provide a cut-and-choose mechanism to transform an oblivious-transfer
protocol that is vulnerable to input dependent abort by amalicious sender to full security.
The basic idea is to use a special kind of “verifiable” secret sharing that will allow the
receiver to open a subset of the shares of both the sender inputs to verify the validity of
the shares and input consistency. Only if the checks pass the receiver proceeds to obtain
its real output. This extra step helps prevent input dependent abort as if the validity
checks pass then with high probability we can reconstruct unique values for both inputs
of the sender from the shares. In our protocol, we will implicitly perform the cut-and-
choose by relying on the OT protocol itself. We remark that while the issue that needed
to be resolved was an input-dependent abort in [55], in our case, we use it to boost
the extraction probability of sender’s inputs while maintaining the privacy against the
receiver. The secret sharing ensures that the receiver cannot learn more than one output
and extracting a significant fraction of shares is sufficient to extract the outputs. Another
advantage of relying on the OT protocol to perform the cut-and-choose is that the sender
needs to use its input only in the third-round of our protocol after the receiver submits
its input for the OT instance.
We begin with the following building blocks used in our construction: let (1)Commit

be a statistically binding commitment scheme, (2) let (Share,Rec) be a (M+1)-out-of-
2M Shamir secret-sharing schemeoverZq , togetherwith a linearmapφ : Z

2M
q → Z

M−1
q

such that φ(v) = 0 iff v is a valid sharing of some secret. We further note that the WI-
PoK πWI

DL that is given by Rec in Protocol 3, is extended here to handle the parallel case.
Namely, the receiver proves the validity of one of the public keys it generates within
each pair, in parallel. On a high-level, we modify Protocol 3 as follows.

• We repeat Protocol 3 in parallel 3M times to obtain 3M oblivious-transfer parallel
executions. We divide this set of executions into two sets of M and 2M executions.

• The sender chooses first two random inputs x0, x1 ∈ Zq and secret shares them
using the Shamir secret-sharing scheme to obtain shares [x0] and [x1]. Next, for
b ∈ {0, 1} it picks M pairs of vectors that add up to [xb]. It is instructive to view
them as matrices A0, B0, A1, B1 ∈ Z

M×2M
q where for every row i ∈ [M] and

b ∈ {0, 1}, it holds that Ab[i, ·]⊕ Bb[i, ·] = [xb]. Next, the sender commits to each
entry of each matrix separately in the third message of the protocol. To check the
validity of the shares the sender additionally sends matrices Z0, Z1 in the clear,
such that the row Zb[i, ·] is set to φ(Ab[i, ·]), along with the third message of the
protocol where it commits to the entries of A0, A1, B0 and B1. Finally, it sends
C0 = x0 + s0 and C1 = x1 + s1.

What Security Can We Achieve Within 4 Rounds? 1233

• In the first set of M OT executions, the sender’s input to the i th execution is the
decommitment information of the entire i th row

((A0[i, ·], A1[i, ·]), (B0[i, ·], B1[i, ·])) ,

whereas the receiver sets its input to these executions as c1, . . . , cM at random.
Upon receiving its output for the OT, the receiver proceeds as follows: If ci = 0,
then the receiver checks whether φ(Ab[i, ·]) = [zbi], and if ci = 1 it checks whether
φ(Bb[i, ·]) + Zb[i, ·] = 0. This is referred to as the shares validity check.

• In the second set of 2M OT executions, the sender’s input to the j th OT execution
is the decommitment information of the entire j th column

((A0[·, j], B0[·, j]), (A1[·, j], B1[·, j])) .

Looking ahead, if the receiver’s input is b, then upon receiving its output for a
particular column j it checks that for all i , Ab[i, j] ⊕ Bb[i, j] agree on the same
value. We refer to this as the shares consistency check.

• In the second set of OTs, the receiver sets its input as follows. It selects a random
subset T1−b ⊆ [2M] of size M/2 and defines Tb = [2M]/T1−b. Then, for every
j ∈ [2M], Rec sets b j = β if j ∈ Tβ . The b j values serve as the inputs to the OT
for the next 2M executions.

• Finally, the receiver first checks if all the rows obtained from the first set of OT
executions pass the shares validity check. Next, it checks if all the columns in T1−b

and a random subset of size M/2 from Tb pass the shares consistency check. If so,
it finds M + 1 columns in Tb that pass the shares consistency check, extracts the
share that corresponds to each such column and then uses these M + 1 shares to
reconstruct xb. Finally, the receiver uses xb and Cb to compute sb.

• Additionally, we modify the WI-PoK to a proof for a statement that captures all
parallel executions simultaneously, i.e., the statements of all OT executions are
combined using the logical AND. Furthermore, a party rejects if the other party
aborts or delivers an incorrect or invalid message.

The security guarantees of this protocol are 1/p-security against malicious senders
and full security against non-aborting receivers.We remark that the receiver’s simulation
essentially follows a similar approach as in the simulation of Protocol 3, where it rewinds
the WI-PoK protocol in order to extract the receiver’s inputs to all the parallel OT
executions and then setting the input that the receiver cannot obtain to a random string
(one at a time), concluding that there will not be enough information for any receiver to
extract s1−b. On the other hand, the sender simulation needs to achieve 1/p-simulation.
The high-level idea is to apply techniques from the simulation in [55], given that the
simulator extracts sufficiently enough shares of the sender’s inputs to the parallel OTs.
The core of our argument and the main technical part of this protocol is to show that
if an adversarial sender does not abort before sending the third message too often (i.e.,
< 1 − 1

p) then the simulator can extract the trapdoor by rewinding sufficiently many
times. Namely, in this case, we show that the simulator can extract the discrete logarithm
of both h0 and h1 with respect to g in at least 1 − 1

3p fraction of the OT executions.

1234 C. Hazay, M. Venkitasubramaniam

Then we can show that the simulator succeeds in extracting the sender’s inputs s0, s1
with very high probability.

5.1. 4-Round OT with 1/p Sender Security and Full Security Against Non-aborting
Receivers

We construct a 4-round OT protocol with the stronger guarantee of 1/p-security in the
presence of (possibly aborting) malicious senders.

Protocol 4. (Protocol πOT)
Public Parameters The description of a group G of prime order q.
Inputs The sender Sen holds s0, s1 and the receiver Rec holds a bit b.

The protocol:

1. Sen → Rec

(a) Let N = 3M. Then, for i ∈ [N], Sen picks random generator gi ← G and
computes hi,0 = g

ri,0
i and hi,1 = g

ri,1
i where ri,0, ri,1 ← Zq .

(b) Sen sends the N tuples {gi , hi,0, hi,1}i∈[N] to Rec.
2. Rec → Sen

(a) Rec samples uniformly at random c1, . . . , cM ← {0, 1}. The ci values serve
as the input to the first M OT executions.

(b) Rec selects a randomsubset T1−b ⊆ [2M]of size M/2.Define Tb = [2M]/T1−b.
For every j ∈ [2M], Rec sets b j = α if j ∈ Tα . The b j values serve as the
inputs to the OT for the next 2M executions.

(c) According to its input for the 3M OT executions,Rec generates N = 3M pairs
of El Gamal PKE’s as follows:

• For every i ∈ [M], PKi,ci = gmi
i and PKi,1−ci = (hi,0hi,1)m̃i where

mi , m̃i ← Zq . Rec sets SKi = mi .
• For every j ∈ [2M], PKM+ j,b j = g

mM+ j
M+ j and PKM+ j,1−b j = (hM+ j,0

hM+ j,1)
m̃M+ j where mM+ j , m̃M+ j ← Zq . Rec sets SKM+ j = mM+ j .

(d) Rec sends {PKi,0,PKi,1}i∈[N] to Sen.
(e) Rec sends the first message of the WI-PoK for proving the knowledge for ev-

ery i ∈ [N] of the discrete logarithms of either PKi
0 or PKi

1 with respect to
(hi,0hi,1).

(f) Rec sends a challenge string β = (β1, . . . , βN).
(g) Rec sends the first message for the statistically binding commitment scheme

com.

3. Sen → Rec

(a) Sen picks two random strings x0, x1 ← Zq and secret shares them using the
Shamir’s secret-sharing scheme. In particular, Sen computes [xb] = (x1b , . . . ,
x2Mb) ← Share(xb) for b ∈ {0, 1}. Sen commits to the shares [x0], [x1] as
follows. It picks random matrices A0, B0 ← Z

M×2M
q and A1, B1 ← Z

M×2M
q

such that ∀i ∈ [M]:

What Security Can We Achieve Within 4 Rounds? 1235

A0[i, ·] + B0[i, ·] = [x0], A1[i, ·] + B1[i, ·] = [x1].

Sen computes two matrices Z0, Z1 ∈ Z
M×M−1
q and sends them in the clear

such that:

Z0[i, ·] = φ(A0[i, ·]), Z1[i, ·] = φ(A1[i, ·]).

(b) Sen sends the committed matrices (comA0 , comB0 , comA1 , comB1) to Rec
where each element of each matrix is individually committed using com.

(c) For i ∈ [M], Sen computes ciphertexts ci,0, ci,1 where ci,0 is an encryption
of the decommitment of the rows A0[i, ·] and A1[i, ·] under public key PKi,0
and ci,1 is an encryption of the decommitment of the rows B0[i, ·] and B1[i, ·]
under public key PKi,1. Sen sends {ci,0, ci,1}i∈[M] to Rec.

(d) For j ∈ [2M], Sen computes ciphertexts c̃ j,0, c̃ j,1, where c̃ j,b is an encryp-
tion of the decommitment of the columns Ab[·, j], Bb[·, j] under public key
PKM+ j,b. Sen sends {c̃ j,0, c̃ j,1} j∈[2M] to Rec.

(e) Sen sends the second message eSen for the WI-PoK protocol πWI
DL given by the

receiver (recall that this message is a random challenge).
(f) Sen sends rβi = loggi (hi,β) for all i ∈ [N].
(g) Sen sends C0 = s0 ⊕ x0 and C1 = s1 ⊕ x1 to Rec.

4. Rec → Sen

(a) Decryption Phase Upon receiving the all the sender’s ciphertexts the re-
ceiver decrypts them to obtain the OT outputs. These include decommitments
to A0[i, ·], A1[i, ·] for every i ∈ [M] when ci = 0 and decommitments to
B0[i, ·], B1[i, ·] when ci = 1. They also include columns Ab j [·, j], Bbj [·, j]
for every j ∈ [2M].

(b) Shares Validity Check Phase For i = 1, . . . , M, if ci = 0 check that
Z0[i, ·] = φ(A0[i, ·]) and Z1[i, ·] = φ(A1[i, ·]). Otherwise, if ci = 1 check
that φ(B0[i, ·]) + Z0[i, ·] = 0 and φ(B1[i, ·]) + Z1[i, ·] = 0. If all the checks
pass, the receiver proceeds to the next phase and otherwise aborts.

(c) Shares Consistency Check Phase For each b ∈ {0, 1},Rec randomly chooses
a set Tb for which b j = b at M/2 coordinates. For each j ∈ Tb,Rec checks that

there exists a unique xib such that Ab[i, j]+Bb[i, j] = x j
b for all i ∈ [M]. If so,

x j
b is marked as consistent. If all shares obtained in this phase are consistent,
Rec proceeds to the reconstruction phase. Else it aborts.

(d) Reconstruction Phase For j ∈ [2M]/T1−b, if there exists a unique x j
b such

that Ab[i, j] + Bb[i, j] = x j
b , Rec marks share j as a consistent column.

If R obtains less than M + 1 consistent columns, it aborts. Otherwise, let
x j1
b , . . . , x jM+1

b be any set of M + 1 shares obtained from consistent columns.

Rec computes xb ← Reconstruct(x j1
b , . . . , x jM+1

b) and outputs sb = Cb ⊕ xb.
(e) Rec sends the last message for the WI-PoK protocol πWI

DL .

