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Abstract. This paper presents a fully secure (adaptively secure) practical functional
encryption scheme for a large class of relations, that are specified by non-monotone
access structures combined with inner-product relations. The security is proven under
a standard assumption, the decisional linear assumption, in the standard model. Our
scheme is constructed on the concept of dual pairing vector spaces and a hierarchical
reduction technique on this concept is employed for the security proof. The proposed
functional encryption scheme covers, as special cases, (1) key-policy, ciphertext-policy
and unified-policy attribute-based encryption with non-monotone access structures, (2)
(hierarchical) attribute-hiding functional encryption with inner-product relations and
functional encryption with nonzero inner-product relations and (3) spatial encryption
and a more general class of encryption than spatial encryption.

Keywords. Functional encryption, Attribute-based encryption, Inner-product predi-
cate encryption, Adaptive security, Decisional linear assumption, Dual pairing vector
spaces.

1. Introduction

1.1. Background

Although numerous encryption systems have been developed over several thousand
years, any traditional encryption system before the 1970’s had a great restriction on the
relation between a ciphertext encrypted by an encryption key and the decryption key such
that these keys should be equivalent. The innovative notion of public key cryptosystems

*The extended abstract of a preliminary version [37] was presented at Advances in Cryptology—CRYPTO
2010.
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in the 1970’s relaxed this restriction, where these keys differ and the encryption key can
be published, but the decryption key is firmly related to the encryption key for the unique
decryption of a ciphertext to its plaintext.

Recently, a new innovative class of encryption systems, functional encryption (FE),
has been introduced [14,15,28,41,44], where a secret (decryption) key, sK r, is associated
with a function f, an input x (to f) is encrypted to a ciphertext Enc(pk, x) using system
(master) public key pk, and the ciphertext is decrypted by the secret to f(x).

This notion provides more sophisticated and flexible relations between decryption
keys and ciphertexts such that a secret key, SKy, is associated with a parameter, ¥, and
message m is encrypted to a ciphertext Enc(pk, (m, Y)) using system public key pk
along with another parameter Y. Ciphertext Enc(pk, (m, Y')) can be decrypted by secret
sky if and only if a relation (predicate) R(W, Y) holds. Here, x := (m, Y) is an input
to encryption of FE and the function fg w (with secret key sky) of x := (m, Y) is m
if and only if a relation R(W, Y') holds. Such a concept of FE has various applications
in the areas of access control for databases, mail services, and contents distribution
[5,12,15,28,30,42-45,48].

When R is the simplest relation or equality relation, i.e., R(W, T) holds iff W = 7Y,
it is identity-based encryption (IBE) [6-8,10,16,21,24,25].

As a more general class of FE, attribute-based encryption (ABE) schemes have been
proposed [5,12,15,28,30,42-45,48], where either one of the parameters for encryption
and secret key is a tuple of attributes, and the other is a policy on attributes. Here each
attribute is an element of a finite field or ring. For example, a policy W is an access
structure M along with a tuple of attributes (vy, ..., v,) for a secret key, and a tuple of
attributes, Y := (xi, ..., x,), for encryption. Here, some elements of the tuples may
be empty. R(W, Y) holds iff the truth-value vector of (T(x; = vy),..., T(x, = v))) is
accepted by M, where T(-) is a predicate such that T(y) := 1 if ¢ istrue,and T(y) := 0
if ¢ is false (For example, T(x = v) := 1 if x = v,and T(x = v) := 0if x # v).
A monotone general access structure can express any monotone formula over atomic
terms of T(x; = vy),..., T(x, = v,). If parameter W for a secret key is an access
structure (policy), it is called key-policy ABE (KP-ABE). If parameter Y for encryption
is a policy, it is ciphertext-policy ABE (CP-ABE).

Inner-product predicate encryption (IPE) [30] is a class of FE for inner-product relations
(predicates), where each parameter for encryption and secret key is a vector over a field or
ring (e.g., X := (x1,...,Xx,) € IF[;’ and v := (vy,..., V) € IF,;1 for encryption and secret
key, respectively), and R(v, X) holds iff X - v = 0, where X - v is the inner-product of X
and v. The inner-product relation represents a wide class of relations including equality,
conjunction and disjunction (more generally, CNF and DNF) of equality relations and
polynomial relations.

There are two types of secrecy on ciphertexts in FE, attribute-hiding (private-index)
and payload-hiding (public-index) [30]. Roughly speaking, attribute-hiding requires that
a ciphertext conceal the associated parameter as well as the plaintext, while payload-
hiding only requires that a ciphertext conceal the plaintext. Anonymous IBE and hidden-
vector encryption (HVE) [15] are a special class of attribute-hiding IPE.

Although many practical FE schemes such as ABE and IPE schemes have been pre-
sented over the last decade, existing fully secure (adaptively secure) practical FE schemes
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only support some restricted classes of relations, e.g., monotone access structures with
equality relations, and inner-product relations.

1.2. Our Result

In this paper, we propose fully secure practical FE schemes that supports more general
relations than monotone access structures with equality relations and inner-product re-
lations. Our scheme is secure in the standard assumption, the decisional linear (DLIN)
assumption (over any type of prime-order bilinear groups), in the standard model.

More precisely, this paper presents a fully secure (adaptively secure against CPA)
practical FE scheme for a large class of relations, that are specified by non-monotone
access structures combined with inner-product relations. Similarly to the existing ABE
schemes, we propose three types of FE schemes, the KP-FE and CP-FE schemes (in
Sects. 4, 5) as well as a generalized notion of KP-FE and CP-FE, unified-policy FE
(UP-FE).! (in Sect. 6).

In our KP-FE scheme, parameter Y for a ciphertext is a tuple of (attribute) vectors
apd parameter W for a secret key is a non-monotone access structure or span program

M = (M, p) along with a tuple of vectors, e.g., T = (¥1,...,%) € Fy'T",
and ¥ := (M, (1, ...,0,) € Fy 1+ The component-wise inner-product relations
for attribute vector components, e.g., {X; - ¥ = 0 or not };¢(1..._,}, are input to (non-

monotone/monotone) span program M, and R(W, Y) holds iff the truth-value vector of
(TG -0 =0), ..., T - 9, = 0)) is accepted by span program M.

The proposed FE scheme is practical. For example, if the proposed FE scheme is
specialized to IPE, the ciphertext size of our IPE scheme (“Appendix F.2”)is (3n+2)-|G|,
whose information theoretical lower bound is n - |F, | if the vector elements are from .
Here, n is the dimension of the attribute vectors, and |G| and |F,| denote the sizes of an
element of prime order pairing group G (for ciphertexts) and finite field IF,, respectively,
e.g., both are 256 bits. Then, the ciphertext size of our IPE scheme is just around three
times longer than the theoretical lower bound.

Itis easy to convert the (CPA-secure) proposed FE scheme to a CCA-secure FE scheme
by employing an existing general conversion such as that by Canetti et al. [17] or that by
Boneh and Katz [13] (using additional seven-dimensional dual spaces (B4 1, B n 1) with
ng+1 := 2 on the proposed FE scheme, and a strongly unforgeable one-time signature
scheme or message authentication code with encapsulation) (see Sect. 7).

Since the proposed FE scheme supports a large class of relations, it includes the
following schemes as special cases:

1. The (KP, CP and UP)-ABE schemes for non-monotone access structures with
equality relations. Here, the underlying vectors of our FE scheme, {)?,},e{l ,,,,, d)
and {D’,},e{l,_._,d}, are specialized to two-dimensional vectors for the equality re-
lation, e.g., X; := (1, x;) and v; := (v;, —1), where X; - V; = 0 iff x, = v, (see
“Appendix F.1” for KP-ABE).

In these ABE schemes, attribute x; is expressed by the form of (¢, x;) in place of
just attribute x;. Here, ¢ identifies a subuniverse or category of attributes, and x; is

IThe notion of UP-ABE and the first UP-ABE scheme were proposed by Attrapadung and Imai [3]
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an attribute in subuniverse ¢ (examples of (¢, x;) are (Name, Alice) and (Affiliation,
Institute X)). The number of subuniverses, d, is a polynomial of security parameter
A, and the number of attributes in a subuniverse is exponential in A.

. The (zero-)IPE and nonzero-IPE schemes, where a nonzero-IPE scheme is a class

of FE with R(V, X) iff X - U # 0. Here, the underlying access structure S of our FE
scheme is specialized to the 1-out-of-1 secret sharing.

See “Appendix F.2” for our IPE scheme, which is slightly modified from a straight-
forward IPE-specialization of our FE scheme for improving efficiency. Note that
the IPE scheme is ‘weakly attribute-hiding,” where a type of key queries are not
allowed in ‘weakly attribute-hiding’ (see the definition in [32]). It is easy to modify
this IPE scheme to a ‘fully attribute-hiding ([30])’ scheme by simply expanding
the dimension of the space [38], while its security proof is quite different from that
shown in “Appendix F.2” (see [38] for the security proof of fully attribute-hiding).

. If the underlying access structure is specialized to the d-out-of-d secret shar-

ing (conjunction formula), our FE scheme can be specialized to a hierarchical
zero/nonzero-IPE scheme by adding delegation and re-randomization mechanisms.
We show two hierarchical (zero-)IPE (HIPE) schemes in “Appendix G”, where one
is payload-hiding and the other (weakly) attribute-hiding.

. If the underlying access structure is a monotone formula with n-dimensional vec-

tors, our FE scheme can be specialized to spatial encryption (for n-dimensional
spaces) [12,19].

Here, we give some simple examples.

e Let A be a s-dimensional subspace in the n-dimensional vector space V (0 <
s < n), which can be characterized by (n — s) independent vectors in V,
(V1, .., Up—s), such that U; is orthogonal to A foralli =1, ..,n — s.

We construct a spatial encryption (SE) scheme from our KP-FE scheme such
that a secret key with subspace A, Sk 4, is realized by the (n—s)-out-of-(n—s) se-
cret sharing (i.e., conjunction formula) along with (v1, .., U,_s). A ciphertext is
associated witha vector X € V and message m, i.e., Ct(,, z) := Enc(pk, (m, x)).

The ciphertext Ct, ) can be decrypted to m by sk, iff X € A, since X € A iff
NS E -5 = 0.

e We can easily extend the above SE schemes with vector subspaces into SE
schemes with affine subspaces. An affine subspace B can be expressed as A+ 7,
where A is a vector subspace in the n-dimensional vector space V, which is
specified by orthogonal vectors (g, .., U,—g), and Z is an element in V. Hence,
X e Biff N\/Z{7(x —2) -1 = 0, ie, Al-{ (%, 1) - (¥, —¢i) = 0, where
¢; := Z-v;. We can then construct SE schemes with affine space B by replacing
X and 9; in the above schemes by (X, 1) and (v;, —c;).

These SE schemes using only conjunction formulas, which covers basic spacial
encryption, can achieve the attribute-hiding in a manner similar to those for the
(hierarchical) IPE schemes (“Appendix F.2, G”).
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5. If the underlying access structure is a non-monotone formula with n-dimensional
vectors, our FE scheme can be a more general class of FE than spatial encryption.

For example, let subspace A be defined by (91, .., Uy_s) in the same manner
as above. Then, we can realize a FE scheme such that a ciphertext, ct(, ) =
Enc(pk, (m, X)), can be decrypted to m by sk4 iff X ¢ A.

1.3. Key Ideas and Techniques

This section shows the key ideas and techniques in our result.

Since our scheme is constructed on the concept of dual pairing vector spaces (DPVS)
[36], we first show the concept and main techniques of DPVS intuitively. We then show
a key methodology to realize the non-monotone policy in our result. Finally, in this
section, we describe how to achieve the adaptive security of our FE scheme in the DPVS
framework.

1.3.1. Concept of DPVS

Roughly speaking, DPVS is an extension from bilinear pairing groups to higher-
dimensional vector spaces, which are typically realized as direct products of bilinear
pairing groups (or tuples of pairing group elements). Why is a vector space extension of
pairing groups so useful for such applications?

There are two reasons. The first one is that the most natural methodology of construct-
ing FE schemes on bilinear pairing groups is considered to realize them over the notion
of vector spaces on pairing groups. Actually, many existing pairing-based schemes im-
plicitly employ higher-dimensional vector spaces with using the form of computation
like ]—LN= 1 e(a;, b;), which is a pairing operation over higher-dimensional vector spaces
(see 1. 1in Sect. 1.3.2), e.g., the Boneh—-Boyen IBE schemes in decryption [6,7].

The second reason is that standard assumptions over pairing groups such as DDH and
DLIN assumptions are subspace assumptions over vector spaces.

For example, the DDH assumption is a subspace assumption in a two-dimensional
vector space (and DLIN is a subspace assumption in a three-dimensional vector space).
The DDH assumption over a group G is expressed as given x := (g, g%), and it is hard

totell y := (gb, g‘”’) from z ;= (gb, g%), where a, b, ¢ <U—1Fq, g € G. (Note that when

Alsaset, a <U— A denotes that a is uniformly selected from A, and that IFq is the finite
field of order ¢.) Here, y can be formalized as a scalar multiplication of x, bx, in a (two-

dimensional) vector space. Since b < Fy, y is distributed over the (two-dimensional)

subspace generated by x, i.e., sSpan(x). Since b, ¢ <U— IF,, z is distributed over the whole
(two-dimensional) vector space. Hence, the DDH problem is rephrased by one to tell y
distributed over a one-dimensional subspace from z over the (two-dimensional) whole
space.

‘We now briefly describe the concept of DPVS, that consists of vector space V, pairing
operation e over V and dual bases, B and B*. We start from a standard building block
of (symmetric) pairing groups, (G, Gr, g, ¢, ¢), where e : G x G — Gr is a non-
degenerate bilinear pairing operation, g is a generator of G, ¢ is a prime order of G
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and Gr. Here, we denote the group operation of G and G by multiplication.” Note
that DPVS is constructed over asymmetric pairing groups in general, although we use
symmetric pairing groups here for simplicity of presentation.

Vector space: First, we construct an N -dimensional vector space V from group G, where
x eVis(gy,..,gn) € GV . Vector additions and scalar multiplications over V are
naturally introduced such that x + y := (g141, .., gnvhy), and ax = (g{, .., g4)»
where x := (g1, .., gn), ¥y := (h1, .., hy) and a € IF,;. Note that a bold face letter
denotes an element of vector space V, e.g., x € V.

Pairing operation: We naturally introduce the pairing operation ¢ : V x V — Gr
as e(x, y) == [V e(g¥, 8") = e(g, X1 = e(g, 9)'7 € Gr for x :=
(g",..,g™) € Vand y := (g",..,g"N) € V, where ¥ := (x1,.., xy) and
y := (1, .., ynv). Note that a vector symbol X denotes vector representation over

Fy,e.g,X = (x1,...,%,) € F}, and X -y denotes the inner-product of X and y
(inFy).

Bases: We then introduce a (random) basis B := (b, --- , by), of V using a uniformly
chosen (regular) linear transformation, X := (x;, ;)i je(1 }<—GF (N,T,), such
that b; := (gXi!, ..., g%iN) e GN fori =1,..,N. Here, GL(N F )denotes the

general linear group of degree N over .

We also compute another basis B* := (b}, .., b%) of V by using (XT) ™! (& € F)
in place of X, where XT denotes the transpose of X. Let g7 := e(g, g)*. We denote
(X1, oo XN)B 2= Yogvy Xibj and (01, ..., yn)Br == oy yiby.

We then see that e(b;, b7}) = gT’ fori, j e {l,.., N}, where§; ; = 1ifi = j and
8;,j = 0ifi # j. Thatis, B and B* are dual orthonormal bases of V. Due to the

orthonormality, for x := (¥)p and y := (¥)p+, pairing operation e(x, y) = gT ,
where X := (x1, .., xy) and ¥ := (y1, .., Yn).

In cryptographic applications of DPVS, (a part of) B is used as a public parameter
(public key), B* is used as a (master) secret key, and X is used as the top-level
secret key. It is an advantage of this approach that we can make various levels/types
of secret keys to meet the requirements on secret keys in applications, from the top
level of secret key, X, to a lower level of secret key, which may be a form of partial
information of B*.

1.3.2. Properties of DPVS

DPVS has the following properties that are useful for many applications:

1. Hard decomposability As mentioned above, vector treatment of bilinear pairing
groups have been already developed and employed in the literature especially

2Only in Sect. 1.3, we express bilinear group G as a multiplicative group to follow the tradition of
cryptocommunity, but in this paper except Sect. 1.3, we express it as an additive group for the consistency
with the vector space expressions.
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in the areas of IBE, ABE and BE (Broadcast Encryption) (e.g., [5,8,12,16,28,
29,44]). For example, in a typical vector treatment of bilinear pairing groups,
two forms of X := (g"1, g*2, ..., g*V) for vector X := (x1,..,xy), and ¥ :=
(g7, g”2,...,g"N) for vector y := (y1, .., yy) are set and pairing of X and Y is
operated such that e(X, Y) := ]_[,N:l e(ghi, gV =e(g, g)zzNzl YiYi = e(g, g)}'y.

The major drawback of this approach is that it is easy to decompose x;’s element,
g%, from X := (g%, g2, ..., g"V).

In contrast, a remarkable property of DPVS over (random) basis B is that it seems
hard to decompose x;’s element, x;b;, from x := x;by + - - - + xyby and B. Here
note that we can compute a value regarding x - y (correspondmg toe(g, g)" y above)
by the pairing operation of x and y := y1b] + - -- + y,b}, i.e, e(x, y) = gT .
2. Information theoretically hidden subspaces LetB := (b, ..., by) and B* :=

(b7, ..., by) be dual orthonormal bases with X <U— GL(N,F,). In many applica-

tions of DPVS, public parameters or (master) public key are B that is a part of B.
For example, B := (b1, .., b,), wheren < N.Here note that b, 1, .., by are infor-

mation theoretically hidden, since X <U— GF(N,F,) and bases (b, 11, .., by) are
perfectly independently chosen from (b1, .., b,,). In addition, B* := (b7, .., b’;\,)
can be also hidden as a secret key.

In the DPVS approach, we have developed several information theoretical trans-
formation techniques based on this information theoretical property.

We will describe these techniques in Sect. 1.3.3.

3. Inner-product operability As mentioned above, for x := x1b; + -+ + xyby =
(X)g and y := y1b] + --- + yyby = (¥)B+, the inner-product value X - y is
indirectly computed through the pairing computation, e(x, y) = g;'y.

Composite-order pairing groups are often employed to achieve the property 1. (Hard
decomposability) [11,33,34]. An advantage of our DPVS approach over the composite-
order pairing group approach is that our approach is realized on prime-order groups of any
type (symmetric and asymmetric) and the implementations on prime-order groups are
more efficient than those on composite-order groups. In addition, several non-standard
computational assumptions are always used to prove the security in the composite-order
group approach, while many schemes in our DPVS approach have been proven solely
under the DLIN assumption.

Some conversion from composite-order group schemes to prime-order group schemes
has been proposed based on our DPVS methodology [31], and it may lead to the thoughts
that the whole properties of the DPVS approach would be achieved by this type of
conversion, but it is not the case. Such conversion usually focuses on the property 1. but
not on the property 2. (Information theoretically hidden subspaces) of DPVS.
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1.3.3. Key Techniques of DPVS

By using the above-mentioned properties of DPVS, we have developed two key tech-
niques on DPVS, one is a hierarchical reductions to DLIN (for computationally indis-
tinguishable game changes) and the other information theoretical transformations (for
conceptual game changes).

1. Hierarchical Reductions to DLIN In the hierarchical reduction methodology, the top
level of the security proof for the proposed scheme directly employs only top level
assumptions (assumptions of Problems 1 and 2 in this paper), that are specified in
the DPVS framework. The methodology bridges the top-level assumptions and the
primitive one, the DLIN assumption, in a hierarchical manner, where several levels
of assumptions (problems) are constructed hierarchically. Such a modular way of
proof greatly clarifies the logic of a complicated security proof. (See Fig. 1 for the
global view of the methodology.)

e Lower-level Reductions
The following basic (subspace) assumptions over the three-dimensional case
on DPVS are reduced to the DLIN assumption.

The DLIN assumption is that, given (g, g%, g*, g%, g%¢) € G, it is hard
U
to tell g‘”" from g¥, where &,k,8,0,y < F,. Let B := (b1, by, b3) and

B* := (b7, b3, b3) be dual orthonormal bases with X g GL(3,F,) and g7 :=
e(b;, b;k) eGr(@@=1,273).

Basic Problem 0 (Definition 18) assumption for ciphertexts: Let Bx :=
(b7, b3), ¢o:=(,0, @)E and ¢ := (8,0, @)B, where 8,0, p <
F,. Then, given (IE%*, B), it is hard to tell ¢¢ from cy.

Basic Problem 0 assumption for secret keys: Let B = (b1, b),
¢ :=(w,0,[7]B, kj := (8, 0, @)B* and kT:=(3, o, @)B*, where §, 0, p, w,

T 2 [F,. Then, given (I@, B*, ¢), it is hard to tell k; from k7.

In the reduction of these assumptions to DLIN, a DLIN instance (g, gé, g~
g%, 8%, yp) € GO (where B € {0, 1}, yo = g°7 and y; = g7) is converted to
aninstance of Basic Problem 0 assumptions. First, we express the DLIN instance
as a subspace assumption instance, (u; := (gs, 1,g),ur = (1,8 g),u3 :=
(1,1, 8), wg) (where wyo = duy + oup = (g‘ss,g"’(,yo) and w; = du; +
our+puz = (g%, g%¢, y1) with p := y — (§+0)). Here U := (uy, ua, u3) is
a basis of DPVS, and the linear transformation IT to generate U and the adjoint
matrix (IT*)T are
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where (IT*)T = k& - 17! and a blank element in the matrices denotes 0. for
U* = (u} == (g, L, D), uj = (1,85, 1), u} := (g7, g%, g%)), the DPVS
bases U and U* are dual orthonormal bases with I1, and g7 := e(g, g)"f =
e(g*, g%). Therefore, a converted DLIN assumption on DPVS is that, given
(w7, uj;, U),itis hard to tell wy := (8, o, 0)y from w; := (8, o, p)y. Here note
that g“¢ is not included in the DLIN instance and u; (with g*¢) is not included
in the above instance. Based on this type of conversion, the Basic Problem
0 assumptions can be reduced to DLIN by applying additional random linear
transformation (by random matrix W) on a special form of orthonormal bases
U and U* to obtain random orthonormal bases B and B* (Lemma 14).

e Middle-Level Reductions
Here, we show some middle-level assumptions, (subspace) assumptions on
higher-dimensional DPVS, which are simplified versions of Basic Problems 1
and 2 (Definitions 19, 20 ) assumptions.

Simplified Version of Basic Problem 1 (Definition 19) assumption
Let B := (b1,...,b3,42) and B* := (b7],..., b3, ,) be dual orthonormal

bases, B* := (b%,..., by, . byis. ... b5,.5), co:= (0, 321,, o)p, and

c1 := (0, §ey, , o), where 8, o, p g F,. Then, given B and @*, it is hard
to tell ¢o from ¢y.

Simplified Version of Basic Problem 2 (Definition 20) assumption
Let B := (b1,...,b3,42) and B* := (b7, ..., b3, ,) be dual orthonormal

basess B = (b19 .oy bﬂ"rl! b2n+27 ey b3n+2)’ cl = (Os wzlv 7 Onv O)Bs
kg = (O, 82,-,, ni, 0)p and ki ; := (0, 8¢;, , 7i, 0)p=, where | =

1, n, 8, p, @, 7 <Fy and ij; < F". Then, given B, B* and {c;}i—1, ., it is
hard to tell {ko_;}i=1,...» from {k; ;};=1..,. We then show the simplified version
of Basic Problems 1 and 2 to Basic Problem 0 assumption, which implies the
reduction of these assumptions to the DLIN assumption via the lowest level
reduction (hierarchical reduction).

— The simplified version of Basic Problem 1 can be expressed as ¢g := (0, @,
01, [0],02~1,[o ), and ¢ := (0,[5], o"—l,ozn—l,@)g. Hence, it
can be reduced to Basic Problem O for ciphertexts by embedding the Basic
Problem O instance into the (3n + 2)-dimensional space. .

— The simplified version of Basic Problem 2 can be expressed as ¢; := (0, (¢ -1

[w} 0=, 0! [2]. 0=, [0"] 0)z. k5, o= (0,07 [5] 0=, 0'=" o] 0",
(1] 0B, and k7, := (0,07 [5], 077, 0'~1, [p], 0", [} ). Hence, it
can be reduced to Basic Problem O for secret keys by embedding the Basic
Problem O instance into the (3n+-2)-dimensional space, where the o part of the
Basic Problem 0 element is embedded into the n; part with (11, .., n,) := 7.

The reductions from Basic Problems 1 and 2 to Basic Problem 0 are essentially the
same as the above-mentioned middle-level reduction except that Basic Problems 1
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and 2 have multiple spaces on bases (B;, B}) with# = 0, 1, .., d, while the simplified
version of Basic Problems 1 and 2 are on (B, B*) (Lemmas 15, 17).

o Higher-Level Reductions
Top-level assumptions, Problems 1 and 2 (Definitions 4, 5 ), are reduced to
Basic Problems 1 and 2 by using Intra-subspace information theoretical trans-
formation to be explained just below (see Lemmas 16, 18 for the reduction
precisely).

Problem 1 and 2 assumptions are used for computationally indistinguishable
game changes of top level of security proof (full security proof of the proposed
FE scheme).

See Fig. 1 for the hierarchical structure of reductions.

2. Information theoretical transformations We have developed several information
theoretical transformation techniques based on the property 2. of DPVS. There are
two basic information theoretical techniques, intra-subspace and inter-subspace
transformations, by the hidden base changes. Here we use the same example as that
given in the property 2. of Sect. 1.3.2.

Intra-subspace transformation:

Hidden bases (b, 11, .., by) and (b}, , |, .., b}y) are (conceptually) changed to (d , 11,
wndy) = (b1, .. by)-(Z7H T and (d}, |, ... dY) == (b}, ...bY) - ZT, where
Z € GL(N — n,F;). We then have new dual orthonormal bases of V, D :=

(b1, .., by, ) and D* := (b}, .., b}, |d}, . ..,dy ). Then, ciphertext
c .= (12}1, 1}2)15; with &i € Fy (i = 1,2) can be expressed by (1}1, )ID), and
secret key k* := (51,52)[3* with §,~ € IFZ (i =1,2)canbe by (51, 52 A(Z7HT Pp-.

