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Abstract. This paper presents a fully secure (adaptively secure) practical functional
encryption scheme for a large class of relations, that are specified by non-monotone
access structures combined with inner-product relations. The security is proven under
a standard assumption, the decisional linear assumption, in the standard model. Our
scheme is constructed on the concept of dual pairing vector spaces and a hierarchical
reduction technique on this concept is employed for the security proof. The proposed
functional encryption scheme covers, as special cases, (1) key-policy, ciphertext-policy
and unified-policy attribute-based encryption with non-monotone access structures, (2)
(hierarchical) attribute-hiding functional encryption with inner-product relations and
functional encryption with nonzero inner-product relations and (3) spatial encryption
and a more general class of encryption than spatial encryption.

Keywords. Functional encryption, Attribute-based encryption, Inner-product predi-
cate encryption, Adaptive security, Decisional linear assumption, Dual pairing vector
spaces.

1. Introduction

1.1. Background

Although numerous encryption systems have been developed over several thousand
years, any traditional encryption system before the 1970’s had a great restriction on the
relation between a ciphertext encrypted by an encryption key and the decryption key such
that these keys should be equivalent. The innovative notion of public key cryptosystems

∗The extended abstract of a preliminary version [37] was presented at Advances in Cryptology—CRYPTO
2010.
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in the 1970’s relaxed this restriction, where these keys differ and the encryption key can
be published, but the decryption key is firmly related to the encryption key for the unique
decryption of a ciphertext to its plaintext.
Recently, a new innovative class of encryption systems, functional encryption (FE),

has been introduced [14,15,28,41,44],where a secret (decryption) key,sk f , is associated
with a function f , an input x (to f ) is encrypted to a ciphertextEnc(pk, x) using system
(master) public key pk, and the ciphertext is decrypted by the secret to f (x).

This notion provides more sophisticated and flexible relations between decryption
keys and ciphertexts such that a secret key, sk� , is associated with a parameter, �, and
message m is encrypted to a ciphertext Enc(pk, (m, ϒ)) using system public key pk
alongwith another parameterϒ . CiphertextEnc(pk, (m, ϒ)) can be decrypted by secret
sk� if and only if a relation (predicate) R(�,ϒ) holds. Here, x := (m, ϒ) is an input
to encryption of FE and the function fR,� (with secret key sk� ) of x := (m, ϒ) is m
if and only if a relation R(�,ϒ) holds. Such a concept of FE has various applications
in the areas of access control for databases, mail services, and contents distribution
[5,12,15,28,30,42–45,48].
When R is the simplest relation or equality relation, i.e., R(�,ϒ) holds iff � = ϒ ,

it is identity-based encryption (IBE) [6–8,10,16,21,24,25].
As a more general class of FE, attribute-based encryption (ABE) schemes have been

proposed [5,12,15,28,30,42–45,48], where either one of the parameters for encryption
and secret key is a tuple of attributes, and the other is a policy on attributes. Here each
attribute is an element of a finite field or ring. For example, a policy � is an access
structure M̂ along with a tuple of attributes (v1, . . . , vι) for a secret key, and a tuple of
attributes, ϒ := (x1, . . . , xι), for encryption. Here, some elements of the tuples may
be empty. R(�,ϒ) holds iff the truth-value vector of (T(x1 = v1), . . . ,T(xι = vι)) is
accepted by M̂ , where T(·) is a predicate such that T(ψ) := 1 ifψ is true, and T(ψ) := 0
if ψ is false (For example, T(x = v) := 1 if x = v, and T(x = v) := 0 if x �= v).
A monotone general access structure can express any monotone formula over atomic
terms of T(x1 = v1), . . . ,T(xι = vι). If parameter � for a secret key is an access
structure (policy), it is called key-policy ABE (KP-ABE). If parameterϒ for encryption
is a policy, it is ciphertext-policy ABE (CP-ABE).

Inner-product predicate encryption (IPE) [30] is a class of FE for inner-product relations
(predicates), where each parameter for encryption and secret key is a vector over a field or
ring (e.g., �x := (x1, . . . , xn) ∈ F

n
q and �v := (v1, . . . , vn) ∈ F

n
q for encryption and secret

key, respectively), and R(�v, �x) holds iff �x · �v = 0, where �x · �v is the inner-product of �x
and �v. The inner-product relation represents a wide class of relations including equality,
conjunction and disjunction (more generally, CNF and DNF) of equality relations and
polynomial relations.
There are two types of secrecy on ciphertexts in FE, attribute-hiding (private-index)

and payload-hiding (public-index) [30]. Roughly speaking, attribute-hiding requires that
a ciphertext conceal the associated parameter as well as the plaintext, while payload-
hiding only requires that a ciphertext conceal the plaintext. Anonymous IBE and hidden-
vector encryption (HVE) [15] are a special class of attribute-hiding IPE.

Although many practical FE schemes such as ABE and IPE schemes have been pre-
sented over the last decade, existing fully secure (adaptively secure) practical FE schemes
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only support some restricted classes of relations, e.g., monotone access structures with
equality relations, and inner-product relations.

1.2. Our Result

In this paper, we propose fully secure practical FE schemes that supports more general
relations than monotone access structures with equality relations and inner-product re-
lations. Our scheme is secure in the standard assumption, the decisional linear (DLIN)
assumption (over any type of prime-order bilinear groups), in the standard model.
More precisely, this paper presents a fully secure (adaptively secure against CPA)

practical FE scheme for a large class of relations, that are specified by non-monotone
access structures combined with inner-product relations. Similarly to the existing ABE
schemes, we propose three types of FE schemes, the KP-FE and CP-FE schemes (in
Sects. 4, 5) as well as a generalized notion of KP-FE and CP-FE, unified-policy FE
(UP-FE).1 (in Sect. 6).
In our KP-FE scheme, parameter ϒ for a ciphertext is a tuple of (attribute) vectors

and parameter � for a secret key is a non-monotone access structure or span program
M̂ := (M, ρ) along with a tuple of vectors, e.g., ϒ := (�x1, . . . , �xι) ∈ F

n1+···+nι
q ,

and � := (M̂, (�v1, . . . , �vι) ∈ F
n1+···+nι
q ). The component-wise inner-product relations

for attribute vector components, e.g., {�xt · �vt = 0 or not }t∈{1,...,ι}, are input to (non-
monotone/monotone) span program M̂ , and R(�,ϒ) holds iff the truth-value vector of
(T(�x1 · �v1 = 0), . . . ,T(�xι · �vι = 0)) is accepted by span program M̂ .
The proposed FE scheme is practical. For example, if the proposed FE scheme is

specialized to IPE, the ciphertext size of our IPE scheme (“Appendix F.2”) is (3n+2)·|G|,
whose information theoretical lower bound is n · |Fq | if the vector elements are from Fq .
Here, n is the dimension of the attribute vectors, and |G| and |Fq | denote the sizes of an
element of prime order pairing groupG (for ciphertexts) and finite field Fq , respectively,
e.g., both are 256 bits. Then, the ciphertext size of our IPE scheme is just around three
times longer than the theoretical lower bound.
It is easy to convert the (CPA-secure) proposedFE scheme to aCCA-secure FE scheme

by employing an existing general conversion such as that by Canetti et al. [17] or that by
Boneh andKatz [13] (using additional seven-dimensional dual spaces (Bd+1,B

∗
d+1)with

nd+1 := 2 on the proposed FE scheme, and a strongly unforgeable one-time signature
scheme or message authentication code with encapsulation) (see Sect. 7).

Since the proposed FE scheme supports a large class of relations, it includes the
following schemes as special cases:

1. The (KP, CP and UP)-ABE schemes for non-monotone access structures with
equality relations. Here, the underlying vectors of our FE scheme, {�xt }t∈{1,...,d}
and {�vt }t∈{1,...,d}, are specialized to two-dimensional vectors for the equality re-
lation, e.g., �xt := (1, xt ) and �vt := (vt ,−1), where �xt · �vt = 0 iff xt = vt (see
“Appendix F.1” for KP-ABE).

In these ABE schemes, attribute xt is expressed by the form of (t, xt ) in place of
just attribute xt . Here, t identifies a subuniverse or category of attributes, and xt is

1The notion of UP-ABE and the first UP-ABE scheme were proposed by Attrapadung and Imai [3]
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an attribute in subuniverse t (examples of (t, xt ) are (Name, Alice) and (Affiliation,
Institute X)). The number of subuniverses, d, is a polynomial of security parameter
λ, and the number of attributes in a subuniverse is exponential in λ.

2. The (zero-)IPE and nonzero-IPE schemes, where a nonzero-IPE scheme is a class
of FE with R(�v, �x) iff �x · �v �= 0. Here, the underlying access structure S of our FE
scheme is specialized to the 1-out-of-1 secret sharing.

See “Appendix F.2” for our IPE scheme, which is slightly modified from a straight-
forward IPE-specialization of our FE scheme for improving efficiency. Note that
the IPE scheme is ‘weakly attribute-hiding,’ where a type of key queries are not
allowed in ‘weakly attribute-hiding’ (see the definition in [32]). It is easy tomodify
this IPE scheme to a ‘fully attribute-hiding ([30])’ scheme by simply expanding
the dimension of the space [38], while its security proof is quite different from that
shown in “Appendix F.2” (see [38] for the security proof of fully attribute-hiding).

3. If the underlying access structure is specialized to the d-out-of-d secret shar-
ing (conjunction formula), our FE scheme can be specialized to a hierarchical
zero/nonzero-IPE schemeby addingdelegation and re-randomizationmechanisms.
We show two hierarchical (zero-)IPE (HIPE) schemes in “Appendix G”, where one
is payload-hiding and the other (weakly) attribute-hiding.

4. If the underlying access structure is a monotone formula with n-dimensional vec-
tors, our FE scheme can be specialized to spatial encryption (for n-dimensional
spaces) [12,19].

Here, we give some simple examples.

• Let A be a s-dimensional subspace in the n-dimensional vector space V (0 <
s < n), which can be characterized by (n − s) independent vectors in V ,
(�v1, .., �vn−s), such that �vi is orthogonal to A for all i = 1, .., n − s.

We construct a spatial encryption (SE) scheme from our KP-FE scheme such
that a secret keywith subspace A,skA, is realized by the (n−s)-out-of-(n−s) se-
cret sharing (i.e., conjunction formula) along with (�v1, .., �vn−s). A ciphertext is
associatedwith a vector �x ∈ V andmessagem, i.e., ct(m,�x) := Enc(pk, (m, �x)).
The ciphertext ct(m,�x) can be decrypted to m by skA iff �x ∈ A, since �x ∈ A iff
∧n−s

i=1 �x · �vi = 0.
• We can easily extend the above SE schemes with vector subspaces into SE
schemes with affine subspaces. An affine subspace B can be expressed as A+�z,
where A is a vector subspace in the n-dimensional vector space V , which is
specified by orthogonal vectors (�v1, .., �vn−s), and �z is an element in V . Hence,
�x ∈ B iff

∧n−s
i=1 (�x − �z) · �vi = 0, i.e.,

∧n−s
i=1 (�x, 1) · (�vi ,−ci ) = 0, where

ci := �z · �vi . We can then construct SE schemes with affine space B by replacing
�x and �vi in the above schemes by (�x, 1) and (�vi ,−ci ).