Theorem 5.1. Assume that the Decisional Diffie-Hellman assumption holds in G and
that πWI

DL is as above. Then Protocol 4 is a 4-round protocol, where the receiver receives

1236 C. Hazay, M. Venkitasubramaniam

the output in the third round, that securely realizesFOT with 1/p-security in the presence
of aborting senders and with full security in the presence of non-aborting receivers.
Furthermore, the protocol is receiver private according to Definition 2.13.

Proof. We note first that this protocol is receiver private, i.e., private against an (abort-
ing) malicious receiver because just as in the previous section, the receiver’s messages
can be shown to information theoretically hide its bit. We next consider each corruption
case separately.
Sen is corrupted Recall that when the sender is corrupted we need to prove 1/p-
indistinguishability. More precisely, we need to define a simulator that produces a view
of the malicious sender A while extracting both s0 and s1, where the view and the
value learned by the honest receiver is 1/p-indistinguishable from the sender’s real
view and the receiver’s output in a real execution. More precisely, for any probabilistic
polynomial-time adversaryA controlling Sen, we define a simulator S that proceeds as
follows:

1. S invokes A on its input and randomness of appropriate length.
2. Upon receiving fromA the first message,S computes the secondmessage honestly

with input b = 0. If A aborts before sending the third message then S outputs the
view of A and halts.

3. Otherwise, upon receiving A’s third message, S records the set {rβi }i∈[N]. Next,
it stalls the main execution and proceeds to rewind A. Specifically, S rewinds A
to the second message and proceeds as follows:

• For every i ∈ [N] and γ ∈ {0, 1}, S rewinds A for T = N 4 p attempts, where
in each such attempt S supplies a uniformly random second message according
to the receiver’s strategy with input b = 0, where βi = γ . In each rewinding,
S collects the correct discrete logarithms within A’s reply.

4. If upon concluding the rewinding phase S does not obtain the discrete logarithm of
both hi,0 and hi,1 for at least 1− 1/3p fraction of i ∈ [N], then it halts outputting
fail.

5. Otherwise, let I ⊆ {1, . . . , M} and J ⊆ {M + 1, . . . , 3M} be the sets of indices
for which it extracts both the discrete logarithms. We remark that S does not try to
extract the sender’s inputs in the first M executions, namely, for indices in I . Next,
S rewindsA back to the secondmessage and for every j ∈ J generates public keys
so that it can extract both the sender’s inputs. For all other executions, it follows
the honest receiver’s strategy corresponding to the input b = 0. S completes the
execution by using the witness corresponding to b = 0 for the receiver in the
WI-PoK.6 Upon completion, it performs the share consistency check and the share
validity check as the honest receiver would and if either of them fail, then the
simulator halts outputting the view of A.

5. Otherwise, it decrypts all ciphertexts for which it knows the corresponding secret
keys. For each b ∈ {0, 1} and j ∈ J , if there exists a unique x j

b such that Ab[i, j]+
Bb[i, j] = x j

b , S marks column j − M as consistent. If it obtains at least M + 1

6This is possible because for indices outside J it has the correct witness, and for indices in J it has
witnesses corresponding to both inputs of the receiver.

What Security Can We Achieve Within 4 Rounds? 1237

shares for xb from consistent columns it reconstructs xb, and then obtains sb from
xb and Cb. If not, it sets sb = ⊥.

6. Finally, S forwards (s0, s1) to FOT and halts, outputting whatever A does.

Clearly, S runs in strict polynomial-time.We next prove the correctness of simulation.
On a high-level, the secondmessage in all the rewinding attempts is generated identically
to the secondmessage of the real execution and is independent of the bit b that the receiver
enters. This follows by repeating Protocol 3 in parallel, for which the indistinguishability
argument is similar. Let s ∈ ω(log n). Two cases arise:

1. The abort probability of the sender is higher than 1 − 1
Np . In this case, 1/p-

indistinguishability is achieved directly as the simulation outputs views on which
the sender aborts with at least the same probability as such views occur in the real
view. Now, since this accounts for a probability mass of at least 1− 1

Np > 1− 1
p ,

1/p-indistinguishability follows.
2. The abort probability of the sender is at most 1 − 1

Np . In this case by setting
M > sp, for s being some superlogarithmic function in n, we argue that except
with negligible probability (roughly, 2−O(s)), the simulator will be able to obtain
the discrete logarithms of both hi,0 and hi,1, i.e., the trapdoors, for at least 1− 1

3p
fraction of the indices i ∈ [3M]via rewinding. This is formally proven inClaim5.1.
Just as in the previous protocol, we have that for every index in {M + 1, . . . , 3M}
that the simulator obtains a trapdoor, it will be able to extract both of the sender’s
inputs. Specifically, as M > sp, we can conclude that the simulator fails to obtain
the trapdoor of at most 1

3p × 3M = s indices. This means that among the indices
in {M + 1, . . . , 3M} it obtains trapdoors for at least 2M − s indices.

Next, from the shares consistency check we can conclude that with very high probability
all but s columns contain shares that are consistent. From the shares validity check, we
can conclude thatwith very high probability there is a single row ib corresponding to each
b ∈ {0, 1} such that Ab[i, ·] + Bb[i, ·] contains valid shares of some secret. Combining
these checks, we can conclude that there are at least 2M − s columns that are consistent,
i.e., the shared value in each row is the same and thereforemust equal Ab[ib, ·]+Bb[ib, ·].
Furthermore, from the statistically binding property of the commitment schemeCommit
we can conclude that for any one of these consistent columns, there can be only one
value for the shares that can be extracted by both the receiver and the simulator.
In this case, we can now conclude that, using the trapdoors, the simulator obtains at least
2M − s − s shares for both inputs among the consistent columns. Since M > sp we
have that 2M − 2s > M + 1 (for p > 2) and from M + 1 valid shares it can extract sb
for each b ∈ {0, 1}.

Claim 5.1. We say that i ∈ [N] is extractable, if S manages to extract the discrete
logarithms of both hi,0 and hi,1 with respect to gi . If the adversary A does not abort
before sending the third message with probability at least 1

Np , then except with negligible

probability, at least 1 − 1
3p fraction of the indices are extractable.

Proof. On a high level, we follow a Yao-type amplification argument [62]. First, we
observe that the distribution of the second message fed to A in any rewinding attempt
is perfectly distributed to the real distribution. Next, suppose that A does not abort

1238 C. Hazay, M. Venkitasubramaniam

with probability at least 1
N3 p

both when its view is conditioned on βi = 0 and when

it is conditioned on βi = 1, for some index i . Then we show that i is extractable
except with negligible probability. This is because for every i and every value of βi
the simulator makes N 4 p rewinding attempts, thus the probability that it fails to find

a successful execution where the adversary A responds is at most
(

1 − 1
N3 p

)N4 p =
O(e−s). Therefore, it suffices to show that this condition holds for more than 1 − 1

3p

indices i for which A does not abort with probability at least 1
N3 p

both when its view
is conditioned on βi = 0 and when it is conditioned on βi = 1. This is because using
the preceding argument, we can conclude that at least 1 − 1

3p fraction of indices are
extractable and the proof of the claim follows.
Suppose for contradiction that there are more than 1

3p fraction of indices for which

the condition does not hold. This means that for a set of 1
3p N = s indices, denoted

by S, and values {γ j } j∈S such that for every j ∈ S, when conditioned on β j = γ j ,
the probability that the adversary aborts is greater than 1 − 1

N3 p
. We now estimate the

overall probability that A does not abort.

Pr[A does not abort] = Pr[A does not abort | ∃ j ∈ S s.t. β j = γ j]
Pr[∃ j ∈ S s.t. β j = γ j]

+ Pr[A does not abort | ∀ j ∈ S, β j �= γ j]
Pr[∀ j ∈ S, βi �= γi]

≤
⎛

⎝

∑

j∈S
Pr[A does not abort |β j = γ j]Pr[β j = γ j]

⎞

⎠ + 1

× Pr[∀ j ∈ S, β j �= γ j]
≤ N

N 3 p
+ 1

2s

≤ 1

2N 2 p
.

This is a contradiction since we assumed that A does not abort with probability at least
1
Np . �

Finally, to argue 1/p-indistinguishability, we consider two cases:

Case: Non-aborting Probability of A is Greater than 1
pN First, we observe

that the sender’s view in the simulation is statistically close to the real view. This
follows using an argument analogous to Claim 4.1 as the public keys in the second
message (even those generated by the simulation using the trapdoors) and the perfect
WI-PoK perfectly hide the receiver’s input. It therefore suffices to argue that the
receiver’s messages can be generated while extracting the sender’s input. Using the
preceding argument, we have that the simulation will always succeed in extracting
the trapdoors of at least 1− 1

3p fraction of the parallel OT executions. SinceM > sp,

What Security Can We Achieve Within 4 Rounds? 1239

we can conclude that the simulator fails to obtain the trapdoor of at most 1
3p ×3M =

s indices. Thismeans that among the indices in {M+1, . . . , 3M} it obtains trapdoors
for at least 2M − s indices. Recall that, after extraction, the simulator rewinds the
sender to the second message and generates the receiver’s message by setting up
the public keys as follows: for every index in J , the simulator uses the trapdoor and
sets the public keys so that it can extract both of the sender’s inputs. For the rest of
the indices, it simply sets the receiver’s input bit to 0.

Next, from the shares consistency check we can conclude that with very high probability
all but s columns contain shares that are consistent. Moreover, the share validity check
makes the receiver check if Zb[i, ·] = φ(Ab[i, ·]) holds or Zb[i, ·] + φ(Bb[i, ·]) = 0
holds. If for a row both conditions hold, then we have the φ(Ab[i, ·]) + φ(Bb[i, ·]) = 0
and Ab[i, ·]+ Bb[i, ·]must contain a valid vector of shares. Now even if one of these two
conditions fail to hold for more than s rows, the sender will be caught with probability
1−2−s . Therefore, there are at least M − s rows for which φ(Ab[i, ·])+φ(Bb[i, ·]) = 0.
For our argument, it suffices to have just one row ib corresponding to each b ∈ {0, 1} such
that Ab[i, ·] + Bb[i, ·] contains valid shares of some secret. Combining these checks, we
can conclude that there are at least 2M − s columns that are consistent, i.e., the shared
value in each row is the same and must equal Ab[ib, ·]+ Bb[ib, ·]. Furthermore, from the
statistically binding property of the commitment scheme Commit we can conclude that
for any one of these consistent columns, there can be only one value for the shares that
can be extracted by both the receiver and the simulator.
In this case, we can now conclude that, using the trapdoors, the simulator obtains at least
2M − s− s shares for both inputs among the consistent columns. Since M > sp we have
that 2M − 2s > M + 1 (for p > 2) and from M + 1 valid shares it can extract sb for
each b ∈ {0, 1}. Furthermore, the sender’s input extracted by the honest receiver while
holding the input b and the input extracted by the simulator have to be the same as both
of them have to correspond to the shares in the row ib.
Case: Non-aborting Probability of A is at most 1

pN . From the first step of the simu-
lation, we know that all views on which A aborts are simulated at least with the same
probability as in the real view. Now, if the non-aborting probability is smaller than 1

pN

then the probability mass of aborting views is at least 1 − 1
pN > 1 − 1

p and we achieve
1/p-indistinguishability.

Thus, we have the following claim.

Claim 5.2. The following two distribution ensembles are identical,

{

ViewπOT,A(z)(n, (s0, s1), b)
}

n∈N,s0,s1,b,z∈{0,1}∗
1/p≈ {

ViewFOT,S(z)(n, (s0, s1), b)
}

n∈N,s0,s1,b,z∈{0,1}∗ .

Proof. The proof follows essentially using the same ideas from the previous protocol.

�
Rec is corrupted. In this case, we need to prove that any non-aborting corrupted
receiver cannot learn anything about the sender’s other input s1−b while extracting b.