As mentioned above, the intra-subspace transformation is employed to reduce Prob-
lem 1 and 2 assumptions to Basic Problems 1 and 2.

Inter-subspace transformation:

Hidden bases (b,+1,..,by) (N = n + m) and (b7, .., b)) are (conceptually)
changed to (d,11, .., dy) = (bpt1 — Z’}:l fi,jbj, ... by — 2?21 fm.jbj), and
@y, ..dy) = b7+ D01, firby i by + D71 finby,;, where F := (fi ) €
IFq’”X”. We then have new dual orthonormal bases of V, D := (by, .., b,,

) and D* := (, nils - by). Then, ciphertext ¢ := (1}1,
1}2)15; can be expressed by (| 1;1 + 1/72 -F 1/72)@, and secret key k* := (51 , 52)15%*

The inter-subspace transformation is employed to prove the small advantage gaps

between Game 2-v and Game 3 in Fig. 1, where F <U—IF41X1 (a random scalar in IF,;)
is employed. This transformation is also employed in the corresponding places in the
security proof of Sects. F.2 and G , where more general forms of F are employed.
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1.3.4. Non-monotone Policy

Non-monotone policies and predicates should be used in many FE applications. For
example, an access policy (for a user) regarding a confidential audit report on ‘K Institute’
could be in the following form: NOT(Affiliation = ‘K Institute’) AND (- - -).

To achieve a non-monotone policy on attributes in universe I/, it is essentially required
to introduce a concept of categories or subuniverses, where a category or subuniverse,
U; (t € Nis an identity of a category), is a subset of universe /. In the above-mentioned
example, a subset of affiliations, Uxiliation 1S a category. Then, the policy on attribute X
of a user is expressed as (X # ‘K Institute’ A X € Uaffiliation) AND (- - -).

Without such a notion of categories or subuniverses, a non-monotone policy cannot
be correctly captured. For example, if a policy on attribute X is just (X # ‘K Institute’)
AND (- --), any attribute (e.g., ‘Professor’, ‘Male’, and ‘Japanese’) different from ‘K
Institute’ in any category satisfies the clause with substituting such an attribute to X . (A
straightforward application of a monotone ABE scheme [42] may have this problem.)

This paper presents an elegant solution to this issue by using dual subspaces of DPVS
without using an explicit formula such as (... A X € Uaffiliation)- Here, an attribute is
expressed by the form of (¢, x;) witht € T C {l,...,d} in place of just an attribute
x, where ¢ identifies a subuniverse or category of attributes, and x; is an attribute in
subuniverse ¢ (examples of (¢, x;) are (‘Affiliation’, ‘K Institute’), (‘Title’, ‘Professor’),
(‘Gender’, ‘Male’) and (‘Nationality’, ‘Japanese’)).

In our scheme, each (t, x;) is encoded as a value in a subspace, span(B;), spanned
by bases B; (or B}) of DPVS, and a non-monotone policy on category ¢ (e.g., X; # ‘K
Institute’, r = ‘Affiliation’) is also encoded in a subspace, span(B;), spanned by bases
B} (or B, ), where independent d bases (B, ..., By) (and the dual bases, (B, ..., B}))
are set up in our scheme.

Roughly speaking, only a value in span(B;) can be correctly operated with a value in
span(B;). That is, only an attribute x; encoded in span(B,) can be correctly operated
with a non-monotone policy on ¢ (e.g., X; # ‘K Institute’) encoded in span(By).

This can be formally ensured in the security proof by the fact that the information
theoretical transformation via hidden base changes is shared by span(B;) and span(B}),
but it is perfectly independent from the other subspace spanned by different bases B,/
and By, with t' # t. In other words, the condition that X € Usgffiliation 1S realized in
the correct operation mechanism between corresponding dual subspaces, span(B;) and
span(B;). Hence, a non-monotone policy on 7, X, # ‘K Institute’ with r = ‘Affiliation’,
can be correctly operated with an attribute of (‘Affiliation’, *) encoded in span(B;) but
not with (‘Title, *) in span(By), ( ‘Gender’, *) in span(By,), and (‘Nationality’, *) in
span(B;,).

More precisely, in our scheme, vectors, X and v, are employed in place of attributes,
and each vector is categorized to a category or subuniverse, U, i.e., vector X in U; is
expressed by the form of (¢, X) and encoded in span(B;).

For example, in our KP-FE scheme, a ciphertext ¢ with a n-dimensional vector (¢, X)

is realized as the form of .
c:=(wx,0",0", ),

and a secret key k' for the ith entry of a negation term of a span program (s; is the
corresponding share) associated with a vector (', v;) is of the form of
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k:( = (S,' 6,’, (& , 77,', O)B:f/.
Hence, in the decryption process,
e(e, KHV¥0 = g2 (iff t = t'and ¥ - U; # 0).

That is, due to the decryption property and the above-mentioned property that only X
encoded in span(B;) can be correctly operated with ¥; encoded in span(B;), the ith
share s; of the span program is recovered iff r = ¢ and X - v; # 0.

1.3.5. Adaptive Security

To achieve the adaptive security, this paper elaborately combines the dual system en-
cryption technique proposed by Waters [49] and the DPVS methodology.

In the dual system encryption, roughly there are two forms of ciphertexts and secret
keys, normal and semi-functional forms. One of the advantages of the DPVS method-
ology is that the two forms can be indistinguishable based on the above-mentioned
Problems 1 and 2 assumptions, which are reduced to the DLIN assumption via the hi-
erarchical reduction technique. See the security proof (outline) of Theorem 1 for more
details of these forms and security game transformations.

In the security proof, we also apply the information theoretical technique using hidden
bases in DPVS, which has been described above as the inter-subspace transformation.

1.4. Related Works

The definitional works for functional encryption were initiated by Boneh et al. [14] and
O’Neill [41]. They presented two types of definitions, the simulation (SIM)-based one
and the indistinguishability (IND)-based one. Boneh et al. [14], Agrawal et al. [1] and
Caro et al. [18] showed that a FE scheme with unbounded number of keys and ciphertexts
in the standard model cannot be achieved in the SIM-based definition. Therefore, a fully
secure functional encryption (with unbounded number of keys and ciphertexts) in the
standard model should be realized in the IND-based definition.

As described before, there are two properties of functional encryption, attribute-hiding
(or private-index) and payload-hiding (or public-index) [14,30].

Although several FE schemes for general circuits or Turing machines are presented
by using indistinguishable obfuscations (i0) or multi-linear maps [2,22,23,26], while
these primitives are currently on fragile ground and extremely inefficient.

The largest class of relations supported by a (public-index) FE scheme without using
10 and multi-linear maps is general circuits [27]; however, they are not fully secure but
selectively secure and still impractical.

To the best of our knowledge, the largest class of relations supported by a fully se-
cure practical (public-index) FE scheme in the IND-based definition (with unbounded
number of keys and ciphertexts) under a standard assumption in the standard model is
non-monotone span programs with inner-product relations, which is achieved by this
paper. The ABE scheme in [32] supports only monotone span programs with the equal-
ity relation, and the assumptions are non-standard on composite-order pairing groups.
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Spatial encryption [12, 19] supports a fairly large class of relations but still a limited class
of those by the proposed scheme. Although some extensions of spatial encryption have
been proposed [20], the relations supported by the scheme are also covered by those of
the proposed FE scheme.

To the best of our knowledge, the largest class of a fully secure and (weakly) attribute-
hiding practical FE scheme in the IND-based definition under reasonable assumptions in
the standard model is the conjunction of inner-product relations (e.g., hierarchical inner-
product relations and basic spacial encryption), which is achieved in this paper. The
(H)IPE scheme in [32] is (weakly) attribute-hiding under a non-standard assumption.

Although an attribute-hiding FE scheme, (H)IPE scheme, specialized from the pro-
posed FE scheme in this paper, is weakly attribute-hiding, fully-attribute-hiding (H)IPE
schemes (in the IND-based definition) were presented under the same assumption, DLIN
assumption, by [38,39].

Our general access structures, i.e., span programs over inner-product predicates, have
nice applications with sparse matrix DPVS techniques [40], for example, semi-adaptively
secure KP-ABE scheme for span programs with constant-size ciphertexts (from DLIN)
[46] and adaptively secure KP- and CP-ABE schemes from DLIN which allow attribute
reuse in an available formula without the redundant multiple encoding technique given
in “Appendix E” [47].

1.5. Notations

. . - R .
When A is a random variable or distribution, y <— A denotes that y is randomly se-

lected from A according to its distribution. When A is a set, y <U—A denotes that y
is uniformly selected from A. y := z denotes that y is set, defined or substituted by
z. When a is a fixed value, A(x) — a (e.g., A(x) — 1) denotes the event that ma-
chine (algorithm) A outputs a on input x. A function f : N — R is negligible in A,
if for every constant ¢ > 0, there exists an integer n such that f(1) < A™¢ for all
A > n.

We denote the finite field of order g by F;, and I, \ {0} by F qx . A vector symbol denotes
a vector representation over I, e.g., X denotes (x1,...,x,) € F;. For two vectors X =
(x1,...,xy)and v = (v1, ..., Uy), X - U denotes the inner-product >, x;v;. The vector
0 is abused as the zero vector in IF; for any n. XT denotes the transpose of matrix X. Iy
and Oy denote the £ x ¢ identity matrix and the ¢ x £ zero matrix, respectively. A bold face

letter denotes an element of vector space V, e.g.,x € V. Whenb; e V(i =1,...,n),
span(by, ..., b,) C V (resp. span(Xi, ..., X,)) denotes the subspace generated by
by, ..., b, (resp. X1, ..., X,). For vectors X := (x1,...,xy),y := (¥1,..., YN) € Fév
and bases B := (by,...,by).B* := (b],....bYy), X)B (= (x1,...,xn)B) denotes
linear combination ZzN=1 x;b;, and ()g+ (= (y1, ..., yn)B+) denotes ZIN=1 yib}. For
a format of attribute vectors 71 := (d; nj, ..., ng) that indicates dimensions of vector
spaces, ¢, ; denotes the canonical basis vector (0---0,1,0---0) € ]Fq’ fort=1,...,d
and j = 1,...,n,. GL(n,IF;) denotes the general linear group of degree n over

F,.
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2. Dual Pairing Vector Spaces (DPVS) and Main Lemmas

In this section, we present the notion of dual pairing vector spaces (DPVS) and a typical
construction of DPVS from pairing groups. We also show main lemmas on DPVS, which
are directly employed for the security proof of the proposed FE schemes.

2.1. DPVS by Direct Product of Symmetric Pairing Groups

In this paper, for simplicity of description, we will present the proposed schemes on
the symmetric version of dual pairing vector spaces (DPVS) [35,36] constructed using
symmetric bilinear pairing groups given in Definition 1. Owing to the abstraction of
DPVS, the presentation and the security proof of the proposed schemes are essentially
the same as those on the asymmetric version of DPVS, (¢, V, V* G, A, A*, e), for
which see “Appendix A.2”. The symmetric version is a specific (self-dual) case of the
asymmetric version, where V. = V* and A = A*.

Definition 1. “Symmetric bilinear pairing groups” (¢, G, Gr, G, e) are a tuple of a
prime ¢, cyclic additive group G and multiplicative group Gr of order g, G # 0 € G,
and a polynomial-time computable non-degenerate bilinear pairing e : G x G — Gr,
ie., e(sG,1G) = e(G,G)*" and e(G, G) # 1.

Let Gppg be an algorithm that takes input 1* and outputs a description of bilinear
pairing groups (¢, G, Gr, G, ) with security parameter A.

Definition 2. “Dual pairing vector spaces (DPVS)” (¢, V, Gr, A, e) by a direct prod-
uct of symmetric pairing groups (¢, G, Gr, G, e) are a tuple of prime ¢, N-dimensional
N

vector space V := G x --- x G over Fy, cyclic group Gt of order ¢, canonical basis
- N
A:=(ay,...,ay)of V,wherea; :=(0,...,0,G,0,...,0),and pairinge : VxV —

Gr.

The pairing is defined by e(x, y) := ]_[lNzl e(G;, H;) € Gy where x := (Gy, ...,
Gy) € Vandy := (Hj, ..., Hy) € V.Thisis non-degenerate bilinear, i.e., e(sx, ty) =
e(x,y)’ andif e(x,y) = 1forall y € V, then x = 0. For all i and j, e(aj,aj) =
e(G, G)‘va-f where §; ; = 1if i = j, and O otherwise, and (G, G) # 1 € Gr.

DPVS generation algorithm Ggpys takes input 1* (A e N)and N € N, and outputs ade-
scription of paramy := (¢, V, Gr, A, e) with security parameter A and N-dimensional
V. It can be constructed using gbpg.

Remark 1. Formatrix W := (w; )i j=1,..N € F;VXNandelementg =(Gy,...,GpN)
in N-dimensional V, gW denotes (Zf-\':l Giwii,..-, ZINZI Giw; N) = (Zf-\':l w; 1Gj,

- ZlN=1 w; yG;) by a natural multiplication of a N-dim.row vector and a N x N
matrix. Thus, it holds an associative law as (W)W ™! = g(WW™!) = g and a pairing
invariance property e(gW, h(W—)T) = e(g, h) forany g, h € V.
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We describe random dual orthonormal basis generator Go, below, which is used as a
subroutine in the proposed FE scheme.

Gop (1%, 7i = (d: ny, . .. ng)) : paramg := (¢, G, Gr., G, ) & Gopg(11), ¥ £FX,
No:=5, Ny:=3n,+1 fort=1,...,d,
forr=0,...,d,
paramy, := (g, Vy, Gr, Ay, €) := Gapys(1*, N, paramg),

X1 91
Xo=| | =iy SOLNLEY | 0 | = @i = XD
)?t,N, BI,N,
b= ()?t,i)At = Zjvt:] Xt,i,j@r,j fori =1,..., Ny, By :=(br1,..., b n,),
N
by, = (5,,,-)‘&, = Zz?,,i,ja,,j fori=1,...,N,, B} := (b;‘,l,...,b;k’Nl),
j=1

We note that g7 = e(b,,,-,b;“i) fort=0,...,d;i=1,...,N;.

2.2. Decisional Linear (DLIN) Assumption
Definition 3. (DLIN: decisional linear assumption [9]) The DLIN problem is to guess
B €10, 1}, given (paramg, G,£G, kG, 86G,okG, Yg) a ggL'N(N), where
R
Gg-N(1*) : paramg := (q, G, Gr, G, €) < Gopg (1™,

€.8,5.0 <Fy Yo:=(@+0)G. ¥ <G,
return (paramg, G,£G,«xG,86G,o0kG, Yp),

for 8 <U—{0, 1}. For a probabilistic machine £, we define the advantage of £ for the DLIN
problem as:

Adv2HNG) =

Pr [5(1& 0)—1 ‘ 0 395’“”(1*)] —Pr [5(11, 0)—1 ‘ 0 <R_gPL'N(1*)” .

The DLIN assumption is: For any probabilistic polynomial-time adversary &, the

advantage Adv?LIN(A) is negligible in A.

2.3. Main Lemmas (Lemmas 1, 2 and 3 )

We will show three lemmas directly employed in the proof of Theorems 1 and 2 . The
proofs of the lemmas are given in “Appendix B”.
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Definition 4. (Problem 1) Problem 1 is to guess S, given (paramﬁ,Bo,@S,eﬁ,o,

~ R _
{Br, B}, epr1, eridi=i. ai=2...n,) < Gf ' (1%, ), where

- R -
Gyt i) (param;, {By. B} }i=o....q) < Gob(1*. 7).
Bg = (ba], ba?’, . bo 5) E* = (b[ ERE tn, I,2n,+l’ ey b;k,3nt+l) fort = 1, ey d,
U
w, 20, Yo < Fy, €00 :=(0,0,0,0,%0)8,, e1,0:=(®,2z0,0,0, )8,
fort=1,...,d;

G = (1,0 e M, LEM, y, LR,

ny ni ny 1
—— —— ——
eor1:=( wey, 0", 0™, Ye By
e :=( wer, Zt, o™, Yi B
e i =wb,; fori =2,..., n,

return (param;, Bo,Bo,eﬁo {B,, B ;aeﬂtl eriti=1,..d:i=2,..n,)s
for B <U—{0, 1}. For a probabilistic machine B, we define the advantage of B as the quantity
AdvR! ()= ’Pr[B(l’\ 0)—1 )g EgPiar, n)}—Pr[B(lk, 0)—1 ’g <R—gf1(1k,ﬁ)”.

Lemma 1. For any adversary B, there exist probabilistic machines £, whose running
times are essentially the same as that of B, such that for any security parameter X,
AdvE' () < AdvEYN () + (d + 6)/q.

Definition S. (Problem 2) Problem 2 is to guess f, given (param;;, @o, IB%’(;, h:‘;o, e,

Br By 1, e erihiotdsiot.n,) < G52(1%, ), where

.....

. R -
GE2(1*, i)+ (paramy, (B, B }i=o,...a) < Gop(1*. 1),
= (bo.1,b03, ... bos), Br:=(by 1, .., by, bion 41, - bi 1) fore=1,...d,
8,80, 0 < Fy, o < F, 20 = uy ',
Z[,l lzt,l
._ > Y . . (7—I\T _
=7, <GLn,F), | + |=@z " fort=1,.,4d,
zt,n, 1’7[,”1
hi o = (8,0,0,80, 0z, hi o := (8, u0,0,80,0)pz. e := (@, 720,0,0,0)p,,
fort=1,...,d; i=1,...,n;

> i— —i Y
=071 1,0") eFy, 5 < F)
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ny ny ny 1
——— ———
* - <
ho’” = ( dey i, 0", i (V)
* - - =
1,6,i *— ( 861,[7 u[,i’ 8t,i7 O )]B;k
ei= (  we, T2 0™, 0 B,

return (paramﬁ’ IBO’ Bz‘;v hz’()a €, {Bta B;kv h;,l,i’ et,i}t:l,‘.,d;i=1,..,n,)»

for B <U—{0, 1}. For a probabilistic adversary B, the advantage of B for Problem 2,
AdVE? (1), is similarly defined as in Definition 4.

Lemma 2. For any adversary B, there exists a probabilistic machine &£, whose run-
nlng tlme is essentially the same as that of B, such that for any security parameter A,
AdvEZ(1) < AdvEENG) 4 5/4.

Lemma 3. Forp € Fy, letCp, == {(X, V)|X- T=p,i#0,0#0} C F) xT}. Forall
(x, v)eCp,forall(r w) eCp,Pr[xU—r A vZ—w]: [ Z = 7 A vU—w]

1/4Cp, where Z £ GL(n, Fy), U = (z7HT.

3. Functional Encryption with a Large Class of Relations

In this section, we provide the definition of functional encryption with a large class of
relations, which are specified by non-monotone access structures combined with inner-
product relations.

As described in Sect. 1.3.4, vectors, X and v, with a ciphertext and secret key are
expressed by the form of (¢, X) and (¢, ¥), which mean that X and v are in a category or
subuniverse, U, i.e.,  is the identity of a category or subuniverse, ;.

Non-monotone access structures can be realized by span programs (Definition 6) and
be combined with inner-product relations (Definition 7).

3.1. Span Programs and Non-Monotone Access Structures

Definition 6. (Span programs [4]) Let {p1,..., pn} be a set of variables. A span
program over [, is a labeled matrix M= M, p) where M is a (£ x r) matrix over F,
and p is a labeling of the rows of M by literals from {p1, ..., py, —=p1, ..., 2 pn} (every
row is labeled by one literal), i.e., p : {1, ..., £} = {p1, ..., Pn, 7P1s --+» " Pn}-

A span program accepts or rejects an 1nput by the following criterion. For every input
sequence 6 € {0, 1}" define the submatrix M;s of M consisting of those rows whose
labels are set to 1 by the input &, i.e., either rows labeled by some p; such that §; = 1
or rows labeled by some —p; such that §; = 0. (i.e., y : {1, ..., £} — {0, 1} is defined
by y(j) = Lif [p(j) = pil A8 = 1or [p(j) = =pil A[8 = 0], and y(j) = 0
otherwise. M5 := (M )V(J) 1, where M is the ]th row of M.)

The span program M accepts § if and only if 1 € span(Ms), i.e., some linear combi-
nation of the rows of Ms gives the all one vector 1. (The row vector has the value 1 in
each coordinate.) A span program computes a Boolean function f if it accepts exactly
those inputs § where f(§) = 1.
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A span program is called monotone if the labels of the rows are only the positive
literals {p1, ..., pn}. Monotone span programs compute monotone functions. (So, a
span program in general is “non”-monotone.)

We assume that no row M; (i = 1, ..., £) of the matrix M is 0. We now introduce
a non-monotone access structure with evaluating map y by using the inner-product of
attribute vectors, that is employed in the proposed functional encryption schemes.

Definition 7. (Inner-products of attribute vectors and access structures) U (t = 1,
...,d and U, C {0, 1}*) is a subuniverse, a set of vectors, each of which is expressed
by a pair of subuniverse id and n,-dimensional vector, i.e., (¢, V), where t € {1, ..., d}
and © € "\ (0}.

We now define such an attribute to be a variable p of a span program M = (M, p),
ie., p := (¢,0). An access structure S is span program M = (M, p) along with
variables p = (¢,0), p’ := (¢, V), ...,ie,S := (M, p) such that p : {1,...,£} —
(@, v), @, V),...,=(t,0),=,0),...}.

Let I be a set of attributes, i.e., I' := {(¢,X;) | X; € W\{F)}, 1 <t < d}, where
1 <t < d means that 7 is an element of some subset of {1, ..., d}.

When I' is given to access structure S, map y : {1, ..., £} — {0, 1} for span program
M = (M, p) is defined as follows: Fori = 1, ..., ¢, set y(i) = 1if [p(i) = (¢, v;)]
Al X)) € T1 ALY - X = 0] or [p(i) = —(, v:)] Al(t, X;) € T] ALY - X; # 0]. Set
y (i) = 0 otherwise.

Access structure S := (M, p) accepts I' iff T e span((M;)y i)=1)-

Remark 2. Therestriction that v # 0and %, # 0 above is required by the security proof
or more specifically by Lemma 3. This restriction is reasonable in many applications.
For example, in the equality relations for ABE, v := (v, —1) and X := (1, x), where
v=xiff v-Xx =0.

We now construct a secret-sharing scheme for a non-monotone access structure or
span program.

Definition 8. A secret-sharing scheme for span program M = (M, p) is:

1. Let M be £ x r matrix. Let column vector]?T =(f1,..., f,)T <U—]Fq’ Then, so :=
1. fT = Y0_, fi is the secret to be shared, and 57 := (s1,...,s50)T ;= M - fT
is the vector of £ shares of the secret s and the share s; belongs to p(i).

2. If span program M = (M, p) accept §, or access structure S := (M, p) accepts I,
i.e.,I € span{(M;),@)=1) withy : {1, ..., £} — {0, 1}, then there exist constants
{aj e Fyliel}suchthat] C{i €{l,...,¢}|y(@i) =1} and Zielaisi = 50.
Furthermore, these constants {¢;} can be computed in time polynomial in the size
of matrix M.
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3.2. Key-Policy Functional Encryption with a Large Class of Relations

Definition 9. (Key-policy functional encryption: KP-FE) A key-policy functional en-
cryption scheme consists of four algorithms.

Setup This is a randomized algorithm that takes as input security parameter and format
n:= (d;ny,...,ng) of attributes. It outputs public parameters pk and master
secret key sk.

KeyGen This is a randomized algorithm that takes as input access structure S :=
(M, p), pk and sk. It outputs a decryption key Sks.

Enc This is a randomized algorithm that takes as input message m, a set of attributes,
I = {( X)|x: € IF‘;’\{O}, 1 <t < d}, and public parameters pK. It outputs a
ciphertext Ctr.

Dec This takes as input ciphertext Ctr that was encrypted under a set of attributes I,
decryption key skg for access structure S, and public parameters pk. It outputs
either plaintext m or the distinguished symbol L.

A KP-FE scheme should have the following correctness property: for all (pk, sk) 5
Setup(1*, #), all access structures S, all decryption keys Skg & KeyGen(pk, sk, S),

all messages m, all attribute sets I', all ciphertexts ctr 2 Enc(pk, m, I'), it holds that
m = Dec(pk, sks, ctr) with overwhelming probability, if S accepts I.

Definition 10. The model for proving the adaptively payload-hiding security of KP-FE
under chosen-plaintext attack is:

Setup The challenger runs the setup algorithm, (pk, sk) <R— Setup(l}‘, 1), and gives
public parameters pkK to the adversary.

Phase 1 The adversary is allowed to adaptively issue a polynomial number of queries,
S, to the challenger or oracle KeyGen(pk, sk, -) for private keys, skg associated
with S.

Challenge The adversary submits two messages m©@ mD and a set of attributes, I,
provided that no S queried to the challenger in Phase 1 accepts I". The challenger

flips a coin b g{O, 1}, and computes Ctg’) 2 Enc(pk, m®, I). It gives Ct%b) to
the adversary.

Phase 2 The adversary is allowed to adaptively issue a polynomial number of queries,
S, to the challenger or oracle KeyGen(pk, sk, -) for private keys, skg associated
with S, provided that S does not accept I'.

Guess The adversary outputs a guess b’ of b.

The advantage of adversary A in the above game is defined as AvaKL‘F”:E‘PH ) =

Pr[b’ = b] — 1/2 for any security parameter A. A KP-FE scheme is adaptively payload-
hiding secure if all polynomial-time adversaries have at most a negligible advantage in
the above game.

We note that the model can easily be extended to handle chosen-ciphertext attacks
(CCA) by allowing for decryption queries in Phases 1 and 2. The advantage of adversary
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A in the CCA game is defined as AdVE\P_FE’CCA_PH(k) := Pr[b’ = b] — 1/2 for any
security parameter A.

3.3. Ciphertext-Policy Functional Encryption with a Large Class of Relations

Definition 11. (Ciphertext-policy functional encryption: CP-FE) A ciphertext-policy
functional encryption scheme consists of four algorithms.

Setup This is a randomized algorithm that takes as input security parameter and format
n:=(d;ny,...,ng) of attributes. It outputs the public parameters pk and a master
key sk.

KeyGen This is a randomized algorithm that takes as input a set of attributes, I :=
((t, X)X € IF,;“, 1 <t < d}, pk and sk. It outputs a decryption key.