These SE schemes using only conjunction formulas, which covers basic spacial
encryption, can achieve the attribute-hiding in a manner similar to those for the
(hierarchical) IPE schemes (“Appendix F.2, G”).
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5. If the underlying access structure is a non-monotone formula with n-dimensional
vectors, our FE scheme can be a more general class of FE than spatial encryption.

For example, let subspace A be defined by (�v1, .., �vn−s) in the same manner
as above. Then, we can realize a FE scheme such that a ciphertext, ct(m,�x) :=
Enc(pk, (m, �x)), can be decrypted to m by skA iff �x �∈ A.

1.3. Key Ideas and Techniques

This section shows the key ideas and techniques in our result.
Since our scheme is constructed on the concept of dual pairing vector spaces (DPVS)

[36], we first show the concept and main techniques of DPVS intuitively. We then show
a key methodology to realize the non-monotone policy in our result. Finally, in this
section, we describe how to achieve the adaptive security of our FE scheme in the DPVS
framework.

1.3.1. Concept of DPVS

Roughly speaking, DPVS is an extension from bilinear pairing groups to higher-
dimensional vector spaces, which are typically realized as direct products of bilinear
pairing groups (or tuples of pairing group elements). Why is a vector space extension of
pairing groups so useful for such applications?
There are two reasons. The first one is that the most natural methodology of construct-

ing FE schemes on bilinear pairing groups is considered to realize them over the notion
of vector spaces on pairing groups. Actually, many existing pairing-based schemes im-
plicitly employ higher-dimensional vector spaces with using the form of computation
like

∏N
i=1 e(ai , bi ), which is a pairing operation over higher-dimensional vector spaces

(see 1. in Sect. 1.3.2), e.g., the Boneh–Boyen IBE schemes in decryption [6,7].
The second reason is that standard assumptions over pairing groups such as DDH and

DLIN assumptions are subspace assumptions over vector spaces.
For example, the DDH assumption is a subspace assumption in a two-dimensional

vector space (and DLIN is a subspace assumption in a three-dimensional vector space).
The DDH assumption over a group G is expressed as given x := (g, ga), and it is hard

to tell y := (gb, gab) from z := (gb, gc), where a, b, c
U←Fq , g ∈ G. (Note that when

A is a set, a
U← A denotes that a is uniformly selected from A, and that Fq is the finite

field of order q.) Here, y can be formalized as a scalar multiplication of x, bx, in a (two-

dimensional) vector space. Since b
U←Fq , y is distributed over the (two-dimensional)

subspace generated by x, i.e., span〈x〉. Since b, c U←Fq , z is distributed over the whole
(two-dimensional) vector space. Hence, the DDH problem is rephrased by one to tell y
distributed over a one-dimensional subspace from z over the (two-dimensional) whole
space.
We now briefly describe the concept of DPVS, that consists of vector spaceV, pairing

operation e over V and dual bases, B and B
∗. We start from a standard building block

of (symmetric) pairing groups, (G,GT , g, q, e), where e : G × G → GT is a non-
degenerate bilinear pairing operation, g is a generator of G, q is a prime order of G
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and GT . Here, we denote the group operation of G and GT by multiplication.2 Note
that DPVS is constructed over asymmetric pairing groups in general, although we use
symmetric pairing groups here for simplicity of presentation.

Vector space: First, we construct an N -dimensional vector spaceV from groupG, where
x ∈ V is (g1, .., gN ) ∈ G

N . Vector additions and scalar multiplications over V are
naturally introduced such that x + y := (g1h1, .., gNhN ), and ax := (ga1 , .., g

a
N ),

where x := (g1, .., gN ), y := (h1, .., hN ) and a ∈ Fq . Note that a bold face letter
denotes an element of vector space V, e.g., x ∈ V.

Pairing operation: We naturally introduce the pairing operation e : V × V → GT

as e(x, y) := ∏N
i=1 e(g

xi , gyi ) = e(g, g)
∑N

i=1 xi yi = e(g, g)�x ·�y ∈ GT for x :=
(gx1, .., gxN ) ∈ V and y := (gy1, .., gyN ) ∈ V, where �x := (x1, .., xN ) and
�y := (y1, .., yN ). Note that a vector symbol �x denotes vector representation over
Fq , e.g., �x := (x1, . . . , xn) ∈ F

n
q , and �x · �y denotes the inner-product of �x and �y

(in Fq ).
Bases:We then introduce a (random) basis B := (b1, · · · , bN ), of V, using a uniformly

chosen (regular) linear transformation, X := (χi, j )i, j∈{1,..,N }
U←GF(N ,Fq), such

that bi := (gχi,1, · · · , gχi,N ) ∈ G
N for i = 1, .., N . Here, GL(N ,Fq) denotes the

general linear group of degree N over Fq .

We also compute another basis B∗ := (b∗
1, .., b

∗
N ) ofV by using α(XT)−1 (α ∈ Fq )

in place of X , where XT denotes the transpose of X . Let gT := e(g, g)α . We denote
(x1, . . . , xN )B := ∑N

i=1 xi bi and (y1, . . . , yN )B∗ := ∑N
i=1 yi b

∗
i .

We then see that e(bi , b∗
j ) = g

δi, j
T for i, j ∈ {1, .., N }, where δi, j = 1 if i = j and

δi, j = 0 if i �= j . That is, B and B
∗ are dual orthonormal bases of V. Due to the

orthonormality, for x := (�x)B and y := (�y)B∗ , pairing operation e(x, y) = g �x ·�y
T ,

where �x := (x1, .., xN ) and �y := (y1, .., yN ).

In cryptographic applications of DPVS, (a part of) B is used as a public parameter
(public key), B∗ is used as a (master) secret key, and X is used as the top-level
secret key. It is an advantage of this approach that we can make various levels/types
of secret keys to meet the requirements on secret keys in applications, from the top
level of secret key, X , to a lower level of secret key, which may be a form of partial
information of B∗.

1.3.2. Properties of DPVS

DPVS has the following properties that are useful for many applications:

1. Hard decomposability As mentioned above, vector treatment of bilinear pairing
groups have been already developed and employed in the literature especially

2Only in Sect. 1.3, we express bilinear group G as a multiplicative group to follow the tradition of
cryptocommunity, but in this paper except Sect. 1.3, we express it as an additive group for the consistency
with the vector space expressions.
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in the areas of IBE, ABE and BE (Broadcast Encryption) (e.g., [5,8,12,16,28,
29,44]). For example, in a typical vector treatment of bilinear pairing groups,
two forms of X := (gx1, gx2 , . . . , gxN ) for vector �x := (x1, .., xN ), and Y :=
(gy1, gy2 , . . . , gyN ) for vector �y := (y1, .., yN ) are set and pairing of X and Y is

operated such that e(X,Y ) := ∏N
i=1 e(g

xi , gyi ) = e(g, g)
∑N

i=1 xi yi = e(g, g)�x ·�y .

The major drawback of this approach is that it is easy to decompose xi ’s element,
gxi , from X := (gx1, gx2 , . . . , gxN ).

In contrast, a remarkable property of DPVS over (random) basis B is that it seems
hard to decompose xi ’s element, xi bi , from x := x1b1 + · · · + xN bN and B. Here
note thatwe can compute a value regarding �x · �y (corresponding to e(g, g)�x ·�y above)
by the pairing operation of x and y := y1b∗

1 + · · · + ynb∗
N , i.e., e(x, y) = g �x ·�y

T .
2. Information theoretically hidden subspaces Let B := (b1, . . . , bN ) and B

∗ :=
(b∗

1, . . . , b
∗
N ) be dual orthonormal bases with X

U←GL(N ,Fq). In many applica-
tions of DPVS, public parameters or (master) public key are B̂ that is a part of B.
For example, B̂ := (b1, .., bn), where n < N . Here note that bn+1, .., bN are infor-

mation theoretically hidden, since X
U←GF(N ,Fq) and bases (bn+1, .., bN ) are

perfectly independently chosen from (b1, .., bn). In addition, B∗ := (b∗
1, .., b

∗
N )

can be also hidden as a secret key.

In the DPVS approach, we have developed several information theoretical trans-
formation techniques based on this information theoretical property.

We will describe these techniques in Sect. 1.3.3.
3. Inner-product operability As mentioned above, for x := x1b1 + · · · + xN bN =

(�x)B and y := y1b∗
1 + · · · + yN b∗

N = (�y)B∗ , the inner-product value �x · �y is

indirectly computed through the pairing computation, e(x, y) = g �x ·�y
T .

Composite-order pairing groups are often employed to achieve the property 1. (Hard
decomposability) [11,33,34]. An advantage of our DPVS approach over the composite-
order pairinggroup approach is that our approach is realizedonprime-order groups of any
type (symmetric and asymmetric) and the implementations on prime-order groups are
more efficient than those on composite-order groups. In addition, several non-standard
computational assumptions are always used to prove the security in the composite-order
group approach, while many schemes in our DPVS approach have been proven solely
under the DLIN assumption.
Some conversion from composite-order group schemes to prime-order group schemes

has been proposed based on our DPVSmethodology [31], and it may lead to the thoughts
that the whole properties of the DPVS approach would be achieved by this type of
conversion, but it is not the case. Such conversion usually focuses on the property 1. but
not on the property 2. (Information theoretically hidden subspaces) of DPVS.
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1.3.3. Key Techniques of DPVS

By using the above-mentioned properties of DPVS, we have developed two key tech-
niques on DPVS, one is a hierarchical reductions to DLIN (for computationally indis-
tinguishable game changes) and the other information theoretical transformations (for
conceptual game changes).

1. Hierarchical Reductions to DLIN In the hierarchical reductionmethodology, the top
level of the security proof for the proposed scheme directly employs only top level
assumptions (assumptions of Problems 1 and 2 in this paper), that are specified in
the DPVS framework. The methodology bridges the top-level assumptions and the
primitive one, the DLIN assumption, in a hierarchical manner, where several levels
of assumptions (problems) are constructed hierarchically. Such a modular way of
proof greatly clarifies the logic of a complicated security proof. (See Fig. 1 for the
global view of the methodology.)

• Lower-level Reductions
The following basic (subspace) assumptions over the three-dimensional case
on DPVS are reduced to the DLIN assumption.

The DLIN assumption is that, given (g, gξ , gκ , gδξ , gσκ) ∈ G
5, it is hard

to tell gδ+σ from gγ , where ξ, κ, δ, σ, γ
U←Fq . Let B := (b1, b2, b3) and

B
∗ := (b∗

1, b
∗
2, b

∗
3) be dual orthonormal bases with X

U←GL(3,Fq) and gT :=
e(bi , b∗

i ) ∈ GT (i = 1, 2, 3).

Basic Problem 0 (Definition 18) assumption for ciphertexts: Let B̂∗ :=
(b∗

1, b
∗
2), c0 := (δ, σ, 0 )B and c1 := (δ, σ, ρ )B, where δ, σ, ρ

U←
Fq . Then, given (B̂∗,B), it is hard to tell c0 from c1.

Basic Problem 0 assumption for secret keys: Let B̂ := (b1, b2),
c := (ω, 0, τ )B, k∗

0 := (δ, σ, 0 )B∗ and k∗
1:=(δ, σ, ρ )B∗ , where δ, σ, ρ, ω,

τ
U←Fq . Then, given (B̂,B∗, c), it is hard to tell k∗

0 from k∗
1.