1240 C. Hazay, M. Venkitasubramaniam

More precisely, for any probabilistic polynomial-time adversary A controlling Rec we
define a simulator S that proceeds as follows:

1. S invokes A on its input and randomness of the appropriate length.
2. S plays the role of the honest senderwith arbitrary inputs (s′

0, s
′
1). Upon completing

the execution successfully, S stalls the main execution and proceeds to rewind A.
Specifically, S rewinds A to the third message and supplies a different second
message forπWI

DL by sampling uniformly randomnewchallenge e′
Sen. If eSen = e′

Sen,
i.e., the challenge is identical, then S aborts. Otherwise, it feeds the challenge to
A as part of the second message. Finally, S runs the extractor for the WI-PoK πWI

DL

and extracts the inputs to all the OT executions along with the discrete logarithm
of the corresponding key.

3. Among the executions M+1, . . . , 3M , S finds that bit b that occurs at least M+1
times and submits b toFOT, receiving back sb. Recall that since the receiver is a non-
aborting adversary, it completes the protocol without allowing the honest sender
to abort. In other words, it convinces the sender in the WI-PoK with probability
1. Therefore, since a witness will be extracted from the proof-of-knowledge, the
inputs of the receiver in the parallel OTs are well defined. Specifically, S extracts
the adversary’s inputs to these OT executions as in the simulation for Protocol 3.

4. S rewinds A to the third message and computes it based on sb and random s1−b.
5. S halts, outputting whatever A does.

Note first that the simulator runs in polynomial-time and that the probability it aborts
is negligible. Moreover, we prove that the simulated and real views are computationally
indistinguishable via a reduction to the security of the El Gamal PKE. We provide a
brief proof sketch below:

• From the proof of Protocol 3, using the privacy argument of the El Gamal PKE,
we know that if for a particular OT execution the sender (played by the simulator)
extracted the receiver’s input as γ , then the sender’s input that corresponds to the bit
1−γ can be replaced by a random value. We consider a sequence of hybrids where
we replace at least one input in each of the 3M executions with a random input.
More formally, for every j ∈ {1, . . . , M}, depending on what value is extracted
for each of the ci , and every b ∈ {0, 1}, we replace the sender’s input containing
the decommitment of Ab[i, ·] with random or that containing the decommitment
of Bb[i, ·] with random. Next, for j ∈ {M + 1, . . . , 3M} depending on the value
extracted as bi for the receiver, we replace the input containing the decommitment
of (A0[·, j − M], B0[·, j − M]) random or the other input containing the decom-
mitment of (A1[·, j − M], B1[·, j − M]) random. Next, in another sequence of
hybrids, for every value that is set to random we also replace the corresponding
commitment to a random value.

• Next, we argue that at least M shares of x1−b (out of the 2M shares) are hidden,
where b is the adversary’s input as extracted in the simulation. To this end, for
any column j and row i such that b j �= 1 − b, only one of the entries A1−b[i, j]
or B1−b[i, j] is revealed (while the other entry is set to random, depending on
the choice of ci). This is because when b j = b, the information regarding the
1 − bth matrices is available only from the rows being revealed. Next, note that
A1−b[i, j], B1−b[i, j] are individually distributed uniform at random, therefore

What Security Can We Achieve Within 4 Rounds? 1241

A1−b[i, j]+ B1−b[i, j] is hidden. Now, since b j �= 1−b for at least M values of j
we conclude that at least M shares of x1−b are hidden. Therefore, at most M shares
can be recovered but M shares information theoretically hide x1−b.

Therefore, we conclude that

Claim 5.3. The following two distribution ensembles are computationally indistin-
guishable,

{

ViewπOT,A(z)(n, (s0, s1), b)
}

n∈N,s0,s1,b,z∈{0,1}∗
c≈ {

ViewFOT,S(z)(n, (s0, s1), b)
}

n∈N,s0,s1,b,z∈{0,1}∗ .

�
As a final remark, we note that Protocol 4 can be viewed as a 3-round protocol by

removing the WI-PoK given by the receiver. This implies that we can remove the last
round sent by the receiver. Then the security guarantee of the modified protocol is the
same with respect to malicious senders, whereas security against malicious receivers
is ensured in the presence of defensible private adversaries (cf. Definition 2.7.1). Intu-
itively, the proof follows due to the following argument. If a malicious receiver is able
to provide a valid defense, which includes an input and randomness, this implies that
for each pair of keys it provides a discrete logarithm with respect to hi,0, hi,1. Then, a
reduction to the privacy of El Gamal can be constructed similarly by reducing the dis-
tinguishing probability between the two views to the distinguishing probability between
two ciphertexts.

5.2. 4-Round 2PC with 1/p Sender Security and Full Security Against Non-aborting
Receivers

Obtaining general secure two-party computation is carried out analogous to Protocol 3
by embedding the 2-round protocol of [43] within the second/third messages of our OT
protocol. It follows just as in Sect. 4.3 that we obtain a two-party protocol that is secure
against malicious non-aborting adversaries. More concretely, we have the following
theorem:

Theorem 5.2. Assuming the Decisional Diffie-Hellman problem is hard, there exists a
4-round two-party secure protocol for any functionality, where both parties receive the
output, that is 1/p-secure in the presence of aborting senders and fully secure in the
presence of non-aborting receivers.

Proof Sketch. Recall that, in our previous protocol, to achieve simulation when the re-
ceiver is corrupted,we consider a simulator that honestly generates the sender’smessages
with arbitrary inputs for the functionality being computed and then extracts the receiver’s
inputs to the OT by rewinding the WI-PoK. By relying on precisely the same strategy,
we can obtain the receiver’s inputs in this protocol and then complete the simulation by
relying on the simulator for the malicious receiver in [43] protocol.

1242 C. Hazay, M. Venkitasubramaniam

To achieve simulation when the sender is corrupted, we combine the following two
observations:

• First, using the approach from our previous protocol, it follows that whenever the
simulator extracts the required trapdoor, it is possible to generate the OT part in
the second message from the receiver in a way that it is identically distributed to
the real receiver’s message while at the same time extracting the sender’s inputs to
the OT. Furthermore, whenever the extraction of the sender’s inputs is successful,
we can rely on the simulation of [43] in the FOT-hybrid to complete the rest of the
simulation.

• Second, we observe that, if the sender aborts before sending the third message,
no extraction is needed to be carried out since no inputs need to be feed to the
FOT-functionality.

We can now conclude that our simulation achieves 1/p-security against malicious
senders, by using the same two cases as we considered for Protocol 4 based on the
abort probability of the sender. More precisely,

Case: Non-aborting Probability of A is Greater than 1
pN In this case, we know

that except with probability O(1p) the simulator extracts the required trapdoors and

we achieve perfect simulation with probability at least 1 − O(1p).

Case: Non-aborting Probability of A is at most 1
pN If the non-aborting prob-

ability is smaller than 1
pN then the probability mass of aborting views is at least

1 − 1
pN > 1 − 1

p and since no extraction needs to be carried out we achieve
1/p-security.

�

6. 3-Round OT with 1/p Sender Security and Receiver Privacy

In this section, we construct a three-round protocol that additionally achieves receiver
privacy while maintaining privacy and 1/p-security against malicious senders. In con-
trast to the previous construction which relied on the discrete logarithm assumption, this
construction is based on claw-free (trapdoor) permutations. We begin with a description
of a warmup 3-round oblivious-transfer protocol that only provides receiver privacy, and
then, relying on the techniques from Section 5, we discuss how to achieve 1/p-security
against aborting senders. Privacy against malicious senders will directly follow from the
fact that the receiver’s message statistically hides its input due to the clew-freeness of
the underling function.
We recall first the definition of claw-free trapdoor permutations. Our definition is

slightlymore restrictive in that we require both functions in every pair to be permutations
and invertible with a trapdoor. We note that the RSA-based claw-free permutations
collection satisfies this definition [33].

Definition 6.1. A collection of functions {(f 0i : Di → Di , f 1i : Di → Di)}i∈I for an
index set I ⊂ {0, 1}∗ is a family of claw-free permutations if the following holds:

What Security Can We Achieve Within 4 Rounds? 1243

• There exists a PPT algorithm Gen that on input 1n outputs a random index i ∈
I ∩ {0, 1}n and a trapdoor information tk0, tk1.

• There exists efficient sampling algorithms which, on input i , outputs a random
element x ∈ Di .

• Each function f 0i and f 1i are efficiently computable given i and input x ∈ Di .
• For every i , f bi is a permutation and is efficiently invertible given the trapdoor
information tkb.

• For any PPT algorithm B, there exists a negligible function ε(·) such that

∀ n, Pr[(i, tk0, tk1) ← Gen(1n); (x0, x1) ← B(i) : f 0i (x0) = f 1i (x1)] ≤ ε(n).

Next, we describe our warmup protocol for achieving privacy in the presence of aborting
adversaries.

Protocol 5. (Protocol πOT)
Inputs The sender Sen holds s0, s1 and the receiver Rec holds a bit b.
The protocol:

1. Sen → Rec Sen samples (i, tk0, tk1) ← Gen(1n) and sends i to the receiverRec.
2. Rec → Sen Rec samples x ← Di and sends y = f bi (x).

3. Sen → Rec Upon receiving y, Sen computes xβ = (f β
i)−1(y) for all β ∈ {0, 1},

and sends (〈x0, r0〉 ⊕ s0, r0) and (〈x1, r1〉 ⊕ s1, r1) for random r0, r1.7

Theorem 6.2. Assume the existence of claw-free trapdoor permutations. Then, Proto-
col 5 is a three-round protocol that securely realizes FOT with privacy in the presence
of aborting receivers and senders.

Proof. We will argue privacy against a malicious receiver and malicious sender sepa-
rately.

Privacy Against a Malicious Sender Receiver’s privacy follows directly from the fact
that the receiver’s bit is information theoretically hidden, as the receiver’s message y
is uniformly distributed over Di and independent of its input. Namely, it is possible to
invert y with respect to both f 0i and f 1i .

Privacy Against a Malicious Receiver We will prove that this protocol guarantees
privacy against a malicious receiver according to Definition 2.12. Assume for con-
tradiction, there exists a malicious receiver Rec∗, PPT distinguisher D, polynomial
p(·), two tuples (s00 , s

0
1 , z0) and (s10 , s

1
1 , z1) such that with probability at least

1
p(n)

over

PExecRec∗(1n) = ((m1
s ,mr), σ, rRec), it holds for both b = 0 and b = 1 that

∣

∣ Pr[m2
s ← Sen2(σ,mr , (s

b
0 , s

b
1)) : D(1n, zb, rRec, (m

1
s ,m

2
s)) = 1]

− ∣

∣Pr[s∗
b ← sbb ; s∗

1−b ← {0, 1}
(n);m2
s ← Sen2(σ,mr , (s

∗
0 , s

∗
1) :

7We can consider some canonical representation of elements in Di in {0, 1}∗.

1244 C. Hazay, M. Venkitasubramaniam

D(1n, zb, rRec, (m
1
s ,m

2
s)) = 1

∣

∣ ≥ 1

p(n)
(1)

Now, we are ready to prove this theorem by reducing such an adversary to breaking the
claw-freeness. For this discussion, wewill assume that the sender’s inputs are all bits. On
a high level, the idea is that if there exists such a distinguisher that can observe when the
input corresponding to bit b is replaced by a random bit, then using the Goldreich-Levin
theorem it is possible to extract an inverse of y under fb in the protocol, call it xb. Then
if we can obtain both x0 and x1 we obtain a claw and arrive at a contradiction.
Consider an adversary A∗ that on input an index i ← Gen(1n) from the claw-free

family proceeds as follows:

• It starts the emulation against Rec∗ by supplying m1
s = i as the first message of the

sender. Next, it stalls the execution after Rec∗ produces mr = y. Let the state of
the partial execution be PExecRec∗(1n) = ((m1

s ,mr), σ, rRec).
• For each b ∈ {0, 1}, A∗ proceed as follows:

1. A∗ needs to generate the third message according to the protocol and feed it to
D. Recall that the third message is obtained by computing x0 = (f 0i)−1(y) and
x1 = (f 1i)−1(y) and using its inputs s0 and s1 to compute (〈x0, r0〉⊕s0, r0) and
(〈x1, r1〉⊕ s1, r1) for random r0, r1. Moreover,A∗ does not have the trapdoors
for the functions. Instead,A∗ creates a predictor algorithm P∗

b that on input rb
tries to predict the value of 〈xb, rb〉where xb = (f bi)−1(y). The idea is that if it
can obtain a good predictor, it can invoke the Goldreich-Levin theorem. More
precisely, P∗

b is a machine that has values (r1−b, t1−b,m1
s = i,mr = y, rRec)

hardcoded and internally emulates the distinguisher D as follows: On input rb,
it sets the third messagem2

s as (u, rb) and (t1−b, r1−b)where u is a random bit.
Then it runs the distinguisher D on input (1n, zb, rRec, (m1

s ,m
2
s). If D outputs

1,8 then P∗
b outputs u; otherwise, it outputs 1 − u.