Enc This is a randomized algorithm that takes as input message m, access structure
S := (M, p), and the public parameters pK. It outputs the ciphertext.

Dec This takes as input the ciphertext that was encrypted under access structure S, the
decryption key for a set of attributes I", and the public parameters pk. It outputs
either plaintext m or the distinguished symbol L.

A CP-FE scheme should have the following correctness property: for all (pk, sk) il
Setup(1%, 1), all attribute sets I, all decryption keys Skr 2 KeyGen(pk, sk, I'), all

messages m, all access structures S, all ciphertexts Ctg 3 Enc(pk, m, S), it holds that
m = Dec(pk, skr, cts) with overwhelming probability, if S accepts I.

Definition 12. The model for proving the adaptively payload-hiding security of CP-FE
under chosen-plaintext attack is:

Setup The challenger runs the setup algorithm, (pk, sk) <5 Setup(l’\, 1), and gives the
public parameters pK to the adversary.

Phase 1 The adversary is allowed to issue a polynomial number of queries, I', to the
challenger or oracle KeyGen(pk, sk, -) for private keys, skr associated with I.

Challenge The adversary submits two messages m(?), m(1) and an access structure, S :=
(M, p), provided that the S does not accept any I" sent to the challenger in Phase 1.

The challenger flips arandom coin b <U—{O, 1}, and computes Ctg’) 3il Enc(pk, m®,

S). It gives Ct(Sb) to the adversary.

Phase 2 The adversary is allowed to issue a polynomial number of queries, I', to the
challenger or oracle KeyGen(pk, sk, -) for private keys, Skr associated with T,
provided that S does not accept I

Guess The adversary outputs a guess b’ of b.

The advantage of an adversary A in the above game is defined as AdvGP-FEPH ) =

Pr[b’ = b] — 1/2 for any security parameter . A CP-FE scheme is adaptively payload-
hiding secure if all polynomial-time adversaries have at most a negligible advantage in
the above game.

We note that the model can easily be extended to handle chosen-ciphertext attacks
(CCA) by allowing for decryption queries in Phase 1 and 2. The advantage of an adversary
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Ain the CCA game is defined as Adv§ "= C“A"PH) := Pr[b’ = b] — 1/2 for any
security parameter A.

3.4. Unified-Policy Functional Encryption with a Large Class of Relations

Definition 13. (Unified-Policy Functional Encryption: UP-FE) A unified-policy func-
tional encryption scheme consists of four algorithms.

Setup This is a randomized algorithm that takes as input security parameter and for-
mat 11 1= ((dKP KP, . dKP) (dCP CP, . dcp)) of attributes. It outputs
public parameters pk and master secret key Sk.

KeyGen This is a randomized algorithm that takes as input access structure

cP
(MKP, pKP), a set of attributes, TCP := {(r, XCP)|¥CP e F," \{0},1 < ¢
d®P}, pk and sk. It outputs a decryption key sKkp rcp).

Enc This is a randomized algorithm that takes as input message m, a set of attributes,

KP ~KP\ | =KP "\ 8 KP cp
r = {(t, X)X e Fy' \{0},1 <t < d""}, access structure S¥" :=
(M CP, pCP), and pubhc parameters pK. It outputs a ciphertext Ct xp gcp).
Dec This takes as input a ciphertext Ct ke gcp that was encrypted under a set of at-

SKP .=

A

tributes and access structure, (FKP, SCP), decryption key Sk(SKP’rCP) for access

structure and a set of attributes, (SKP, FCP), and public parameters pk. It outputs
either plaintext m or the distinguished symbol L.

A UP-FE scheme should have the following correctness property: for all (pk, sk) &
Setup(l*, n), all access structures SKP, all attribute sets FCP, all decryption keys

Sk(SKP’FCP) 2 KeyGen(pk, sk, SKP. FCP), all messages m, all attribute sets KPP all

access structures SCP, all ciphertexts Ct(rKP‘SCP) 2 Enc(pk, m, kP, SCP), it holds that
m = Dec(pk, skgkp rcp), Ct ke scp)) with overwhelming probability, if SKP accepts
'KP and SCP accepts P

The adaptively payload-hiding security of UP-FE under chosen-plaintext attack (and

chosen-ciphertext attack) are defined similarly as those of KP-FE and CP-FE. (See
Definition 10, 12.)

4. KP-FE Scheme

This section presents a KP-FE scheme with the large class of relations, which is defined
in Sect. 3.2.

4.1. Key Idea of the Construction

Our construction is based on the dual pairing vector spaces (DPVS) (Sect. 1.3.3). A pair
of dual (or orthonormal) bases, B and B*, are randomly generated using random linear
transformation, and a part of B (say I@%) is used as a public key and the corresponding
part of B* (say Bx) is used as a secret key or trapdoor.

As mentioned in Sect. 1.3.4, in our KP-FE scheme, a ciphertext ¢ with a n-dimensional
vector (t, X) is realized as



1512 T. Okamoto, K. Takashima

¢ = (0x,0",0", 9)B,,

U > . . .
where w, ¢ < Fq and x is normalized as (1, %, ..., *). A secret key k;.k for the ith entry
of a span program associated with a vector (¢, v;) is realized as

-

k= (sie; + 6;v;, 0", 1j;, 0)g+  (if the ith entry is labeled ‘positive’),
kY = (siv;, 0™, 7j;, 0)p:  (if the ith entry is labeled ‘negative’),

where s; is the i-entry’s share of the span program, ¢; := (1,0, ...0) € F”, 6 <U— Fy,,
i <.
The pairing operation of ¢ € span(B;) and k; € span(B}) is possible and is

e(c, k}) = g‘}"”"'wg"}'ﬁ" (if the ith entry is labeled ‘positive’),

e(c, ki) = g‘T’)S"’? Ui (if the ith entry is labeled ‘negative’),
Therefore,

e(c,kf) = g7" (if the ith entry is labeled ‘positive’ and X - U; = 0),
e(c, k;“)l/i'af = g7 (if the ith entry is labeled ‘negative’ and X - ¥; # 0),

When a subset of entries, where g‘}’s" is revealed, span the program, or the relation
for the parameters of ciphertext and secret key holds in our scheme, a ciphertext can be
decrypted.

A nice property of DPVS is that we can set a hidden linear subspace by concealing
the basis of a subspace from the public key. Here, span(B) and span(B*), are (3n + 1)-
dimensAional (where the dimension of vectors is n), and, as for public parameter ]]AS,
span(B) is (n+ 1)-dimensional, i.e., the basis for the remaining 2n-dimensional space is
information theoretically concealed (ambiguous). The n-dimensional space in the space
is employed for the randomness, 7;, in a secret key, and the remaining n-dimensional
hidden subspace is employed to realize the semi-functional forms of ciphertext and
secret keys. Problems 1 and 2 assumptions (Definitions 4, 5 ) bridge the normal and
semi-functional forms of ciphertext and secret keys.

4.2. Construction

We define function p : {1,...,¢} — {1,...,d} by p(i) := t if p(i) = (t,0) or
p(i) = —(t,v), where p is given in access structure S := (M, p). In the proposed
scheme, we assume that p is injective for S := (M, p) with decryption key sks. We will
show how to relax the restriction in “Appendix E”.

In the description of the scheme, we assume that input vector, X; := (x,1, .. ., Xt.n,)s
is normalized such that x; | := 1. (If X; is not normalized, change it to a normalized one
by (1/x¢.1) - X;, assuming that x; | is nonzero).
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Random dual basis generator Gop, (1%, 71) is defined at the end of Sect. 2.1. We refer to
Sect. 1.5 for notations on DPVS.

.....

By := (bo,1,bo3, bo5), B, := (bs,1,s s brpy bi3n, 1) fort=1,..,d,
BE‘; = (bg,l’ bg!?’, b3’4), ]B;k = (b;k’l, .ey b* * ooy b;k,3n,) fort = 1, .oy d,

t,ng Yt 2n+10 0

.....

return pk, sk.
KeyGen(pk, sk, S := (M, p)) :

f<U—IF’, STe=G1vees)T =M f1 s9:=1- fT, ’70<U_]Fq*
k;; = (_s07 07 17 no, O)Ba’
fori=1,...,¢,

. . - = U - U
if () = (1.5 = Wit ooy vim) €FIND), 6 < Fy, i < FLM,

ny n; n; 1
— | ——  —— N =
ki = ( sier1+6;v;, 0, iy 0 sy,
. . - - U
if p(i) = =@, v), ni <F,
n ny ny 1
—m—mAl —— —— —— =
k;k = ( Silj[, 0", ﬁ,’, 0 )]Bg;k,
return Sks := (S, kg, k7, ..., ky).

Enc(pk, m, T = {(t. % = (Xy.1. .. Xrn,) € FP\OD |1 <1 <d,x01 = 1)) :

. g0, g1, ¢ <, for (1. %) €T,
¢ = (w, 0, ¢, 0, ¢o)B,.

ny ne n; 1

—~——— —— =
¢ = ( WXy, 0", 0", @ B, for (1,%) €T,
Cd+1 1= g;m, ctr := (I, co, {€:} ¢t 5yers Cat1),

return Ctr.
Dec(pk, sks := (S, kj, k7, ..., k7)), ctr := (T, co, {¢/}¢.3)ers Cat1))

If S := (M, p) accepts I' := {(¢, X;)}, then compute I and {c; };c; such that

1= Z%‘Mh where M; is the ith row of M, and

iel
ICfie{l,....0} | [p()=(,0) A (t,X) el A ¥;-% =0]
\% [p(l) = _'(t’ I_jl) A\ (tril) S r A ai 'il 7&0] }9
K:=e(co.ky) ]  elcrkp) [T eler k)@,
iel A p()=(t.7;) iel A p(i)=—(t,7;)

return m’' :=cg41/K.
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[Correctness] If S := (M, p) accepts I' := {(¢, X;)},

e(C(), kz;) l_[iEI A p(D)=(t,7;) e(cts k;'k)ai : HiEI A p()=—(1,7;) E(Ct, k;-k)ai/(vi'x’)

—wso+¢ ;s wa;s; (V;-X;) [ (Vg -Xp)

=8r [lics & p()=(t.5) 8T [Ticr A p()=—(t.7;) 8T

o(=So+Y ey @isi)+¢
= g7 “ = g7

4.3. Security

Theorem 1. The proposed KP-FE scheme is adaptively payload-hiding against chosen-
plaintext attacks under the DLIN assumption.

Forany adversary A, there exist probabilistic machines £ , 52+ , and &, whose running
times are essentially the same as that of A, such that for any security parameter A,

v—1
AP FEPHG) < AdvBIN ) + 3 (AdV?ELN (1) + Advg, [ W) te
h=0 '

where EZh(') = €2+(h, s E.n41() =& (h, ) (h=0,...,v—1), v is the maximum
number of A’s key queries and € := (2dv + 16v +d +7)/q.

Proof Outline of Theorem 1: At the top level of strategy of the security proof, we follow
the dual system encryption methodology proposed by Waters [49]. In the methodology,
ciphertexts and secret keys have two forms, normal and semi-functional. In the proof
herein, we also introduce another form called pre-semi-functional. The real system uses
only normal ciphertexts and normal secret keys, and semi-functional/pre-semi-functional
ciphertexts and keys are used only in a sequence of security games for the security proof.

To prove this theorem, we employ Game 0 (original adaptive security game) through
Game 3. In Game 1, the challenge ciphertext is changed to semi-functional. When at
most v secret key queries are issued by an adversary, there are 2v game changes from
Game 1 (Game 2-0), Game 2-0", Game 2-1 through Game 2-(v — 1)* and Game 2-v.
In Game 2-#, the first i keys are semi-functional while the remaining keys are normal,
and the challenge ciphertext is semi-functional. In Game 2-h™, the first & keys are
semi-functional and the (h + 1)th key is pre-semi-functional while the remaining keys
are normal, and the challenge ciphertext is pre-semi-functional. The final game with
advantage 0 is changed from Game 2-v. As usual, we prove that the advantage gaps
between neighboring games are negligible.

For sks := (S, kg, k7, ..., k}) and ctr := (T, co, {¢;}(1.5,)er, ca+1), we focus on
I_ég = (k. kY, ..., k}) and ¢ér := (co, {¢/}(.7,)er), and ignore the other part of skg
and ctr (and call them secret key and ciphertext, respectively) in this proof outline. In
addition, we ignore a negligible factor in the (informal) descriptions of this proof outline.
For example, we say “A is bounded by B” when A < B + € (1) where €()) is negligible
in security parameter A.

A normal secret key, Izg norm (with access structure S), is the correct form of the
secret key of the proposed FE scheme, and is expressed by Eq. (1). Similarly, a normal

ciphertext (with attribute set I'), ¢f°"™, is expressed by Eq. (2). A semi-functional secret
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% semi . . . > i
key, ks ,isexpressed by Eq.(8), and a semi-functional ciphertext, ¢;°™, is expressed

by Egs. (3)—(5). A pre-semi-functional secret key, I;; preiseml, and pre-semi-functional
ciphertext, -c»lpire-seml’ are expressed by Eq. (6) and Eqgs. (3), (7) and (5), respectively.

To prove that the advantage gap between Games 0 and 1 is bounded by the advantage
of Problem 1 (to guess B € {0, 1}), we construct a simulator of the challenger of Game

0 (or 1) (against an adversary .A) by using an instance with j <U—{O, 1} of Problem 1.
We then show that the distribution of the secret keys and challenge ciphertext replied by
the simulator is equivalent to those of Game 0 when 8 = 0 and those of Game 1 when
B = 1. That is, the advantage of Problem 1 is equivalent to the advantage gap between
Games 0 and 1 (Lemma 4). The advantage of Problem 1 is proven to be equivalent to
that of the DLIN assumption (Lemma 1).

The advantage gap between Games 2-h and 2-h™ is similarly shown to be bounded
by the advantage of Problem 2 (i.e., advantage of the DLIN assumption) (Lemmas 5
and 2 ). Here, we introduce special forms of pre-semi-functional keys and ciphertexts,

- Spec.pre—semi o - i . .
Ky PP and crS pec.pre=semi. respectively, such that they are equivalent to pre-

S
. . . - pre-semi - - i .
semi-functional keys and ciphertexts, kSp and clP re-semt. respectively, except

U U - % pre—semi
that worg = ap := Y ;_; & and ro < F, (note that ro, wy < F, for kSp and
are

- pre—semi - Spec.pre—semi - spec.pre—semi
Cr and ¢~ s
- spec.pre-semi

). These forms of keys and ciphertexts, kg
simulated using Problem 2 with § = 1. From the definition of these forms, kg

can decrypt Ers PeC.pre-semi for any I' when S accepts T', i.e., it is hard for simulator B;“
-x Spec.pre—semi _, — i -xnorm i
to tell (kg pecp , crspec‘pre seml) for Game 2-h™ from (kg , crseml) for Game

2-h under the assumption of Problem 2. On the other hand, ao(= worp) is indepen-

dently distributed from the other variables when S does not accept I' (shown in Proof of

Claim 1 by using Lemma 3). That is, the joint distribution of I?;pre-seml and Erp re-semi
, when S does not accept I"

is equivalent to that of I—é;spec‘pre—seml and Z"FS pec.pre—sem
(.e., B;' ’s simulation using Problem 2 with 8 = 1 is the same distribution as that of
Game 2-h™ from the adversary’s view). In other words, wg and rg in I;; spec.pre-semi and
Ers pec-pre=semt viven by B5 s simulation using Problem 2 with B = 1) are correlated
for the case that S accepts I" or for simulator B; ’s view, but adversary A cannot notice
the correlation since .A’s queries should satisfy the condition that S does not accept I'.
The advantage gap between Games 2-h* and 2-(h + 1) is similarly shown to be
bounded by the advantage of Problem 2, i.e., advantage of the DLIN assumption (Lem-
mas 6 and 2).
Finally, we show that Game 2-v can be conceptually changed to Game 3 (Lemma 7).
The game transformations as well as (hierarchical) reductions of Problem 1 and 2
assumptions to the DLIN assumption are summarized in Fig. 1. (For the (hierarchical)
reductions, refer to “Appendix B”.)

Proof of Theorem 1. To prove Theorem 1, we consider the following (2v + 3) games.
In Game 0, a part framed by a box indicates coefficients to be changed in a subsequent
game. In the other games, a part framed by a box indicates coefficients which were
changed in a game from the previous game.
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Game 2-0
1
Game Game Game Game Game Game Game
0 1 2-0* 241 2-(v-1)* 2-v 3
| Problem 1 Problem 2
T A
| Basic Problem 1 Basic Problem 2 |

\/

Basic Problem 0
A

DLIN

Fig. 1. Structure of reductions for the proposed KP-FE and CP-FE (in Sect. 5) schemes.

Game 0 : Original game. That is, the reply to a key query for S := (M, p) with £ x r
matrix M is:

k== (—=s0. [0, 1. no, O)g;.
fori=1,...,4,

. . - . - (1)
if p(i) = (t,0;), KE = (581 +6;5;, 0" ], 7ir, O)gs,

if p(i) = =G0, 3), kF = (50, (0™ ], 7ii, O)e,

wheref<U—IFr,§T =(s1,...,50)7 == M-fr,so = Tfr, 0;, o qu, 7 <U—F;’,Zt,1
=(1,0,...,0) € F, and ¥; € F,"\{0}. The challenge ciphertext for challenge plain-
texts (M@, mWyand T := {(t, %) | 1 <t < d)} is:

0=, [0} [¢] 0, ¢y,
= (8%, [0 ], 0", @1)s, for (1, %) €T, @)
Cd+1 ‘= ggrm(b),

where b <-{0, 1}; 8. . go. ¢s < F,, and %, € F"\(0).

Game 1: Same as Game 0 except that the challenge ciphertext is:

co: = (6, [0} & 0, 90, 3)
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e = (8%, || 0", g, for (1, %) €T, )
Cdy1 i= g§m(b), &)
U - U . .
where ro < Fy, 1y < IF‘; ', and all the other variables are generated as in Game 0.

Game2-hT (h=0,...,v—1): Game 2-0is Game 1. Game 2-h is the same as Game
2-h except the reply to the (7 + 1)th key query for S := (M, p) with £ x r matrix M,
and ¢, of the challenge ciphertext are:

k§ := (—s0, , 1, no, O)mg,

fori=1,...,¢,
if p(i) = (t, vy), .
ki == (sie;1 + 00, ’(aigt,l + i) - Zo |, nis 0)mrs ©

if p(i) = =(t, V),

ki = (sivi, , My 0)mr,
¢ = (0%, [% U] 0", gp)p, for (1.%) €T, (7)

where wg <U—IFq, §<U—]F’ at == (ar,...,a)T =M g7, = <U—IFq i=1,...,0),

Z; <U— GL(n,,Fy), U = (Zfl)T fort = 1,...,d, and all the other variables are
generated as in Game 2-4.

Game2-(h+1)(h =0,...,v—1):Game 2-(h + 1) is the same as Game 2-h except
the reply to the (h + 1)th key query for S := (M, p) with £ x r matrix M, and ¢, of the
challenge ciphertext are:

ki = (=s0, wo, 1, no, O)g;,
fori =1,...,¢,

if p(i) = (t,), Kk} = (si€1 + 60, 0" ], i, O,
if p(i) = =(t. 01), k= (si%, [0 ] iii, O)pr,
¢ = (%, |Ti], 0. go)p, for (1.%) €T, @®

- U . .
where r; < ]F; ', and all the other variables are generated as in Game 2-ht.

Game 3 : Same as Game 2-v except that ¢ and ¢, of the challenge ciphertext are
coi= . r0. [¢'] 0. go)my. casr = ggm®),

where ¢’ <U— IF, (i.e., independent from ¢ <U— IF;), and all the other variables are generated
as in Game 2-v.
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Let Adv (), Adv (), Advi™ (), Adv‘j"“)(x) and Adv)(%) be the
advantage of A in Game 0, 1,2 — h, 2 —h™ and 3, respectively. Advfg) () is equivalent
to AdVJKL‘P_FE’PH (A) and it is clear that Advi) (&) = 0 by Lemma 8.

We will show four lemmas (Lemmas 4-7) that evaluate the gaps between pairs of
Adv (1), AdvY (), AdvE (), AdvE 0 ), AVE P () forh = 0, ..., v—
1 and Advfl) (A). From these lemmas and Lemmas 1 and 2 , we obtain

AdVKEFE PR = AdvQ () < (Adv(‘”(x) Advﬁj‘)(x)‘ +Z)Adv(2 M- AVE ()

+Z‘Adv(2 "G = AT G|+ [AdVG T () —AdV ()| + Adv G
h=0

< Advi () + ZAdv W+ ZAdeM+1 (W) + Qdv+6v+ 1)/q
h=0 h=0

< Advg"NG) + Z (AdvDL'N(A) +Advert (A)) +Qdv +16v+d +7)/q.
This completes the proof of Theorem 1. O

Lemma 4. For any adversary A, there exists a probabilistic machine By, whose run-
ning time is essentially the same as that of A, such that for any security parameter X,

Adv'Y () — Adv) (V)] < Advg (L),

Proof. In order to prove Lemma 4, we construct a probabilistic machine B against
Problem 1 using an adversary A in a security game (Game O or 1) as a black box as
follows:

1. By is given a Problem 1 instance, (param;,,]E%o,I’B?g, €g.0, {Bt,@;‘, eg:1,
e jti=1,..d;j=2,..n,)-

2. B plays a role of the challenger in the security game against adversary A.

3. At the first step of the game, B; provides A a public key pk := (1%,
param, {Bt}t =0,...a) of Game 0 (and 1), where IBSO := (bo.1, bo.3, bo5) and
B, := (b11, .., by n, br3n,+1) for t = 1, .., d, that are obtained from the Prob-
lem 1 instance.

4. When a key query is issued for access structure S := (M, p), B answers normal
key (kg, ..., ky) with Eq. (1), that is computed using {B;};—o,... 4 of the Problem
1 instance.

5. When B receives an encryption query with challenge plaintexts (m®, m") and
I := {(¢,x) | 1 <1t < d}from A, By computes the challenge ciphertext
(o, {¢t}(t.7,)er> ca+1) such that

.....

. . n . ¢
co:=epo+ §b0,3, Cr =Xt 1€p¢,1 + th:z Xt,j€t,j» Cd+1 = ng(b),

u u .
where ¢ < Fy, b <{0, 1}, and (bo 3, €0, {€p,1,1, €1, j}i=1,...d: j=2,...n,) 1S @ part
of the Problem 1 instance.
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6. When a key query is issued by A after the encryption query, 3| executes the same
procedure as that of step 4.
7. A finally outputs bit b'. If b = b, By outputs B’ := 1. Otherwise, B; outputs
B =0.
It is straightforward that the distribution by B;’s simulation given a Problem 1 instance
with B is equivalent to that in Game 0 (resp. Game 1), when 8 = 0 (resp. 8 = 1) since
x1 =1 O

Lemma 5. For any adversary A, there exists a probabilistic machine B, whose run-
ning time is essentially the same as that of A, such that for any security parameter A,

AdvG M () — AV LRTNY < AdvE? T 00+ @ +3)/q, where BY, () =By (h, ).

Proof. In order to prove Lemma 5, we construct a probabilistic machine B; against
Problem 2 using an adversary A in a security game (Game 2-h or 2-h™) as a black box
as follows:

1. B; is given an integer 4 and a Problem 2 instance, (param;, @o, B;, hz’o, e,

{@z,Bf,hE,,,j,ez,j}zzl ..... dij=1, )

2. B;r plays a role of the challenger in the security game against adversary .A.

3. At the ﬁr’s\t step of the game, B; provides A a puBlic key pk = (1%,
param;, {B}};—o...4) of Game 2-h (and 2-h™), where By = (bo,1. bo3, bo,5)
and B) := (b1, ... bt ., bs 3n,4+1) for t = 1, .., d, that are obtained from the
Problem 2 instance.

4. When the (th key query is issued for access structure S := (M, p), B;' answers as
follows:

(a) When1 < < h, B; answers semi-functional key (kj, ..., k;) with Eq.(8),
that is computed using {B}};~o,... 4 of the Problem 2 instance.

(b) When « = h + 1, B; calculates (kg, ..., k}) using (bo.1, bo 3, hjg,o’
{bt i h;yt,j}tzl ,,,,, d;j=1,...n,) Of the Problem 2 instance as follows:

~ U
ﬂ[?ﬂlagk7,u’k(_F(1 fOr[: ]‘77da k= 1,...,}",
ﬁ;,o = 22:1 (gkh:g,() + ﬁkbal) )
fort=1,...,d; k=1,...,r; j=1,...,n4
Phj = b+ by, 57§J,k,1 = gl + by,
ké = _iz’o + bs,gv
fori=1,...,¢,
if p(i) = (. V), k=300, vijph, i+ Yt Misk P, g1
if p(i) = =(t, 0), ki =30, vij iy MikPh,p j)-
where (M, i)i=1,....0:k=1,...,

(¢c) Whent > h + 2 B+ answers normal key (kg, ..., ky) with Eq.(1), that is
computed using {B*}I—O,..., of the Problem 2 instance.
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5. When B;’ receives an encryption query with challenge plaintexts (m©®, m () and
I :={(tX) |1 <t < d} from A, B;r computes the challenge ciphertext
(co, {er}(t.5,)er ca+1) such that for (t, %) € T,

coi=eo+bos+qo €= xijer;+qp,  carr = gpm®,

where ¢ <F,, b<-{0.1}, go<-span(bos). 4, < span(b;sm,+1). and
(bo3, o0, {er,j}i=1,...a: j=1,..,n,) is a part of the Problem 2 instance.

6. When a key query is issued by A after the encryption query, B; executes the same
procedure as that of step 4.3.

7. A finally outputs bit . If b = b', BY outputs B’ := 1. Otherwise, 35 outputs
B :=0.

Remark 3. ﬁE,O’ pz’t’j, ﬁ;;’[yk’j fort =1,...,d;k=1,...,r;j=1,...,n; calcu-
lated in case (b) of steps 4 and 6 in the above simulation are expressed as:

Or =78+ e, fio i =gkS+ Tk, S0 =3 k1 i @0 =D 4y &k Wo :=do/20 (= aouo),
g0 = (50, 0,0, a080, 0)g, P o = (50, wo, 0, aodo, 0y,

n; ny ng 1
—~
P(ﬂi;,j = ( Orer,j, 0", ﬂtﬁt,j, 0 )Bj,
Posr, =0 feer, o, 8kd1 0 ;.
PT,,,J = ( Ore;j, TCrUs,j, 7181, 0 )IB;‘,
~x% - - g
Pl =0 feerj gkUs,j, 8kSt.j, 0 e,

where 8, zo, 8o, {€;,;, uir, , (_S},,j},=1,,‘,,d;j:1wn, are defined in Problem 2. Note that vari-
ables {6, w/}i=1.. .4, { fk, 8k }k=1.....r are independently and uniformly distributed. There-
fore, {kf},-zowg are distributed as Eq. (6) except wo := ag/r0, i.€., worg = aop, using

ap and rg 1= 2o qu in ¢g (Eq.3).