In the reduction of these assumptions to DLIN, a DLIN instance (g, gξ , gκ ,
gδξ , gσκ , yβ) ∈ G

6 (where β ∈ {0, 1}, y0 = gδ+σ and y1 = gγ ) is converted to
an instance ofBasic Problem0assumptions. First,we express theDLIN instance
as a subspace assumption instance, (u1 := (gξ , 1, g), u2 := (1, gκ , g), u3 :=
(1, 1, g),wβ) (where w0 = δu1 + σu2 = (gδξ , gσκ , y0) and w1 = δu1 +
σu2 +ρu3 = (gδξ , gσκ , y1)with ρ := γ − (δ+σ)). HereU := (u1, u2, u3) is
a basis of DPVS, and the linear transformation� to generate U and the adjoint
matrix (�∗)T are

� :=
⎛

⎝
ξ 1

κ 1
1

⎞

⎠ , �∗ :=
⎛

⎝
κ

ξ

−κ −ξ κξ

⎞

⎠ ,
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where (�∗)T = κξ · �−1 and a blank element in the matrices denotes 0. for
U

∗ := (u∗
1 := (gκ , 1, 1), u∗

2 := (1, gξ , 1), u∗
3 := (g−κ , g−ξ , gκξ )), the DPVS

bases U and U
∗ are dual orthonormal bases with �, and gT := e(g, g)κξ =

e(gκ , gξ ). Therefore, a converted DLIN assumption on DPVS is that, given
(u∗

1, u
∗
2,U), it is hard to tell w0 := (δ, σ, 0)U from w1 := (δ, σ, ρ)U. Here note

that gκξ is not included in the DLIN instance and u∗
3 (with gκξ ) is not included

in the above instance. Based on this type of conversion, the Basic Problem
0 assumptions can be reduced to DLIN by applying additional random linear
transformation (by random matrix W ) on a special form of orthonormal bases
U and U

∗ to obtain random orthonormal bases B and B
∗ (Lemma 14).

• Middle-Level Reductions
Here, we show some middle-level assumptions, (subspace) assumptions on
higher-dimensional DPVS, which are simplified versions of Basic Problems 1
and 2 (Definitions 19, 20 ) assumptions.

Simplified Version of Basic Problem 1 (Definition 19) assumption
Let B := (b1, . . . , b3n+2) and B

∗ := (b∗
1, . . . , b

∗
3n+2) be dual orthonormal

bases, B̂∗ := (b∗
1, . . . , b

∗
n+1, b∗

n+3, .., b
∗
3n+2), c0 := (0, δ�e1, 0n , σ )B, and

c1 := (0, δ�e1, ρ�e1 , σ )B, where δ, σ, ρ U←Fq . Then, given B and B̂∗, it is hard
to tell c0 from c1.

Simplified Version of Basic Problem 2 (Definition 20) assumption
Let B := (b1, . . . , b3n+2) and B

∗ := (b∗
1, . . . , b

∗
3n+2) be dual orthonormal

bases, B̂ := (b1, .., bn+1, b2n+2, .., b3n+2), ci := (0, ω�ei , τ �ei , 0n, 0)B,
k∗
0,i := (0, δ�ei , 0n , �ηi , 0)B∗ and k∗

1,i := (0, δ�ei , ρ�ei , �ηi , 0)B∗ , where i =
1, .., n, δ, ρ, ω, τ

U←Fq and �ηi U←F
n
q . Then, given B̂, B∗ and {ci }i=1,..,n , it is

hard to tell {k0,i }i=1,..,n from {k1,i }i=1,..,n . We then show the simplified version
of Basic Problems 1 and 2 to Basic Problem 0 assumption, which implies the
reduction of these assumptions to the DLIN assumption via the lowest level
reduction (hierarchical reduction).

– The simplified version of Basic Problem 1 can be expressed as c0 := (0, δ ,

0n−1, 0 , 02n−1, σ )B, and c1 := (0, δ , 0n−1, ρ , 02n−1, σ )B. Hence, it
can be reduced to Basic Problem 0 for ciphertexts by embedding the Basic
Problem 0 instance into the (3n + 2)-dimensional space.

– The simplified version of Basic Problem 2 can be expressed as ci := (0, 0i−1,

ω ,0n−i , 0i−1, τ , 0n−1, 0n , 0)B, k∗
0,i := (0, 0i−1, δ , 0n−i , 0i−1, 0 , 0n−i ,

�η , 0)B, and k∗
1,i := (0, 0i−1, δ , 0n−i , 0i−1, ρ , 0n−i , �η , 0)B. Hence, it

can be reduced to Basic Problem 0 for secret keys by embedding the Basic
Problem0 instance into the (3n+2)-dimensional space,where theσ part of the
Basic Problem 0 element is embedded into the ηi part with (η1, .., ηn) := �η.

The reductions from Basic Problems 1 and 2 to Basic Problem 0 are essentially the
same as the above-mentioned middle-level reduction except that Basic Problems 1
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and 2havemultiple spaces on bases (Bt ,B
∗
t )with t = 0, 1, .., d, while the simplified

version of Basic Problems 1 and 2 are on (B,B∗) (Lemmas 15, 17 ).

• Higher-Level Reductions
Top-level assumptions, Problems 1 and 2 (Definitions 4, 5 ), are reduced to
Basic Problems 1 and 2 by using Intra-subspace information theoretical trans-
formation to be explained just below (see Lemmas 16, 18 for the reduction
precisely).

Problem 1 and 2 assumptions are used for computationally indistinguishable
game changes of top level of security proof (full security proof of the proposed
FE scheme).

See Fig. 1 for the hierarchical structure of reductions.

2. Information theoretical transformations We have developed several information
theoretical transformation techniques based on the property 2. of DPVS. There are
two basic information theoretical techniques, intra-subspace and inter-subspace
transformations, by the hidden base changes. Here we use the same example as that
given in the property 2. of Sect. 1.3.2.

Intra-subspace transformation:
Hidden bases (bn+1, .., bN ) and (b∗

n+1, .., b
∗
N ) are (conceptually) changed to (dn+1,

.., dN ) := (bn+1, .., bN ) ·(Z−1)T, and (d∗
n+1, .., d

∗
N ) := (b∗

n+1, .., b
∗
N ) · ZT, where

Z ∈ GL(N − n,Fq). We then have new dual orthonormal bases of V, D :=
(b1, .., bn, dn+1, .., dN ) and D

∗ := (b∗
1, .., b

∗
n, d∗

n+1, .., d
∗
N ). Then, ciphertext

c := ( �ψ1, �ψ2)B with �ψi ∈ F
n
q (i = 1, 2) can be expressed by ( �ψ1, �ψ2 · Z )D, and

secret key k∗ := (�ξ1, �ξ2)B∗ with �ξi ∈ F
n
q (i = 1, 2) can be by (�ξ1, �ξ2 · (Z−1)T )D∗ .

Asmentioned above, the intra-subspace transformation is employed to reduce Prob-
lem 1 and 2 assumptions to Basic Problems 1 and 2.

Inter-subspace transformation:
Hidden bases (bn+1, .., bN ) (N = n + m) and (b∗

1, .., b
∗
n) are (conceptually)

changed to (dn+1, .., dN ) := (bn+1 − ∑n
j=1 f1, j b j , .., bN − ∑n

j=1 fm, j b j ), and
(d∗

1, .., d
∗
n) := (b∗

1 + ∑m
i=1 fi,1b∗

n+i , .., b
∗
n + ∑m

i=1 fi,nb∗
n+i , where F := ( fi, j ) ∈

F
m×n
q . We then have new dual orthonormal bases of V, D := (b1, .., bn,

dn+1, .., dN ) and D
∗ := ( d∗

1, .., d
∗
n , b

∗
n+1, .., b

∗
N ). Then, ciphertext c := ( �ψ1,

�ψ2)B can be expressed by ( �ψ1 + �ψ2 · F , �ψ2)D, and secret key k∗ := (�ξ1, �ξ2)B∗

can be by (�ξ1, �ξ2 − �ξ1 · FT )D∗ .

The inter-subspace transformation is employed to prove the small advantage gaps

between Game 2-ν and Game 3 in Fig. 1, where F
U←F

1×1
q (a random scalar in Fq )

is employed. This transformation is also employed in the corresponding places in the
security proof of Sects. F.2 and G , where more general forms of F are employed.
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1.3.4. Non-monotone Policy

Non-monotone policies and predicates should be used in many FE applications. For
example, an access policy (for a user) regarding a confidential audit report on ‘K Institute’
could be in the following form: NOT(Affiliation = ‘K Institute’) AND (· · · ).
To achieve a non-monotone policy on attributes in universeU , it is essentially required

to introduce a concept of categories or subuniverses, where a category or subuniverse,
Ut (t ∈ N is an identity of a category), is a subset of universe U . In the above-mentioned
example, a subset of affiliations, Uaffiliation is a category. Then, the policy on attribute X
of a user is expressed as (X �= ‘K Institute’ ∧ X ∈ Uaffiliation) AND (· · · ).

Without such a notion of categories or subuniverses, a non-monotone policy cannot
be correctly captured. For example, if a policy on attribute X is just (X �= ‘K Institute’)
AND (· · · ), any attribute (e.g., ‘Professor’, ‘Male’, and ‘Japanese’) different from ‘K
Institute’ in any category satisfies the clause with substituting such an attribute to X . (A
straightforward application of a monotone ABE scheme [42] may have this problem.)
This paper presents an elegant solution to this issue by using dual subspaces of DPVS

without using an explicit formula such as ( . . . ∧ X ∈ Uaffiliation). Here, an attribute is
expressed by the form of (t, xt ) with t ∈ T ⊆ {1, . . . , d} in place of just an attribute
x , where t identifies a subuniverse or category of attributes, and xt is an attribute in
subuniverse t (examples of (t, xt ) are (‘Affiliation’, ‘K Institute’), (‘Title’, ‘Professor’),
(‘Gender’, ‘Male’) and (‘Nationality’, ‘Japanese’)).
In our scheme, each (t, xt ) is encoded as a value in a subspace, span〈Bt 〉, spanned

by bases Bt (or B∗
t ) of DPVS, and a non-monotone policy on category t (e.g., Xt �= ‘K

Institute’, t = ‘Affiliation’) is also encoded in a subspace, span〈B∗
t 〉, spanned by bases

B
∗
t (or Bt ), where independent d bases (B1, . . . ,Bd) (and the dual bases, (B∗

1, . . . ,B
∗
d))

are set up in our scheme.
Roughly speaking, only a value in span〈Bt 〉 can be correctly operated with a value in

span〈B∗
t 〉. That is, only an attribute xt encoded in span〈Bt 〉 can be correctly operated

with a non-monotone policy on t (e.g., Xt �= ‘K Institute’) encoded in span〈B∗
t 〉.