2. A∗ next runs the Goldreich-Levin extractor algorithm as follows. It samples a
random string r1−b and bit t1−b and runs extractor on P∗

b (r1−b, t1−b, i, y, rRec).
If the extractor algorithm outputs a valid xb, then A∗ collects xb.

• If A∗ obtains valid x0 and x1, it outputs them and halts. Otherwise it aborts.

We now analyze the success probability ofA∗.We show that with probability 1
poly(q,n)

it extracts both x0 and x1. Consider the following events:

Event 1 Conditioned on the partial execution PExecRec∗(1n) = ((m1
s ,mr), σ, rRec),

Equation 1 holds.
Event 2 The bit chosen for t1−b is equal to 〈x1−b, r1−b〉 ⊕ sb1−b.

If these events occur, then except with negligible P∗
b (r1−b, t1−b, i, y, rRec) is a good

predictor, namely it can guess 〈xb, rb〉 with probability non-negligible better than a
half. Then, by the Goldreich-Levin theorem A∗ extracts xb with probability at least

1
poly(n,p(n))

. Since A∗ can extract both x0 and x1 with non-negligible probability, we
conclude that A∗ violates the claw-freeness of the function family. It therefore suffices
to show that the Events 1 and 2 occur with non-negligible probability. Event 1 occurs

8We assume without loss of generality that D outputs 1 with higher probability in the game Gameb .

What Security Can We Achieve Within 4 Rounds? 1245

with probability 1
p(n)

by our assumption. Event 2 occurs with each bit b with probability
1
2 and therefore occurs for both bits with probability at least 1

4 . Overall the probability
both events occur is at least 1

4p(n)
and this concludes the proof of receiver privacy. �

Toward 1/p-Simulation of a Malicious Sender Next, we make the observation that
to achieve sender simulation, we need a mechanism to extract the sender’s input while
maintaining the receiver’s message distribution. This can be achieved if the simulator
knows tkb for at least one value of b. With tkb, the simulator can sample x1−b at random
and compute xb = (f bi)−1(y) using tkb where y = f 1−b

i (x1−b). Now, the simulator
supplies this y as the input and using both x0 and x1 extracts both s0 and s1. Since y is
distributed identically as the real distribution we achieve simulation. Hence, there is a
trapdoor information that allows simulation which is committed to by the sender in the
first message via the function index i .
To achieve 1/p-simulation against an aborting sender, we repeat our basic protocol

in parallel analogous to Protocol 4 where we rely on the OT protocol to perform the cut-
and-choose checks. In slight more detail, we modify the sender’s algorithm analogously
to also commit to its input by appropriately secret sharing its input. After the sender
sends the first message, the receiver picks a subset of size 3M and sends the indices. For
the remaining 3M indices, the receiver sets its input according to the previous protocol.
The sender reveals the trapdoors for the indices requested by the receiver, and the for
the unopened indices, it sends its OT inputs according to the previous protocol by secret
sharing.
To argue receiver privacy, we observe that receiver privacy composes in parallel just

as witness indistinguishability does and therefore the receiver will not be able to learn at
least one of the two inputs in all parallel executions. Privacy then holds from following
an argument analogous to our previous protocol where we show that receiver can learn
sufficiently many shares for only one of the two sender’s inputs. Achieving 1/p sender
simulation, on the other hand, follows using a standard cut-and-choose argument to
establish that, through rewinding, a simulator can extract sufficiently many trapdoors as
long as the sender does not abort too often. In fact, from Claim 5.1 it follows that it will
obtain all but O(s) of the trapdoors for the case where the sender does not abort too
often. With these trapdoors, the same strategy as the previous protocol can be carried out
here. This protocol additionally achieves full simulation against non-aborting senders.
A complete proof is provided below.

Protocol 6. (Protocol πOT)
Inputs The sender Sen holds s0, s1 and the receiver Rec holds a bit b.
The protocol:

• Sen → Rec Let N = 6M. Then, for j ∈ [N], Sen samples (ind j , tk0j , tk
1
j) ←

Gen(1n) and sends ind1, . . . , indN to the receiver Rec.
• Rec → Sen Rec picks a subset T rap ⊂ [N] of size N/2 and sends Trap to Sen.
Let the remaining 3M indices be {a1, . . . , a3M }. For these indices, the receiver
proceeds as follows

1. Rec samples uniformly at random c1, . . . , cM ← {0, 1}. The ci values serve
as the input to the first M OT executions.

1246 C. Hazay, M. Venkitasubramaniam

2. Rec selects a randomsubset T1−b ⊆ [2M]of size M/2.Define Tb = [2M]/T1−b.
For every j ∈ [2M], Rec sets b j = α if j ∈ Tα . The b j values serve as the
inputs to the OT for the next 2M executions.

3. According to its input for the 3M OT executions,Rec generates image elements
as follows:

· For every i ∈ [M], it samples x j ← Dai , and sends y j = f ciai (x j).· For every j ∈ [2M], it samples xM+ j ← DaM+ j , and sends yM+ j =
f
b j
aM+ j (xM+ j).

• Sen → Rec

1. Upon receiving Trap and y1, . . . , y3M, Sen sends tk0j for all j ∈ Trap.
2. Sen picks two random strings t0, t1 and secret shares them using (M + 1)-out-

of-2M Shamir’s secret-sharing scheme. In particular, Sen computes [tb] =
(t1b , . . . , t2Mb) ← Share(tb) for b ∈ {0, 1}. Sen commits to the shares [t0], [t1]
as follows. It picks random matrices A0, B0 ← Z

M×2M
q and A1, B1 ←

Z
M×2M
q such that ∀i ∈ [M]:

A0[i, ·] + B0[i, ·] = [t0], A1[i, ·] + B1[i, ·] = [t1].

Sen computes two matrices Z0, Z1 ∈ Z
M×M−1
q and sends them in the clear

such that:

Z0[i, ·] = φ(A0[i, ·]), Z1[i, ·] = φ(A1[i, ·]).

3. Sen sends the committed matrices (comA0 , comB0 , comA1 , comB1) to Rec
where each element of each matrix is individually committed using com.

4. For i ∈ [M], Sen computes xiβ = (f β
ai)

−1(yi) for all β ∈ {0, 1} and sends

(〈xi0, r i0〉 ⊕ t i0, r
i
0) and (〈xi1, r i1〉 ⊕ t i1, r

i
1) for random ri0, r

i
1.

5. For all j ∈ [2M], Sen computes xM+ j
β = (f β

aM+ j)
−1(yM+ j) for all β ∈ {0, 1}

and sends (〈xM+ j
0 , rM+ j

0 〉⊕(A0[·, j], B0[·, j]), rM+ j
0) and (〈xM+ j

1 , rM+ j
1 〉⊕

(A1[·, j], B1[·, j]), rM+ j
1) for random rM+ j

0 , rM+ j
1 .

6. Sen sends C0 = s0 ⊕ t0 and C1 = s1 ⊕ t1 to Rec.

• Rec computes the output of the as follows:

1. Decryption PhaseUpon receiving the senders message, the receiver computes
the actual OT outputs for all parallel invocations. These include decommit-
ments to A0[i, ·], A1[i, ·] for every i ∈ [M] when ci = 0 and decommitments
to B0[i, ·], B1[i, ·] when ci = 1. They also include columns Ab j [·, j], Bbj [·, j]
for every j ∈ [2M]. If any of the decommitments are incorrect, the receiver
aborts.

2. Shares Validity Check Phase For i = 1, . . . , M, if ci = 0 check that
Z0[i, ·] = φ(A0[i, ·]) and Z1[i, ·] = φ(A1[i, ·]). Otherwise, if ci = 1 check
that φ(B0[i, ·]) + Z0[i, ·] = 0 and φ(B1[i, ·]) + Z1[i, ·] = 0. If all the checks
pass, the receiver proceeds to the next phase.

What Security Can We Achieve Within 4 Rounds? 1247

3. Shares Consistency Check Phase For each b ∈ {0, 1},Rec randomly chooses
a set Tb for which b j = b at M/2 coordinates. For each j ∈ Tb,Rec checks that

there exists a unique xib such that Ab[i, j]+Bb[i, j] = x j
b for all i ∈ [M]. If so,

x j
b is marked as consistent. If all shares obtained in this phase are consistent,
Rec proceeds to the reconstruction phase. Else it aborts.

4. Reconstruction Phase For j ∈ [2M]/T1−b, if there exists a unique x j
b such

that Ab[i, j] + Bb[i, j] = x j
b , Rec marks share j as a consistent column.

If R obtains less than M + 1 consistent columns, it aborts. Otherwise, let
x j1
b , . . . , x jM+1

b be any set of M + 1 shares obtained from consistent columns.

Rec computes xb ← Reconstruct(x j1
b , . . . , x jM+1

b) and outputs sb = Cb ⊕ xb.

We conclude with the following theorem.

Theorem 6.3. Assume the existence of claw-free trapdoor permutations. Then Pro-
tocol 6 is a three-round protocol that securely realizes FOT with 1/p-security in the
presence of aborting senders and with privacy in the presence of aborting senders and
receivers.

Proof. We consider each corruption case separately.

Privacy Against Malicious Receiver Assume for contradiction, there exists a mali-
cious receiver Rec∗, PPT distinguisher D, polynomial p(·) and two pairs of inputs
(s00 , s

0
1 , z0) and (s10 , s

1
1 , z1) such thatwith probability at least

1
p(n)

overPExecRec∗(1n) =
((m1

s ,mr), σ, rRec), it holds for b = 0 and b = 1 that

∣

∣ Pr[m2
s ← Sen2(σ,mr , (s

b
0 , s

b
1)) : D(1n, zb, rRec, (m

1
s ,m

2
s)) = 1]

− ∣

∣Pr[s∗
b ← sbb ; s∗

1−b ← {0, 1}
(n);m2
s ← Sen2(σ,mr , (s

∗
0 , s

∗
1) :

D(1n, zb, rRec, (m
1
s ,m

2
s)) = 1

∣

∣ ≥ 1

p(n)
(2)

Recall that in this protocol we repeat the basic OT in parallel N = 6M times. Among
these 6M repetitions, the trapdoors for half of them are revealed in the final step. The
remaining 3M are used for implementing the OT. We will focus only on these 3M
invocations and for simplicity of exposition identify them with indices 1 through 3M .
Recall that each of the 3M parallel invocations is an instance of Protocol 5 from above
that satisfies the privacy definition according to Definition 2.12.