Claim 1. The distribution of the view of adversary A in the above-mentioned game
simulated by B;' given a Problem 2 instance with B € {0, 1} is the same as that in
Game 2-h (resp. Game 2-h™) if B = 0 (resp. B = 1) except with probability (d + 2)/q
(resp.1/q).

Proof. Tt is clear that B; ’s simulation of the public key generation (step 4.3) and the
tth key query’s answer for ¢ # h + 1 (cases (a) and (c) of steps 4.3 and 6) is perfect, i.e.,
exactly the same as the Setup and the KeyGen oracle in Game 2-h and Game 2-h ™.
Therefore, to prove this lemma we will show that the joint distribution of the (A + 1)-
the key query’s answer and the challenge ciphertext by B;r ’s simulation given a Problem
2 instance with 8 is equivalent to that in Game 2-% (resp. Game 2-h™), when 8 = 0

(resp. B =1).
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When 8 = 0, it is straightforward to show that they are equivalent except that &
defined in Problem 2 is zero or there exists ¢ € {0, ..., d} such that 7, = 6, where 7; are
defined in Eqs. (3) and (4), i.e., except with probability (d + 2)/q.

When B = 1, the distribution by B;' ’s simulation is Eq. (6) for the key and Egs. (3),
(5), and (7) for the challenge ciphertext, where the distribution is the same as that defined

in these equations except wg := ag/ro, 1.e., Worg = ag, using agp := 1. §T and ro <U— Fy
in ¢ (Eq.3) from Remark 3. The corresponding distribution in Game 2-A™ is Eq. (6)

and Egs. (3), (5), and (7) where rg, wq <U— IF, as defined in the equations.
Therefore, we will show that aq is uniformly and independently distributed from

the other variables in the joint distribution of B; ’s simulation. Since ap := 1. ry
is only related to (a1, ...,a¢)T := M -g¥ and U, = (Z[l)T holds, aq is only re-
lated to {w;}i=1,...¢, {Wi}i=1,. ¢ and {F1}i=1,. 4, Where w; := (a;€;1 + miV;) - Z; =

((@;,0,...,0)+m;v;)-Z; andw; := a;V;-Z,inBq.(6)fori = 1,...,¢,and 7 := X;-U,
inEq.(7)forr = 1,...,dwitht := p(i).(pis defined at the start of Sect. 4.) With respect
to the joint distribution of these variables, there are five cases for each i € {1, ..., £}.
Note that for any i € {1,..., ¢}, (Z;, U;) with ¢ := p(i) is independent from the other
variables, since p is injective:
1. yG@)=1land [p(i) = (t,V;)) A (t,X%) €T A ¥ - % =0].
Then, from Lemma 3, the joint distribution of (wy;, 7) is uniformly and indepen-
dently distributed on Cy, := {(w, F)|w - ¥ = a;} (over Z; 2 GL(n,Fy)).
2. y()=1and [p() =—(,v;) A (t,%) €l /\j,- <X #0].
Then, from Lemma 3, the joint distribution of (w;, ) is uniformly and indepen-
dently distributed on C g, 3,).q; (Over Z; < GL(n,, Fy)).
3. (i) =0and [p(i) = (¢, 0;) A (t,%) € T](Ge., v; - X #0).
Then, from Lemma 3, the joint distribution of (wy;, 7;) is uniformly and indepen-
dently distributed on C(y;.3,).7,+4; (OVer Z; <U— GL(n;,F,)) where 7; is defined in
Remark 3. Since 7; is uniformly and independently distributed on [, the joint
distribution of (w;, 7;) is uniformly and independently distributed over qu "
4. y(@)=0and [p(i) = —=(t,0;) A (t,X%) €] (ie. v; - X, = 0).
Then, from Lemma 3, the joint distribution of (w;, 7) is uniformly and indepen-
dently distributed on Cy (over Z; <U— GL(n,, Fy)).
5. [p(i) = (t,v:) A (t,%) gT]or[p@i) ==, v:) A (t,%) €T].
Then, the distribution of w; is uniformly and independently distributed on IF; !

(over Z; <U— GL(n, Fy)).

,,,,,

and {F;};=1...4. Those in cases 3-5 are obviously independent from ag. Due to the
restriction of adversary A’s key queries, 1 & span((M;), )=1). Therefore, ag := 1. e
is independent from the joint distribution of {a; := M; -g" | y (i) = 1} (over the random
selection of g), which can be given by (;, 7;) in case 1 and (w;, 7;) in case 2. Thus, ag is
uniformly and independently distributed from the other variables in the joint distribution
of B;’ ’s simulation.
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Therefore, the view of adversary A in the game simulated by B;’ given a Problem 2
instance with 8 = 1 is the same as that in Game 2-A™ except that § defined in Problem
2 is zero, i.e., except with probability 1/q. O

This completes the proof of Lemma 5. ]

Lemma 6. For any adversary A, there exists a probabilistic machine B,, whose run-

ning time is essentially the same as that of A, such that for any security parameter X,
2—nt 2—(h+1

AdVE" ) — AV 001 < AdvEZ (0 + (d +3)/q, where By pyi () 1=

82 (h7 )

1

Proof. In order to prove Lemma 6, we construct a probabilistic machine B, against
Problem 2 using an adversary A in a security game (Game 2-h™ or 2-(h + 1)) as a black
box. B3 acts in the same way as B; in the proof of Lemma 5 except the following two
points:

1. In case (b) of step 4; kj is calculated as

ki = —Ppo + rob5 2 + bg 3

where r,) 2 Fq, P} ¢ is calculated from kg o and bg | as in the proof of Lemma 5,
and B* := (b 1, by 5, by 3) is in the Problem 2 instance.
2. In the last step; if b = b’, B, outputs 8’ := 0. Otherwise, B; outputs p’ := 1.
When B = 0, it is straightforward that the distribution by 3,’s simulation is equiv-
alent to that in Game 2-(h + 1) except that § defined in Problem 2 is zero, i.e., ex-
cept with probability 1/g. When 8 = 1, the distribution by B,’s simulation is equiv-
alent to that in Game 2-h™ except that § defined in Problem 2 is zero or there exists
t €{0,...,d}suchthat7; = 0 are defined in Egs. (3)and (4),1.e., except with probability
d+2)/q. O

Lemma 7. For any adversary A, Adv(j) ) < Advf‘_‘)) ) +1/q.

,,,,,

,,,,,

the answer to the jth key query, and c¢ is the challenge ciphertext. By definition, we only
need to consider elements on V¢ or V. We define new bases Dy of V¢ and IDjj of V{j as

follows: We generate 6 <U— F,, and set
do2:=(0,1,-6,0,0)5 = bo2 — 0bo3, dy;:=1(0,6,1,0,0)5 = bg 5+ 0bg ,.

We set Dy := (bo.1,do.2, bo.3, bo.4, bo5), ]D)S = (bal, b3,27 da3, b6’4, bas). We then
easily verify that Dy and D are dual orthonormal, and are distributed the same as the
original bases, By and Bj.
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Th¢ Vo components ({k(()] ) ) j=1,... _
({Skéj)*}j:h,_,v, ctr) in Game 2-v are expressed over bases By and B as k(()])* =

(—s(()’), w(()‘l), 1, n(()‘/), s, o = (8,70, ¢, 0, 9o)B,- Then,

() _ Gy () () _ G G () _ ) 9 () ()
k" = (=s6" wf 10§7,0) = (=5 wl 40,10 ,0>D*_<—so O 1, ,0)D*,

*
]BO 0 0

where 19(3] )= w(()] ) 4 0 which are uniformly, independently distributed since w(()J ) & F,.

co = (8,70,¢.0,90)B, = (8,70, ¢ + 100, 0, 9o)p, = (8,70,¢',0, o),

where ¢’ := ¢ + rof which is uniformly, independently distributed since 6 g Fy,.
In the light of the adversary’s view, both (By, IB%E;) and (Dg, D(*;) are consistent with

.....

expressed as keys and ciphertext in two ways, in Game 2-v over bases (B, Bfj) and in
Game 3 over bases (D, IDS). Thus, Game 2-v can be conceptually changed to Game 3
if ro # 0, i.e., except with probability 1/4. [

Lemma 8. For any adversary A, Advﬁ) ) =0.

Proof. The value of b is independent from the adversary’s view in Game 3. Hence,
Adv () = 0. O

5. CP-FE Scheme

This section presents a CP-FE scheme with the large class of relations, which is defined
in Sect. 3.3.

5.1. Construction

o:{l,...,¢} = {1,...,d} is defined at the start of Sect. 4. In the proposed scheme,
we assume that p is injective for S := (M, p) with ciphertext cts. We will show how to
relax the restriction in “Appendix E”.

In the description of the scheme, we assume that input vector X, := X1, ooy Xen,)
is normalized such that x; ; := 1. (If X; is not normalized, change it to a normalized one
by (1/x;,1) - X; assuming that x, | is nonzero). In addition, we assume that input vector
Ui = (vi,1, ..., Vjy,) satisfies that v; ,, # 0.

Random dual basis generator Gop (1%, 71) is defined at the end of Sect. 2.1. We refer to
Sect. 1.5 for notations on DPVS.

Bo := (bo.1,b03,b05), Br:= b1, bin,bisn+1) fori=1,....d,

* e (BF * * ™* o (B* * * * _
By := (05,1, 503 b0.4), By = by by b, 10 -0 Bl ) fori=1,....d,
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return pk, sk.
KeyGen(pk, sk, T :={(t, % := (X1, ...\ Xe.n,) IS IE‘;'\{()}) [1<t<d, x1:=1}):

8, @0 <LLIF‘q, ) <U—IF(;” such that (¢, X;) € T,
ko:= (3, 0, 1, 9o, O)pz,

ne ny ny 1
—_— Y — Y =
k;k =( 8%, 0™, @1 0 )]Bt* for (r,x;) € T,
skr = (T, kg, {k7 }¢.5)er)s

return SKr.
Enc(pk, m, S:= (M, p)) :
SR .. - U .
FeFL 5T =G0 =M Y, soi=1-f1, no,mi, 61,0 <Fy i =1,..,0),
co = (=50, 0, &, 0, n0)By,

fori=1,...,¢,
if p(i) = (1.5 == (i1, ... Vi) € FI\OD) (i, # 0,
ny ny ne 1
—_— S Y =
ci = ( sié1 +0iv;, o, 0™, ni B,
if p(i) = —(t, ;).
ne n; ny 1
—_—— Y — Y =
cii=( sV, 0", 0™, ni B,

Cd+1 = g;m, cts := (S, co, €1, ..., €0, Ca11)s
return Ctg.
Dec(pk, skr := (', k§, {k] }1.5)er). Cts := (S, co, €1, ..., €e,ca1)) :
If S := (M, p) accepts " := {(z, X;)}, then compute I and {«;};c; such that
1=Y,.; %M, where M; is the ith row of M, and
IC {ie{l,....0} [pG) = 0) A @ X)el A v-X =0]
v o [p@) ==, ;) A (%) el AT -X #0]),
Ki=e(o.kp)  []  elei k)™ I1 e(ci, k)@i/ %),
il A p()=(t,5;) iel A p(i)=(t,3;)

return m’ = cy41/K.
[Correctness] IfS := (M, p) accepts I" := {(z, X;)},

e(co, k§) [Tier a pir=ie.i) €€ kD Tlict & ptiy=—ic.in) €(Cis ey / @)

_ —bso+¢ Sajsi Sox;si (U Xp) / (V%)
=&r l_l,-ez A p()=(t,3;) 8T Hiel A p()=—(t,3;) 8T ' '

8(—so+) el %isi)+e
=8r 0 < = g%
5.2. Security

We can prove adaptively payload-hiding security for the CP-FE scheme similarly as the
proposed KP-FE case (Theorem 1).
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Theorem 2. The proposed CP-FE scheme is adaptively payload-hiding against chosen-
plaintext attacks under the DLIN assumption.

For any adversary A, there exist probabilistic machines £, 5;' , &, whose running
times are essentially the same as that of A, such that for any security parameter X,

v—1
AdvGTFEPHG) < AdVEHNG) + ) (Adv?szN (1) + Advg-N (/\)> +e,
h=0 '

& h1

where 5;:h(') = 52+(h, Dy E.n41() :i=&(h, ) (h=0,...,v—1), v is the maximum
number of A’s key queries and € := (2dv + 16v + 2d + 8)/q.

Proof Outline of Theorem 2: As in the proof of Theorem 1, we follow the dual system
encryption methodology proposed by Waters [49], at the top level of strategy of the
security proof. In addition, the description of the game transformation is very similar
to that of Theorem 1, and the three forms of ciphertexts and secret keys, normal, semi-
functional, and pre-semi-functional, are also used as before. Therefore, here, we only
describe these forms of ciphertexts and secret keys for the proof of Theorem 2.

For skr := (I, k§, {k]} 1 3,)er) and Cts := (S, ¢o, 1, ..., €¢, ca41), we focus on
l?li == (kg {k;}q 3yer) and ¢s := (co, c1, . .., ¢¢), and ignore the other part of sk
and ctg (and call them secret key and ciphertext, respectively) in this proof outline.

A normal secret key, I?;norm (with attribute set I"), is a correct form of the secret key of
the proposed CP-FE scheme, and is expressed by Eq. (9). Similarly, a normal ciphertext

¢ := (co, ..., c¢) (with access structure S) is Eq.(10). A semi-functional secret
key, k1o is Eq. (16), and a semi-functional ciphertext, 6™, is Eqs. (11)~(13). A pre-

. . =% pre—semi . . . - pre—semi
semi-functional secret key, k- , and pre-semi-functional ciphertext, cSp ,

are Eq.(14) and Eqgs. (11), (15) and (13), respectively.

Proof of Theorem 2. To prove Theorem 2, we consider the following (2v; + vy + 3)
games. In Game 0, a part framed by a box indicates coefficients to be changed in a
subsequent game. In the other games, a part framed by a box indicates coefficients
which were changed in a game from the previous game.

Game 0 : Original game. That is, the reply to a KeyGen query for I" := {(¢, X,)} are:

ki = (3. [0 1, @0, ). ©)
k= (8%, [0™], @, O)g, for (1, %) €T,

where § g F) %o g Fy, & g IE‘;’ for (¢, X;) € I'. The challenge ciphertext for chal-
lenge plaintexts (m@, m(D) and access structure S := (M, p) is:
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¢o := (—s0, @ . 0, 10)By>

fori =1,
if p(i) = (f, vi), ¢ = (siér1 + 6;v;, [0" ], 0", ni)m,, (10)

if p(i) = —(1,0), € = (s;0;, [0™], 0™, ni)g,,

Cd+1 ‘= gg‘m(b)3

where f&lﬁ", ST = (sy, ..., 507 := M~fr, S0 ::T-fr, no, i g[ﬁ‘q 7 <U—]F,?’
fori=1,...,¢and ¢ = (1,0,...,0) € Fy".

Game 1 : Same as Game 0 except that the challenge ciphertext (co, ..., c¢, c4+1) 1S:
Co = (_507 9 {9 09 770)]]330, (11)
fori =1,...,¢,
if p(i) = (1. 51). € == (sip1 + 6T, | Bi | 0", 0o, (12)

if p(i) = =t ), ¢ 1= (¥, |1 | 0, n),«

Cd+1 = g%m(b), (13)

-

U - = U . .
where wg < Fy, w;, w; < IF;’ "fori =1, ..., ¢,andall the other variables are generated
as in Game 0.

Game 2-h™ (h = 0,...,v —1) : Game 2-0 is Game 1. Game 2-h% is the same as
Game 2-h except that k} for# = 0 and (7, X;) € I of the reply to the (7 + 1)th KeyGen

query, and (cq, ..., ¢¢) of the challenge ciphertext are:
ko ==, [ro], 1. @o. O)g;, a4
k;‘k = (8}17 7 (le O)B, for (ta)_él) S Fa
fori=1,...,4¢,
if p(i) = (¢, V), ¢i:= (siér1 + 0ivi, |(aiér 1 + 7ivi) - Z; |, 0", ni)g,,
if p(i) = —(1, V), ¢ := (siV;, |aiV; - Z¢ |, 0", ni)B,,
(15)
v sYnr o1, T. ST Y ;
whererg < Fy, g <F/, a :=(ai,...,a)) =M-g', mi <TF,fori=1,...,¢,

Z; <U— GL(n,,Fy), U = (Zt_l)T fort = 1,...,d, and all the other variables are
generated as in Game 2-h.

Game2-(h+1) (h =0, ..., v —1): Game 2-(h + 1) is the same as Game 2-h ™ except
that k} for (¢, X;) € I of the reply to the (h + 1)th KeyGen query, and (¢, ..., ¢) of
the challenge ciphertext are:

kg == (3, ro, 1, @0, Oz,
ki = (8%, |0" | @ Oy, for (1, %) €T,
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fori=1,...,4¢,
if p(i) = (¢, V), ¢ = (siér,1 +6;0;, , 0", n;)B,, (16)
if p(i) = —(1,0;), ¢ = (siV;, , 0", ni)B,,

-~ = U . . .
where w;, w; <—IF,;’ "fori = 1,...,4, and all the other variables are generated as in
Game 2-h™.

Game 3 : Same as Game 2-v except that ¢ and ¢, of the challenge ciphertext are
co = (—s0, wo, , 0, 10)By» Cd+1:= gém(b),

where ¢’ <U— IF, (i.e., independent from ¢ <U— IF,), and all the other variables are generated
as in Game 2-v.

Let Adv@ () be AdvGTTEPH0) in Game 0, and Adv(} (), AdvE "),
Advf{h)(k), Advf‘) (1) be the advantage of A in Game 1,2 — h,2 — h™, 3, respec-
tively. It is clear that Adv(3) (A) = 0 by Lemma 13.

We will show four lemmas (Lemmas 9-12) that evaluate the gaps between pairs of
AV (1), AdvY (1), AdvE T (), AdvE D ), AdVE P () forh = 0, v—
1. From these lemmas and Lemmas 1 and 2, we obtain

AdVSFEPHG) = AV () < ‘Adv“))(k) Advfjl)()»)‘ Z‘Adv(z M) - AdvET o)

v—1
+3° ’Adv(j‘h“(x)—Advfﬁth R (x)’+’Advﬁ‘“>(x)—Adv@) (A)‘+Adv(3> )
h=0

v—1 v—1
< Adviz () + ZAdv L O) Y AdVE (D) + Qdv +6vt+d +2)/g
h=0

< Advg-N @) + Z (AdvDL'N(A)Jr Advegr™ ()\)) +(2dv + 16v +d + 10)/q.
h=0

This completes the proof of Theorem 2. ]

Lemma 9. For any adversary A, there exists a probabilistic machine By, whose run-
ning time is essentially the same as that of A, such that for any security parameter X,
Adv'Y () — AdV) (V)] < AdvBT () + (d + 1)/q.

Proof. In order to prove Lemma 9, we construct a probabilistic machine B against
Problem 1 using any adversary A in a security game (Game O or 1) as a black box as
follows:

1. By is given Problem 1 instance (paramﬁ,IB%o,@E;,e,g,o,{B[,@;",eﬁ,,,l,

e j}i=1,..d;j=2....n,)-
2. B plays a role of the challenger in the security game against adversary A.
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3. At the first step of the game, 5] sets

Dy := By, Df := By, Do := (bo,1, bo 3, bos), Dy := By,

Dy := (dt,j)j=1 ..... 31 = (br 2y oo by b1, By s o e 3011,

* o * Oy e (B* * * * *
]D); = (dt,j)]=1,‘-.,3nx+1 = (bt,2’ “"bt,nﬂ t, 1 Y%t n 410 ""bt,3n,+l)’
™ K o (g% * * *
]D)t = (dt,h -~~»dt,n,a dt,3n,+l)’ ]D)t = (dt,la "'7dt,n,’ £,2n 410 oo [,3nt)»
fort =1,...,d. B; obtains D, and Dy from B, and B} in the Problem 1 instance,

and returns pK := (1*, param;, {ﬁ,},zo,_”d) to A.

4. When a KeyGen query is issued for attribute sets I', 3; answers normal key sk
computed using {D}};—o,.. 4.

5. When By receives an encryption query with challenge plaintexts (m®, m (1) and
S := (M, p) from A, By calculates the challenge ciphertext (¢, ..., €¢, C4+1) as
follows:

. . n—1 . . ¢
co :=—s0ep,0 +¢bo3, ¢ =31 cijerj+1 + Cinepr fori=1,.... ¢ cap1:= grm®,

where b <{0, 1}, f <F7, 5T := (s1,...,50T := M - fT, 5o :=1- FT, 6,

C LT, fori = 1,.... 0 & = siéry + 65 if p(i) = (t.57) or & 1= s;7; if
o) = (t,v)fori =1,...,¢, and eg0,bo 3, es:.1,1{€: )} j=2, .. n arefrom the
Problem 1 instance. 3] gives the challenge ciphertext to .A.
6. When a KeyGen query is issued by A after the encryption query, B| executes the
same procedure as that of step 4.
7. A finally outputs bit b’. If b = b’, B; outputs 8’ := 1. Otherwise, 3| outputs
B =0.
When 8 = 0, it is straightforward that the distribution by B;’s simulation is equivalent
to that in Game 0. When B = 1, the distribution by Bj’s simulation is equivalent to that
in Game 1 except for the case that sp = O or there exists an i € {1, ..., £} such that
¢i.n, = 0, 1.e., except with probability (£ +1)/g < (d + 1)/q since £ < d. O

Lemma 10. For any adversary A, there exists a probabilistic machine B, whose
running time is essentially the same as that of A, such that for any security parameter X,

_ _ Lt
AdvG" () — AdvT ()] < Advg;l (W) + (d +3)/q. where B, () := B (h. -).

Proof. In order to prove Lemma 10, we construct a probabilistic machine B;’ against
Problem 2 using an adversary A in a security game (Game 2-h or 2-h™) as a black box
as follows:

1. B;r is given an integer & and a Problem 2 instance, (param;, {@,, Bf}i—o,..ds
hgo. €0, {hg, ;s e jli=1, d;j=1,.n)-

2. B;' plays a role of the challenger in the security game against adversary .A.

3. At the first step of the game, B;‘ provides A a public key pk := (1%,
param;, {@;},zowd) of Game 2-h (and 2-h ™), where @6 := (bo.1, bo.3, bos) and
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@; = (bi1, .., bt,n,» by 3n,41) fort =1, .., d, that are obtained from the Problem
2 instance.
4. When the (th key query is issued for attribute I' := {(z, 55;)},[3;’ answers as follows:
(a) When 1 < < h, B;r answers semi-functional key (kg, {k}}( z,)er) With
Eq.(16), that is computed using {B}};—o,... 4 of the Problem 2 instance.
(b) When + = h + 1, BEL calculates  (kg, {k;} . 5,)er) using b 3,
E,O’ {hz’[’j}tzlwd;jzlwnl of the Problem 2 instance as follows:

ki :=hj o+ b5, ki = Z'}’:l Xt i, ; for (%) €T.

(c) Whent > h + 2, B;“ answers normal key (kg, {k}}(; z,)er) with Eq.(9), that
is computed using {B};—o,... ¢ of the Problem 2 instance.

,,,,,

5. When B;’ receives an encryption query with challenge plaintexts (m®, m") and
S := (M, p) from A, B; computes challenge ciphertext (co, ..., c¢, cg+1) as
follows:

e gl ik < Fy fort=1,....di k=1,....r

fo ="k (gre0 + bo1) .

fort=1,....d; k=1,...,r; j=1,...,n4
foji=mlen+ b, fri = 8cerj+ b,

U ~
¢ <Fy, co:=—fo+¢bos+qq,
fori=1...,4¢,

it () = (1,00, €= 0 vij frj + e MikF it + @i
if p(i) = —(1,7;), ¢ = Z'}’:l Vi j Q ko Min frx ) + 4

Cd+1 = g?m(b),

where (M )izt,...ck=l,..r = M. g <Span(bos), and ¢; < span(by s, +1)
and (bo,1, bo 3, €0, {er,j}i=1,....d: j=1,....n,) is a part of the Problem 2 instance. B;“
gives the challenge ciphertext to A.

6. When a KeyGen query is issued by .4 after the encryption query, B; executes the
same procedure as that of step 4.

7. A finally outputs bit b'. If b = b', B5 outputs B’ := 1. Otherwise, 35 outputs
B =0. O

.....

Remark 4. }0, f,,j, 7z,k,j fort =1,...,d;k=1,...,r;j = 1,...,n; calculated
in the step 5 in the above simulation are expressed as:

=T, O =M e, 8k = T8y fk 1= &k + Mk,
80 1= D _j—1 Jks @0 =D p_y 8> wo = ao/uo (= aozo),
Sfo = (s0, wo, 0,0,0),,
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ng ne ny 1
A~
.Z:t,j = ( elgl‘,ja Trlzl,ja Onra 0 )B,a
ft,k,j =( Jrerjs 8kZt,j> 0", 0 )g,,

where 7, @, ug, {€,j. %, j}i=1,....d: j=1,....n, are defined in Problem 2. Note that variables
{6;, m:}i=1.....d> { fx, 8k }k=1....r are independently and uniformly distributed. Therefore,
{ci}i=o,..¢ are distributed as (11) and (15) except wo := agp/ro, i.e., worg = aop, using

ao and ro := ug qu in k) (Eq. 14).

Claim 2. The distribution of the view of adversary A in the above-mentioned game
simulated by B;r given a Problem 2 instance with 8 € {0, 1} is the same as that in Game
2-h (resp. Game 2-h™) if B = 0 (resp. B = 1) except with probability (d + 2)/q (resp.
1/q).

Proof. 1tis clear that B; ’s simulation of the public key generation (step 3) and the (th
key query’s answer for ¢ 7= h + 1 (cases (a) and (c) of step 4) is perfect, i.e., exactly the
same as the Setup and the KeyGen oracle in Game 2-h and Game 2-h ™.