This can be formally ensured in the security proof by the fact that the information
theoretical transformation via hidden base changes is shared by span〈Bt 〉 and span〈B∗

t 〉,
but it is perfectly independent from the other subspace spanned by different bases Bt ′
and B

∗
t ′ with t ′ �= t . In other words, the condition that X ∈ Uaffiliation is realized in

the correct operation mechanism between corresponding dual subspaces, span〈Bt 〉 and
span〈B∗

t 〉. Hence, a non-monotone policy on t , Xt �= ‘K Institute’ with t = ‘Affiliation’,
can be correctly operated with an attribute of (‘Affiliation’, *) encoded in span〈B∗

t 〉 but
not with (‘Title,’ *) in span〈B∗

t ′ 〉, ( ‘Gender’, *) in span〈B∗
t ′′ 〉, and (‘Nationality’, *) in

span〈B∗
t ′′′ 〉.

More precisely, in our scheme, vectors, �x and �v, are employed in place of attributes,
and each vector is categorized to a category or subuniverse, Ut , i.e., vector �x in Ut is
expressed by the form of (t, �x) and encoded in span〈Bt 〉.

For example, in our KP-FE scheme, a ciphertext c with a n-dimensional vector (t, �x)
is realized as the form of

c := (ω�x, 0n, 0n, ϕ)Bt ,

and a secret key k∗
i for the i th entry of a negation term of a span program (si is the

corresponding share) associated with a vector (t ′, �vi ) is of the form of
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k∗
i := (si �vi , 0nt , �ηi , 0)B∗

t ′ .

Hence, in the decryption process,

e(c, k∗
i )

1/�x ·�vi = gωsiT (iff t = t ′and �x · �vi �= 0).

That is, due to the decryption property and the above-mentioned property that only �x
encoded in span〈Bt 〉 can be correctly operated with �vi encoded in span〈B∗

t 〉, the i th
share si of the span program is recovered iff t = t ′ and �x · �vi �= 0.

1.3.5. Adaptive Security

To achieve the adaptive security, this paper elaborately combines the dual system en-
cryption technique proposed by Waters [49] and the DPVS methodology.
In the dual system encryption, roughly there are two forms of ciphertexts and secret

keys, normal and semi-functional forms. One of the advantages of the DPVS method-
ology is that the two forms can be indistinguishable based on the above-mentioned
Problems 1 and 2 assumptions, which are reduced to the DLIN assumption via the hi-
erarchical reduction technique. See the security proof (outline) of Theorem 1 for more
details of these forms and security game transformations.
In the security proof, we also apply the information theoretical technique using hidden

bases in DPVS, which has been described above as the inter-subspace transformation.

1.4. Related Works

The definitional works for functional encryption were initiated by Boneh et al. [14] and
O’Neill [41]. They presented two types of definitions, the simulation (SIM)-based one
and the indistinguishability (IND)-based one. Boneh et al. [14], Agrawal et al. [1] and
Caro et al. [18] showed that a FE schemewith unbounded number of keys and ciphertexts
in the standard model cannot be achieved in the SIM-based definition. Therefore, a fully
secure functional encryption (with unbounded number of keys and ciphertexts) in the
standard model should be realized in the IND-based definition.
As described before, there are two properties of functional encryption, attribute-hiding

(or private-index) and payload-hiding (or public-index) [14,30].
Although several FE schemes for general circuits or Turing machines are presented

by using indistinguishable obfuscations (iO) or multi-linear maps [2,22,23,26], while
these primitives are currently on fragile ground and extremely inefficient.
The largest class of relations supported by a (public-index) FE scheme without using

iO and multi-linear maps is general circuits [27]; however, they are not fully secure but
selectively secure and still impractical.
To the best of our knowledge, the largest class of relations supported by a fully se-

cure practical (public-index) FE scheme in the IND-based definition (with unbounded
number of keys and ciphertexts) under a standard assumption in the standard model is
non-monotone span programs with inner-product relations, which is achieved by this
paper. The ABE scheme in [32] supports only monotone span programs with the equal-
ity relation, and the assumptions are non-standard on composite-order pairing groups.
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Spatial encryption [12,19] supports a fairly large class of relations but still a limited class
of those by the proposed scheme. Although some extensions of spatial encryption have
been proposed [20], the relations supported by the scheme are also covered by those of
the proposed FE scheme.
To the best of our knowledge, the largest class of a fully secure and (weakly) attribute-

hiding practical FE scheme in the IND-based definition under reasonable assumptions in
the standard model is the conjunction of inner-product relations (e.g., hierarchical inner-
product relations and basic spacial encryption), which is achieved in this paper. The
(H)IPE scheme in [32] is (weakly) attribute-hiding under a non-standard assumption.
Although an attribute-hiding FE scheme, (H)IPE scheme, specialized from the pro-

posed FE scheme in this paper, is weakly attribute-hiding, fully-attribute-hiding (H)IPE
schemes (in the IND-based definition) were presented under the same assumption, DLIN
assumption, by [38,39].
Our general access structures, i.e., span programs over inner-product predicates, have

nice applicationswith sparsematrixDPVS techniques [40], for example, semi-adaptively
secure KP-ABE scheme for span programs with constant-size ciphertexts (from DLIN)
[46] and adaptively secure KP- and CP-ABE schemes from DLIN which allow attribute
reuse in an available formula without the redundant multiple encoding technique given
in “Appendix E” [47].

1.5. Notations

When A is a random variable or distribution, y
R← A denotes that y is randomly se-

lected from A according to its distribution. When A is a set, y
U← A denotes that y

is uniformly selected from A. y := z denotes that y is set, defined or substituted by
z. When a is a fixed value, A(x) → a (e.g., A(x) → 1) denotes the event that ma-
chine (algorithm) A outputs a on input x . A function f : N → R is negligible in λ,
if for every constant c > 0, there exists an integer n such that f (λ) < λ−c for all
λ > n.
We denote the finite field of order q byFq , andFq\{0} byF×

q . A vector symbol denotes
a vector representation over Fq , e.g., �x denotes (x1, . . . , xn) ∈ F

n
q . For two vectors �x =

(x1, . . . , xn) and �v = (v1, . . . , vn), �x · �v denotes the inner-product∑n
i=1 xivi . The vector�0 is abused as the zero vector in F n

q for any n. XT denotes the transpose of matrix X . I�
and 0� denote the �×� identity matrix and the �×� zeromatrix, respectively. A bold face
letter denotes an element of vector space V, e.g., x ∈ V. When bi ∈ V (i = 1, . . . , n),
span〈b1, . . . , bn〉 ⊆ V (resp. span〈�x1, . . . , �xn〉) denotes the subspace generated by
b1, . . . , bn (resp. �x1, . . . , �xn). For vectors �x := (x1, . . . , xN ), �y := (y1, . . . , yN ) ∈ F

N
q

and bases B := (b1, . . . , bN ),B∗ := (b∗
1, . . . , b

∗
N ), (�x)B (= (x1, . . . , xN )B) denotes

linear combination
∑N

i=1 xi bi , and (�y)B∗ (= (y1, . . . , yN )B∗) denotes
∑N

i=1 yi b
∗
i . For

a format of attribute vectors �n := (d; n1, . . . , nd) that indicates dimensions of vector

spaces, �et, j denotes the canonical basis vector (
j−1

︷ ︸︸ ︷
0 · · · 0, 1,

nt− j
︷ ︸︸ ︷
0 · · · 0) ∈ F

nt
q for t = 1, . . . , d

and j = 1, . . . , nt . GL(n,Fq) denotes the general linear group of degree n over
Fq .
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2. Dual Pairing Vector Spaces (DPVS) and Main Lemmas

In this section, we present the notion of dual pairing vector spaces (DPVS) and a typical
construction of DPVS from pairing groups.We also showmain lemmas onDPVS, which
are directly employed for the security proof of the proposed FE schemes.

2.1. DPVS by Direct Product of Symmetric Pairing Groups

In this paper, for simplicity of description, we will present the proposed schemes on
the symmetric version of dual pairing vector spaces (DPVS) [35,36] constructed using
symmetric bilinear pairing groups given in Definition 1. Owing to the abstraction of
DPVS, the presentation and the security proof of the proposed schemes are essentially
the same as those on the asymmetric version of DPVS, (q,V,V∗,GT ,A,A

∗, e), for
which see “Appendix A.2”. The symmetric version is a specific (self-dual) case of the
asymmetric version, where V = V

∗ and A = A
∗.

Definition 1. “Symmetric bilinear pairing groups” (q,G,GT ,G, e) are a tuple of a
prime q, cyclic additive group G and multiplicative group GT of order q, G �= 0 ∈ G,
and a polynomial-time computable non-degenerate bilinear pairing e : G × G → GT ,
i.e., e(sG, tG) = e(G,G)st and e(G,G) �= 1.
Let Gbpg be an algorithm that takes input 1λ and outputs a description of bilinear

pairing groups (q,G,GT ,G, e) with security parameter λ.

Definition 2. “Dual pairing vector spaces (DPVS)” (q,V,GT ,A, e) by a direct prod-
uct of symmetric pairing groups (q,G,GT ,G, e) are a tuple of prime q, N -dimensional

vector space V :=
N

︷ ︸︸ ︷
G × · · · × G over Fq , cyclic group GT of order q, canonical basis

A := (a1, . . . , aN ) ofV, where ai := (

i−1
︷ ︸︸ ︷
0, . . . , 0,G,

N−i
︷ ︸︸ ︷
0, . . . , 0), and pairing e : V×V →

GT .
The pairing is defined by e(x, y) := ∏N

i=1 e(Gi , Hi ) ∈ GT where x := (G1, . . . ,

GN ) ∈ V and y := (H1, . . . , HN ) ∈ V. This is non-degenerate bilinear, i.e., e(sx, t y) =
e(x, y)st and if e(x, y) = 1 for all y ∈ V, then x = 0. For all i and j , e(ai , a j ) =
e(G,G)δi, j where δi, j = 1 if i = j , and 0 otherwise, and e(G,G) �= 1 ∈ GT .
DPVSgeneration algorithmGdpvs takes input 1λ (λ ∈ N) and N ∈ N, and outputs a de-

scription of paramV := (q,V,GT ,A, e) with security parameter λ and N -dimensional
V. It can be constructed using Gbpg.

Remark 1. FormatrixW := (wi, j )i, j=1,...,N ∈ F
N×N
q and element g := (G1, . . . ,GN )

in N -dimensionalV, gW denotes (
∑N

i=1 Giwi,1, . . . ,
∑N

i=1 Giwi,N ) = (
∑N

i=1wi,1Gi ,

. . . ,
∑N

i=1wi,NGi ) by a natural multiplication of a N -dim. row vector and a N × N
matrix. Thus, it holds an associative law as (gW )W−1 = g(WW−1) = g and a pairing
invariance property e(gW, h(W−1)T) = e(g, h) for any g, h ∈ V.
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We describe random dual orthonormal basis generator Gob below, which is used as a
subroutine in the proposed FE scheme.

Gob(1
λ, �n := (d; n1, . . . , nd)) : paramG := (q,G,GT ,G, e)

R←Gbpg(1
λ), ψ

U←F
×
q ,

N0 := 5, Nt := 3nt + 1 for t = 1, . . . , d,

for t = 0, . . . , d,

paramVt
:= (q,Vt ,GT ,At , e) := Gdpvs(1

λ, Nt , paramG),

Xt :=
⎛

⎜
⎝

�χt,1
...

�χt,Nt

⎞

⎟
⎠ := (χt,i, j )i, j

U←GL(Nt ,Fq),

⎛

⎜
⎝

�ϑt,1
...