Proof Overview. We will refer to the 3M parallel repetitions as instantiations of our
basic OT protocol and the whole protocol as the global OT protocol. On a high-level,
we will rely on the privacy of the basic OT protocol to conclude the privacy of the
global OT protocol. Observe that for an adversary to violate the privacy of the global OT
protocol, there must exist two sets of inputs (s00 , s

0
1) and (s10 , s

1
1) for the sender such that

in the first set, the distinguisher can observe when s00 is replaced by a uniform bit (call

1248 C. Hazay, M. Venkitasubramaniam

these experiments resp., Expt0 and Ẽxpt0) while in the second set the distinguisher can
observe when s11 is replaced by a uniform bit (call these experiments resp., Expt1 and

Ẽxpt1). The intuition behind the proof is that after the malicious receiver delivers the
second message there exists an input associated with each of the 3M basic OT instances
such that the receiver can only “learn” the corresponding sender’s input in each of these
instances. Formalizing this intuition is more challenging.
Our first approach (that will not work) is to consider a sequence of 3M hybrids starting

from H0
0 = Expt0 where in the i th hybrid H0

i we try to replace one of the two sender’s
inputs in the first i basic OT instances by a random value. By the privacy of the basic OT
protocol, there must exist some sender’s input that we can replace by a random value
without the distinguisher noticing (beyond a negligible probability). After replacing
one of the two inputs in all the 3M invocations, we arrive at a hybrid H0

3M that is not
distinguishable from Expt0 by D and where the receiver learns only one of the two
values in each of the 3M instances (as the other one is set to random). Recall that in
order to learn sb0 , the receiver must select as its input b in the last 2M basic OT at least
M + 1 times. Therefore, we can conclude that the receiver can learn at most one of the
two global inputs s00 and s10 . Let the global input that the receiver learns be s

b
0 .

In order to arrive at a contradiction, one must use the fact that D distinguishes Expt0
from Ẽxpt0. Using the fact that Expt0 cannot be distinguished from H0

3M , we have that

D also distinguishes H0
3M from Ẽxpt0. However, if b = 1, then it is indeed possible

for D to distinguish H0
3M from Ẽxpt0 because the receiver could learn the global input

corresponding to receiver input 1 and this is different in H0
3M and Ẽxpt0, namely s10 in

H0
3M and a random bit in Ẽxpt0. Hence this approach and sequence of hybrids do not

seem to be useful.
Our next idea would be to consider a sequence of hybrids H1

0 , . . . , H1
3M starting from

Expt1 and try to use the fact that D distinguishes Expt1 from Ẽxpt1. However, we will
run into the same bottleneck as in hybrid H1

3M it could be the case that the receiver learns

the global input s01 and this is what is replaced to a uniform bit in Ẽxpt1.
Our final approach would be to consider four sequences of 3M hybrids simulta-

neously, a sequence starting from Expt0, Ẽxpt0,Expt1 and Ẽxpt1, resp., H
0
0 · · · H0

3M ,
˜H0
0 · · · ˜H0

3M , H1
0 · · · H1

3M and ˜H1
0 · · · ˜H1

3M . For b = 0 and b = 1, Hybrid Hb
i (resp.,

˜Hb
i) will proceed identically to Hb

i−1 (resp., ˜Hb
i−1) with the exception that one of the

sender’s inputs in the i th basic OT instance is set to a random value. The crucial idea
here is that we can pick a single bit b and replace the sender’s input corresponding to
the same receiver bit b in H0

i , ˜H0
i , H1

i and ˜H1
i . This is because, the privacy definition of

the basic OT protocol provides such a guarantee, namely, after the second message, for
any pair of inputs for the sender there exists only one input bit corresponding to which
any distinguisher can notice when replaced by a random value. Now, based on which
sender’s input is replaced by a random value in each of the last 2M basic OT protocols,
we know which of the global inputs the receiver will learn. If it learns the global input
corresponding to receiver bit b, then we can show that H1−b

3M and ˜H1−b
3M are identically

distributed. This is because the difference between H1−b
3M and ˜H1−b

3M is in the sender’s
global input corresponding to receiver bit 1− b and corresponding to this sender input,

What Security Can We Achieve Within 4 Rounds? 1249

where at most M − 1 shares have not been replaced by a random value in both H1−b
3M

and ˜H1−b
3M . Now, since M − 1 shares statistically hide the global sender’s input corre-

sponding to receiver bit 1 − b, the distributions for H1−b
3M and ˜H1−b

3M must be identical.
However, we know that the probability with which D distinguishes H1−b

3M from Expt1−b

and ˜H1−b
3M from Ẽxpt1−b is small but D distinguishes Expt1−b from Ẽxpt1−b with large

probability, we arrive at a contradiction. This concludes the proof overview and we now
proceed to prove it formally.
For each b ∈ {0, 1}, we will consider two sequences of hybrids Hb

0 , Hb
1 , . . . , Hb

3M
and ˜Hb

0 , ˜Hb
1 , . . . , ˜Hb

3M where Hb
0 is the hybrid where the sender’s message is generated

according to the honest strategy with inputs (sb0 , s
b
1) and ˜Hb

0 will be identical to Hb
0

with the exception that s01−b is replaced to random. We will successively define the next
hybrids as follows: Hybrid Hb

i (resp., ˜Hb
i) will proceed identically to Hb

i−1 (resp., ˜Hb
i−1)

with the exception that we will replace one of the two OT inputs of the sender in the
i th OT invocation with a random bit. We will chose that input for which the probability
with which D can distinguish the change is at most 1

4Np(n)
. There must exist one such

input since otherwise the i th OT will violate the privacy of that individual OT execution.
Furthermore, we can assume that there exists a single bit b∗ such that where we replace
the sender’s input corresponding to b∗ from H0

i−1 to H0
i , from H1

i−1 to H1
i and the

analogous hybrids in the ˜H0 and ˜H1 sequence, the distinguisher can distinguish with
probability at most 1

4Np(n)
. This is because otherwise we can construct an adversary that

violates the privacy of the i th OT instance used in our protocol.9 If the distinguishing
probability for both inputs is small, we pick one of them arbitrarily and switch to random
in this hybrid.
Finally, we can identify in Hb

3M which of the sender’s inputs sb0 and sb1 in the overall
protocol can the receiver “possibly learn.” This is because we secret share the input in a
specific way where the first M OTs do not reveal anything about either of the two inputs
and are used only for consistency checks and for the next 2M executions the receiver
needs to obtain at leastM+1 shares of the same input to reconstruct the secret. By looking
at which of the inputs the receiver obtains in the 2M executions, we find that one that
occurs at leastM+1 times. Furthermore, the input it learns H0

3M , H1
3M , ˜H0

3M , ˜H1
3M must

all correspond to the same receiver bit. Now, suppose that this is the bit 0. Thismeans that
the distribution of the inputs to the individual OT invocations must be identical in H0

3M
and ˜H0

3M . This is because the only difference in the inputs chosen from H0
3M and ˜H0

3M is
that input of the sender corresponding to receiver bit 1 is s11 in the H0

3M and is sampled
randomly in ˜H0

3M and then secret shared. Since the receiver does not receive sufficiently
many shares the input is statistically hidden. In other words, the set of shares that are
revealed corresponding to receiver bit 1 in these two hybrids are distributed identically.
Now, to arrive at contradiction we observe that H0

0 is at most N × 1
4Np(n)

= 1
4p(n)

far

from H0
3M and ˜H0

0 is at most 1
4p(n)

far from ˜H0
3M . This means that H0

0 and ˜H0
0 are at

most 1
2p(n)

far. But this is a contradiction to Eq. 2 for b = 0. �

9In this reduction, we will consider an adversaryA∗ and distinguisherD∗.A∗ will incorporate Rec∗ and
simulates everything internally except the forward the messages in the i th instance externally (the auxiliary
input will provide the inputs for the sender in all the other OT instances that are not forwarded).

1250 C. Hazay, M. Venkitasubramaniam

1/p-simulation Against Malicious Sender Recall that when the sender is corrupted
we need to prove 1/p-indistinguishability. More precisely, we need to define a simulator
that produces a view of the malicious sender A while extracting both s0 and s1, where
the view and the value learned by the honest receiver is 1/p-indistinguishable from the
sender’s real view and the receiver’s output in a real execution. More precisely, for any
probabilistic polynomial-time adversaryA controlling Sen we define a simulator S that
proceeds as follows:

1. S invokes A on its input and randomness of appropriate length.
2. Upon receiving fromA the first message,S computes the secondmessage honestly

with input b = 0. Let T̃ rap contain the indices for which it requests the trapdoor
and [N] − T̃ rap = {a1, . . . , a3M }. If A aborts before sending the third message
then S outputs the view of A and halts.

3. Otherwise, upon receivingA’s third message, S records the set {tk0j } j∈Trap. Next,
it stalls the main execution temporarily and proceeds to rewind A. Specifically, S
rewinds A to the second message and proceeds as follows:

• For every i ∈ [3M], S rewinds A for T = N 4 p attempts, where in each
such attempt S supplies a uniformly random second message according to
the receiver’s strategy with input b = 0, conditioned on ai ∈ Trap. In each
rewinding, S collects the trapdoor for index ai , i.e., tk0ai .

4. If upon concluding the rewinding phase S does not obtain the trapdoors for at least
1 − 1/3p fraction of i ∈ [N] − T̃ rap, then it halts outputting fail.

5. Otherwise, let I ⊆ {a1, . . . , aM } and J ⊆ {aM+1, . . . , a3M } be the sets of indices
for which it has a trapdoor. Next, it returns to themain execution and tries to extract
both the sender’s OT inputs as follows. First, it performs the share consistency
check and the share validity check as the honest receiver would and if either of
them fail, then the simulator halts outputting the view of A.

6. Otherwise, for every j ∈ J , since it has the trapdoor, it will be able to extract both
the sender’s inputs for these smaller OT instances. For each b ∈ {0, 1} and j ∈ J ,
if there exists a unique x j

b such that Ab[i, j] + Ab[i, j] = x j
b , S marks column j

as consistent. If it obtains at least M + 1 shares for xb from consistent columns it
reconstructs xb, and then obtains sb from xb and Cb. If not, it sets sb = ⊥.

7. Finally, S forwards (s0, s1) to FOT and halts, outputting whatever A does.

Clearly, S runs in strict polynomial-time.We next prove the correctness of simulation.
On a high-level, the secondmessage in all the rewinding attempts is generated identically
to the secondmessage of the real execution and is independent of the bit b that the receiver
enters. This follows because we repeat the basic protocol in parallel and in each of these
instances the receiver’s message statistically hides its input. Let s = log2 n, then two
cases arise:

1. The Abort Probability of the Sender is Higher than 1 − 1
Np In this case, 1/p-

indistinguishability is achieved directly as the simulation outputs views on which
the sender aborts with at least the same probability as such views occur in the real
view. Now, since this accounts for a probability mass of at least 1− 1

Np > 1− 1
p ,

1/p-indistinguishability follows.

What Security Can We Achieve Within 4 Rounds? 1251

2. The Abort Probability of the Sender is at most 1 − 1
Np . In this case by setting

M > sp, we argue that except with negligible probability (roughly, 2−O(s)), the
simulator will be able to obtain the trapdoors, for at least 1 − 1

3p fraction of the
indices in {a1, . . . , a3M } via rewinding. This is formally proven in Claim 5.1. Just
as in the previous protocol, we have that for every index in J that the simulator
obtains a trapdoor, it will be able to extract both of the sender’s inputs. Specifically,
as M > sp, we can conclude that the simulator fails to obtain the trapdoor of at
most 1

3p × 3M = s indices. This means that |J | ≥ 2M − s indices.
Next, from the shares consistency check we can conclude that with very high probability
all but s columns contain shares that are consistent. From the shares validity check, we
can conclude thatwith very high probability there is a single row ib corresponding to each
b ∈ {0, 1} such that Ab[i, ·] + Bb[i, ·] contains valid shares of some secret. Combining
these checks, we can conclude that there are at least 2M − s columns that are consistent,
i.e., the shared value in each row is the same and thereforemust equal Ab[ib, ·]+Bb[ib, ·].
Furthermore, from the statistically binding property of the commitment scheme we can
conclude that for any one of these consistent columns, there can be only one value for
the shares that can be extracted by both the receiver and the simulator.
In this case, we can now conclude that, using the trapdoors, the simulator obtains at least
2M − s − s shares for both inputs among the consistent columns. Since M > sp we
have that 2M − 2s > M + 1 (for p > 2) and from M + 1 valid shares it can extract sb
for each b ∈ {0, 1}.

�
To conclude, we prove the following corollary regarding input-indistinguishable com-

putation in Appendix B.