Therefore, to prove this lemma we will show that the joint distribution of the (2 + 1)th
key query’s answer and the challenge ciphertext by B;“ ’s simulation given a Problem 2
instance with S is equivalent to that in Game 2-h (resp. Game 2-h™), when 8 = 0 (resp.
B=1.

When g = 0, itis straightforward to show that they are equivalent except that § defined
in Problem 2 is zero or there exists i € {0, ..., £} such that w; = 0 with p(i) = (¢, ¥;)
or w; = 0 with p(i) = —(¢, ¥;), where w; and w; are defined in Egs.(11) and (12), i.e.,
except with probability (¢ +2)/q < (d + 2)/q since £ < d.

When 8 = 1, the distribution by B; ’s simulation is Eq. (14) for the key and Eqgs. (11),
(13), and (15) for the challenge ciphertext, where the distribution is the same as that
defined in these equations except wg := ag/ro, i.e., wWorg = do, using ap = 1. §T and

ro 2 F, in k§ (Eq. 14) from Remark 4. The corresponding distribution in Game 2-h™

is Eq.(14) and Egs. (11), (13), and (15) where rq, wo <U— F, as defined in the equations.
Moreover, similarly as in the proof of Claim 1, we can show that ag is uniformly
and independently distributed from the other variables in the joint distribution of B;' s
simulation.
Therefore, the view of adversary A in the game simulated by B;’ given a Problem 2
instance with 8 = 1 is the same as that in Game 2-h™ except that § defined in Problem
2 is zero, i.e., except with probability 1/q. (I

This completes the proof of Lemma 10. (]

Lemma 11. For any adversary A, there exists a probabilistic machine B,, whose

running time is essentially the same as that of A, such that for any security parameter
2—ht 2—(h+1

a IAVET 00 — AV GO < Adv? | (0 + (d +3)/q, where By () =
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Proof. The proof of Lemma 11 is similar to that of Lemma 6. (]
Lemma 12. For any adversary A, Advf{v) ) < Advi) ) +1/q.

Proof. The proof of Lemma 12 is similar to that of Lemma 7. (]

Lemma 13. For any adversary A, Adv(3) ) =

6. UP-FE Scheme

This section presents a UP-FE scheme with the large class of relations, which is defined
in Sect. 3.4.

6.1. Construction

In order to obtain a UP-FE scheme, we combine the KP-FE scheme in Sect. 4 and the CP-
FE scheme in Sect. 5 using the first vector space V( of dimension 8, instead of dimension
5. In the security proof, the semi-functional form of secret keys (resp. ciphertexts) has
two-dimensional random component in span(b{;ﬁ, bg 4) (resp.span(bo 3, bo 4)). For
our KP-FE and CP-FE schemes, the corresponding random components are in one-
dimensional subspace of V (see Sects. 4, 5).

o:{l,...,¢} = {1,...,d} is defined at the start of Sect. 4. In the proposed scheme,
we assume that o is injective for S := (M, p), where S := SKP SCP

Inthe description of the scheme, we assume that input vectors, xt (xt 1 e X n;)

and )?C : (xt I CF’) are normalized such that xKP := 1 and x = 1. (If

KP (resp X CP) is not normahzed change itto a normahzed one by (1 /x Py xtKP

(resp (1 /xCP) xtCP) assummg that x (resp x ) is nonzero). In addltlon we as-
sume that input vector v, = (vl I CF’) satlsﬁes that vCP 7+ O

For a format of attribute vectors n := ((d KP, }fp, .. dKP) (d CP. y.. dcp))
that indicates dimensions of vector spaces, EIK].P (resp. ethP) denotes the canomcal basis

j—1 nkP_j j-1 nCP_j
—— — e nKP . KP —— — nCP

vector (0---0,1,0---0) e F;" forj=1,...,n (resp. (0---0,1,0---0) € F,’
for j=1,...,n%P).

We describe random dual orthonormal basis generator ngp below, which is used as a
subroutine in the proposed UP-FE scheme. We refer to Sect. 1.5 for notations on DPVS,

e'g', (-xlv e 3xN)IBs ()71, R )’N)]B%* forxis )’i € Fq-
o (147 = (@ PnfP, kR, @PinfP L SR
paramg := (¢, G, Gr, G, e) egbpg(l*), TR

No:=8, Nf¥:=32K" 41 forr=1,...,a¥P, NP =3P £ 1 forr=1,...,d°F
paramy, = (¢, Vo. Gr, Ag, ) := Gapvs(1*, No, paramg),
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U _
Xo = (x0,i,))i.j < GL(No,Fy), o )ij =¥ - (X)),

bo,i := (X0,i,15- -+ X0,i,No)Ag» Bo := (bo.1, ..., bo,Ny),
bg ;= (0,15 -+ D0,i,Ng)Ags B =BG 15+, b5 )
fort=1,...,d%P, paramye = (@, VEP Gr, AP ¢) = Gapus (1%, NKP, paramg),

XK= (P01 & GLINKR ), (ﬂ,,,)u =y (XD

bis = i ke e B = 0 B,
SLINE
KP . oKP KP <KP KP.
b;k’i = (ﬁt IRTRERE ﬁt,i.N,KP)A:KP By (b* b* NKP)
fort=1,...,dCP, paramyop = (g, VCP, GT,A?P, ) = Gapvs(1*, NCP, paramg),

XOP = (x%Pij < GLINEP Fy), 0CP )i j = ¥ - (X)),
b?,P (X,,l,u-,Xfin[cp)ACP ECP (bllv" bCNCP)

by = (ﬁtll,...,ﬁffNPP)Acp B:CP = (5SP. .. b*Ncp)

axe,  {paramyce},_; _gcp, 87),

axe, {BEP BIOPY |

gr =e(G,G)Y, param;; := (paramy,, {paramwp},=l

return (param;, {Bo, B}, (BKP, BKPY _|

The proposed UP-FE scheme is given as:

Setup(1*, 7 == (@ P nf®, .. nKGe). @PinlP. . nSE))
(paramn,IBo,]Bo, (BXP BKPy _ o dKP,{]B%tCP,IBfCP},:I dcp)<—g Pt i,
= (bo,1.bo2. bos. bos). By := (b, b}, b 5. b5 6. b5 7).
forr =1,...d%°, B .= X7, . bt Kp,b’fnrpﬂ),

*KP *KP *KP *KP *KP
P = 0 G e BT,

fort =1,..d%°, B .= ¥, .., b° Cp,bfg’nrcm),

BiCP .= (b:CP, . b*Ccp,bfgpcpH, _ ’b;ﬂgncp)v
pk = (1*, param;, By, (BKP},_, _sxe. (BEP),_;  4op),
= B3 B ey e (BIP)oyace),
return pk, sk.
KeyGen(pk, sk, SKP .= (m*P, pKP),
P03 = f . xlee) € Fa 0D 11 =1 <d®, <P = 1))
j‘KP (U_]FrKP GKPYT .= (S|1<P’ eKP)T = MKXP L (FKPYT, S(})(P —1. (]7 KPyT,

scP ¢ <y, QCP <—IF e such that (z, ﬁCP) e I'CP, (10,1, 10,2) <U—IF§,
k= (=K%, 67,00, 1, 10,1, 10,2, OB s
fori=1,..., 5P

. . Keo = i v
if pKP (i) = (1, 5P (vll,...,vl!fZKp)eIF;’ \{0}), gKPHF KP Fq

5
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n, 'll n
—_— —_—— e
- - KP -
k?‘KP = ( sIKPe,K]P+9iKPviKP, o, r]iKP, 0 )pskp,
i t
KP

. KP,- - KP ~KP
if o™ (i) =—(t, v ), n; <—IF s

nkP nkP nkP 1

—_— N ——
- KP -
k;‘KP = ( sl!(PviKP, (VA nIKP, 0 )pKP 5
T
nCP nCP nCP 1
—~— —— —— =
- CP -

kP = sOPECP o, GCP, 0 geor for (1,%°F) e TP,

. . gKP KP KP. ~CP
return Sk(sKPJ—*CP) = (kg; S, kY k* ke I {k, }(t,i,cp)el“c")'

KP
Enc(pk, m, TXP .= (¢, ¥ X (x,l,..,xfpr) eF \(Oh |1 <1 <dXP xfP =1,
Lt s

SCP .— (MCP, ,CPy) .

u .
KP w0, P, ¢ <, for (1, iXP) e TKP,
7CP R /P -CP\T. cP T. CP , 7CP\T ._T7.(FCP\T
VAR DA Chalb Rt € gcp) =MCP . (FOP)T, s§P =1 (F °P)
KP P
¢ = (0 ,—SC 0,0,¢,0,0, ¢o)B,»
n;(P n}(P n;(P 1
—— —— —— =
- KP KP
fPi= ( SPRRP om0, ofP e for (1, XP) e TKP,
1
fori=1,...,0°P,
CP
e CP: - cP ety By (nCP cp ,cp U
if °P () = (1,3 = (v, 1 ""’”inCP) eFy" \{0D) (v ce :=1). ;7,07 < Ty,
Sy "t
nf:F ntCP n,CP 1
—_— —— —~ =
- - CP CP
chP = ( SiCPe[?lP +9iCPvl-CP, (VL o, <ﬂ,~CP )BoP

. . - U
if o) = =1, 5°7), ¢ <F,,

#CP 2P #CP )
t 1 t
—_—— —— —— =
- CP CP
ciCP ::( SiCPviCP’ o o (piCP )]BFP’
— ¢

Cd+1 = §rm
: . KP [ KP . gCP CP CP .

return Ct ke gopy i= (co: T, {¢ }(t‘}IKPKFKP, S¥, ey N Cd+1)-

. . gKP KP KP. ~CP CP
Dec(pk, SK(SKP,FCP) = (kz;, S™, kT e, szP N Dt {k:( }(t,i,cp)el“cp)’

Ctrrp sopy := (co; kP, {cfP}(l FKP) kP SCP, c?P, e chF;; cd+1)) -
1f SKP .= (MKP | pKP) accept@ kP .— (¢, % KF’)}
and SCF ;= (MCP, P Py accepts reP .- {(, xCP)}
then compute (IKP, {a,KP},-E,KP) and (ICP, {ai }l-e,cp) such that
1= Y icikP aKPMKP, where MIKP is the ith row of MKP and
KPclie(l,.... k) | [pXPG) = (o, i)'l_KP) A (1, 7€) eTKP A i)'l_KP EP =)
v [pKP(i) ==, 55P) A (1,5KP) eTKP A GKP.3KP £0]), and
1= > icicP al.CPMiCP, where MiCP is the ith row of M°P and
ICPcliefl,.... %) | [p°PG) =, 357) A (1, 5°F) eTCP A §CP . 3P =)
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v [pCP(l) — —'(I, ﬁiCP) A (t,)‘c'lCP) e FCP A UiCP .}lCP 7& O] }’
K :=e(co, kj)) -
IKP/(EIKP.}IKP) .

KP 7.%KP\a/P KP 7%KP\a
HielKPApKP(i):(r,ﬁ,KF')e("x ST l_[iGIKPApKP(i):—'(t.ﬁiKP) e(er, k™)

CP 7%CP\aCP CP 1+CP\aCP /(5CP.5CP
HielcpApCP(i):(t,z?iCP)e(cl kT nielcp/\pcp(l.):_‘(tjicp) e(e;y", ki=T)% J@EEET

return m’ ;= cq41/K.

[Correctness] If SKP := (MKXP | pKP) accepts rKP.—{(, )?,KP)} and SCP .= (MCP, p)CP)
accepts ICP :={(z, )?,CP)},

e(co, kp) -

KP 7+KP\aKP KP  7#KP\aKP /(5 KP.3 KP)
HielKP ApKP(i)=(t,D[KP)€(ct ’ki )%i 'HielKP A PKP(D)=—(1.55P) e(c; ’ki )% [@7x0)

CP 7 %CPyaCP CP 7%CP\aCP /(1 CP.3CP)
Hielcp /\pcp(i)=(tj’_CF‘)€(Cr kT 'nielcp A pCP (i) =(1.55P) e(ey/m, k;~=m)% /@77 %

(KPP sOPLCP) 1 KP(X, ke akPsKP)  8CP(S,_ cp afPsCP) g
=8r 87 87 =8r-
6.2. Security

The following theorem can be proved similarly as Theorems 1 and 2 .

Theorem 3. The proposed UP-FE scheme is adaptively payload-hiding against chosen-
plaintext attacks under the DLIN assumption.

7. CCA-Secure CP-FE Scheme

We can transform the proposed (KP, CP and UP)-FE schemes to CCA-secure (KP, CP and
UP)-FE schemes, respectively, by using the Canetti—-Halevi—Katz (CHK) transformation
[17] or the Boneh—Katz (BK) transformation [13].

This section shows a CCA-secure CP-FE scheme, that is modified from the CP-FE
scheme in Sect. 5 through the CHK transformation, in which a strongly unforgeable
one-time signature scheme (Gen, Sig, Ver) is employed.

We can similarly apply the CHK transformation to our KP-FE scheme and the BK
transformation to the FE schemes.

7.1. Strongly Unforgeable One-Time Signatures

Definition 14. (Signatures) A signature scheme consists of three algorithms.

Gen This is a randomized algorithm that takes as input the security parameter 1*. It
outputs a verification key verk and a signing key sigk.

Sig This is a randomized algorithm that takes as input a signing key sigk and a message
m (in some implicit message space). It outputs a signature o.

Ver This takes as input a verification key verk, a message m, and a signature o, and
outputs a boolean value accept := 1 or reject := 0.
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A signature scheme should have the following correctness property: for all

(verk, sigk) <R— Gen(1%), all messages m, and all signatures o <5 Sig(sigk, m), it holds
that 1 = Ver(verk, m, o) with probability 1.

Definition 15. (Strongly unforgeable one-time signatures) For an adversary, we define
AdvaS’SUF (1) to be the success probability in the following experiment for any security
parameter A. A signature scheme is a strongly unforgeable one-time signature scheme

if the success probability of any polynomial-time adversary is negligible:

1. Run (verk, sigk) & Gen(1%) and give verk to the adversary.

2. The adversary is given access to signing oracle Sig(sigk, -) at most once. We
denote the pair of message and signature by (m, o) if the signing oracle is queried.

3. At the end, the adversary outputs (m’, o).

We say the adversary succeeds if Ver(verk, m’, ¢’) = 1 and (m’, 6’) # (m, o) (assum-
ing the signing oracle is queried).

7.2. Construction

0:{1,...,¢} — {1,...,d} is defined at the start of Sect. 4. In the proposed scheme,
we assume that p'is injective for S := (M, p).

In the description of the scheme, we assume that an input vector, X, := (x;.1, . . ., Xt,n,)s
is normalized such that x; | := 1. (If X; is not normalized, change it to a normalized one
by (1/x:,1) - X, assuming that x; 1 is nonzero). In addition, we assume that input vector

U := (Vi1 ..., Vi) satisfies that v; ,, # 0.

Random dual basis generator Gop, (1%, 72) is defined at the end of Sect. 2.1. We refer to
Sect. 1.5 for notations on DPVS, e.g., (x1, ..., xn)B, (1, ..., Yn)B* for x;, y; € [y,
and é; ;.

For simplicity, we assume verification key verk is an element in . (We can extend
the construction to verification key over any distribution D by first hashing verk using
a collision resistant hash H : D — F,.)

Setup(1*, 7 := (d; ni, ..., ng)) :

= R =
ngyt =2, i = (d+ L {ni=1,a+1), (Paramg, (B, B} )0, a+1) < Gop(1*, i),
Bo := (bo,1, b0,3,b0,5), By = bi1,....bin,, bi3n4+1) fort=1,...,d+1,
By = (0% 1. by 3. b5 .4). B = (b 1. b} By iy b, fore=1.. . d+1,

pk := (1*, param;. (B, }=o...a+1). k= (Bi}i=0...at1.
return pk, sk.
KeyGen(pk, sk, T :={(r,X; := (x¢,1,..., %) € IF;”\{()}) |1 <t<d, x1:=1}):

5,90 < Fy, Gy < Fp such that (1, %) € T, Gasr 1. Gas1 < F2
ko= (5. 0. 1. go. O);.

ny n n 1
—_— S ——
ki = ( 8%, 0", @1 0 )B; for (1, %) €T,

Kipr g = (6(1,0), 0%, Garr1, Ops o Koy o= 30, D, 0% Gasi, Oy,



1536 T. Okamoto, K. Takashima

skr = (T, kSs {k;k}(t,i,)el" k;+1_| , k:;ﬂ’z),

return SKr.
Enc(pk, m, S := (M, p)) : fﬁFr, 5T = (sq, ..., 507 = M-fT, S0 :=T~j_'T,

Seat. 1000 ¢ S F, fori=1,....0+1, (sigk, verk) & Gen(1%),
co := (=50 — se+1, 0, ¢, 0, n0)By,

fori=1,...,¢,

if p(i) = (1, i == (Vi1 -, Vin,) € FAOD) (i, #0),

N ne ne 1
—_— N ——— =

ci=(  sié1+ 06, 0", 0", ni B
if p(i) = —(t,7),

ny ny n; 1
—_—~ N ——

¢i:=( s, 0", 0", N B
. 2 02
cop1 = (Sgr1 — Opyr - verk, Opp1, 07, 07, e 1)Byy, -

Caya = gom, Ci=(S.co.....cor1.cara). o < Sig(sigk. C),
return ctg := (verk, C, o).
Dec(pk, skr := (T, k¢, (k7 Yo zpers k11 kjyp0)s Cts i= (verk, (S, co, ..., €o1, ca42), 0))

if Ver(verk, C, o) # 1, return L, where C := (S, ¢o, ..., Co+1, Cd+2),
if S := (M, p) accepts I' := {(t, X;)}, then compute I and {o; };c; such that

1= Y ier @i M;, where M; is the ith row of M, and

IC ie{l,....0) [pG) =) A . X) el A v -X =0]

Vo [p@i) ==, 0) A (%) €T AT -X #0]},

g1 =k verk kg .
K = e(co. k) [ier n piy=cein) €€ KD - Tlict n piiremiriyy €€t KD/ T - e(errr, s7,)),

return m’ :=cqy11/K.
[Correctness] If S := (M, p) accepts I' := {(¢, X;)},

e(co. k3) TTicr a pir=ce.i0) €Cis KDY - Tlict A ptiy=—cr.5) €(Cis k@00 eeqqr, 83, ))

ST(*XO*»WHH‘C Il 5‘1:‘51'(51"2:‘)/(171")?r)g?WJr]

B Saisi
=g il A pir=5) 87 ier A ply=—.5) 81
_ g;(*.VO*SlJrH’ZiEIa"‘y"+‘v5+])+§ = g;.

7.3. Security

Theorem 4. The proposed CP-FE scheme is adaptively payload-hiding against chosen-
ciphertext attacks under the DLIN assumption provided that the underlying signature
scheme (Gen, Sig, Ver) is a strongly unforgeable one-time signature scheme.

For any adversary A, there exist probabilistic machines &£, EF. &, &3, Ea, whose
running times are essentially the same as that of A, such that for any security parameter
A,
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Entl

+Y0 (Adv%i’v(k) + AdvS: SUF(A)) te

where €5 () = & (h, ), Eaps1 () = E(h,) (h = s = 1), &al) =
&s(h, ), 54 h()i=E4(h, ) (h=1,..., ), v is the maximum number of A’s KeyGen
queries, vy is the maximum number ofA’s Dec queries, and € := (2dvi + 16v; 4+ 8vy +
d+10)/q.

Proof Outline of Theorem 4: To prove Theorem 4, we consider the following (2v; +
vy + 3) games. In Game 0, a part framed by a box indicates coefficients to be changed
in a subsequent game. In the other games, a part framed by a box indicates coefficients
which were changed in a game from the previous game.

Game 0 : Original game. That is, the reply to a KeyGen query for " := {(z, X,)} are:

ki == (5. [0]. 1. go. O)p;.
ki = (8%, [0"], & O)p, for (1.%) €T,

Ky = 01,0), 0%, gay11. O)p: K1 =80, 1), 0%, Gay12, O)ps

d+1’ d+1’

U U - U - - - U .
where & <—IFqX, po<Fy, @ <—IB‘;’ for (t,x;) € I', 0441.1, d+1.2 <—F(12.Inanswer1ng

Dec query for ctg := (verk, (S, co, - .., €e+1, ca+2), o) when Ver(verk, C,o) = 1,
where C := (S, ¢o, ..., Cer1, ci12), the used key for I' := {(¢, ¥;)} such that S accepts
I' are:

ki = (5. [0] 1. @o. 0)p;.
k* := (3%, 0", &,, O), for (1,%) €T,

$541 = (51, verk), [02], Fyp1. Oy,

where 5 < F%, o <F,, § <F" for (1,%) € T, §41 < F2.
The challenge ciphertext for challenge plaintexts (m(?), m") and access structure
S:= (M, p)is:

€0 := (—S0 — S¢+1, @ , 0, 10)By>

fori=1,...,¢,

if p(i) = (t, V), ¢ := (sie,1 +6;v;, 0™ ], 0™, ni)m,,
it pG) = =(,5), ¢ = (sivi, [07 ] 0", ni)s,,

Cov1 = (Se41 — 1 - verk, Oeqr, , 0%, Mes1)Bysrs

Cd+2 = g;m(b),
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= R - 2 v
where f < TF’, 5T := (s1,...,50)7 :=M-fT, 50 1= 1~fT, Sevt1, 8,0, Min 0 < Ty
fori =1,...,¢+1,and ¢, :=(1,0,...,0) € F,".

Game 1 : Same as Game 0 except that the challenge ciphertext for challenge plaintexts
(m©@, mM)y and access structure S := (M, p) is:

co := (=50 — se+1, [wol, ¢, 0, M0)my,
fori=1,...,¢,
if p(i) = (¢, 0;), ¢ := (sié 1 + 0;v;, , 0", ni)B,.
if () = =0, ), €= (st | Wi} 0", ),
) = 2
Cot1 = (g1 — Opr1 - Verk, Oy, , 0%, Me+1)Byy s

U -~ = U . - U .
where wo < IF;, w;, w; < F;’ fori =1,..., €, weyq < T2, and all the other variables
are generated as in Game 0.

Game2-h™ (h=0,...,vy—1)and Game2-(h+1) (h =0, ..., vi —1) are the same
as Game 2-h" and Game 2-(h + 1) in the proof of Theorem 2, respectively.

Game 3-h (h =1, ..., v3) : Game 3-0 is Game 2-v;. Game 3-4 is the same as Game
3-(h — 1) except that kg, 57 41 of the key used in answering the ith Dec query when
Ver(verk, C, o) =1 are:

k=G, [Ro] 1, @0, 0,

Shey =B, verk), |Fagr | $asrr Oz, -

~ U 2 U . .
where 79 < Fy, 7g41 < Iqu, and all the other variables are generated as in Game 3-
(h—1).

Game 4 : Same as Game 3-v; except that ¢g in the challenge ciphertext is:

co = (—s0 — S¢+1, wo, , 0, n0)By»

where ¢’ g I, (i.e., independent from all the other variables), and all the other variables
are generated as in Game 3-v,.

We follow the argument in [17] used for the chosen-ciphertext security, and the rest
of the proof of Theorem 4 is similar to that of Theorem 2.

Let Adv') (1) be AdvG" T C“APHG) in Game 0, and Adv') (3, Advf{h*)(,\),
Advﬁ_h)()»), Advfi_h)(k), Advﬁ) (1) be the advantage of A in Game 1,2 — h,2 —
h*,3 — h, 4, respectively. (Advfi) (&) = 0.) We can evaluate the gaps between pairs of

AV 0, AdvE (2, AdvE (), AdvE D (), AdVE T Gy forh = 0, ., vy —
1 using Problems 3 and 4 (given in “Appendix D”) as in the proof of Theorem 2.
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Moreover, we can evaluate the gaps between pairs of Advﬁ_h) (1) and Advi_ (h+1)) )
forh =0, ..., vy — 1 using Problem 5 in “Appendix D”. |

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Inter-
national License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons license, and indicate if changes were made.

A. Dual Pairing Vector Spaces (DPVS)

A.l. Summary

We now briefly explain our approach, DPVS, constructed on symmetric pairing groups
(¢, G,Gr, G,e), where g is a prime, G and G are cyclic groups of order ¢, G is
a generator of G, e : G x G — G is a non-degenerate bilinear pairing operation,
and ¢(G, G) # 1. Here we denote the group operation of G by addition and G7 by
multiplication, respectively. Note that this construction also works on asymmetric pairing
groups (in this paper, we use symmetric pairing groups for simplicity of description).

N
f—/_‘ . . .
Vector space V: V := G x --- x G, whose element is expressed by N-dimensional
vector, x := (x1G, ..., xnG) (x; € Fyfori =1,..., N).
Canonical base A: A := (aj,...,ay) of V, where a1 := (G,0,...,0),ar =

0,G,0,...,0),...,ay :=(0,...,0,G).

Pairing operation: e(x, y) := H,N:1 e(x;iG, y,G) = e(G, G)Zthlxiyi =e(G, G))?'-v €
Gr,wherex := (x1G, ..., xyG) = x1a1+ - -+xyay € V,y := nG, ..., yvG)
=ya;+---+yvay € V,X :=(x1,...,xy)and y := (y1, ..., yy). Here, x and

y can be expressed by coefficient vector over basis A such that (xi,...,xy)a =
(X)a:=xand (y,...,yn)a = (P)a =y
Base change: Canonical basis A is changed to basis B := (by, ..., by) of V using a uni-

formly chosen (regular) linear transformation, X := (x;,;) <U— GL(N,F,),suchthat
b, = Z;V:l xi,jaj, (i =1,..., N).AisalsochangedtobasisB* := (b7, ..., by)
of V, such that (¢ ;) := (XT)~!, b} = Y0, 9 ja;, (i =1.....N). We see
that e(b;, bj) =e(G, G)‘Si-f', (6;,j =1ifi = j,and §; ;j = 0if i # j),ie.,Band
B* are dual orthonormal bases of V.

Here, x := x1b1 + -+~ +xyby € Vand y := y;b] + -+ + ynby € V can
be expressed by coefficient vectors over B and B* such that (x1,...,xy)p =
@ = x and (1, ..., yes = D == y, and e(x, y) = e(G, G)Zim1 i =
e(G,G)*Y € Gr.