�ϑt,Nt

⎞

⎟
⎠ := (ϑt,i, j )i, j := ψ · (XT

t )
−1,

bt,i := ( �χt,i )At = ∑Nt
j=1 χt,i, j at, j for i = 1, . . . , Nt , Bt := (bt,1, . . . , bt,Nt ),

b∗
t,i := (�ϑt,i )At =

Nt∑

j=1

ϑt,i, j at, j for i = 1, . . . , Nt , B
∗
t := (b∗

t,1, . . . , b
∗
t,Nt

),

gT := e(G,G)ψ , param�n := ({paramVt
}t=0,...,d , gT ),

return (param�n, {Bt ,B
∗
t }t=0,...,d).

We note that gT = e(bt,i , b∗
t,i ) for t = 0, . . . , d; i = 1, . . . , Nt .

2.2. Decisional Linear (DLIN) Assumption

Definition 3. (DLIN: decisional linear assumption [9]) The DLIN problem is to guess

β ∈ {0, 1}, given (paramG, G, ξG, κG, δξG, σκG,Yβ)
R←GDLIN

β (1λ), where

GDLIN
β (1λ) : paramG := (q,G,GT ,G, e)

R←Gbpg(1λ),
κ, δ, ξ, σ

U←Fq , Y0 := (δ + σ)G, Y1
U←G,

return (paramG, G, ξG, κG, δξG, σκG,Yβ),

for β
U←{0, 1}. For a probabilistic machine E , we define the advantage of E for the DLIN

problem as:

AdvDLINE (λ) :=
∣
∣
∣
∣Pr

[

E(1λ, �)→1

∣
∣
∣
∣ �

R←GDLIN
0 (1λ)

]

−Pr
[

E(1λ, �)→1

∣
∣
∣
∣ �

R←GDLIN
1 (1λ)

]∣
∣
∣
∣ .

The DLIN assumption is: For any probabilistic polynomial-time adversary E , the
advantage AdvDLINE (λ) is negligible in λ.

2.3. Main Lemmas (Lemmas 1, 2 and 3 )

We will show three lemmas directly employed in the proof of Theorems 1 and 2 . The
proofs of the lemmas are given in “Appendix B”.
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Definition 4. (Problem 1) Problem 1 is to guess β, given (param�n,B0, B̂
∗
0, eβ,0,

{Bt , B̂
∗
t , eβ,t,1, et,i }t=1,...,d;i=2,...,nt )

R←GP1
β (1λ, �n), where

GP1
β (1λ, �n) : (param�n, {Bt ,B

∗
t }t=0,...,d)

R←Gob(1
λ, �n),

B̂
∗
0 := (b∗

0,1, b
∗
0,3, .., b

∗
0,5), B̂

∗
t := (b∗

t,1, .., b
∗
t,nt , b

∗
t,2nt+1, .., b

∗
t,3nt+1) for t = 1, .., d,

ω, z0, γ0
U←Fq , e0,0 := (ω, 0, 0, 0, γ0)B0 , e1,0 := (ω, z0, 0, 0, γ0)B0 ,

for t = 1, . . . , d;
�et,1 := (1, 0nt−1) ∈ F

nt
q , �zt U←F

nt
q , γt

U←Fq ,

nt
︷ ︸︸ ︷

nt
︷ ︸︸ ︷

nt
︷ ︸︸ ︷

1
︷︸︸︷

e0,t,1 := ( ω�et,1, 0nt , 0nt , γt )Bt ,

e1,t,1 := ( ω�et,1, �zt , 0nt , γt )Bt ,

et,i := ωbt,i for i = 2, . . . , nt ,

return (param�n,B0, B̂
∗
0, eβ,0, {Bt , B̂

∗
t , eβ,t,1, et,i }t=1,...,d;i=2,...,nt ),

forβ
U←{0, 1}. For a probabilisticmachineB, we define the advantage ofB as the quantity

AdvP1B (λ) :=
∣
∣
∣
∣Pr

[

B(1λ, �)→1

∣
∣
∣
∣�

R←GP1
0 (1λ,�n)

]

−Pr
[

B(1λ, �)→1

∣
∣
∣
∣�

R←GP1
1 (1λ,�n)

]∣
∣
∣
∣ .

Lemma 1. For any adversary B, there exist probabilistic machines E , whose running
times are essentially the same as that of B, such that for any security parameter λ,
AdvP1B (λ) ≤ AdvDLINE (λ)+ (d + 6)/q.

Definition 5. (Problem 2) Problem 2 is to guess β, given (param�n, B̂0,B
∗
0, h

∗
β,0, e0,

{B̂t ,B
∗
t , h

∗
β,t,i , et,i }t=1,...,d;i=1,...,nt )

R←GP2
β (1λ, �n), where

GP2
β (1λ, �n) : (param�n, {Bt ,B

∗
t }t=0,...,d)

R←Gob(1λ, �n),
B̂0 := (b0,1, b0,3, .., b0,5), B̂t :=(bt,1, .., bt,nt , bt,2nt+1, .., bt,3nt+1) for t=1, .., d,

δ, δ0, ω
U←Fq , τ, u0

U←F
×
q , z0 := u−1

0 ,
⎛

⎜
⎝

�zt,1
...

�zt,nt

⎞

⎟
⎠ := Zt

U←GL(nt ,Fq),

⎛

⎜
⎝

�ut,1
...

�ut,nt

⎞

⎟
⎠ := (Z−1

t )T for t = 1, .., d,

h∗
0,0 := (δ, 0, 0, δ0, 0)B∗

0
, h∗

1,0 := (δ, u0, 0, δ0, 0)B∗
0
, e0 := (ω, τ z0, 0, 0, 0)B0 ,

for t = 1, . . . , d; i = 1, . . . , nt ;
�et,i := (0i−1, 1, 0nt−i ) ∈ F

nt
q , �δt,i U←F

nt
q ,
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nt
︷ ︸︸ ︷

nt
︷ ︸︸ ︷

nt
︷ ︸︸ ︷

1
︷︸︸︷

h∗
0,t,i := ( δ�et,i , 0nt , �δt,i , 0 )B∗

t

h∗
1,t,i := ( δ�et,i , �ut,i , �δt,i , 0 )B∗

t

et,i := ( ω�et,i , τ�zt,i , 0nt , 0 )Bt ,

return (param�n, B̂0,B
∗
0, h

∗
β,0, e0, {B̂t ,B

∗
t , h

∗
β,t,i , et,i }t=1,..,d;i=1,..,nt ),

for β
U←{0, 1}. For a probabilistic adversary B, the advantage of B for Problem 2,

AdvP2B (λ), is similarly defined as in Definition 4.

Lemma 2. For any adversary B, there exists a probabilistic machine E , whose run-
ning time is essentially the same as that of B, such that for any security parameter λ,
AdvP2B (λ) ≤ AdvDLINE (λ)+ 5/q.

Lemma 3. For p ∈ Fq , let Cp := {(�x, �v)|�x · �v = p, �x �= �0, �v �= �0} ⊂ F
n
q ×F

n
q . For all

(�x, �v) ∈ Cp, for all (�r , �w) ∈ Cp,Pr
[�xU = �r ∧ �vZ = �w]= Pr

[�x Z = �r ∧ �vU = �w] =
1
/
�Cp, where Z

U←GL(n,Fq),U := (Z−1)T.

3. Functional Encryption with a Large Class of Relations

In this section, we provide the definition of functional encryption with a large class of
relations, which are specified by non-monotone access structures combined with inner-
product relations.
As described in Sect. 1.3.4, vectors, �x and �v, with a ciphertext and secret key are

expressed by the form of (t, �x) and (t, �v), which mean that �x and �v are in a category or
subuniverse, Ut , i.e., t is the identity of a category or subuniverse, Ut .
Non-monotone access structures can be realized by span programs (Definition 6) and

be combined with inner-product relations (Definition 7).

3.1. Span Programs and Non-Monotone Access Structures

Definition 6. (Span programs [4]) Let {p1, . . . , pn} be a set of variables. A span
program over Fq is a labeled matrix M̂ := (M, ρ) where M is a (�× r ) matrix over Fq

and ρ is a labeling of the rows of M by literals from {p1, . . . , pn,¬p1, . . . ,¬pn} (every
row is labeled by one literal), i.e., ρ : {1, . . . , �} → {p1, . . . , pn,¬p1, . . . , ¬pn}.

A span program accepts or rejects an input by the following criterion. For every input
sequence δ ∈ {0, 1}n define the submatrix Mδ of M consisting of those rows whose
labels are set to 1 by the input δ, i.e., either rows labeled by some pi such that δi = 1
or rows labeled by some ¬pi such that δi = 0. (i.e., γ : {1, . . . , �} → {0, 1} is defined
by γ ( j) = 1 if [ρ( j) = pi ] ∧ [δi = 1] or [ρ( j) = ¬pi ] ∧ [δi = 0], and γ ( j) = 0
otherwise. Mδ := (Mj )γ ( j)=1, where Mj is the j th row of M .)
The span program M̂ accepts δ if and only if �1 ∈ span〈Mδ〉, i.e., some linear combi-

nation of the rows of Mδ gives the all one vector �1. (The row vector has the value 1 in
each coordinate.) A span program computes a Boolean function f if it accepts exactly
those inputs δ where f (δ) = 1.
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A span program is called monotone if the labels of the rows are only the positive
literals {p1, . . . , pn}. Monotone span programs compute monotone functions. (So, a
span program in general is “non”-monotone.)

We assume that no row Mi (i = 1, . . . , �) of the matrix M is �0. We now introduce
a non-monotone access structure with evaluating map γ by using the inner-product of
attribute vectors, that is employed in the proposed functional encryption schemes.

Definition 7. (Inner-products of attribute vectors and access structures) Ut (t = 1,
. . . , d and Ut ⊂ {0, 1}∗) is a subuniverse, a set of vectors, each of which is expressed
by a pair of subuniverse id and nt -dimensional vector, i.e., (t, �v), where t ∈ {1, . . . , d}
and �v ∈ F

nt
q \{�0}.

We now define such an attribute to be a variable p of a span program M̂ := (M, ρ),
i.e., p := (t, �v). An access structure S is span program M̂ := (M, ρ) along with
variables p := (t, �v), p′ := (t ′, �v′), . . ., i.e., S := (M, ρ) such that ρ : {1, . . . , �} →
{(t, �v), (t ′, �v′), . . ., ¬(t, �v),¬(t ′, �v′), . . .}.

Let � be a set of attributes, i.e., � := {(t, �xt ) | �xt ∈ F
nt
q \{�0}, 1 ≤ t ≤ d}, where

1 ≤ t ≤ d means that t is an element of some subset of {1, . . . , d}.
When � is given to access structure S, map γ : {1, . . . , �} → {0, 1} for span program

M̂ := (M, ρ) is defined as follows: For i = 1, . . . , �, set γ (i) = 1 if [ρ(i) = (t, �vi )]
∧[(t, �xt ) ∈ �] ∧[�vi · �xt = 0] or [ρ(i) = ¬(t, �vi )] ∧[(t, �xt ) ∈ �] ∧[�vi · �xt �= 0]. Set
γ (i) = 0 otherwise.

Access structure S := (M, ρ) accepts � iff �1 ∈ span〈(Mi )γ (i)=1〉.