Corollary 6.4. Protocol 6 satisfies Definition A.5, namely, input-indistinguishability
[51].

It is conceivable that ourOTprotocolwhen combinedwith the two-round [43] protocol
will yield a 3-round secure computation protocol that satisfies input-indistinguishability
and leave it as future work.

7. On the Impossibility of Black-Box 3-Round 2PC with 1/p-Security

In this section, using ideas from the 3-round lower bound of Goldreich and Krawczyk
[28], we show that achieving 1/p-security against receivers is impossible.
First, we define a notion of robustness analogous to one presented in [44] in the context

of multiparty computation. Robustness is a weaker requirement than correctness and,
informally, requires that no honest party outputs a value not in the range of the function.
For simplicity, we define robustness only for boolean functions.

Definition 7.1. We say that a two-party secure computation 〈P1, P2〉 protocol com-
puting a function f : {0, 1}∗ × {0, 1}∗ → {0, 1} is robust against a malicious P1 if
every PPT adversary A controlling party P1 in an interaction with P2 cannot make P2

1252 C. Hazay, M. Venkitasubramaniam

on input y output b with more than negligible probability, if there exists no x such that
f (x, y) = b.

In this section, we prove two lower bounds:

1. Assuming NP �⊆ BPP, there exists no 3-round black-box construction of a se-
cure two-party computation protocol that is robust against malicious senders and
achieves 1/p-security against malicious receivers.

2. There exists no 3-round black-box construction of an oblivious-transfer protocol
that achieves privacy against malicious senders and 1/p-security against malicious
receivers.

The first result shows that constructing correct protocols with 1/p-simulation of re-
ceivers is impossible using black-box techniques and will essentially follow using a
generalization of the [28] result. The second result shows that achieving 1/p-security
against malicious receivers is impossible if we want privacy against malicious senders.
In essence, this proves that our protocol from Sect. 6 is tight if we require privacy against
both parties.
More formally, our first lower bound result is the following.

Theorem 7.2. UnlessNP ⊆ BPP, there exists no three rounds black-box construction
of a secure two-party protocol with 1/p-security in the presence of aborting receivers
and with privacy in the presence of aborting senders that realizes arbitrary polynomial-
time computable functionalities.

Proof. We rely on the following lemma, that follows from the 3-round lower bound
for zero-knowledge (ZK) interactive proofs of Goldreich and Krawczyk [28].

Lemma 7.3. UnlessNP ⊆ BPP, there exists noblack-box three-round zero-knowledge
interactive proofs for all of NP with 1/p-security.

Given the proof of Lemma 7.3, the theorem follows as a corollary. Consider an ar-
bitrary NP-language L with witness relation RL . Then, for any x ∈ {0, 1}∗ consider
the functionality fx : {0, 1}∗ → {0, 1} that on input w from P1 outputs RL(x, w) to
party P2. In essence, a secure computation protocol for this functionality yields a zero-
knowledge interactive proof. Moreover, it follows from the simulation-based definition
of the 1/p-security that if the original secure protocol is only 1/p-secure, we get a
zero-knowledge proof that is 1/p-secure.
We now provide a brief overview of why Lemma 7.3 holds. We first recall the lower

bound of Goldreich and Krawczyk. Suppose that there exists a 3-round ZK proof for an
arbitraryNP language L . Consider a pseudo-random function family F = { fn}n∈{0,1}∗ .10
Then define a malicious verifier V ∗

n that incorporates a function fn from the PRF family
F , and generates its second message of the ZK protocol by first generating randomness
τ by applying fn to the prover’s first message and the running the honest verifier’s

10For simplicity, we present the proof with PRF’s. However, to get an unconditional result as stated in
the lemma, we can rely on m-wise independent hash-function family where m is polynomially related to the
expected running time of the simulator S.

What Security Can We Achieve Within 4 Rounds? 1253

code V with random tape set to τ . Consider the simulator S that simulates this family
of malicious verifiers V∗

n . The main idea here is that using the simulation S and V∗
n

we can show that either L ∈ BPP or the interactive proof is not sound (which is the
analogue notion to robustness in zero-knowledge protocols). On a high level, from the
pseudorandomness of the family F it follows that the real view generated by V∗

n is
indistinguishable from the view that is generated by the real verifier V . Hence, given
input x ∈ L , SV∗

n produces a convincing view for the verifier with probability q that is
negligibly close to 1. Moreover, on input x �∈ L , SV∗

n either produces a convincing view
or not. Concretely,

• If it does not produce a view with probability close to q for any x �∈ L , then we can
use SV∗

n as a BPP-decider for the language L by simply estimating the probability
with which SV∗

n (x) outputs a convincing view.
• If it does produce a view with some probability close to q for some x �∈ L , then
we can construct a malicious prover P∗ that convinces the honest verifier V of
the statement x with non-negligible probability, which contradicts the soundness
of the interactive proof. First, we observe that the view output by SV∗

n is indis-
tinguishable from the output of S˜V where ˜V uses a truly random function instead
of a PRF function fn to generate the randomness. Specifically, given input x , P∗
internally simulates S˜V (x) by emulating the random function queries.11 It then
randomly chooses a session from the internal emulation and forwards the messages
exchanged between S and ˜V to the external honest verifier. It follows that the view
generated internally byP is identically distributed to the view generated by S˜V (x).
Furthermore, if the view output by S is the session forwarded externally to the
honest verifier, then it implies that the external verifier essentially accepts.12 Fi-
nally, suppose that the simulation runs in time T , then it follows that P∗ guesses
the correct session to forward outside with probability q

T . Therefore, it convinces
the external verifier with probability close to q

T . Now, since T is some polynomial,
it follows that P∗ convinces V on an input x �∈ L with non-negligible probability
and this violates soundness.

We now conclude the proof of the lemma by making the observation that even if the
simulation was only 1/p-indistinguishable, then q = 1− 1

p and the success probability
of P∗ is still non-negligible. �
For the second lower bound result we prove that:

Theorem 7.4. For 1
p < 1

2 − 1
poly(n)

, there exists no three rounds oblivious-transfer
protocol that achieves privacy in the presence of aborting senders and 1/p-(black-box)
security in the presence of aborting receivers.

11Namely, on any input query to the random function, P∗ checks if the query has already been asked and
produces the same answer in this case. Otherwise, it samples and feeds a uniform output and records the
query/answer pair.

12This is not entirely accurate as P∗ does not know the actual randomness used by the external verifier
since this is a private-coin protocol. Nevertheless, it is possible to formally prove that conditioned on P∗
guessing correctly, P∗ convinces the external verifier with probability equal to the probability S outputs a
convincing view in the internal emulation, i.e., close to q.

1254 C. Hazay, M. Venkitasubramaniam

Proof Sketch: We follow a similar approach as in our previous construction. Suppose we
have a 3-round oblivious-transfer protocol that achieves 1/p-simulation against mali-
cious receivers.We show that such a protocol cannot be private againstmalicious senders.
More formally, we can construct a malicious sender Sen∗ and distinguisher D that can
distinguish the sender’s view when the receiver’s input is 0 and 1 with non-negligible
probability and this violates privacy against malicious senders.
From the 1/p-simulation property, we know there exists a black-box simulationS that

can simulate arbitrary malicious receivers. Analogous to [28], we construct a malicious
receiver Recb that on input b, samples its random tape by applying a PRF to the sender’s
first message and completes the execution. It is now guaranteed that S can simulate Recb
and will extract the value b, and upon receiving sb from the ideal functionality produces
a view of Recb with 1/p indistinguishability. As in the previous proof, we can emulate
a modified version of Recb, denoted by Rec∗

b, that does not use a PRF to sample the
random tape for every session but simply picks a fresh random tape for every session
the simulation starts.
Assume that S runs in T time.13 This means that S can open at most T sessions with

Rec∗
b. We now consider a sequence of hybrid experiments where we emulate a malicious

receiver toS starting fromRec∗
0 and ending inRec

∗
1: In hybrid experiment Hi : we emulate

the receiver’s message according to Rec∗
1’s strategy in the first i sessions and Rec

∗
0 in the

remaining sessions. Observe that H0 is identical to the game with Rec∗
0 and HT is the

same as the game with Rec∗
1. Furthermore, we know that the games with Rec∗

0 and Rec
∗
1

must be distinguishable with probability at least 1− 2/p since the simulator sends 0 to
the ideal functionality with Rec∗

0 with probability at least 1− 1/p and 1 with Rec∗
1 with

probability 1−1/p. This means that there exists an i such that the experiments Hi−1 and
Hi can be distinguished with probability at least 1

T (1 − 2/p) which is non-negligible
since 1

p < 1/2 − 1/poly and T is polynomial. Notice that the only difference between
hybrids Hi−1 and Hi is in the distribution of the receiver’s message in the i th session.
This means that we can now use i , experiments Hi−1 and Hi to distinguish the receiver’s
message when its input is 0 and input 1 by constructing a malicious sender that emulates
the experiment Hi internally and feeds the message received from outside internally in
the i th session. This violates the privacy requirement against malicious senders.

A Preliminaries – Appendix

A.1 Public Key Encryption Schemes (PKE)

We specify the definitions of public key encryption and IND-CPA.

Definition A.1. (PKE) We say that � = (Gen,Enc,Dec) is a public key encryption
scheme if Gen,Enc,Dec are polynomial-time algorithms specified as follows:

13It is possible to extend this argument to expected polynomial-time simulators by using aMarkov argument.

What Security Can We Achieve Within 4 Rounds? 1255

• Gen, given a security parameter n (in unary), outputs keys (PK,SK), where PK is
a public key and SK is a secret key. We denote this by (PK,SK) ← Gen(1n).

• Enc, given the public key PK and a plaintext message m, outputs a ciphertext
c encrypting m. We denote this by c ← EncPK(m); and when emphasizing the
randomness r used for encryption, we denote this by c ← EncPK(m; r).

• Dec, given the public key PK, secret key SK and a ciphertext c, outputs a plaintext
message m s.t. there exists randomness r for which c = EncPK(m; r) (or ⊥ if no
such message exists). We denote this by m ← DecPK,SK(c).

For a public key encryption scheme � = (Gen,Enc,Dec) and a PPT adversary A =
(A1,A2), we consider the following IND-CPA game denoted by Adv�,A(n):

(PK,SK) ← Gen(1n).

(m0,m1, history) ← A1(PK), s.t. |m0| = |m1|.
c ← EncPK(mb), where b ←R {0, 1}.
b′ ← A2(c, history).

Return 1 if b′ = b, and 0 otherwise.

Definition A.2. (IND-CPA) A public key encryption scheme � = (Gen,Enc,Dec)
has indistinguishable encryptions under chosen plaintext attacks (IND-CPA), if for every
PPT adversary A = (A1,A2) there exists a negligible function negl such that

Pr[Adv�,A(n) = 1] ≤ 1

2
+ negl(n)

where the probability is taken over the random coins used by A, as well as the random
coins used in the experiment.

A.1.1 The El Gamal PKE

A useful implementation of homomorphic PKE is the El Gamal [27] scheme that is
multiplicatively homomorphic. In this paper, we exploit the additive variation. Let G

be a group of prime order p in which DDH is hard. Then the public key is a tuple
PK = 〈G, p, g, h〉 and the corresponding secret key is SK = s, s.t. gs = h. Encryption is
performed by choosing r ← Zp and computingEncPK(m; r) = 〈gr , hr ·m〉. Decryption
of a ciphertext C = 〈α, β〉 is performed by computing m = β · α−s and then finding m
by running an exhaustive search.

A.2 Knowledge Extraction

In this paper, we are interested in witness-indistinguishable and zero-knowledge proofs
that are proofs of knowledge (PoK) which imply the existence of a knowledge extractor
that extracts the witness w used by the prover.