Intractable problem: One of the most natural decisional problems in this approach is the
decisional subspace problem [35]. Itisto tell v := vn,+1bNn,+1 + - - + VN BN, (=
©,...,0, UNy41s---5 UNl)IB), fromu := vib; +-- ~+lele (= (1,..., le)B),

where (v1, ... vy) < FNM and Ny + 1 < Ny.
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Trapdoor: Although the decisional subspace problem is assumed to be intractable, it
can be efficiently solved using trapdoor t* € span(bj, ..., by,). Given v :=
UNy+1bNy+1 + -+ -+ un, by, or u := viby + - - - + vy, by, , we can tell v from u
using ¢* since e(v, t*) = 1 and e(u, t*) # 1 with high probability.

Advantage of this approach: Higher-dimensional vector treatment of bilinear pairing
groups have been already employed in literature especially in the areas of IBE, ABE
and BE (e.g., [5,8,12,16,28,44]). For example, in a typical vector treatment, two
vector forms of P := (x1G, ..., xyG)and Q := (y1G, ..., yyG) are set and pair-
ing for P and Q is operated as e(P, Q) := ]_LNZI e(x;G, y;G). Such treatment can
be rephrased in this approach such that P = xja1+---+xyay (= (x1, ..., XN)a),
and Q = yia; +---+ yyay (= (y1, ..., ynN)a) over canonical basis A.

The major drawback of this approach is the easily decomposable property over
A (i.e., the decisional subspace problem is easily solved). That is, it is easy to
decompose x;a; = (0,...,0,x;G,0,...,0) from P := xja; + ---xyay =
x1G, ..., xnyG).

In contrast, our approach employs basis B, which is linearly transformed from A
using a secret random matrix X € ]F;X". A remarkable property over B is that it
seems hard to decompose x;b; from P’ := x1b; + --- xyby (and the decisional
subspace problem seems intractable). In addition, the secret matrix X (and the dual
orthonormal basis B* of V) can be used as a source of the trapdoors to the decom-
posability (and distinguishability for the decisional subspace problem through the
pairing operation over B and B* as mentioned above). The hard decomposability
(and indistinguishability) and its trapdoors are ones of the key tricks in this paper.
Note that composite-order pairing groups are often employed with similar tricks
such as hard decomposability (and indistinguishability) of a composite-order group
to the prime-order subgroups and its trapdoors through factoring (e.g., [30,45]).

A.2. Dual Pairing Vector Spaces by Direct Product of Asymmetric Pairing Groups

Definition 16. “Asymmetric bilinear pairing groups” (¢, G1, G2, Gr, Gy, G, e) are
a tuple of a prime ¢, cyclic additive groups G, G, and multiplicative group G7 of
order g, Gi # 0 € G1,G2 # 0 € Go», and a polynomial-time computable non-
degenerate bilinear pairing ¢ : G; x Gy — Gy, i.e., e(sG1,1G2) = e(G1, G2)*" and
e(G1,Gy) # 1.

Let Gppg be an algorithm that takes input 1* and outputs a description of bilinear
pairing groups paramg := (g, G1, G2, Gr, G1, G2, e) with security parameter A.

Definition 17. “Dual pairing vector spaces (DPVS)” (¢, V, V*, Gr, A, A*, ¢) by di-
rect product of asymmetric pairing groups paramg = (¢, G1, G2, Gr, G1, G2, e) are
N
———— ————
a tuple of a prime ¢, two N-dimensional vector spaces V := G x --- x G| and V* :=
N

—
Gz x -+ x GyoverF,,acyclic group Gt of order g, and their canonical bases, i.e., A :=
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- N_i
/—l’b\ /—’;\
(ay,...,ay)of Vand A* := (a, ..., a}) of V¥, wherea; := (0,...,0,G,0,...,0)
- Nei
z—l" z—/;

and a} :=(0,...,0,G>,0,...,0), and pairing e : V x V* — Gr.
The pairing is defined by e(x, y) := ]_[lN=1 e(D;, H;) € Gy wherex := (D1, ..., Dy)
€ Vand y := (Hy, ..., Hy) € V* This is non-degenerate bilinear, i.e., e(sx,ty) =

e(x,y)" andife(x,y) = 1forall y € V, thenx = 0. For all i and j, e(a;, a;) = gaTi’"i
where §; ; = 1if i = j, and O otherwise, and e(G1, G2) # 1 € Gr.

DPVS generation algorithm Ggpys takes input 1* (* € N), N € N and a descrip-
tion of bilinear pairing groups paramg, and outputs a description of paramy :=
(q,V,V* Gr, A, A*, ) constructed above with security parameter A and N -dimensional

(V,V*).

Right multiplication by W € GL(N, IF,) is defined as in Remark 1 in Sect. 2.1.

B. Hierarchical Reduction to DLIN: Proofs of Main Lemmas (Lemmas 1 and 2 )

B.1. Outline

The DLIN Problem is reduced to (complicated) Problems 1 and 2 through several inter-
mediate steps, or intermediate problems, as indicated below (See Fig. | in Sect. 4.3):

1. DLIN Problem (in Definition 3)

2. Basic Problem 0 with three-dimensional DPVS (in Definition 18)

3. Basic Problems 1 and 2 with 7z := (d; ny, ..., ng) (in Definitions 19 and 20)
4. Problems 1 and 2 with 7z (in Definitions4, 5)

We will explain how the simplest problem, DLIN, is sequentially transformed to more
complicated ones according to parameter 7, which indicates degree of complexity.

DLIN — Basic Problem 0 : Basic Problem 0 uses three-dimensional DPVS. In this
first reduction step, a DLIN instance on (symmetric) pairing group is transformed
to a Basic Problem 0 instance on the DPVS, i.e., higher-level concept. It is proven
in Lemma 14.

Basic Problem 0 — Basic Problems 1 and 2 : Format #n := (d:;nq,...,nq) corre-
sponds to d + 1 DPVSs, V,; (t = 0, ..., d). The dimension of Vj is 5, and the
dimensions of V; are 3n; + 1 fort = 1,...,d. In this reduction step, vector
elements (and additional group elements) in a Basic Problem O instance are trans-
formed to the corresponding elements in V; for ¢t = 0, ..., d. They are proven in
Lemmas 15 and 17.

Basic Problem 1 — Problem 1: The proof is given in Lemmas 16.

Basic Problem 2 — Problem 2 : The proof is given in Lemma 18.

B.2. Preliminary Lemma

We will use the following lemma (Lemma 14) in the proofs of Lemmas 1 and 2.
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Definition 18. (Basic Problem 0) Basic Problem 0 is to guess g € {0, 1}, given
(Paramgpo. B, B*, 3. f, kG, G, 55G) & GBPO(1%), where

R
Ggro(1™) . paramg := (¢, G, Gr, G, e) < Gppg(1),

paramy := (¢, V, Gr, A, €) := Gypus (1, 3, paramg),

X1 a1
A U > _ U

X = (Xz) = Xi,j)i,j < GLQB,Fg), (¥))i,j:= (122) = XD K ESFX,
X3 93

b i=k(X)a = KZ?-ZI xija; fori =1,3, B = (b, by),

by == EWi)a=EY 1 Vi jar; fori =1,2,3, B*:= (b}, b3, b3,
gr :=e(G, G)*§, paramgpg := (paramy, gr)

s.0.0 L F,, p.1EFX

¥5:=10,0,0)p, yi:=(, 0,0 f:=(w 1,05,
return (paramgpg, B, B*, y%. f.xG. £G, 6£G).

for B <U—{O, 1}. For a probabilistic machine D, we define the advantage of D for Basic
Problem 0, AdVZBDPO (1), is similarly defined as in Definition 4.

Lemma 14. For any adversary D, there is a probabilistic machine £, whose run-
ning time is essentially the same as that of £, such that for any security parameter X,
AV < AdvEHNG) +5/4.
Proof.  Given a DLIN instance

(paramg, G,6G,«G,85G,0kG, Yp),

& calculates

paramy := (¢, V, Gr, A, e) := Ggpys(1*, 3, paramg),
gr = e(kG,£EG) (= e(G,G)¥), paramgpg := (paramy, gr).

& sets 3 x 3 matrices IT*, IT as follows:
& 1 K

, M= -« —-&«k& ],
k1 &

Im* .=

Then, IT- (IT")T = k& - I;. By using matrices IT and IT*, £ sets

uj = (§,0,1)a, u3:=(0,0,Da, uj:= (0« 1)a,
up = (Ka O’ O)Aa up = (_Kv _Eﬂ KE)A’ us = (O’ ga 0)A5
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& can compute u?‘ fori =1,2,3 and u; for i = 1, 3 from the above DLIN instance.
Let bases U := (#;)i=1,2,3, U* := (u]);i=1,2,3 of V. £ then generates 7, ¢ <U—IE‘q such
that n # 0, and sets

v := (pG, —nG,n(kG)) (= (¢, —n,nk)a) and wz = (806G, 0kG, Yp).

£ generates a random matrix W <U— GL(3,F,), then calculates

bi :=u;W fori =1,3, b] := u}k(W_l)T fori =1,2,3,

B := (b1, b3). B*:= (b%, b5, b%),

f=vW, yi=wiwHh,
where right multiplication by W' (and (W~HT) is given as in Remark 1 in Sect. 2.1. £
then gives (paramgpq, B, B*, yz, f,kG,EG,56G) to D, where 8£G is contained in

the DLIN instance, and outputs 8’ € {0, 1} if D outputs g’.
If we set

T .= ";“_ln, w:=T +/<_lga,
then T # O (since n # 0),

v="_(p,—n,n)p = (0 — 1)k, —T&, TKé)p = wUu1 + TUr = (W, 7,0)y, and
f=vW=((w,7,0)y) W = (w, 7, 0)p.

IfB=0,ie.,Yg =Yy= (6 +0)G, then

wy = 86G,0kG, (§+0)G) = (8§, 0k, 8 +0)p = Suj +oui = (8,0,0)y= and
yo =wiW™HT = (6,0, 0)p) W™HT = (5,0, 0)p-.
Therefore, the distribution of (paramgpg, @, B*, y5, f. kG, EG, 5£G) is exactly the
same as {Q ‘ 0 i QEPO(I’\) } when k # 0 and & # 0, i.e., except with probability 2/g.
If B =1,ie., Yg =Y (= ¥G) is uniformly distributed in G, we set p 1= — 6 —o.
Then

wi = 86G,0kG,(§+p+0)G) = (8§, 0Kk, 8 +p+0)a
= duj + pu3 +ouj = (8, p,0)y+, and
yi=wiWw HT = (G p. o)) W HT =6, p, 0)pe,

where p is also uniformly distributed. Therefore, the distribution of (paramgpg,
B, B*, ¥, f.kG, G, 8£G) is exactly the same as {0 ’ 0 <R—QIBP°(1)‘) } when k # 0,

& #0and p # 0, i.e., except with probability 3/q.
Therefore, Adv%PO(A) < Advg Ny + 2/q +3/q = AdV?LIN(A) +5/q. |
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B.3. Proof of Lemma 1

Combining Lemmas 14, 15 and 16, we obtain Lemma 1.

Definition 19. (Basic Problem 1) Basic Problem 1 is to guess g € {0, 1}, given

- R -
GET (1M i = (diny.....ng)) :  (paramy, (B, B}}i=0....a) < Gop(1". i),
W,y <U—Fq, T (U_]qu’
Bj = (b),1. b5 3. - b35). foo:=(@.0,0.0,1)5). f109:=(@.7.0.0,9)5.
fort=1,...,d,

> . n—1 ne MW . * * * %
€] ‘= (1,0 ! ) el t, ]Bt = (b[,l""’bl,n;’ t,n,+2""’bt,3nt+l)’
ny ne ny 1
—_—— ——— — N
for1 =0 we 1, 0, 0, Y B
Si11=( we i, Té 1, o™, Y B,

Sri=wb; i=2,...,n,

for B <U—{0, 1}. For a probabilistic adversary C, the advantage of C for Basic Problem 1,
Advgp1 (1), is similarly defined as in Definition 4.

Lemma 15. For any adversary C, there is a probabilistic machine D, whose run-
ning time is essentially the same as that of C, such that for any security parameter X,
AdvE () = AdVET0G) for any i = (d: (ni) = (ds mi, ... ma).

Proof. D is given a Basic Problem 0 instance
(paramgpy, B, B*, y4, f, kG, EG, 8§G).
By using paramg := (¢, G, Gr, G, e) underlying paramgpq, D calculates

param() = (qa V()’ GT7 AO? e) = gdeS(1A7 55 paramG)a
param, := (q, Vi, Gr, Ay, €) := Gapys(1*, 3n, + 1, paramg) fort = 1,....d,
param; := ({param,};=o....d, 87),

. . . . U
where g7 is contained in paramgpg. D generates random matrices W; <~ GL(N;,F,)
with No := 5, Ny :=3n; + 1fort =1, ...,d, then sets

do, == (b;,0,00) Wy fort=1,2, do3:=(0,0,0,£G,0) W,
do4 = (b3,0,0) Wy, dos:=(0,0,0,0,£G) W,
d; = (5,,0,00 Wy )T fort=1,2, djj5:=(0,0,0,G,0) (Wy "7,
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i 4= (b3,0,0) (Wy )T djj5:=1(0,0,0,0,G) (W' "),
g0 := (¥5.0,0) Wo,
fort=1,...,d,
diy = b7, 0N )W, dypsr = (05, 0MH Wy, dyy, = 85,0V W,

=i+ 1ifi € {2,...,n:},
v:=iifief{n, +2,...,N — 1},

di = (b, Ny (WHT, dy, L= (B, 0N T (WHTL df = (b3, 0N ) (W DT,

ti=i+1ifi € {2,...,n:},
ti=iifie{n, +2,..., Ny — 1},

gpi1 =5 0N W, g, =0T 86G OV T W, fori =2,....n,

otherwise, d; ; := (0", £G, oNi==1y W, where {

otherwise, df; := (0', kG, oNi—=1y (W[_l)T where {

where (v, 0M173) := (G, G2, G3,, 0V 3) forany v := (G1, G2, G3) € V = G3 and
right multiplication by W; (and (W,_I)T) for + > 01is given as in Remark 1 in Sect. 2.1.
Then, Do := (do,i)i=1....5s and D := (d{ ;)i=1...5, Dy := (dy.i)i=1....3n,+1 and D} :=
(d;’"i),-zlmg,,tﬂ are dual orthonormal bases. D can compute D, fort =0, ..., d, ]D’(; =
(d3,1,33)3, ceey dS,S)’ ]D);k = (d;k)l, ceey d* ;k’n,+2, ceey d;k’snt+l)£0r 1 = 1, ceay d

tng?
from B := (b1, b3), B*, kG, and £G. D then gives (param;, {D;, D} };—o,...4, 85,05
{8,015 &.i}i=1...a:i=2....n,) to C, and outputs B’ € {0, 1} if C outputs B’.

We can see that

.....

80,0 :=(@,0,0,0,¥)p,, g10:=(,7',0,0,y)p,,

fort=1,...,d,
ny ny ny 1
—_——— — N
gO,t,] = ( a)/et,13 Ontv Ontv 7// )]D)t’
g1 =0 e, T'ér 1, 0", Y by,

. / .
& =wd;; fori =2,...,n,

where o' =8,y ;= o,and v/ := p which are distributed uniformly in F,. There-
fore, the distribution of (param;, {Dr, D} }i=o.....a- 84,0 {8,1,15 &r.i}i=1....d1i=2....n,)

is exactly the same as {Q ‘ 0 2 gg” (lk, 1) } O

Lemma 16. For any adversary B, there is a probabilistic machine C, whose run-
ning time is essentially the same as that of B, such that for any security parameter
A AVE () < AdvET (1) + (d + 1)/q.

Proof. Given a Basic Problem 1 instance

C calculates

U
ry <—Span(b,)3n,+1), eﬁ’t’] = fﬂ,t,l —l—r; fort = 1, . ,d.
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-

Ur 1
C generates ug <U—IFqX, : = U gGL(n,,IE‘q) for t = 1,...,d. C then
Ut,n,

calculates

do :=(0,up,0,0,0)p,,

ng ne ng 1
———— —— =
dip+i = 0", Ui, 0", 0 )p forr=1,....d;i=1,...,n,

C then sets dual orthonormal basis vectors

i, = (0.uy".0,0,0)p:.

ny ny ny 1
—_—— —— —— =
Fai =0 0", Ztis 0", 0 Jprforr=1,....d;i=1....n,
Zr1
where : := (U7 "HT. € cannot calculate above dy, and dy; fori = n, +
zt,n,
1,...,2n, because of lack of bg , and b, ;. C then sets

Do = (bo,1.do.2. bo3. boa. bos), Df = (b5 . d}s 5. b 3. b 4. b5 ). Dy := (B 1. by 3. b 4. b 5),

D= bits e b dingts oo diong, bron 1y -5 besn 1),
ko, * * * * * *

Df ==y B gt 2, B g1 - B 340D

™ e (p* * * *

DF ==&y B, Vgt - B 30,41

C gives (param;, {D;, Df Y=o, ...a, fp.0- {€p.r.1, f1iti=1....d:i=2.....n,) t0 B, and outputs
B’ € {0, 1} if B outputs B’

Then, with respect to I;, Df (instead of B;, B}, respectively), the above answer to B
has the same distribution as the Problem 1 instance, i.e., the above instance has the same
distribution as the one given by generator 951 (1*, 1) if zo in Problem 1 is not equal to

0 and (z;,1, ..., 2r,n,) in Problem 1 is not equal to 0 for anyt = 1,...,d, i.e., except
with probability (d 4+ 1)/q for g = 1. d

B.4. Proof of Lemma 2

Combining Lemmas 14, 17 and 18 , we obtain Lemma 2.

Definition 20. (Basic Problem 2) Basic Problem 2 is to guess g € {0, 1}, given

-~ R -
(paramy, (B;, B} }i=0...a, .00 for Wrio Fridi=t.ai=1..n,) < Gf' 2(1*, i), where

- R -
GEP2(1P it = (dini, ... na)) : (paramg, (B, B )=o) < Gob (1, 1),
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Bo := (bo.1,b0 3, - -, b0 5),
By := (br1s- bin, brons1s - bian 1) fore=1,....d,
8,80,a)<U—IFq, 0, T <U—Iqu,
yao = (6, 0,0, §, O)B(*)’ yT’O = (8, p, 0, do, O)BS’ fo:=(0,7,0,0,0)B,,
fort=1,...,d, i =1,...,n4
=01 1,0m7) e FM,

ny ny ny 1
Yo = dew, 0, 8oér.i, 0 )p:
yT,t,i = deui, Peris doér.i, 0 )]Bg;f
foi= ( e, Téeri, 0", 0 )B,,

return (paramg, {By, B; }i=o, a4, ¥5.0- for (¥pris Fride=1,asi=1,..n,)-

for B <U—{0, 1}. For a probabilistic machine C, we define the advantage of C for Basic
Problem 2, AdV(EZ’P2 (1), as in Definition 4.

Lemma 17. For any adversary C, there is a probabilistic machine D, whose run-
ning time is essentially the same as that of C, such that for any security parameter X,
AdvEBP2(n) = AdVETO() for any it == (d; {n,}) := (d; n, ..., na).

Proof. D is given a Basic Problem 0 instance
(paramgpy, B, B, y4, f, kG, £G, 8§G).
By using paramg := (¢, G, Gr, G, e) underlying paramgpq, D calculates

param := (g, Vo, Gr, Ao, €) := Gapus(1”, 5, paramg),
param, := (q, Vi, Gr, Ay, €) := Gapvs(1*, 3n, + 1, paramg) fort =1,....d,
param; := ({param,};=o.....d, 7).

where g7 is contained in paramgpg. D generates random matrices W, 2 GL(N;, Fy)
with No :=5, Ny :=3n, + 1fort =1, ...,d, then sets

do, = (b,0,0) Wy fori=1,2, dos:=(0,0,0,«G,0) W,
do4:=(b3,0,0) Wy, dos5:=1(0,0,0,0,«G) Wy,

d; := (b7,0,0)(Wy HT fori=1,2, dj5:=(0,0,0,6G,0)(Wy "7,
&y = (83,0,00 Wy )T dj5:=(0,0,0,0,£G) (W, )7,

Pho = (55.0.00 Wy H.  gg:=(f.0.0) Wo,

fort=1,...,d,
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di—tyn i = (03D b 03D )W, fore=1,2,3;i=1,...,n,

di 1= (0", €G) Wy,

dF (i = OV b7 07D 0) (W HT fori=1,2,3;i=1,....n,.
df 3,41 = O, 6G) (W DT,

P =0 y5 03D 0y (W DT fori=1,....n,

g = OV 030D o)W, fori=1,...,n.

where (01, v, 02) := (01, (~}1, (~}2, 53,012) for any v := (51, 52, 53) eV=aG3
and /1, o € Zxo, and right multiplication by W; (and (Wf])T) for + > 0 is given as
in Remark 1 in Sect. 2.1. Then, Dy := (do,)i=1,....5 and Dj := (dal-)izle, D, =
(d;,i)i=1....3n,+1 and D¥ = (d;"’i)izl 3n,+1 fort = 1,...,d are dual orthonormal
bases. D can compute

.....

Do := (do.1,do3, ..., dos), Df:= dg,1s - dg5),

fort=1,....d, Dy:=Ws1,....d1pn,.di2n,41, ..., dt,3n,+l)7]D)?< = (d?(,p ces 7d:3n,+1),

,,,,,

80 P}, i» &riti=1,..d:i=1,...n,) to C, and outputs B’ € {0, 1} if C outputs p".
We can see that

pzk),O = (8’ Or O’ 607 O)Dév PT,() = (89 P, 07 809 O)]D)Sv 80 = ((L), T, 0’ ()7 O)ID)O’

n; ny ne 1

—_——— —_— PN

P = den, o, Soér.i 0 o
PT,M = ( Sgt,is ,02,,,', 5051,i7 0 )D,*
gi= ( wzz,iy TEt,i, 0", 0 o,

t=1,....d;i=1,...,n,

Therefore, the distribution  of  (paramy. Dy, D}i=o....a- P 0- 80- (Pl

,,,,,

Lemma 18. For any adversary B, there is a probabilistic machine C, whose run-

ning time is essentially the same as that of B, such that for any security parameter
A AdVEZ(L) = AdvEF2(h).

Proof. Given a Basic Problem 2 instance
(param;, {B;, B, }i=o0,..a> Y.00 fos (¥pris Friti=1,dii=1,..n,)s
C calculates

U
* * * * R *
r,i <—Span(bt’2n[+1, -~~vbt,3n,>’ hﬁ,[,i - yﬂ,t,i +rl,i'

1
s



Fully Secure Functional Encryption with a Large Class 1549

2/
u “l u
C then generates z(’) <—]qu and = Z, < GL(ny, Fy),fort =1,...,d, and
2/
Zt,n,
calculates
. /
dy, = (0,25,0,0,0)pz,
ny ny I 1
———— ——
;k,n,+i =( 0™, Z;’i, 0" 0 Jprfore=1,....d;i=1...,n,.
211 s,
C then sets z¢ := p’]z’o, ug = zal, : = Z; = p’]Z; and =
zt,nt ﬁt,n,

(Zfl)T, where p is defined in Basic Problem 2. Then,

daz = (07 P20, 07 09 O)BE‘;?

ny ny ny 1
—— —— ——
* > .
tni = C 0" pZ, 0" 0 J)prfort=1,....d;i=1....n.

C then sets dual orthonormal basis vectors

dos = (0, p"'up, 0,0, 0)p,,

ny n; ny 1
—— —— —— =

—1=

dipi = 0", p7lus;, 0", 0 g fort=1,....d;i=1...,n;.
C cannot calculate above do» and d; ; fori =n, + 1, ..., 2n,. C then sets

Do := (bo.1,d02, bo 3, bo.4, bos), Do := (bo,1, b0 3, bo 4, bos), D := (51> d5.25 06,3 b 40 b5 5).

Dy = (bt,h ey bt,n,s dt,n,+17 cees dt.Zn,, bt,2n,+l, e bt,3n,+l)9
D; = (bt,l’ ey br,n” bt.2n,+la ceey bt,3n,+l)’

* . * * * * * *
Dy = (bt,l’ EEE bt,n,’ dt.n,+1’ RN dt,Zn,’ bt,2n,+17 ARl bt4,3n,+1)‘

C gives (paramg, {D;, Df}i=o,...a. Y5 0- So: (b, ;o friti=1..d:i=1,..n,) t0 B, and out-
puts B’ € {0, 1} if B outputs .

For t in Basic Problem 2, let 7" := pt. Then, with respect to t/, D, D¥ (instead of
7, B;, B}), the above answer to 3 has the same distribution as the Problem 2 instance, i.e.,

the above instance has the same distribution as the one given by generator g};’2(1k, ).
O
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C. Proof of Main Lemma (Lemma 3)

Proof.  We first remind the definition of cofactor (and cofactor matrix). When n > 2,

for n x n matrix Z := (z;,j), let A; ; the minor obtained by removing the ith row and

the jth column from Z. Cofactors Z;, ; are defined by (—1)'*/ A; ;. The determinant of
ZisgivenasdetZ =} i_, zi ;% . In particular, when i = 1, we obtain

n
detZ:ZZl,jZLj. (17)
Jj=1

In addition, when det Z # 0, we have

El,l ce Zl,n
U:=zHT= LI : (18)
detZ | _ o
Zn,l -+ Zn,n
Below, we denote row vectors Z; := (2.1, - - -, Zi.n) of Z and Z‘ = (Zi1,.-->2in) Of

(detZ)-(ZzHTfori=1,...,n.

Case that X - ¥ = p # 0: For normalized pair of vectors
X:=(p,0,...,0), v:=(,0,...,0), (19)

we will show that (XU, vZ) is uniformly distributed on C), for Z g GL(n,F,), U =
(z=1T. By that, for any pair (X,v) € C,, we see that (YU, vZ) is uniformly dis-

tributed on C,, for Z 2 GL(n,Fy),U :=(Z ~1T. Therefore, we consider (¥, v) given
by Eq. (19) in the following.
Since Z = (z;,j) and Eq. (18) holds, we have

=

> p -z p ~ o N
U= = — S, , Z =27 = e, . 20
x et Z detz@l,l Zin), U zZ1 = (21,1 Z1n) (20)

(Egs. (17) and (20) give that (XU) - (VZ) = p.) Cofactors 7, ;j are determined by n — 1
row vectors, 22, ..., 2, of Z. That is, 7] is orthogonal to hyperplane span(za, ..., Z,)
which is uniformly distributed in the spaces of hyperplanes H with the conditionz; ¢ H

when Z <U— GL(n,F,) with fixed (random) Z1. Hence, from one-to-one correspondence
of hyperplanes and their normal vectors (up to scalars), we see that (XU, vZ) is uniformly

distributed in C,, when Z < GL(n, F,).