Remark 2. The restriction that �v �= �0 and �xt �= �0 above is required by the security proof
or more specifically by Lemma 3. This restriction is reasonable in many applications.
For example, in the equality relations for ABE, �v := (v,−1) and �x := (1, x), where
v = x iff �v · �x = 0.

We now construct a secret-sharing scheme for a non-monotone access structure or
span program.

Definition 8. A secret-sharing scheme for span program M̂ := (M, ρ) is:

1. Let M be �×r matrix. Let column vector �f T := ( f1, . . . , fr )T
U←F

r
q . Then, s0 :=

�1 · �f T = ∑r
k=1 fk is the secret to be shared, and �sT := (s1, . . . , s�)T := M · �f T

is the vector of � shares of the secret s0 and the share si belongs to ρ(i).
2. If span program M̂ := (M, ρ) accept δ, or access structure S := (M, ρ) accepts �,

i.e., �1 ∈ span〈(Mi )γ (i)=1〉with γ : {1, . . . , �} → {0, 1}, then there exist constants
{αi ∈ Fq | i ∈ I } such that I ⊆ {i ∈ {1, . . . , �} | γ (i) = 1} and ∑i∈I αi si = s0.
Furthermore, these constants {αi } can be computed in time polynomial in the size
of matrix M .
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3.2. Key-Policy Functional Encryption with a Large Class of Relations

Definition 9. (Key-policy functional encryption: KP-FE) A key-policy functional en-
cryption scheme consists of four algorithms.

Setup This is a randomized algorithm that takes as input security parameter and format
�n := (d; n1, . . . , nd) of attributes. It outputs public parameters pk and master
secret key sk.

KeyGen This is a randomized algorithm that takes as input access structure S :=
(M, ρ), pk and sk. It outputs a decryption key skS.

Enc This is a randomized algorithm that takes as input message m, a set of attributes,
� := {(t, �xt )|�xt ∈ F

nt
q \{�0}, 1 ≤ t ≤ d}, and public parameters pk. It outputs a

ciphertext ct� .
Dec This takes as input ciphertext ct� that was encrypted under a set of attributes �,

decryption key skS for access structure S, and public parameters pk. It outputs
either plaintext m or the distinguished symbol ⊥.

A KP-FE scheme should have the following correctness property: for all (pk, sk)
R←

Setup(1λ, �n), all access structures S, all decryption keys skS
R←KeyGen(pk, sk,S),

all messages m, all attribute sets �, all ciphertexts ct�
R←Enc(pk, m, �), it holds that

m = Dec(pk, skS, ct�) with overwhelming probability, if S accepts �.

Definition 10. Themodel for proving the adaptively payload-hiding security of KP-FE
under chosen-plaintext attack is:

Setup The challenger runs the setup algorithm, (pk, sk)
R←Setup(1λ, �n), and gives

public parameters pk to the adversary.
Phase 1 The adversary is allowed to adaptively issue a polynomial number of queries,

S, to the challenger or oracle KeyGen(pk, sk, ·) for private keys, skS associated
with S.

Challenge The adversary submits two messages m(0),m(1) and a set of attributes, �,
provided that no S queried to the challenger in Phase 1 accepts �. The challenger

flips a coin b
U←{0, 1}, and computes ct(b)�

R←Enc(pk,m(b), �). It gives ct(b)� to
the adversary.

Phase 2 The adversary is allowed to adaptively issue a polynomial number of queries,
S, to the challenger or oracle KeyGen(pk, sk, ·) for private keys, skS associated
with S, provided that S does not accept �.

Guess The adversary outputs a guess b′ of b.
The advantage of adversary A in the above game is defined as AdvKP-FE,PHA (λ) :=

Pr[b′ = b] − 1/2 for any security parameter λ. A KP-FE scheme is adaptively payload-
hiding secure if all polynomial-time adversaries have at most a negligible advantage in
the above game.
We note that the model can easily be extended to handle chosen-ciphertext attacks

(CCA) by allowing for decryption queries in Phases 1 and 2. The advantage of adversary
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A in the CCA game is defined as AdvKP−FE,CCA−PH
A (λ) := Pr[b′ = b] − 1/2 for any

security parameter λ.

3.3. Ciphertext-Policy Functional Encryption with a Large Class of Relations

Definition 11. (Ciphertext-policy functional encryption: CP-FE) A ciphertext-policy
functional encryption scheme consists of four algorithms.

Setup This is a randomized algorithm that takes as input security parameter and format
�n := (d; n1, . . . , nd) of attributes. It outputs the public parameters pk and amaster
key sk.

KeyGen This is a randomized algorithm that takes as input a set of attributes, � :=
{(t, �xt )|�xt ∈ F

nt
q , 1 ≤ t ≤ d}, pk and sk. It outputs a decryption key.

Enc This is a randomized algorithm that takes as input message m, access structure
S := (M, ρ), and the public parameters pk. It outputs the ciphertext.

Dec This takes as input the ciphertext that was encrypted under access structure S, the
decryption key for a set of attributes �, and the public parameters pk. It outputs
either plaintext m or the distinguished symbol ⊥.

A CP-FE scheme should have the following correctness property: for all (pk, sk)
R←

Setup(1λ, �n), all attribute sets �, all decryption keys sk�
R←KeyGen(pk, sk, �), all

messages m, all access structures S, all ciphertexts ctS
R←Enc(pk,m,S), it holds that

m = Dec(pk, sk�, ctS) with overwhelming probability, if S accepts �.

Definition 12. Themodel for proving the adaptively payload-hiding security of CP-FE
under chosen-plaintext attack is:

Setup The challenger runs the setup algorithm, (pk, sk)
R←Setup(1λ, �n), and gives the

public parameters pk to the adversary.
Phase 1 The adversary is allowed to issue a polynomial number of queries, �, to the

challenger or oracle KeyGen(pk, sk, ·) for private keys, sk� associated with �.
Challenge The adversary submits twomessagesm(0),m(1) and an access structure,S :=

(M, ρ), provided that the S does not accept any � sent to the challenger in Phase 1.

The challengerflips a randomcoinb
U←{0, 1}, and computesct(b)

S

R←Enc(pk,m(b),

S). It gives ct(b)
S

to the adversary.
Phase 2 The adversary is allowed to issue a polynomial number of queries, �, to the

challenger or oracle KeyGen(pk, sk, ·) for private keys, sk� associated with �,
provided that S does not accept �.

Guess The adversary outputs a guess b′ of b.
The advantage of an adversaryA in the above game is defined as AdvCP-FE,PHA (λ) :=

Pr[b′ = b] − 1/2 for any security parameter λ. A CP-FE scheme is adaptively payload-
hiding secure if all polynomial-time adversaries have at most a negligible advantage in
the above game.
We note that the model can easily be extended to handle chosen-ciphertext attacks

(CCA)byallowing for decryptionqueries inPhase 1 and2.The advantageof an adversary
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A in the CCA game is defined as AdvCP−FE,CCA−PH
A (λ) := Pr[b′ = b] − 1/2 for any

security parameter λ.

3.4. Unified-Policy Functional Encryption with a Large Class of Relations

Definition 13. (Unified-Policy Functional Encryption: UP-FE) A unified-policy func-
tional encryption scheme consists of four algorithms.

Setup This is a randomized algorithm that takes as input security parameter and for-
mat �n := ((dKP; nKP1 , . . . , nKP

dKP
), (dCP; nCP1 , . . . , nCP

dCP
)) of attributes. It outputs

public parameters pk and master secret key sk.
KeyGen This is a randomized algorithm that takes as input access structure S

KP :=
(MKP, ρKP), a set of attributes, �CP := {(t, �xCPt )|�xCPt ∈ F

nCPt
q \{�0}, 1 ≤ t ≤

dCP}, pk and sk. It outputs a decryption key sk(SKP,�CP).
Enc This is a randomized algorithm that takes as input message m, a set of attributes,

�KP := {(t, �xKPt )|�xKPt ∈ F
nKPt
q \{�0}, 1 ≤ t ≤ dKP}, access structure S

CP :=
(MCP, ρCP), and public parameters pk. It outputs a ciphertext ct(�KP,SCP).

Dec This takes as input a ciphertext ct(�KP,SCP) that was encrypted under a set of at-

tributes and access structure, (�KP,SCP), decryption key sk(SKP,�CP) for access

structure and a set of attributes, (SKP, �CP), and public parameters pk. It outputs
either plaintext m or the distinguished symbol ⊥.

A UP-FE scheme should have the following correctness property: for all (pk, sk)
R←

Setup(1λ, �n), all access structures S
KP, all attribute sets �CP, all decryption keys

sk(SKP,�CP)

R←KeyGen(pk, sk,SKP, �CP), all messages m, all attribute sets �KP, all

access structures SCP, all ciphertexts ct(�KP,SCP)

R←Enc(pk,m, �KP,SCP), it holds that

m = Dec(pk, sk(SKP,�CP), ct(�KP,SCP)) with overwhelming probability, if SKP accepts

�KP and S
CP accepts �CP.

The adaptively payload-hiding security of UP-FE under chosen-plaintext attack (and
chosen-ciphertext attack) are defined similarly as those of KP-FE and CP-FE. (See
Definition 10, 12.)

4. KP-FE Scheme

This section presents a KP-FE scheme with the large class of relations, which is defined
in Sect. 3.2.

4.1. Key Idea of the Construction

Our construction is based on the dual pairing vector spaces (DPVS) (Sect. 1.3.3). A pair
of dual (or orthonormal) bases, B and B

∗, are randomly generated using random linear
transformation, and a part of B (say B̂) is used as a public key and the corresponding
part of B∗ (say B̂∗) is used as a secret key or trapdoor.

Asmentioned in Sect. 1.3.4, in ourKP-FE scheme, a ciphertext cwith a n-dimensional
vector (t, �x) is realized as
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c := (ω�x, 0n, 0n, ϕ)Bt ,

where ω, ϕ
U←Fq and �x is normalized as (1, ∗, . . . , ∗). A secret key k∗

i for the i th entry
of a span program associated with a vector (t, �vi ) is realized as

k∗
i := (si �e1 + θi �vi , 0n, �ηi , 0)B∗

t
(if the i th entry is labeled ‘positive’),

k∗
i := (si �vi , 0nt , �ηi , 0)B∗

t
(if the i th entry is labeled ‘negative’),

where si is the i-entry’s share of the span program, �e1 := (1, 0, . . . 0) ∈ F
n
q , θi

U←Fq ,

�ηi U←F
n
q .

The pairing operation of c ∈ span〈Bt 〉 and ki ∈ span〈B∗
t 〉 is possible and is

e(c, k∗
i ) = gωsi+ωθi �x ·�viT (if the i th entry is labeled ‘positive’),

e(c, k∗
i ) = gωsi �x ·�viT (if the i th entry is labeled ‘negative’),

Therefore,

e(c, k∗
i ) = gωsiT (if the i th entry is labeled ‘positive’ and �x · �vi = 0),

e(c, k∗
i )

1/�x ·�vi = gωsiT (if the i th entry is labeled ‘negative’ and �x · �vi �= 0),

When a subset of entries, where gωsiT is revealed, span the program, or the relation
for the parameters of ciphertext and secret key holds in our scheme, a ciphertext can be
decrypted.
A nice property of DPVS is that we can set a hidden linear subspace by concealing

the basis of a subspace from the public key. Here, span〈B〉 and span〈B∗〉, are (3n+1)-
dimensional (where the dimension of vectors is n), and, as for public parameter B̂,
span〈B̂〉 is (n+1)-dimensional, i.e., the basis for the remaining 2n-dimensional space is
information theoretically concealed (ambiguous). The n-dimensional space in the space
is employed for the randomness, �ηi , in a secret key, and the remaining n-dimensional
hidden subspace is employed to realize the semi-functional forms of ciphertext and
secret keys. Problems 1 and 2 assumptions (Definitions 4, 5 ) bridge the normal and
semi-functional forms of ciphertext and secret keys.