1256 C. Hazay, M. Venkitasubramaniam

Definition A.3. Let R be a binary relation and κ → [0, 1]. We say that an interactive
function V is a knowledge verifier for the language L with knowledge error κ if the
following two conditions hold:

Non-triviality There exists an interactive machineP such that for every (x, w) such
that w is a witness for x ∈ L , all possible interactions of V with P on common
input x and auxiliary input w are accepting.
Validity (with error κ) There exists a polynomial q(·) and a probabilistic oracle
machine K such that for every interactive function P , every x ∈ L , and every
machine K satisfies the following condition:

Denote by p(x, y, r) the probability that the interactive machine V ac-
cepts, on input x , when interacting with the prover specified by Px,y,r that
uses randomness r (where the probability is taken over the coins of V).
If p(x, y, r) > κ(|x |), then, on input x and with access to oracle Px,y,r ,
machine K outputs a witness s for x ∈ L within an expected number of
steps bounded by

q(|x |)
p(x, y, r) − κ(|x |)

The oracle machine K is called a universal knowledge extractor.

It is known that any �-protocol is a WI-PoK. One such example is the protocol for
proving the knowledge of Hamiltonian cycle in a graph, which is an NP-complete
problem.

A.3 Input-Indistinguishable Computation [51]

Below, we recall the definition of input-indistinguishable computation of [51] which
provided a definition in the concurrent setting where the parties interact inm concurrent
interactions. We present the definition as is from [51]; however, we will rely on the
definition for the case m = 1. We specify some notations first. For an integer n, we let
EXECP1,P2(x, y, 1

n) denote the random variable obtained by randomly and indepen-
dently selecting random tapes for the parties and executing the protocol π between P1
and P2 on respective inputs x and y and random tapes ρ1, ρ2. Let e be an execution
that consists of m concurrent sessions of π . For a positive integer i ∈ [m], let Mi

1 be
the sequence of messages received by the first party in session i . The first-party view
of session i in e, denoted Viewi

1(e), is defined to be (xi , ρi
1, M

i
1). Symmetrically de-

fined is the second-party view of session i , Viewi
2(e). For (i, j) ∈ [m] × [k], define a

Boolean variable ABORT(i, j)(e) to be true if and only if session i in e is aborted by
round j . Finally, define a Boolean variable OUTPUTi

1(e) to be true if and only if the
output delivery message has been sent to party P1 in session i in e. OUTPUTi

2(e) is
symmetrically defined.

Definition A.4. (Implicit input) Let π be a k-round protocol, and let P∗
1 be an m-

concurrent adversary. Consider a function, IN1, that maps the full view, view∗
1(e), in an

execution e of (P∗
1 , P2), into a sequence x∗ = (x∗

1 , . . . , x
∗
m) ∈ (D1 ∪⊥)m . The function

What Security Can We Achieve Within 4 Rounds? 1257

is said to be a first party implicit input function function for π if for any i ∈ [m] for
which ABORT(i,k−1)(e) is true, the value x∗

i equals ⊥. The notion of a second-party
implicit input, IN2, is symmetrically defined.

Definition A.5. (Input-indistinguishable computation) Let f : D1 ×D2 �→ R1 ×R2
be a deterministic function, and let π be a fixed-round two-party protocol. We say that
π securely computes f with respect to the first party and implicit input function IN2, if
for every polynomial m = m(n), the following conditions hold:

1. Completeness For every (x, y) ∈ (D1)
m ×(D2)

m , every n ∈ N, and every i ∈ [m]:

Pr[ViewP1(e) = f1(xi , yi)] = 1

where e ← EXECP1,P2(x, y, 1
n).

2. Implicit Computation For every efficient m-concurrent ITM P∗
2 , there exists a

negligible function μ : N �→ N, so that for every (x, y) ∈ Dm
1 ×D2

2, every n ∈ N,
and every i ∈ [m]:

Pr

[

P1(Viewi
1(e)) =

{

f1(xi , y∗
i) OUTPUTi

1(e)
⊥ ¬OUTPUTi

1(e)

}]

≥ 1 − μ(n)

where e ← EXECP1,P∗
2
(x, y, 1n), y∗ ← IN2(View∗

2(e)).
3. Input Indistinguishability and Independence For every efficientm-concurrent ITM

P∗
2 , every x

1, x2 ∈ Dm
1 , and every y ∈ Dm

2 , the following ensembles are computa-
tionally indistinguishable:

• {

ExptP1,P∗
2
(x1, x2, y, 1n)

}

n∈N
• {

ExptP1,P∗
2
(x2, x1, y, 1n)

}

n∈N
where the random variable ExptP1,P∗

2
(x1, x2, y, 1n) is defined as follows:

1. e ← EXECP1,P∗
2
(x1, y, 1n)

2. y∗ ← IN2(View∗
2(e))

3. If there exists i ∈ [m] for which OUTPUT2
i (e) is true, and f2(xi1, y

∗
i) �=

f2(xi2, y
∗
i) then output ⊥

4. Otherwise, output (y∗,View∗
2(e))

Secure computation with respect to the second party is symmetrically defined.We finally
say that π securely computes f , if there exist implicit input functions IN1, IN2 such that
π securely computes f with respect to both the first and the second party, and IN1, IN2.

A.4 Secure Two-Party Computation

We briefly present the standard definition for secure multiparty computation and refer
to [35, Chapter 7] for more details and motivating discussions. A two-party protocol
problem is cast by specifying a random process that maps pairs of inputs to pairs of
outputs (one for each party). We refer to such a process as a functionality and denote it
f : {0, 1}∗ × {0, 1}∗ → {0, 1}∗ × {0, 1}∗, where f = (f1, f2). That is, for every pair of

1258 C. Hazay, M. Venkitasubramaniam

inputs (x, y), the output vector is a random variable (f1(x, y), f2(x, y)) ranging over
pairs of strings where P1 receives f1(x, y) and P2 receives f2(x, y). We use the notation
(x, y) �→ (f1(x, y), f2(x, y)) to describe a functionality. We prove the security of our
protocols in the settings of malicious computationally bounded adversaries. Security
is analyzed by comparing what an adversary can do in a real protocol execution to
what it can do in an ideal scenario. In the ideal scenario, the computation involves an
incorruptible trusted third party to whom the parties send their inputs. The trusted party
computes the functionality on the inputs and returns to each party its respective output.
Informally, the protocol is secure if any adversary interacting in the real protocol (i.e.,
where no trusted third party exists) can do no more harm than what it could do in the
ideal scenario. In this paper, we follow the 1

p -secure computation definition from [29]
which presented a simulation based definition for which the difference between the real
and the simulated distributions differ within 1

p .

Execution in the IdealModel In an ideal execution, the parties submit inputs to a trusted
party, that computes the output. An honest party receives its input for the computation
and just directs it to the trusted party, whereas a corrupted party can replace its input with
any other value of the same length. Since we do not consider fairness, the trusted party
first sends the outputs of the corrupted parties to the adversary, and the adversary then
decides whether the honest parties would receive their outputs from the trusted party or
an abort symbol ⊥. Let f be a two-party functionality where f = (f1, f2), let A be
a PPT algorithm, and let I ⊂ [2] be the set of corrupted parties (either P1 is corrupted
or P2 is corrupted or neither). Then, the ideal execution of f on inputs (x, y), auxiliary
input z to A and security parameter n, denoted IDEAL f,A(z),I (n, x, y), is defined as
the output pair of the honest party and the adversary A from the above ideal execution.

Execution in the Real Model In the real model, there is no trusted third party and the
parties interact directly. The adversary A sends all messages in place of the corrupted
party and may follow an arbitrary polynomial-time strategy. The honest parties follow
the instructions of the specified protocol π .
Let f be as above and let π be a two-party protocol for computing f . Furthermore,
let A be a PPT algorithm and let I be the set of corrupted parties. Then, the real
execution of π on inputs (x, y), auxiliary input z toA and security parameter n, denoted
REALπ,A(z),I (n, x, y), is defined as the output vector of the honest parties and the
adversary A from the real execution of π .

Security as Emulation of a Real Execution in the Ideal Model Having defined the
ideal and real models, we can now define security of protocols. Loosely speaking, the
definition asserts that a secure party protocol (in the real model) emulates the ideal model
(in which a trusted party exists). This is formulated by saying that adversaries in the ideal
model are able to simulate executions of the real-model protocol.

Definition A.6. Let f and π be as above. Protocol π is said to securely compute f
with abort in the presence of malicious adversaries if for every PPT adversary A for
the real model, there exists a PPT adversary S for the ideal model, such that for every
I ⊂ [2],

What Security Can We Achieve Within 4 Rounds? 1259

{

IDEAL f,S(z),I (n, x, y)
}

n∈N,x,y,z∈{0,1}∗
1/p≈ {

REALπ,A(z),I (n, x, y)
}

n∈N,x,y,z∈{0,1}∗

where n is the security parameter.

The F-hybrid model. In order to construct some of our protocols, we will use secure
two-party protocols as subprotocols. The standard way of doing this is to work in a
“hybrid model” where parties both interact with each other (as in the real model) and
use trusted help (as in the ideal model). Specifically, when constructing a protocol π

that uses a subprotocol for securely computing some functionality F , we consider the
case that the parties run π and use “ideal calls” to a trusted party for computing F .
Upon receiving the inputs from the parties, the trusted party computes F and sends all
parties their output. Then, after receiving these outputs back from the trusted party the
protocol π continues. Let F be a functionality and let π be a two-party protocol that
uses ideal calls to a trusted party computing F . Furthermore, let A be a non-uniform
probabilistic polynomial-time algorithm. Then, the F-hybrid execution of π on inputs
(x, y), auxiliary input z to A and security parameter n, denoted hybπF ,A(z)(n, x, y), is
defined as the output vector of the honest parties and the adversary A from the hybrid
execution of π with a trusted party computing F . By the composition theorem of [14]
any protocol that securely implements F can replace the ideal calls to F .

B Proving Corollary 6.4

In this section, we argue that our OT protocol from Sect. 6 and ensuing 2PC due to [43],
satisfy the notion of input-indistinguishable computation (IIC) due to [51].
We first recall our protocol below:

1. Sen → Rec Sen samples (i, tk0, tk1) ← Gen(1n) and sends i to the receiver Rec.
2. Rec → Sen Rec samples x ← Di and sends y = f bi (x).

3. Sen → Rec Upon receiving y, Sen computes xβ = (f β
i)−1(y) for all β ∈ {0, 1},

and sends (〈x0, r0〉 ⊕ s0, r0) and (〈x1, r1〉 ⊕ s1, r1) for random r0, r1.14

To prove that our protocol satisfies IIC, we need to show there exist implicit input func-
tions IN1 and IN2 that respectively satisfy implicit computation and input-indistinguishability
for the sender and receiver. First, since the sender does not receive any output in the OT
protocol, it follows immediately that implicit computation w.r.t the sender holds against
a malicious receiver. On the other hand, input indistinguishability against a malicious
sender follows since the receiver’s message information theoretically hides its input bit.
Next, we argue implicit computation w.r.t the receiver against a malicious sender. This
follows from the fact that the functions f bi are permutations and the third message
perfectly binds the sender’s inputs. Hence, it is possible to define IN1 for which the
receiver learns the value corresponding to this input.
In order to argue input-indistinguishability against a malicious receiver, we need to show
that there exists an implicit input function IN2 for which this property holds. However,
this follows from the fact that if there does not exist any implicit input function for

14We can consider some canonical representation of elements in Di in {0, 1}∗.

1260 C. Hazay, M. Venkitasubramaniam

which the property holds, then theremust exist a malicious receiver R∗, polynomial p(·),
infinitely many lengths n, and values sn0 , sn1 , ŝn0 , ŝn1 , s̃0n , s̃

1
n such that sn1 �= s̃n1 , ŝn0 �= s̃n0

and R∗ can distinguish with probability at least 1
p(n)

in both the following cases:

1. Sender’s inputs are (sn0 , sn1) and (sn0 , s̃n1), and
2. Sender’s inputs are (̂sn0 , ŝn1) and (̃sn0 , ŝn1)

In other words, the receiver can distinguish both the sender values (from random) for
infinitely many lengths. This contradicts the fact that our protocol is private against a
malicious receiver as proved in Theorem 6.2 (which in turn was proved by showing that
R∗ can break the claw-freeness of the family of the functions).