Case that X - v = 0 : For normalized pair

X:=(,1,...,0), v:=(1,0,...,0),
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we will show that (XU, ¥Z) is uniformly distributed on Cy for Z 2o L(n,Fy),U =
(Z=HT because of the similar reason as above.
Since Z = (z;, ;) and Eq. (18) holds, we have

N
=

- 22 ~ N -
xU = 205y 22m)s VZ=2Z1=(211s---s20n)-
det Z detZC ) @1, )
Cofactors 75, j are determined by n — 1 row vectors, Z1, Z3, . .., Z, of Z. In particular,
7o is related to only term det Z in (XU, ¥Z).
First, since 7, is orthogonal to hyperplane span(zy, z3, . . ., Z») which is uniformly

distributed in the spaces of hyperplanes H with the conditionz; € H when Z 2 GL(n,Fy)
with fixed (random) 71, we see that ?2 is distributed uniformly on the orthogonal space
to Z1 (= ¥Z) up to scalar multiplication. Moreover, since det Z is uniformly distributed
in F ¢ when 2 is uniformly distributed in IF;\{()} such that det Z # 0 and 75 is re-

lated to only det Z in (XU, vZ), we see that XU = dgfz is distributed uniformly
on the space orthogonal to Zy, i.e., (XU, vZ) is uniformly distributed on Cy when
zL 6L F,). O

D. Problems 3, 4 and 5 for CCA-Secure CP-FE

We will show Problems 3-5 and Lemmas 19-21 for the proof of Theorem 4. The proofs
of Lemmas 19-21 are similar to those of Lemmas 1 and 2

Definition 21. (Problem 3) Problem 3 is to guess B € {0, 1}, given (param;, By,

B, ep.0, By, BY, epr1s €ridizt.. ditiz n,)eg%m 1), where

.....

953(1%): Rap1 =2, i = d L (e ai),

for B <U— {0, 1}. For a probabilistic machine B3, the advantage of 5 for Problem 3, Advlpg3 A),
is similarly defined as in Definition 4.

Lemma 19. For any adversary B, there exist probabilistic machine £, whose running
times are essentially the same as that of B, such that for any security parameter X,
AdvR3 () < AdVEIN G + (d +7) /4.

D/gﬁnition 22. (Problem 4) Problem 4 is to guess § € {0, 1}, given (param;,
{Be, Bf}i=0,..a»  Ba+1,Bj, |, hxp o, €0, th*pris €riti=1.. a:i=1...n,> (R*¥a+1.iti=12)

pil GE4(1%, i), where
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= U V] 1
Bri=(bets oo b bron+ts oo besn 1) fort=1,....d, 8,80, 0 <Fy, ug, T <FJ, z0:=u,",
21 g,
U . —I\T
= Z,eGL(n,,Fq), X =(Z) fort=1,...,d,
Zf,n, ‘;Ln/

h(gio 1= (8,0,0, 8, 0)]135, hT,O = (8, uo, 0, do, O)Bs, ey := (w, 120, 0,0, 0)p,,
fort=1,...,d; i=1,...,n

G = (O L0 € B 5 SE

ny n n 1
—_——~ —_——~ —_——~ —~ =
B = ( 8é, 0", 8 0 g
Toi= 0 den, Ui, 8.y 0 g,
ei= ( wé,, TZ1is 0", 0 g,
* R * o P
hy,y;:=38by,,; fori=1,2,

return (param;, (B, By }i=o,..a, Ba+1, Bi,y, hj o, €0, thp ;s €niti=1,dsi=1,..n» iy 1 )i=1,2)-

for 8 <U— {0, 1}. For a probabilistic machine B3, the advantage of 5 for Problem 4, Ade4 A),
is similarly defined as in Definition 4.

Lemma 20. For any adversary B, there exists a probabilistic machine £, whose run-
ning time is essentially the same as that of B, such that for any security parameter X,
AdvE (L) < AdVEENGY 45/,

Definition 23. (Problem 5) Problem 5 is to guess B € {0, 1}, given (paramg,
{Br, Bf }y=0,a+1, (Be, B Yi=1,..a, B o5 €0, (R Y=t asi=1,n,s (MG 41155 €at1,i}i=1,2)

<5g};‘5(lk, n), where

=/

GEP(M i)t ngr =2, i = (d + 1; (ni)i=1...at1),

R =
(param;;, {By, B} }i=o,....a+1) < Gop(1*, 1),
Bo := (bo,1,b03,...,b05), Bay1 = bay1,1,bav12,.bav15, ..., bay1,7),

U U _
8,80, 0 <TFy, uo, t <—1qu, z0 1= uol,

koo = (3,0,0,80,0)m5, hig:= (8, u0,0,8, 0y €0 := (@, 720,0,0,0),,
h;k’l- :=6b;k,i fort=1,...,d;i=1,...,ny,

Zd+1,1 U Ud+1,1 Z1\T
4T = Zg1 < GLQR,F), [ 27 ) i=(Z ,
(Zd+1,2) arl @.Fq) <ud+1,2) (Zas0)

fori =1, 2,

- i— i 2 U
Carri = 0""1,007) €F}, Sqp1i<F,.
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2 2 2 1
——— ——— ——
* o = . 2 < .
hO,d+1,i = (deq+1,i 0-, éd-‘,—l,u 0 )BZ’H’
* . - e
Lat+ri = (8eayii,  Uayri,  davri, 0 g,
) - = 2
ejy1,i = (weqi1,i, TZdil,is 0-, 0 JBys

return (param;, {B;, B} };—o.a+1, {B, B }i=1,...4,
hg o, €0, (R V=1 dii=1...n» 1hE 411 ;> €a+1.i}i=12),

for B <U— {0, 1}. For a probabilistic machine B3, the advantage of 5 for Problem 5, Adleg5 A),
is similarly defined as in Definition 4.

Lemma 21. For any adversary B, there is a probabilistic machine &£, whose run-
ning time is essentially the same as that of B, such that for any security parameter X,
AdVRR () < AdVvEYN (L) + 5/4.

E. How to Relax the Restriction that p Is Injective

We assume that ¢ € N is given in the system. For any access structure S := (M, p) for
ciphertext in the CP-FE scheme, ¢ > maxf: 8{i | p@i) = t}. (In the proposed CP-FE
scheme in Sect. 5, we assume that ¢ := 1.)

We will show how to modify the CP-FE scheme to allow ¢ > 1 with preserving the
security of the CP-FE scheme in Sect. 5. We can also show the similar modification of
the KP-FE scheme to allow ¢ > 1.

In a recent work [47], another technique to allow ¢ > 1 in an efficient manner was
proposed.

E.1. The Modified CP-FE Scheme

1. As for Setup, given (1*, n := (d;ny,...,ng)), execute Setup(1*, n' :=

(d;nl,...,n)))suchthatn; :==n; +pforr=1,...,d.
2. As for KeyGen, given (pk, sk, I' := {(t,%; = (x;1,...,xn) € Fg") | 1
t < d}) execute the same procedure as KeyGen except that:

IA

np np np 1
——— ——

k;k = ( 82[9 O(P On;7 {ét’ O )]B;k for (ta -)_éI) € Fv

3. As for Enc, given (pk, m, S := (M, p)), execute the same procedure as Enc
except that:

. R N U
pr(l) =, v:=W1,..., v,',,,t) IS F;’) ni, Ti (—Fq,

n; n; n; 1
—— ——

- - — — U /
i = (sién +0;v;, 071 5, 097%, 0™, 0%,  m B
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. . - U
if p(i) = =(t, ), ni, T < Fy,

n, n; n, 1
—~

BN _ _ / /
i = (v, 071 7, 007K, 0", 0", Ni )B,»

where i is the «th index such that p(i) =t and {j <i|p(j) =t} =« — 1.

E.2. Generalized Version of Lemma 3
For p := (p1,..., ps) € Fy. let

2750, ﬁi;zéo,)'c'-ﬁ,-:piforizl,...,s

C":Z .)?,5,...,17 = 1 1
p {( 1 s) {vi}i=1,...,s are linearly independent over [F,

} CF! x (FM)'.

Lemma 22. For all p such that Cj # W, for all (X,Vy,...,0) € Cp, and (7,
J)],...,J)s) ECﬁ,

. . . . 1
Pr [YU=F Ay Z=wifori=1,....s]=—,
z¥ 6L Ry, 1Cp

where U := (Z~HT.

Proof. Case that there exists an i such that X - v; = p; # 0: We can assume that
pi Z0fori =1,...,¢,pi =0fori =¢+1,...,s through an appropriate change of
order of coordinates. Then ¢ > 1.

For normalized tuple of vectors

i—1 n—i

-

5 —— ——
x=pty.-y pt,0,...,0), v;:=(,...,0,1,0,...,0) fori=1,...,s, (21)

we will show that (XU, v1 Z, .. ., U3 Z) is uniformly distributed on C}; for Z 2 GL(n,Fy),
U := (z~"T.Bythat, forany pair (X, 01, ..., Us) € Cj,weseethat (XU, V1 Z, ..., 05Z)
is uniformly distributed on Cj for Z g GL(n,Fy),U :=(Z ~IT Therefore, we con-
sider (X, v1, ..., Uy) given by Eq.(21) in the following.

For the proof, we define

X#0, v 0, X-U;=p;j,
i )i

C(i_):: ;,6,...,6 - : 1
p (x, vy s) {Ui}i=1,... s are linearly independent over F,,

} CFy X (F)

fori =1,...,s,then Cp = ﬂf.legl.). Since Z = (z;,j) and Eq. (18) holds, we have

Z;:l Pi-Zi
det Z

XU =

t
1 ~ - > .
= Zpi(fi,l,---,Zi,n),viZzz,- = (i1, ...,z fori=1,... 5.
detZi:]
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From Lemma 3, we see that (XU, v1Z,...,vsZ) is in C[(,i,) fori = 1,...,s and
moreover it is uniformly distributed in C 5= ﬂf.lel(f;.) when Z <U— GL(n,Fy), ie.,
FU.T1Z. ..., 5,Z) is uniformly distributed in C; when Z < GL(n, ).

Case that p; = ¥ - ; = 0for all 1 <i < s: For normalized tuple

k —s—1 i—1 —i
. Ay n—s ) 1 n—i
x=(,...,0,1,0,...,0), v;:=(,...,0,1,0,...,0) fori=1,...,s,
we will show that (XU, 91 Z, .. ., ¥ Z) is uniformly distributed on C; for Z g GL(n,Fy),
U := (Z~HT because of the similar reason as above (where 0 := (0, . .., 0)).

Since Z = (z;,j) and Eq. (18) holds, we have

- T+ 1 ~ - - -
XU = dz:tZ = m(zﬁm, Tl GZ=Zi =152 fori=1,...5s.
Cofactors Zy1,j are determined by n — 1 row vectors, Z1, ..., Zs, Zs4+2, . - . » 2n Of Z. In
particular, 7, 1 is related to only term det Z in (XU, vZ).

First, since Zyy | is orthogonal to hyperplane span(zi, ..., Zs, Zs42, - - - » Zn) Which is
uniformly distributed in the spaces of hyperplanes H with the condition 71, ..., Zs € H

u . - - 2 C e .

when Z < GL(n,F,) with fixed (random) zy, ..., Z;, we see that 7 is distributed
uniformly on the orthogonal space to span(zi, ..., zs;)(= span{(v1Z, ..., vsZ)) up

to scalar multiplication. Moreover, since det Z is uniformly distributed in F_* when
Zs+1 is uniformly distributed in IE‘;\{()} such that det Z # 0 and 7,y is related to

only det Z in (XU, vZ), we see that XU = 41 s distributed uniformly on the space

det Z
orthogonal to span(zi, ..., Zs),i.e., (XU, vZ) is uniformly distributed on Co when Z 2
GL(n.F,). O
E.3. Security

We can prove the security of the modified CP-FE scheme in a manner similar to that
of Theorem 2 except that Problem 2 is changed to Modified Problem 2, Lemma 10 is
changed, where B; ’s simulation is executed on Modified Problem 2, Game 2-h71 is
changed to Modified Game 2-h™, and Claim 2 is proven based on Lemma 22 in place
of Lemma 3.

Here we only show the essence of the change by using Modified Game 2-h2™. The

Modified Game 2-h™ is the same as Game 2-h™ except that Z; g GL(n,,Fy), U; :=
(Zt_l)T fort =1,...,d,whereforeachrsuchthat {i, | p(i,) =1, 1 <« < ¢}}isnot
empty,andforx = 1, ..., ¢, the framed part by abox in k;" inEq. (14)is (X;, 0¢‘) -U;, and
the framed parts by abox in ¢; (:= ¢;, ) in Eq. (15) are (aje;,1 + 70, 071, 7/, 097) . Z,
and (q;v;, 071, T/, 0%=%) . Z,, where T/ <U—IFq fori = 1,...,£. By using Modified
Problem 2, B;“ can simulate the ciphertexts, c; . By applying Lemma 22, we can prove
Claim 2 for the changed simulation by B; in a manner similar to the proof of Claim 2.
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F. Special Cases

This section describes special cases, KP-ABE and CP-ABE, of the proposed FE schemes

givenin Sects. 4 and 5. Here, the underlying attribute vectors, {X;}; el

.....

ayand {v; }ieq1

,,,,,

o)

are specialized to two-dimensional vectors for the equality relation, e.g., X; := (1, x;)
and v; := (v;, —1), where X; - ¥; = 0 iff x; = v;. These schemes are also adaptively

payload-hiding under the DLIN assumption.

F.1. KP-ABE with Non-Monotone Access Structures

Setup(1*, ii := (d;2.....2)) : (paramy. {B;. B }o....q) < Gop(1*, 1),

,,,,,

By := (bo,1,bo 3, bo5), B, := (bt,1,b:2,b;7) fort=1,..,d,

T o (p* * * ok . (¥ * * * _
BO = (bO,l’b0,37b0,4)v ]Bl‘ = (bl,l’ 2 t,S’b[,6) fort = ], ..,d,

,,,,,,,,,,

KeyGen(pk, sk, S := (M, p)) :

f(u—ﬂ?r, ET = (S], ...,Sg)T =M fT, S0 = i . ];T, no <U—Fq,
kg := (—=s0, 0, 1, no, O)my,
fori=1,...,4¢,
. . - 2\ (R U - U _»
if p(i) = (1, v := (vi, =) € FF\{0}), 0, < Fy, n; < Fg,
2 2 2 1
— —_— N —— =
ki = (s +0jv;, —6;, 0, 0, Mis 0 ),
it p() = ~(t.7), 7 < F2,
2 2 2 1
—ml—— —— —— =
ki=(C sivi, —si, 0, 0, Tis 0 ).
return sks := (S, kg, k7, ..., k}).

Encpk, m, I':={(t. % := (1,x) e FA(O}) | 1 <1 <d}):

U N
o, @0, ¢r, & < Fyfor (1,x;) € T,

co:=(w, 0, ¢, 0, ¢o)By,

2 2 2 1
—mT S =

¢ =( o, wox, 0, 0, 0, 0, ¢: ), for (t, %) €T,

Cd+1 = gém, ctr := (T, co, {¢:} 1, 7)ers Ca+1),
return Ctr.

DeC(pk’ SkS = (Sv k(>§a >]ka ey kz)v CtF = (Fv €0, {cl}(l,f,)era Cd"rl)) :
If S := (M, p) accepts I := {(¢, X;)}, then compute I and {«;};<; such that

1= Y ic; @iM;, where M; is the ith row of M, and

IClie{l,....0} | [p()=(t73) A %) el A v =x]



Fully Secure Functional Encryption with a Large Class 1557

Vv [p(l):_'(tval) A (tv)_él)er N Vi #xl] }7
Ki=e(cokp) [ el k)™ [T eteipe/im,
iel A p(i)=(t,7;) iel A p(i)=—(t,3;)

return m’ :=cqy1/K.

F.2. PE for Inner-Products

We describe a modified random dual orthonormal basis generator Gop’ below, which is
used as a subroutine in the proposed IPE scheme.

Gob' (1%, N) : paraml, := (¢, V, Gr, A, &) & Gapus (1%, N), ¥ £ F,
U
X := (xi,j) < GL(N,Fp), (%)) =¥ -(XD)~L, gr :==e(G, G)¥, paramy := (param,, gr),
bl‘ = Zj-v:l x,;jaj, B:= (b], ey bN), b?{ = Z;-vzl 19,‘,]‘11_,-, B* .= (b*, ey bj{\’)’
return (paramy, B, B*).

F.2.1. Construction
In order to make a ciphertext shorter, we modify + = 1 space V := V; by adding one
more dimension instead of using ¢t = 0 space V. This construction is similar to the IPE

construction in Section 3.5 in [32].
Here, we assume that the first coordinate, x1, of input vector, X, is nonzero. We refer

to Sect. 1.5 for notations on DPVS.

Setup(1*, n) : (paramy, B:= (bo....,b3u41).B* := (b5, .... b5, )) igob/(l)‘, 3n +2),
Bi=(bo..... b b3ng1). B* = (b),.... b5 b5, 1. ... b},
return pk := (1*, paramy, B), sk :=B*.

KeyGen(pk, sk, v € IE‘;) o <U—]Fq, 7 <U—]Fg,

1 n n n 1
—_— —— —— ——
o= (1, o, 0", . 0 px,

return sk := k*.

Enc(pk, m. ¥ € F)): w,9.¢ <U—Fq?

1 n n n 1
—_— —— —— —— =
. bvd . ¢
cr:=( ¢ X, 0", 0", @ B, C2:=gpm,

return Ct; := (c1, 2).
Dec(pk, sky :=k*, cty :=(c1,c2)) : m' :=ca/e(er, k*),

/
return m .

[Correctness] If x - v = 0, then e(cy, k*) = g?“"’f'ﬁ = g%,

Remark 5. The differences between the proposed IPE scheme and the IPE scheme in
[32] are:
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1. While the scheme in [32] employed a (2n 4 3)-dimensional vector space, the
proposed scheme employs a (3n + 2)-dimensional one. The keys in [32] have
only one-dimensional randomness space, but those in our construction have n-
dimensional randomness space. The security assumption in [32] is the n-eDDH,
a non-standard (and non-static) assumption, while it is a standard (and static)
assumption, the DLIN, in our scheme. More precisely, the security of Problems
1 and 2 on a (2n + 3)-dimensional space is reduced to the n-eDDH assumption
in [32], while in the proposed scheme, the security of these problems on a (3n +
2)-dimensional space is reduced to the DLIN assumption. In other words, we
achieve the DLIN-based security (higher security) at the cost of increasing (n — 1)
dimensions for the randomness space of keys (less efficiency).

2. While scalar ¢ in a ciphertext ¢ is a coefficient of the (2n + 1)th basis vector
by, in [32], it is that of Oth basis vector by here. It is just a change of notation,
i.e., not essential one.

F2.2. (Weakly) Attribute-Hiding Security

The notion of adaptively weakly attribute-hiding security, where a type of key queries are

not allowed, and the advantage Advle’ WAH () of adversary A are defined in Definition

17 of [32].

Theorem 5. The proposed IPE scheme is adaptively weakly attribute-hiding against
chosen-plaintext attacks under the DLIN assumption.

For any adversary A, there exist probabilistic machines £ and &, whose running
times are essentially the same as that of A, such that for any security parameter A,

AdVPEATG) < AVRING) + T AdVEENG) + €,
h=1

where £ 1, (-) = Ex(h, ), v is the maximum number of A’s key queries and € :=
(6v+5)/q.

We will employ Problem 1’ and Problem 2’ for the proof of Theorem 5, which are
almost the same as Problem 1 (in Definition 4) and Problem 2 (in Definition 5), respec-
tively. For completeness, we describe them and the security lemmas here.

Definition 24. (Problem 1°) Problem 1’ is to guess 8, given (paramy, B, ﬁ*, eg1,

,,,,,

GE' (1 m): (paramy, B, B*) & Gop' (17, 3n 4 2),
B = (B, b By B ),

s Yns

U > -1 - U U
w<F,, e =10 )EF;, z<—IF;, y < Ty,
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eo1:=( 0, wey, 0", 0", Y B,
e, :=( 0, wey, z, 0", Y B
e =wb; fori =2,...,n,

return (paramy, B, B*, eg1,{ei}i=2,..n),

for B8 <U—{O, 1}. For a probabilistic machine B, the advantage of B for Problem 1°,
Advg1 (), is similarly defined as in Definition 4.

Lemma 23. For any adversary B, there exist probabilistic machines £, whose running
times are essentially the same as that of B, such that for any security parameter X,

AdVE" (1) < AdvEENG) 4 5/4.
The proof of Lemma 23 is similar to that of Lemma 1.
Definition 25. (Problem 2’) Problem 2’ is to guess S, given (paramy, I@, B*,

,,,,,

GEZ(1*,n) ¢ (paramy, B, B) < Gop' (1%, 3n +2),
@ = (bO’ ceey bn, b2n+1, ey b3n+1),

-

21 23]
5,0 2F, t<FY, | 1 | =z&6LmFy, | ¢ | =@
Zn ﬁn
fori=1,...,n;
G = 1,00 e Fr, 8 <L
1 n n n 1
—_ —— ——— —— ——
hi ;= (0, 8¢, 0", Sis 0 )p-
B = ( 0, 8¢;, i, 5. 0 )p
e .= ( 0, a)E,-, ‘L’zi, On, 0 )15;,

return (paramy, B, B*, {k ;. e;}i—1...n).

for B <U—{0, 1}. For a probabilistic adversary B, the advantage of B for Problem 2’,
Adle;2 (), is similarly defined as in Definition 4.

Lemma 24. For any adversary B, there exists a probabilistic machine &£, whose run-
ning time is essentially the same as that of BB, such that for any security parameter 1,
AdvEZ () < AdvEHNGY) +5/9.

The proof of Lemma 24 is similar to that of Lemma 2.
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Proof of Theorem 5. To prove Theorem 5, we consider the following (v + 3) games.
In Game 0, a part framed by a box indicates coefficients to be changed in a subsequent
game. In the other games, a part framed by a box indicates coefficients which were
changed in a game from the previous game.

Game 0 : Original game. That is, the reply to a key query for v is:
K= (1, 0@, [0"], 3, 0,

where o <U— Fyand7 € F 4 - The challenge ciphertext for challenge plaintexts (m O m)y
and vectors (X©@, x(D) is:

er:=([¢], [0i® ] [07] 0", ¢)m, 2 := gim®,

where b <U—{0, 1L ¢, w0 <U_Fq'

Game 1 : Game 1 is the same as Game 0 except that ¢ of the challenge ciphertext is:
¢ = (¢ ox®, [F] 07, ¢)m,

- U . .
where r < IB‘(;', and all the other variables are generated as in Game O.

Game 2-h(h = 1,...,v): Game 2-0 is Game 1. Game 2-/ is the same as Game
2-(h — 1) except the reply to the hth key query for v is:

k= (1, o0, [W] 7, 0)g-,

where W <U— IE‘q”, and all the other variables are generated as in Game 2-(h — 1).

Game 3 : Game 3 is the same as Game 2-v except that ¢ of the challenge ciphertext
is

c| = (7 v ?1 0n9 @ )Ba = ggm(b),

where ¢’ 2 Fy, X' g Fg (i.e., independent from b <U—{0, 1}), and all the other variables
are generated as in Game 2-v.

Let Advﬁ) ), Advil‘) ), Advﬁ_h) (1) and Advg) (1) be the advantage of A in Game
0,1,2 — h, and 3, respectively. Advfg) (1) is equivalent to Adv!zE’WAH (A) and it is
obtained that Advf\) (A) = 0 by Lemma 28.

We will show three lemmas (Lemmas 25-27) that evaluate the gaps between pairs of
Adv'Y (), Advy (), AdvG " () forh = 1, ..., vand Adv'} (1). From these lemmas
and Lemmas 23 and 24, we obtain
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AdVRE ARG — AdvO () < ‘Advﬁf{) - Adv(l)(k)‘ n Z ’Adv<2 =) Gy— AdvE ()
+ ‘Advf{“)(x) _ Adv(3)(k)‘ + AV ()

< AdvE" (L) + Z AdVEZ (1) +v/g < AdvB-N ) + Z AdvZENG) + (6v +5) /4.
h=1 h=1

This completes the proof of Theorem 5. g

Lemma 25. For any adversary A, there exists a probabilistic machine By, whose
running time is essentially the same as that of A, such that for any security parameter
ho IAVY (1) — Adv) ()] = AdvET ().

Proof. In order to prove Lemma 25, we construct a probabilistic machine 5; against
Problem 1’ by using any adversary A in a security game (Game O or 1) as a black box.

The construction of Bj is the same as the machine By in the proof of Lemma 24 in
[32] except for step 5. In the step, when B gets challenge plaintexts (m?, m") and
challenge attributes (¥ O My (from .A), By calculates and returns (¢, c2) such that

1:= by + x](b)e/” +>0, xi(b)e,- and ¢ = g%m(”) where e and {e;};—> ., are

from the Problem 1’ instance B3 obtained, ¢ <U— F, and b <U—{O, 1}.

Similar to Lemma 24 in [32], if 8 = 0, the distribution of (¢1, ¢2) generated in step
5 is the same as that in Game 0. If 8 = 1, the distribution of (¢, ¢2) generated in step 5
is the same as that in Game 1.

Therefore, |Adv£2) ) — Adv(l)(k)| = Adv (A) This completes the proof of
Lemma 25. U

Lemma 26. For any adversary A, there exists a probabilistic machine By, whose
running time is essentially the same as that of A, such that for any security parameter
o IAVGTT G0y — AV T () < Adez, (W) + L, where By () := Ba(h, -).

Proof. In order to prove Lemma 26, we construct a probabilistic machine 3, against
Problem 2’ by using any adversary .A in a security game (Game 2-(h — 1) or 2-h) as a
black box.

The construction of B, is the same as the machine 5(:= By) in the proof of Lemma
25 in [32] except for the order of basis vectors. That is, while in the IPE scheme in [32],
scalar ¢ is a coefficient of the (2n + 1)th basis vector by, in ¢y, in our IPE scheme,
the scalar ¢ is that of the Oth basis vector by in ¢; (item 2 of Remark 5). Except for
such a notational difference, the simulation of 3, is the same as that of 5 in the proof
of Lemma 25 in [32].