4.2. Construction

We define function ρ̃ : {1, . . . , �} → {1, . . . , d} by ρ̃(i) := t if ρ(i) = (t, �v) or
ρ(i) = ¬(t, �v), where ρ is given in access structure S := (M, ρ). In the proposed
scheme, we assume that ρ̃ is injective for S := (M, ρ)with decryption key skS. We will
show how to relax the restriction in “Appendix E”.

In the description of the scheme, we assume that input vector, �xt := (xt,1, . . . , xt,nt ),
is normalized such that xt,1 := 1. (If �xt is not normalized, change it to a normalized one
by (1/xt,1) · �xt , assuming that xt,1 is nonzero).
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Random dual basis generator Gob(1λ, �n) is defined at the end of Sect. 2.1. We refer to
Sect. 1.5 for notations on DPVS.

Setup(1λ, �n := (d; n1, . . . , nd)) : (param�n, {Bt ,B
∗
t }t=0,...,d)

R←Gob(1λ, �n),
B̂0 := (b0,1, b0,3, b0,5), B̂t := (bt,1, .., bt,nt , bt,3nt+1) for t = 1, .., d,

B̂
∗
0 := (b∗

0,1, b
∗
0,3, b

∗
0,4), B̂

∗
t := (b∗

t,1, .., b
∗
t,nt , b

∗
t,2nt+1, .., b

∗
t,3nt ) for t = 1, .., d,

pk := (1λ,param�n, {B̂t }t=0,...,d), sk := {B̂∗
t }t=0,...,d ,

return pk, sk.

KeyGen(pk, sk, S := (M, ρ)) :
�f U←F

r
q , �sT := (s1, . . . , s�)

T := M · �f T, s0 := �1 · �f T, η0 U←Fq ,

k∗
0 := (−s0, 0, 1, η0, 0)B∗

0
,

for i = 1, . . . , �,

if ρ(i) = (t, �vi := (vi,1, . . . , vi,nt ) ∈ F
nt
q \{�0}), θi

U←Fq , �ηi U←F
nt
q ,

nt
︷ ︸︸ ︷

nt
︷ ︸︸ ︷

nt
︷ ︸︸ ︷

1
︷︸︸︷

k∗
i := ( si �et,1 + θi �vi , 0nt , �ηi , 0 )B∗

t
,

if ρ(i) = ¬(t, �vi ), �ηi U←F
nt
q ,

nt
︷ ︸︸ ︷

nt
︷ ︸︸ ︷

nt
︷ ︸︸ ︷

1
︷︸︸︷

k∗
i := ( si �vi , 0nt , �ηi , 0 )B∗

t
,

return skS := (S, k∗
0, k

∗
1, . . . , k

∗
�).

Enc(pk, m, � := {(t, �xt := (xt,1, .., xt,nt ) ∈ F
nt
q \{�0}) | 1 ≤ t ≤ d, xt,1 := 1}) :

ω, ϕ0, ϕt , ζ
U←Fq for (t, �xt ) ∈ �,

c0 := (ω, 0, ζ, 0, ϕ0)B0 ,

nt
︷ ︸︸ ︷

nt
︷ ︸︸ ︷

nt
︷ ︸︸ ︷

1
︷︸︸︷

ct := ( ω�xt , 0nt , 0nt , ϕt )Bt for (t, �xt ) ∈ �,

cd+1 := gζTm, ct� := (�, c0, {ct }(t,�xt )∈�, cd+1),

return ct�.

Dec(pk, skS := (S, k∗
0, k

∗
1, . . . , k

∗
�), ct� := (�, c0, {ct }(t,�xt )∈�, cd+1)) :

If S := (M, ρ) accepts � := {(t, �xt )}, then compute I and {αi }i∈I such that

�1 =
∑

i∈I
αi Mi , where Mi is the i th row of M, and

I ⊆ {i ∈ {1, . . . , �} | [ρ(i) = (t, �vi ) ∧ (t, �xt ) ∈ � ∧ �vi · �xt = 0]
∨ [ρ(i) = ¬(t, �vi ) ∧ (t, �xt ) ∈ � ∧ �vi · �xt �= 0] },

K := e(c0, k∗
0)

∏

i∈I ∧ ρ(i)=(t,�vi )
e(ct , k∗

i )
αi

∏

i∈I ∧ ρ(i)=¬(t,�vi )
e(ct , k∗

i )
αi /(�vi ·�xt ),

return m′ := cd+1/K .
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[Correctness] If S := (M, ρ) accepts � := {(t, �xt )},

e(c0, k∗
0)
∏

i∈I ∧ ρ(i)=(t,�vi ) e(ct , k
∗
i )
αi · ∏i∈I ∧ ρ(i)=¬(t,�vi ) e(ct , k

∗
i )
αi /(�vi ·�xt )

= g−ωs0+ζ
T

∏
i∈I ∧ ρ(i)=(t,�vi ) g

ωαi si
T

∏
i∈I ∧ ρ(i)=¬(t,�vi ) g

ωαi si (�vi ·�xt )/(�vi ·�xt )
T

= g
ω(−s0+∑

i∈I αi si )+ζ
T = gζT .

4.3. Security

Theorem 1. TheproposedKP-FEscheme is adaptively payload-hidingagainst chosen-
plaintext attacks under the DLIN assumption.
For any adversaryA, there exist probabilisticmachinesE1, E+

2 , andE2, whose running
times are essentially the same as that of A, such that for any security parameter λ,

AdvKP−FE,PH
A (λ) ≤ AdvDLINE1 (λ)+

ν−1∑

h=0

(

AdvDLINE+
2,h

(λ)+ AdvDLINE2,h+1
(λ)

)

+ ε,

where E+
2,h(·) := E+

2 (h, ·), E2,h+1(·) := E2(h, ·) (h = 0, . . . , ν − 1), ν is the maximum
number of A’s key queries and ε := (2dν + 16ν + d + 7)/q.

Proof Outline of Theorem 1: At the top level of strategy of the security proof, we follow
the dual system encryption methodology proposed by Waters [49]. In the methodology,
ciphertexts and secret keys have two forms, normal and semi-functional. In the proof
herein, we also introduce another form called pre-semi-functional. The real system uses
only normal ciphertexts andnormal secret keys, and semi-functional/pre-semi-functional
ciphertexts and keys are used only in a sequence of security games for the security proof.
To prove this theorem, we employ Game 0 (original adaptive security game) through

Game 3. In Game 1, the challenge ciphertext is changed to semi-functional. When at
most ν secret key queries are issued by an adversary, there are 2ν game changes from
Game 1 (Game 2-0), Game 2-0+, Game 2-1 through Game 2-(ν − 1)+ and Game 2-ν.
In Game 2-h, the first h keys are semi-functional while the remaining keys are normal,
and the challenge ciphertext is semi-functional. In Game 2-h+, the first h keys are
semi-functional and the (h + 1)th key is pre-semi-functional while the remaining keys
are normal, and the challenge ciphertext is pre-semi-functional. The final game with
advantage 0 is changed from Game 2-ν. As usual, we prove that the advantage gaps
between neighboring games are negligible.
For skS := (S, k∗

0, k
∗
1, . . . , k

∗
�) and ct� := (�, c0, {ct }(t,�xt )∈�, cd+1), we focus on

�k∗
S

:= (k∗
0, k

∗
1, . . . , k

∗
�) and �c� := (c0, {ct }(t,�xt )∈�), and ignore the other part of skS

and ct� (and call them secret key and ciphertext, respectively) in this proof outline. In
addition, we ignore a negligible factor in the (informal) descriptions of this proof outline.
For example, we say “A is bounded by B” when A ≤ B + ε(λ)where ε(λ) is negligible
in security parameter λ.

A normal secret key, �k∗ norm
S

(with access structure S), is the correct form of the
secret key of the proposed FE scheme, and is expressed by Eq. (1). Similarly, a normal
ciphertext (with attribute set �), �cnorm� , is expressed by Eq. (2). A semi-functional secret
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key, �k∗ semi
S

, is expressed by Eq. (8), and a semi-functional ciphertext, �csemi
� , is expressed

by Eqs. (3)–(5). A pre-semi-functional secret key, �k∗ pre−semi
S

, and pre-semi-functional

ciphertext, �cpre-semi
� , are expressed by Eq. (6) and Eqs. (3), (7) and (5), respectively.

To prove that the advantage gap between Games 0 and 1 is bounded by the advantage
of Problem 1 (to guess β ∈ {0, 1}), we construct a simulator of the challenger of Game

0 (or 1) (against an adversary A) by using an instance with β
U←{0, 1} of Problem 1.

We then show that the distribution of the secret keys and challenge ciphertext replied by
the simulator is equivalent to those of Game 0 when β = 0 and those of Game 1 when
β = 1. That is, the advantage of Problem 1 is equivalent to the advantage gap between
Games 0 and 1 (Lemma 4). The advantage of Problem 1 is proven to be equivalent to
that of the DLIN assumption (Lemma 1).

The advantage gap between Games 2-h and 2-h+ is similarly shown to be bounded
by the advantage of Problem 2 (i.e., advantage of the DLIN assumption) (Lemmas 5
and 2 ). Here, we introduce special forms of pre-semi-functional keys and ciphertexts,
�k∗ spec.pre−semi
S

and �c spec.pre−semi
� , respectively, such that they are equivalent to pre-

semi-functional keys and ciphertexts, �k∗pre-semi
S

and �c pre-semi
� , respectively, except

that w0r0 = a0 := ∑r
k=1 gk and r0

U←Fq (note that r0, w0
U←Fq for �k∗pre−semi

S
and

�c pre−semi
� ). These forms of keys and ciphertexts, �k∗ spec.pre−semi

S
and �c spec.pre−semi

� , are

simulatedusingProblem2withβ = 1. From thedefinitionof these forms, �k∗ spec.pre-semi
S

can decrypt �c spec.pre-semi
� for any � when S accepts �, i.e., it is hard for simulator B+

2

to tell (�k∗ spec.pre−semi
S

, �c spec.pre−semi
� ) for Game 2-h+ from (�k∗norm

S
, �c semi

� ) for Game
2-h under the assumption of Problem 2. On the other hand, a0(= w0r0) is indepen-
dently distributed from the other variables when S does not accept � (shown in Proof of

Claim 1 by using Lemma 3). That is, the joint distribution of �k∗pre-semi
S

and �c pre-semi
�

is equivalent to that of �k∗ spec.pre−semi
S

and �c spec.pre−semi
� , when S does not accept �

(i.e., B+
2 ’s simulation using Problem 2 with β = 1 is the same distribution as that of

Game 2-h+ from the adversary’s view). In other words,w0 and r0 in �k∗ spec.pre-semi
S

and

�c spec.pre-semi
� (given by B+

2 ’s simulation using Problem 2 with β = 1) are correlated
for the case that S accepts � or for simulator B+

2 ’s view, but adversary A cannot notice
the correlation since A’s queries should satisfy the condition that S does not accept �.
The advantage gap between Games 2-h+ and 2-(h + 1) is similarly shown to be

bounded by the advantage of Problem 2, i.e., advantage of the DLIN assumption (Lem-
mas 6 and 2).