References

[1] P. Ananth, A. R. Choudhuri, A. Jain, A new approach to round-optimal secure multiparty computation,
in CRYPTO (2017), pp. 468–499

[2] Y. Aumann, Y. Lindell. Security against covert adversaries: Efficient protocols for realistic adversaries.
J. Cryptology, 23(2). 281–343 (2010)

[3] N. Asokan, V. Shoup, M. Waidner, Optimistic fair exchange of digital signatures. IEEE J. Sel. Areas
Commun. 18(4), 593–610 (2000)

[4] R. Bendlin, I. Damgård, C. Orlandi, S. Zakarias, Semi-homomorphic encryption and multiparty com-
putation, in EUROCRYPT (2011), pp. 169–188

[5] D. Beaver, Foundations of secure interactive computing, in CRYPTO (1991), pp. 377–391
[6] S. Badrinarayanan, V. Goyal, A. Jain, Y. T. Kalai, D. Khurana, A. Sahai. Promise zero knowledge and

its applications to round optimal mpc. IACR Cryptol. ePrint Arch. 2017, 1088 (2017)
[7] S. Badrinarayanan, V. Goyal, A. Jain, D. Khurana, A. Sahai, Round optimal concurrent MPC via strong

simulation, in TCC (2017), pp. 743–775
[8] S. Badrinarayanan, V. Goyal, A. Jain, Y. T. Kalai, D. Khurana, A. Sahai, Promise zero knowledge and

its applications to round optimal MPC, in CRYPTO (2018), pp. 459–487
[9] Z. Brakerski, S. Halevi, A. Polychroniadou, Four round secure computation without setup, in TCC

(2017), pp. 645–677
[10] I. Bentov, R. Kumaresan, How to use bitcoin to design fair protocols, in CRYPTO (2014), pp. 421–439
[11] F. Benhamouda, H. Lin, k-round multiparty computation from k-round oblivious transfer via garbled

interactive circuits, in EUROCRYPT (2018), pp. 500–532
[12] M. Blum, How to prove a theorem so no one else can claim it, in Proceedings of the International

Congress of Mathematicians, USA, pp. 1444–1451
[13] B. Barak, A. Sahai, How to play almost any mental game over the net—concurrent composition via

super-polynomial simulation. IACR Cryptol. ePrint Arch., 106 (2005)
[14] R. Canetti, Security and composition of multiparty cryptographic protocols. J. Cryptol. 13(1), 143–202

(2000)
[15] R. Cramer, I. Damgård, B. Schoenmakers, Proofs of partial knowledge and simplified design of witness

hiding protocols, in CRYPTO (1994), pp. 174–187
[16] D. Chaum, J.-H. Evertse, J. van de Graaf, An improved protocol for demonstrating possession of discrete

logarithms and some generalizations, in EUROCRYPT (1987), pp. 127–141
[17] R. Cleve, Limits on the security of coin flips when half the processors are faulty (extended abstract), in

STOC (1986), pp. 364–369
[18] R. Canetti, H. Lin, R. Pass, Adaptive hardness and composable security in the plain model from standard

assumptions, in FOCS (2010), pp. 541–550
[19] K.-M. Chung, E. Lui, R. Pass, From weak to strong zero-knowledge and applications, in TCC (2015),

pp. 66–92
[20] M. Ciampi, R. Ostrovsky, L. Siniscalchi, I. Visconti, Round-optimal secure two-party computation from

trapdoor permutations, in TCC (2017), pp. 678–710

What Security Can We Achieve Within 4 Rounds? 1261

[21] J. Doerner, Y. Kondi, E. Lee, A. Shelat. Secure two-party threshold ECDSA from ECDSA assumptions,
in IEEE Symposium on Security and Privacy, SP (2018), pp. 980–997

[22] I. Damgård, V. Pastro, N. P. Smart, S. Zakarias, Multiparty computation from somewhat homomorphic
encryption, in CRYPTO (2012), pp. 643–662

[23] S. Even, O. Goldreich, A. Lempel. A randomized protocol for signing contracts. Commun. ACM 28(6),
637–647 (1985)

[24] M. Fischlin, Trapdoor commitment schemes and their applications. Ph.D. Thesis (2001)
[25] T. K. Frederiksen, Y. Lindell, V. Osheter, B. Pinkas, Fast distributed RSA key generation for semi-honest

and malicious adversaries, in CRYPTO (2018), pp. 331–361
[26] U. Feige, A. Shamir, Witness indistinguishable and witness hiding protocols, in STOC (1990), pp.

416–426
[27] T. El Gamal, A public key cryptosystem and a signature scheme based on discrete logarithms. IEEE

Trans. Inf. Theory, 31(4), 469–472 (1985)
[28] O. Goldreich, H. Krawczyk, On the composition of zero-knowledge proof systems. SIAM J. Comput.,

25(1), 169–192 (1996)
[29] S. Dov Gordon, J. Katz, Partial fairness in secure two-party computation, in EUROCRYPT (2010), pp.

157–176
[30] J. A. Garay, J. Katz, B. Tackmann, V. Zikas, How fair is your protocol?: A utility-based approach to

protocol optimality, in PODC (2015), pp. 281–290
[31] O. Goldreich, L. A. Levin, A hard-core predicate for all one-way functions, in STOC (1989), pp. 25–32
[32] S.Garg, P.Mukherjee,O. Pandey,A. Polychroniadou,The exact round complexity of secure computation.

In M. Fischlin, J.S. Coron, editors, Advances in Cryptology - EUROCRYPT, 35th Annual International
Conference on the Theory and Applications of Cryptographic Techniques, Vienna, Austria, May 8–12,
2016, Proceedings, Part II, pages 448–476. Springer, Berlin, Heidelberg (2016)

[33] S. Goldwasser, S. Micali, R. L. Rivest, A “paradoxical” solution to the signature problem (extended
abstract), in FOCS (1984), pp. 441–448

[34] O. Goldreich, S. Micali, A. Wigderson, How to play any mental game or a completeness theorem for
protocols with honest majority, in STOC (1987), pp. 218–229

[35] O. Goldreich, Foundations of cryptography: Vol. 2, Basic Applications (Cambridge University Press,
New York, 2004)

[36] S. Garg, A. Srinivasan, Two-round multiparty secure computation from minimal assumptions, in EU-
ROCRYPT (2018), pp. 468–499

[37] I. Haitner, Semi-honest to malicious oblivious transfer—the black-box way, in TCC (2008), pp. 412–426
[38] S. Halevi, C. Hazay, A. Polychroniadou, M. Venkitasubramaniam. Round-optimal secure multi-party

computation, in CRYPTO (2018), pp. 488–520
[39] I. Haitner, Y. Ishai, E. Kushilevitz, Y. Lindell, E. Petrank, Black-box constructions of protocols for secure

computation. SIAM J. Comput. 40(2), 225–266 (2011)
[40] S. Halevi, Y. T. Kalai, Smooth projective hashing and two-message oblivious transfer. J. Cryptol. 25(1),

158–193 (2012)
[41] C. Hazay, G. L. Mikkelsen, T. Rabin, T. Toft, Efficient RSA key generation and threshold Paillier in the

two-party setting, in CT-RSA (2012), pp. 313–331
[42] C. Hazay, P. Scholl, E. Soria-Vazquez, Low cost constant round MPC combining BMR and oblivious

transfer, in ASIACRYPT (2017), pp. 598–628
[43] Y. Ishai, E. Kushilevitz, R. Ostrovsky, M. Prabhakaran, A. Sahai, Efficient non-interactive secure com-

putation, in EUROCRYPT (2011), pp. 406–425
[44] Y. Ishai, E. Kushilevitz, R. Ostrovsky, A. Sahai, Zero-knowledge proofs from secure multiparty compu-

tation. SIAM J. Comput. 39(3), 1121–1152 (2009)
[45] J. Katz, R. Ostrovsky, Round-optimal secure two-party computation, in CRYPTO (2004), pp. 335–354
[46] M. Keller, E. Orsini, P. Scholl, MASCOT: faster malicious arithmetic secure computation with oblivious

transfer, in CCS (2016), pp. 830–842
[47] Y. Lindell, Parallel coin-tossing and constant-round secure two-party computation, in CRYPTO (2001),

pp. 171–189
[48] Y. Lindell, A. Nof, Fast secure multiparty ECDSA with practical distributed key generation and appli-

cations to cryptocurrency custody, in CCS (2018), pp. 1837–1854
[49] S. Micali, Simple and fast optimistic protocols for fair electronic exchange, in PODC (2003), pp. 12–19

1262 C. Hazay, M. Venkitasubramaniam

[50] T. Moran, M. Naor, G. Segev, An optimally fair coin toss, in TCC (2009), pp. 1–18
[51] S. Micali, R. Pass, A. Rosen, Input-indistinguishable computation, in FOCS (2006), pp. 367–378
[52] S. Micali, P. Rogaway, Secure computation (abstract), in CRYPTO (1991), pp. 392–404
[53] J. B. Nielsen, P. S. Nordholt, C. Orlandi, S. S. Burra, A new approach to practical active-secure two-party

computation, in CRYPTO (2012), pp. 681–700
[54] M. Naor, B. Pinkas, Efficient oblivious transfer protocols, in SODA (2001), pp. 448–457
[55] R. Ostrovsky, S. Richelson, A. Scafuro, Round-optimal black-box two-party computation, in CRYPTO

(2015), pp. 339–358
[56] R. Pass, Simulation in quasi-polynomial time, and its application to protocol composition, in EURO-

CRYPT (2003), pp. 160–176
[57] T. P. Pedersen, Non-interactive and information-theoretic secure verifiable secret sharing, in CRYPTO

(1991), pp. 129–140
[58] M. Prabhakaran, A. Sahai, New notions of security: achieving universal composability without trusted

setup, in STOC (2004), pp. 242–251
[59] C. Peikert, V. Vaikuntanathan, B. Waters, A framework for efficient and composable oblivious transfer,

in CRYPTO (2008), pp. 554–571
[60] R. Pass, H.Wee, Black-box constructions of two-party protocols fromone-way functions, inTCC (2009),

pp. 403–418
[61] A. Shamir, How to share a secret. Commun. ACM 22(11), 612–613 (1979)
[62] A. C.-C. Yao, Theory and applications of trapdoor functions (extended abstract), in FOCS (1982), pp.

80–91
[63] A. C.-C. Yao, How to generate and exchange secrets (extended abstract), in FOCS (1986), pp. 162–167

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

	What Security Can We Achieve Within 4 Rounds?
	1. Introduction
	1.1. Our Results
	1.2. Our Techniques
	1.3. Subsequent Work

	2. Preliminaries
	2.1. Basic Notations
	2.2. Hardness Assumptions
	2.3. Commitment Schemes
	2.3.1. Trapdoor Commitment Schemes

	2.4. Witness Indistinguishability
	2.5. Secret Sharing
	2.6. Hardcore Predicates
	2.7. Oblivious-Transfer
	2.7.1. Defensibly Private Oblivious-Transfer
	2.7.2. Private Oblivious-Transfer

	3. 4-Round Coin-Tossing from Discrete Logarithm
	3.1. An Abstraction Using Homomorphic Trapdoor Commitment Schemes

	4. Warmup: 4-Round 2PC Against Non-aborting Adversaries
	4.1. Building Blocks
	4.2. 4-Round OT Against Non-aborting Adversaries
	4.3. 4-Round 2PC Against Non-aborting Adversaries

	5. 4-Round 2PC with 1/p Sender Security and Full Security Against Non-aborting Receivers
	5.1. 4-Round OT with 1/p Sender Security and Full Security Against Non-aborting Receivers
	5.2. 4-Round 2PC with 1/p Sender Security and Full Security Against Non-aborting Receivers

	6. 3-Round OT with 1/p Sender Security and Receiver Privacy
	7. On the Impossibility of Black-Box 3-Round 2PC with 1/p-Security
	References