Similar to Lemma 25 in [32], the pair of secret key k* generated in case (b) of step
4 or 6 and ciphertext ¢ generated in step 5 has the same distribution as that in Game
2-(h — 1) (resp. Game 2-h) when = 0 (resp. 8 = 1) except with probability L

Therefore, |[Advy ™"~ (1) — Adv(; ™ ()] < AdviZ, (1) + L. This completes the
proof of Lemma 26. ]
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Lemma 27. For any adversary A, Advﬁ_v) ) = Adv.(j) ).

Proof. Toprove Lemma 27, we will show distribution (paramy, ﬁ, {k(j)* }i=1,..,v. €1, C2)
in Game 2-v and that in Game 3 are equivalent. The proof is the same as that of Lemma
26 in [32] (except for a notational difference in item 2 of Remark 5). [l

Lemma 28. For any adversary A, Ad\fj) x) =0.

Proof. The value of b is independent from the adversary’s view in Game 3. Hence,
Advy () = 0. 0

G. HIPE Schemes

We will show two hierarchical IPE (HIPE) schemes in this appendix. The first one is
more efficient but payload-hiding (“Appendix G.3”), and the second one is (weakly)
attribute-hiding but less efficient (“Appendix G.4”), where these two schemes employ
different delegation mechanisms.

G.1. Key Idea in Constructing the Proposed HIPEs

Both schemes (without delegations) are constructed from the KP-FE scheme in Sect. 4
by specializing the dpolicy to be £-out-of-£ threshold access structures.

Let N := 2(3_,_; n;) + 3. The HIPE scheme in [32] employs one (large) vector
space of dimension N, where public basis B and (master) secret basis B* consists of
N? elements in the pairing group G. It leads to that KeyGen and Enc require O (N?)
scalar multiplications, i.e., they become relatively slow. Our schemes are constructed
using separated spaces Vo, Vi, ...V, with dimensions 5 and 3n; + 1 fort =1, ...,d
(see Sect. 4). Hence, the data sizes of dual bases {B;, B };—o.1,....q are O(Zflz1 ntz), and
then functions KeyGen and Enc become more efficient than those in [32], where the
sizes of the dual bases are 0((2;1:1 n)?).

The HIPE scheme in “Appendix G.3” makes {B} };—o,... 4 public except ba3, which is
denoted by {@f},zo ,,,,, 4, and Delegate uses {@;‘},:0 4- Master secret key is only one
vector b(’§’3. Since most of keys for delegation are public, secret key Sk can be small
(compared to those in [32]). The scheme, however, cannot be attribute-hiding for x; for
any levelr = 1, ..., d, because {bt oo b;,‘k,n, Yi=1,...a C f@;" are public.

To achieve both attribute-hiding and key delegatability, a (level-£) secret key of
the HIPE scheme in “Appendix G.4”, sky, consists of 3 types of vector elements,
Kk} gec> K7 del..» K ran,. @s in the HIPE scheme [32]. Element kj 4o is used for decryp—
tion, ke del. is used for delegation, i.e., for embedding any level- (£ + 1) vector vgy in
delegated key ske41, and k7 ¢.ran,. 18 used for re-randomization of a level-(¢ + 1) key, i.e.,
for making the distribution ofa delegated key equal to that of a freshly generated key
(see “Appendix G.4.2”). The secret key size is larger than that in “Appendix G.3” due
to the additional elements, k, g, . and ky o, ..

.....
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G.2. Special Notations for the Proposed HIPEs

To express our delegation mechanisms in the HIPEs compactly, we will introduce new
notations, here.

Since we use dual orthonormal basis generator Gop givenin Sect. 2.1, Xg <U— GL(5,Fy)
and X, <U— GL(3n,+1,Fy) fort =1, ...,d. By arranging the matrices Xo, X1, ... Xy

diagonally and other off-diagonal parts are zero, we consider a special from of bases
generation matrix X € FéVXN with N :=5+ Zle (3n; + 1), where

Xo
X

Xq

and our HIPEs are constructed on the one vector space V (= GV) with special bases
induced by X. In other words, the matrix X gives direct sum decomposition V =
Vo@ Vi@ ---®Vy (resp.V* = V5@V @ --- @ V), where V; := span(B,)
(resp. V; := span(B;)) fort = 0, ..., d. Based on this isomorphism, i.e., embedding
of V; (resp. V}) in V (resp. V*), we define the following notations as:

((X0)By» - - -» X)By) + (F0)Bys - - - » Ga)By) := (X0 + YO)By>» - - - » Xa + Ya)B,)
where ((X0)By, - - -» (X2)B,)s (F0)Bys ---» Oa)B,) EVEVoDV @ --- D Vg,

®)5, = (O)zy, - » O)p,_,, @)B,, O)p,,,, - O)p,) €V,
((F0)Bys G, i1 =1,...,0) 1= (R0)Bg» - - -» Z)B,) 1= Y _o(F)B, €V,
((X0)By, X)B, : 1t =1,...,0, (X0)B,) = (X0)By> - - -» (X0)B,» (X7)B,)

=3 m0,.0: (B €V,
e(c, k™) = ]_[flzoe(ct, kf) where ¢ := (co,...,cq) €VoD--- @ Vy,
kK= (ky, ... k) eVid--- @V},
Jj—1 ni—Jj
N —_—— e e n
and ¢ ; :=(0,...,0,1,0,...,0) e F/,

and all the above notations are applied to the case with {B;'},—o, .. 7 instead of {B; };—0,... 4

G.3. Efficient Payload-Hiding HIPE Scheme

G.3.1. Construction

.....

By := (bo,1, bo,3, bo5), B, := (bi1s s beny by 3n 1) fore=1,...d,
Bé = (bg,l’ b8’4), ]B;k = (b:(,l’ .oy b* :(’znt+1, .oy b;k’?’nt) fort - 1, .oy d,

tng?

.....

KeyGen(pk, sk, (v1, ..., ) € ]Fgl X oo X IFZ@) :
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¢
st,0,<U—IFq fort=1,...,¢, 5o :=Zs,, ﬁtglﬁ";’ fort =0,...,¢,
=1
ki := ((=s0, 0, 1, no, 0)pz, (si€r1+ 60, 0", 5, O)pr it =1,...,0),
return sky := (01, ..., V), k}).
Enc(pk,m € G7, (X1,...,X¢) € IFZ‘ X oo X ]FZ‘) :

U o
W, 0, ....,00 <Fy, c1:=((0,0,¢,0,90)B,, (wx;, 0", 0", ), :t=1,...,0),
= gém, ct:= (c1, c2), return Ct.
Dec(pk, kz,dec’ ct): m' == cy/e(c, k;f’dec), return m’.
Delegate, (pk, sk, ve+1 € Fy'*') :

41
U
Sdel.r» Odel 1 (—Fq fort =1,...,04+1, sgelo:= E Sdel.
t=1

el <" fort=0,..., 041,
kger = ((—sdet,0. 0. 0, ndel,0. 0Bz
(Sdel.r€r,1 + Odel Vs, 0", Tidelrs O)pr 1t =1,.... €+ 1),
szrl = k? + k:;elv
return Skey1 := ((Ur, ..., Vet1), kjyp)-

G.3.2. Security

The definition of adaptively payload-hiding security and the advantage Adv:IPE‘ PH )

of adversary A can be obtained through a straightforward extension of that of HIBE,
e.g., [25], with replacing ID-matching by vector-orthogonality.

Theorem 6. The proposed HIPE scheme is adaptively payload-hiding against chosen-
plaintext attacks under the DLIN assumption.

For any adversary A, there exist probabilistic machines, £ and &, whose running
times are essentially the same as that of A, such that for any security parameter X,

v
AdVIPE PGy < AN ) + Y AdRENG) + e,
h=1

where £ (-) := &Ex(h, +), v is the maximum number of adversary A’s key queries, and
e=(dv+8+d+T7)/q.

Proof Outline of Theorem 6: To prove Theorem 6, we consider the following (v + 3)
games. In Game 0, a part framed by a box indicates coefficients to be changed in a
subsequent game. In the other games, a part framed by a box indicates coefficients
which were changed in a game from the previous game.
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Game 0 : Original game. That is, the reply to a key query consists of:

ki = ((—s0. [0]. 1. no. 0)gs. (sern+ 6,5, (07| 7. 0)gr 11 =1,....0).

The challenge ciphertext consists of:

er = ((@.[0][¢]0, g0)my. (@F.[0"] 0", @p, 1 =1,....€),  c2:=ghm.

Game 1 : Game 1 is the same as Game 0 except the following procedures.

1. When a create key query is issued by .A, the challenger of the game only records
the specified predicates, and when a create delegated key query is issued, the
challenger only records the specified keys and predicates. In this step, just the
query is recorded, but no corresponding key is created.

2. When areveal key query is issued for a hierarchical (level-£) predicate (v1, . . ., U¢)
which has been already recorded, the challenger creates the queried key by using
KeyGen.

Game 2 : Same as Game 1 except that the challenge ciphertext is:
— g 1y Ly — o5
e1 = ((@,[wo] £, 0, go)my, (@%r, |10y |, 0", @)p, st =1,...,0), 3= gfm,

U - U _n
where wo < Fy, w, < F,".

Game 3-h (h = 1,...,v) : Game 3-0 is Game 2. Game 3-% is the same as Game
3-(h — 1) except that the hth reveal key query’s reply, kj, is:

ki = ((=so. [0} 1. no. O)ge (st + 6T, |7 | iy 0z 0= 1,0, 0),
U - U . .
where ro < F,, r; < Fg' fort = 1,..., ¢, and the other variables are generated as in

Game 3-(h — 1).

Game 4 : Game 4 is the same as Game 3-v except that the challenge ciphertext is:
e1 1= (@, wo.[£'] 0. g0)zy. (@110, 0" @)p, s =1 0),  cyi=ghm,

where ¢, ¢’ glﬁ‘q.
Let Adv) (), Adv') (). AdvY (1), Adv(;™ (1) and Adv’) (3) be the advantage of
A in Game 0, Game 1, Game 2, Game 3-4 and Game 4. It is obtained that Advﬁ) A2 =0.

We can evaluate the gaps between pairs of the above advantages using Problems 1
and 2 as in the proof of Theorem 1. O
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G.4. Attribute-Hiding HIPE Scheme

G.4.1. Construction

. R .
Setup(1*, /i := (d;ny,...,nq)) - (paramy, {B;, B} }i=o....a) < Gop(1*, 1),
Bo := (bo,1, b0,3. bo5), B := (bs1, .., b1y, b 3p,+1) fort=1,..,d,
B := (b5 . b55). By = (b} ,...b},) fort=1,..d,
KeyGen(pk, sk, (U1, ..., U¢) € Fg' x -+ x Fg') :
forj=1,...,2¢0; t=4+1,....,d; t=1,...,ng;

U

W, Sdec,t» Sran,1,j,1» Odec,t» Oran,1,j,1 < Fq fort=1,...,¢,

U
Sdel,(t,0),1> Sran,2,7,t» 9de|,(m),n eran,z,t,t FIFq fort=1,...,¢+1,

. L . 41
Sdec,0 -= Z;:l Sdec,t> Sdel,(r,0),0 ‘= Z,Zl Sdel, (t,0),t»
. 4 . 41

Sran,1,j,0 ‘= Z;:] Sran,1,j,t> Sran,2,7,0 ‘= Zle Sran,2,t,t»
5 - U
Ndec,s» Nran,1,j,r < Fy fort=0,...,¢,

lidel,(x,0),t> Tran,2,7,1 <U—IFZ’, fort =0,...,0+1,
z,dec = ((—5dec,0» 0, 1, ndec,0, 0 )]Bga
(Sdec,1€1.1 + Odec,: Ut 0",  fidec» O et =1,....0),
K7 gel.c. = ((=5del,@.0.0: 0, 0, Ndelr.00.0, 0y
(5del, (r.0.1€1.1 + Odel. (v, Vrs 0™, Tidelrays O)pr 12 =1,..., 4,
(Sdel,(r,0,6+1€2.1 + Wer, 0", Tidel (z.,e41. 0)B2),
K ran1,; = ((=Sran,1,5,0, 0, 0, Wran,1,j,0, 0z
(sran,1,j,r€,1 + Oran,1,j,e 0 0™, Tran1,js, O et =1,...,0),
k;,ran,z,r = ((—Sran,2,7,0, 0, 0, Nran,2,7,0, O)Bg,
(sran2.70€r1 +Oran2.ciVrs 0", franoer O)pr it =1,...,¢,
(Sran 2.7 0+1€0.1, 0", fran2.c.e+1, 0)B:),
ske 1= (k7 gecs (K7 gel, (z.) r=tt1, s =1, (KRG can 1, KG ran 2,0 j=1,.26 t=t41,.0d)5
return SKg.

Enc(pk,m € Gr, (X1, ..., %) € Fy' x -+ x Fg')

W, Q0,5 ..., Pp <U—IFq, ¢ = ((0,0,Z,0, 90)By, (X, 0", 0", @)B, 1t =1,...,0),
) = g%m, ct:= (c¢y, cp), return Ct.

Dec(pk, kzdec,ct) m = CZ/e(cl’kZdec)’ return m’.

Delegate, (pk, sk¢, Uet1 := (Vet1,15 - - Vet lne)
for j/=1,....,20+1); t=0+2,...,d; t=1,...,n;

¢del,(m)7 ¢ran,2,ra 1//'/ <U—Fq,
pzec’ pzel,(r,z)’ P:an,l,j” p:an,z,z <R_ CoreDel, (pk, sk, 5€+1):
where CoreDely(pk, sky. Tp41) 1 0, a; & F for j = 1,....20+ 1,
return p* 1= o (3 Ve 1,iKY gl (o11.0) T Ziil oGKG ran 1+ @2041K7 ran 2 011

U
* * * *
T dec’ rran,l,j’ Hspan(b()Av {b[’an+i}[=1¢.., C+1; i=1,...n )s
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* R * *

kl+1,dec = ke,dec + Pdec + T dec
* . * 11,% *

ki1 del,(r) = Plel (.0 T Pdel. .0k ran 2.0 + ¥ K¢ gl (z.0) T T'del,z.0)°
* e gk *

kl+l,ran,l.j’ T pran.l,j’ +rran,1,j”

* I * *
ki1 ran2r = Prana.c T Pran2.0ky an 0.0 + Man 2,00
return SKyq.

G.4.2. Equivalence of Delegated and Freshly Generated Keys

Lemma 29. If sk; is generated by KeyGen(pk, sk, (v1, ..., Up)), the distribution of
skey1 generated by Delegate(pk, ske, vy 1) is equivalent to that of Sy generated by
KeyGen(pk, sk, (V1, ..., Ug, Ugr1)) except with probability at most (2d — 20 + 3)/q.

Proof. The distribution of (a part of) level-¢ key k;‘f’ ; for J = dec, (ran, 1, 1),
..., (ran, 1, 2¢) is represented by that of the 2¢ coefficients, (s 1,...,57.¢,075.1, ...,
07.¢), of (€1.1,...,€¢1,0V1,..., V¢) (and random-part coefficients, 77,,). The distri-
bution of level-¢ key kzj for J = (del, (¢ + 1,1)), ..., (del, (d, ng)) (resp.J =
(ran,2,¢ + 1), ..., (ran,2,d)) is represented by that of the 2¢ + 2 (resp.2¢ + 1)
coefﬁcients, (Sj)], e ST ST T 91,1, ey 91’(5, 1/1), of (21,1, ey Eg’l, Ef’l, {51, ey 5g,
Eu) (resp. (Sy.15---,87.6,870.071, ..., 91,5),0f(21,1, R E(z,l, Z"T,], U1, ..., V) (and
random-part coefficients, 77 ;).

Similarly, the distribution of level-(¢ + 1) key kj 41,7 1s represented by that of the
200+1),2(£+1)+20r2(£+ 1) + 1 coefficients, Y := (571,570,071 ---,07.0),
(7153810801, 0705 - 050, %), 00 (71, -+ 587.0,57,7: 001, -+, 070

Claim 3 shows the coefficients of delegated key is uniformly distributed in the first

case.
]

Claim 3. If sk; is generated by KeyGen(pk,sk, (V1,...,V¢)), the distribution of

*

P41 ran.1 i generated in Delegate(pk, sk, Vg1 1) is equivalent to that of ky i1 rani 7

generated by KeyGen(pk, sk, (V1, ..., Vg, Ugi1)) except with probability at most 3/q.

Proof of Claim 3. 'The distribution of kzj (J = (del, (z,v)), (ran, 1, j), (ran, 2, 7))
in Sk is represented by 2¢ 4 1-dimensional vectors as (except for v):

Yoy = (Se. g 1580065007, 0001, ...,0000) if J = (del, (r,0),
= (80,0155 50,0.6,0,60, 71, ...,004,¢) if J =(ran, 1, j),
= (Se,g1, - 80,0.0,80,0,0, 00,01, ..., 00 5¢) if J=(ran,2, 7).

. - " - . )
The coefficients Yy 1 ran,1, of ke+1,ran,1,j’ except for that of vy are given as:
55(+1.ran,],j’ = (51/,+Lran,],j’,1, <o S+l ran, 1, e+ 1 9(+1,ran.l,j’,1, cees 9{+1,ran,1,j’,()

Nyt > 20 - -
= Oran,1,j’ Zi:l Ve+1,i Ve del, (e+1,i) T+ Zj:l Qran,1,j/,jYe,ran,1,j + Cran,1,j’,2¢+1Y¢,ran,2,0+1

_ ne41 2 = 20+1
= Oran,1,j’ Zi:l Ve+1,i Ve del,(¢+1,i) + @ran,1,j - Yeran € Fq +1,
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- U moet1
where ran1,j := (Cran.1.j7.1> - - - » @ran,1.j7.20> Uran.1,j 2041) < Fg T,
yé,ran,l,l
. Qe+1)x (20+1)
Yiran :== . ey .
Ye,ran,1,2¢
Ye,ran,2,0+1

Moreover, the coefficient of By, 1 in k™7’ of level-(¢+1) is given by Or+1ran, 1,7 e4+1 =
Oran,1,j’ - ¥, where ¥ is given in the level-£ key and oyan 1, is generated in CoreDel,
in the delegation.

‘We consider the joint distribution of §£+1,ran,1,j’ and O¢q 1 ran.1,j7, 041
ie., {Sertran,1,j7, Qe tiran, 1, e bi=1,....0+1-

. . L VY U
If the Injltrlx Yy ran is regular and  # 0, since ran, 1, < IFq +1, Otan,1,j7 < Fy, and
variables dran, 1, j* Ye.ran and oran, 1, j - are independent, (y¢+1 ran,1, /> O¢+1.ran. 1,7, 6+1)

€ ]Fé(ZH) for j/ = 1,...,2(£ + 1) are uniformly and independently distributed in
FZ(Z+1)
q .
Here, Yy ran ((2€ + 1) x (2¢ + 1) matrix) of sk is regular and ¥ # 0 except with
probability at most2/q 4+ 1/q = 3/q, from Claim 4. ]
Since kj | ran 1. i +b65 (" =1,...,2(£+1)) has the same distribution as k| | gec
Lemma 29 holds for kz +1.dec from Claim 3.
For kZ+1,ran,2,r (t =4€+42,...,d), the level-(€£ + 1) coefficient s¢+1 ran.2,z.e+1 Of

.1 is given by ¢ran 2.t * Se.ran.2.7.¢+1 Where ¢ran 2. is generated in Delegate, and
se.ran.2.7.0+1 the level-¢ coefficient of é; . Therefore, Lemma 29 holds for k;f flran2.r
from Claim 3 except for negligible probability, i.e., at most (d — £)/q.

Since kjf+1,ran,2,r +yb; (t =£+42,...,d;t=1,..., n;)has the same distribution
as k?ﬂ,del,(r,z)’ Lemma 29 holds for kLl,del,(r,z) from Claim 3 except for negligible
probability, i.e., at most (d — £ + 1) /q.

Therefore, Lemma 29 holds except for negligible probability, i.e., at most (2d —2¢ +
3)/q.

O
Claim 4. (Claim 4 in [32]) Let ¢ > 2 and A := {M|detM # 0} C F)*!. Then,
[A]| 2

G.4.3. Security

The definition of adaptively weakly attribute-hiding security and the advantage
Adv:IPE’ WAH (1) of adversary A are shown in Definition 47 of the full version of [32].
In the definition, the levels £ and ¢’ of the two challenge vectors given by an adversary,
HIPE scheme only satisfies the security definition under the restriction that £ = ¢'.
Here, this restricted security ensures the anonymity of attributes of a ciphertext but with
revealing the number of levels of attributes, while the security definition in [32] ensures
the anonymity of attributes as well as the number of levels. (The HIPE scheme in [32]
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satisfies the unrestricted security.) Our scheme can be modified to satisfy the unrestricted
security in [32] as: when generating a ciphertext in Enc, input vectors (X;);=1.....
padded with random vectors (X;);=¢+1, .. 4 for a maximum level d, in the same manner
as the HIPE in [32].

Theorem 7. The proposed HIPE scheme is adaptively weakly attribute-hiding against
chosen-plaintext attacks under the DLIN assumption.

For any adversary A, there exist probabilistic machines, £ and &, whose running
times are essentially the same as that of A, such that for any security parameter A,

) L
AdVHPE ARGy < AdRING) + 30 S AdVEEN ) + €,
h=11=1

where & 5, 1)(-) == E((h, I),-) (h = 1,...,v; I = 1,...,L), v is the maximum
number of adversary A’s key queries, L := d + 2 + Zi:z ne, ande = ((d +8)Lv +
3d +8)/q.

Proof Outline of Theorem 7: To prove Theorem 7, we consider the following (Lv + 3)
games. In Game 0, a part framed by a box indicates coefficients to be changed in a
subsequent game. In the other games, a part framed by a box indicates coefficients
which were changed in a game from the previous game.

Game 0 : Original game. That is, the reply to a key query consists of:

Zdec = ( ( —Sdec,0- @, 1, Ndec,0. 0 )]B?;s
(Sdec,tzz,l + 6’dec,zﬁt» 0" |, ﬁdec,tv 0 )]B%f t=1,...,40),
Taeliro = ((—del.w.o.0. [0] 0. nel,cr..0. 0.
(5del, (z,0,1€1,1 + Odel, (z,0),1 Vst , Ndel,(z.0,00 0)Br it =1,...,¢,
(Sdel.(r.0.+16r1 + Wera. (07 ] idel,r.e1. 0)B2),
Ky ran1j = ((—Sran,1,,05 @ 0, 7ran,1,j,0. 0)mg.
(Sran,l,j,tgt,l + eran,l,j,tﬁt’ o™ ) ﬁran,l,j,t» 0 )]B%;‘ r=1,..., E)v
kzran,z,r = ((—Sran,2,7,0 @7 0, Mran,2,7,0s 0)]53’57
(sran,2,7.0€1,1 + Oran,2,7,1 Uy , Nran, 2,765 0 Bt =1,...,¢,

(Sran,2,r,£+ler,ls 0 |, Nran,2,7,0+1 O)JB;)-

The challenge ciphertext consists of:

e = ((@,[0].[¢] 0, 90)my, (wF [[07] 0", @g, 1 =1, 0),

cy = g%m.
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Remark 6. In the following, queried keys, k,}‘J for J € {dec, (del, (t,v)), (ran, 1, j),
(ran,2,7)|j=1,...,28,t=€+1,...,d,.=1,...,n.}, are described in a unified
way as:

kz] = ((_S\/,Oa @7 17 77J,0, O)Bz;’
(s7.0€1+ 07,0, » n5:, 0 Brit=1,...,¢
(51041800 + Ve, (0% ] 7isee1, O )B:),
where ST e+1 = 0, ﬁ],g_H = 0" if J =dec, (ran, 1, j),
J = if J = (del, (1,1)), IZ := 0 otherwise,

and all the other variables, i.e., s;.,8;. for J # dec, (ran, 1, j), are defined in the
description of Game 0. (This notation is well-defined when J = dec, (ran, 1, j) and
t=0+1,...,d)

Game 1: Game 1 is the same as Game 0 except the following procedures.

1. When a create key query is issued by .A, the challenger of the game only records
the specified predicates, and when a create delegated key query is issued, the
challenger only records the specified keys and predicates. In this step, just the
query is recorded, but no corresponding key is created.

2. When areveal key query is issued for a hierarchical (level-£) predicate (v1, .. ., U¢)
which has been already recorded, the challenger creates the queried key by using
KeyGen.

Game 2 : Same as Game 1 except that the challenge ciphertext is:

e1 = ((@.[wo . £. 0, o)g,y. (@%r. | iy | 0", @)p, 11 =1,....0),

cy = g%m,

U - U
where wo < Fy, w, < F,".

Game 3-(h, J) (h =1, ...,v; Jell .= {dec, (del, (z, 1)), (ran, 1, j), (ran, 2, 7) |
j=1....28,t =£+1,....,d,t = 1,...,n;}) : Index J is incremented in the
lexicographic order given in the description of I1. Game 3-(1,0) is Game 2. Game
3-(h, (ran, 2, d)) is Game 3-(h + 1, 0).

Game 3-(h, J) is the same as Game 3-(h, J — 1) except that the Jth key, kz ;- in the
hth reveal key query’s reply is:

ki = ((=ss0. [r70] 1. 1700 0)ps.

(syr€r1+ 07408, , N, 0 )]Bg;f t=1,....,¢
(sse+1€01 + Yer,, , nre+1, 0)Br),
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U - U .
where rj 0 < Fy, 7y, < IE"; "fort = 1,..., ¢, 7, and the other variables are generated
as in Game 3-(h, J — 1).

Game 4 : Game 4 is the same as Game 3-(v, (ran, 2, d) except that the challenge
ciphertext is:

Cl1 = ( (wa wo, a Ov QDO)IB()a (, lDt, Ont,gﬂt)]Bl = 1, ,E ),

) = g%m,

where ¢, ¢’ <U—Fq, X <U—IB‘;’.

Let Advfg) ), Advf}l) (A),Advﬁ) ), Advﬁ_(h’”) (1) and Advfi) (1) be the advantage
of A in Game 0, Game 1, Game 2, Game 3-(h, J) and Game 4. It is obtained that
AdvY (2) = 0.

We can evaluate the gaps between pairs of the above advantages using Problems 1
and 2 as in the proof of Theorem 1. O
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