Finally, we show that Game 2-ν can be conceptually changed to Game 3 (Lemma 7).
The game transformations as well as (hierarchical) reductions of Problem 1 and 2

assumptions to the DLIN assumption are summarized in Fig. 1. (For the (hierarchical)
reductions, refer to “Appendix B”.)

Proof of Theorem 1. To prove Theorem 1, we consider the following (2ν + 3) games.
In Game 0, a part framed by a box indicates coefficients to be changed in a subsequent
game. In the other games, a part framed by a box indicates coefficients which were
changed in a game from the previous game.
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Fig. 1. Structure of reductions for the proposed KP-FE and CP-FE (in Sect. 5) schemes.

Game 0 : Original game. That is, the reply to a key query for S := (M, ρ) with � × r
matrix M is:

k∗
0 := (−s0, 0 , 1, η0, 0)B∗

0
,

for i = 1, . . . , �,

if ρ(i) = (t, �vi ), k∗
i := (si �et,1 + θi �vi , 0nt , �ηi , 0)B∗

t
,

if ρ(i) = ¬(t, �vi ), k∗
i := (si �vi , 0nt , �ηi , 0)B∗

t
,

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

(1)

where �f U←F
r
q , �sT := (s1, . . . , s�)T := M · �f T, s0 := �1· �f T, θi , η0 U←Fq , �ηi U←F

nt
q , �et,1

= (1, 0, . . . , 0) ∈ F
nt
q , and �vi ∈ F

nt
q \{�0}. The challenge ciphertext for challenge plain-

texts (m(0),m(1)) and � := {(t, �xt ) | 1 ≤ t ≤ d} is:

c0 := (δ, 0 , ζ , 0, ϕ0)B0 ,

ct := (δ�xt , 0nt , 0nt , ϕt )Bt for (t, �xt ) ∈ �,

cd+1 := gζTm
(b),

⎫
⎪⎬

⎪⎭
(2)

where b
U←{0, 1}; δ, ζ, ϕ0, ϕt U←Fq , and �xt ∈ F

nt
q \{�0}.

Game 1 : Same as Game 0 except that the challenge ciphertext is:

c0: = (δ, r0 , ζ, 0, ϕ0)B0 , (3)
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ct : = (δ�xt , �rt , 0nt , ϕt )Bt for (t, �xt ) ∈ �, (4)

cd+1 : = gζTm
(b), (5)

where r0
U←Fq , �rt U←F

nt
q , and all the other variables are generated as in Game 0.

Game 2-h+ (h = 0, . . . , ν −1) : Game 2-0 is Game 1. Game 2-h+ is the same as Game
2-h except the reply to the (h + 1)th key query for S := (M, ρ) with � × r matrix M ,
and ct of the challenge ciphertext are:

k∗
0 := (−s0, w0 , 1, η0, 0)B∗

0
,

for i = 1, . . . , �,
if ρ(i) = (t, �vi ),
k∗
i := (si �et,1 + θi �vi , (ai �et,1 + πi �vi ) · Zt , �ηi , 0)B∗

t
,

if ρ(i) = ¬(t, �vi ),
k∗
i := (si �vi , ai �vi · Zt , �ηi , 0)B∗

t
,

⎫
⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎭

(6)

ct := (δ�xt , �xt ·Ut , 0
nt , ϕt )Bt for (t, �xt ) ∈ �, (7)

where w0
U←Fq , �g U←F

r
q , �aT := (a1, . . . , a�)T := M · �gT, πi U←Fq (i = 1, . . . , �),

Zt
U←GL(nt ,Fq), Ut := (Z−1

t )T for t = 1, . . . , d, and all the other variables are
generated as in Game 2-h.

Game 2-(h+ 1) (h = 0, . . . , ν − 1) : Game 2-(h+ 1) is the same as Game 2-h+ except
the reply to the (h + 1)th key query for S := (M, ρ) with �× r matrix M , and ct of the
challenge ciphertext are:

k∗
0 := (−s0, w0, 1, η0, 0)B∗

0
,

for i = 1, . . . , �,

if ρ(i) = (t, �vi ), k∗
i := (si �et,1 + θi �vi , 0nt , �ηi , 0)B∗

t
,

if ρ(i) = ¬(t, �vi ), k∗
i := (si �vi , 0nt , �ηi , 0)B∗

t
,

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

ct := (δ�xt , �rt , 0nt , ϕt )Bt for (t, �xt ) ∈ �, (8)

where �rt U←F
nt
q , and all the other variables are generated as in Game 2-h+.

Game 3 : Same as Game 2-ν except that c0 and cd+1 of the challenge ciphertext are

c0 := (δ, r0, ζ ′ , 0, ϕ0)B0 , cd+1 := gζTm
(b),

where ζ ′ U←Fq (i.e., independent from ζ
U←Fq ), and all the other variables are generated

as in Game 2-ν.
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Let Adv(0)A (λ), Adv(1)A (λ),Adv(2−h)
A (λ),Adv(2−h+)

A (λ) and Adv(3)A (λ) be the

advantage ofA in Game 0, 1, 2− h, 2− h+ and 3, respectively. Adv(0)A (λ) is equivalent

to AdvKP−FE,PH
A (λ) and it is clear that Adv(3)A (λ) = 0 by Lemma 8.

We will show four lemmas (Lemmas 4–7) that evaluate the gaps between pairs of

Adv(0)A (λ),Adv(1)A (λ),Adv(2−h)
A (λ),Adv(2−h+)

A (λ),Adv(2−(h+1))
A (λ) forh = 0, . . . , ν−

1 and Adv(3)A (λ). From these lemmas and Lemmas 1 and 2 , we obtain

AdvKP-FE, PHA (λ) = Adv(0)A (λ) ≤
∣
∣
∣Adv(0)A (λ)− Adv(1)A (λ)

∣
∣
∣ +

ν−1∑

h=0

∣
∣
∣Adv(2−h)

A (λ)− Adv(2−h+)
A (λ)

∣
∣
∣

+
ν−1∑

h=0

∣
∣
∣Adv(2−h+)

A (λ)− Adv(2−(h+1))
A (λ)

∣
∣
∣ +

∣
∣
∣Adv(2−ν)A (λ) −Adv(3)A (λ)

∣
∣
∣ + Adv(3)A (λ)

≤ AdvP1B1
(λ)+

ν−1∑

h=0

AdvP2B+
2,h
(λ)+

ν−1∑

h=0

AdvP2B2,h+1
(λ)+ (2dν + 6ν + 1)/q

≤ AdvDLINE1
(λ)+

ν−1∑

h=0

(

AdvDLINE+
2,h

(λ) +AdvDLINE2,h+1
(λ)

)
+ (2dν + 16ν + d + 7)/q.

This completes the proof of Theorem 1. �

Lemma 4. For any adversary A, there exists a probabilistic machine B1, whose run-
ning time is essentially the same as that of A, such that for any security parameter λ,
|Adv(0)A (λ)− Adv(1)A (λ)| ≤ AdvP1B1

(λ).

Proof. In order to prove Lemma 4, we construct a probabilistic machine B1 against
Problem 1 using an adversary A in a security game (Game 0 or 1) as a black box as
follows:

1. B1 is given a Problem 1 instance, (param�n,B0, B̂
∗
0, eβ,0, {Bt , B̂

∗
t , eβ,t,1,

et, j }t=1,...,d; j=2,...,nt ).
2. B1 plays a role of the challenger in the security game against adversary A.
3. At the first step of the game, B1 provides A a public key pk := (1λ,

param�n, {B̂t }t=0,...,d) of Game 0 (and 1), where B̂0 := (b0,1, b0,3, b0,5) and
B̂t := (bt,1, .., bt,nt , bt,3nt+1) for t = 1, .., d, that are obtained from the Prob-
lem 1 instance.

4. When a key query is issued for access structure S := (M, ρ), B1 answers normal
key (k∗

0, . . . , k
∗
�) with Eq. (1), that is computed using {B̂∗

t }t=0,...,d of the Problem
1 instance.

5. When B1 receives an encryption query with challenge plaintexts (m(0),m(1)) and
� := {(t, �xt ) | 1 ≤ t ≤ d} from A, B1 computes the challenge ciphertext
(c0, {ct }(t,�xt )∈�, cd+1) such that

c0 := eβ,0 + ζ b0,3, ct := xt,1eβ,t,1 + ∑nt
j=2 xt, j et, j , cd+1 := gζTm

(b),

where ζ
U←Fq , b

U←{0, 1}, and (b0,3, eβ,0, {eβ,t,1, et, j }t=1,...,d; j=2,...,nt ) is a part
of the Problem 1 instance.
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6. When a key query is issued byA after the encryption query, B1 executes the same
procedure as that of step 4.

7. A finally outputs bit b′. If b = b′, B1 outputs β ′ := 1. Otherwise, B1 outputs
β ′ := 0.

It is straightforward that the distribution by B1’s simulation given a Problem 1 instance
with β is equivalent to that in Game 0 (resp.Game 1), when β = 0 (resp.β = 1) since
xt,1 = 1. �

Lemma 5. For any adversaryA, there exists a probabilistic machine B+
2 , whose run-

ning time is essentially the same as that of A, such that for any security parameter λ,

|Adv(2−h)
A (λ)−Adv(2−h+)

A (λ)| ≤ AdvP2B+
2,h
(λ)+ (d + 3)/q, where B+

2,h(·) := B+
2 (h, ·).

Proof. In order to prove Lemma 5, we construct a probabilistic machine B+
2 against

Problem 2 using an adversary A in a security game (Game 2-h or 2-h+) as a black box
as follows:

1. B+
2 is given an integer h and a Problem 2 instance, (param�n, B̂0,B

∗
0, h

∗
β,0, e0,

{B̂t ,B
∗
t , h

∗
β,t, j , et, j }t=1,...,d; j=1,...,nt ).

2. B+
2 plays a role of the challenger in the security game against adversary A.

3. At the first step of the game, B+
2 provides A a public key pk := (1λ,

param�n, {B̂′
t }t=0,...,d) of Game 2-h (and 2-h+), where B̂

′
0 := (b0,1, b0,3, b0,5)

and B̂
′
t := (bt,1, .., bt,nt , bt,3nt+1) for t = 1, .., d, that are obtained from the

Problem 2 instance.
4. When the ιth key query is issued for access structure S := (M, ρ), B+

2 answers as
follows:

(a) When 1 ≤ ι ≤ h, B+
2 answers semi-functional key (k∗

0, . . . , k
∗
�) with Eq. (8),

that is computed using {B∗
t }t=0,...,d of the Problem 2 instance.

(b) When ι = h + 1, B+
2 calculates (k∗

0, . . . , k
∗
�) using (b0,1, b0,3, h∗

β,0,{b∗
t, j , h

∗
β,t, j }t=1,...,d; j=1,...,nt ) of the Problem 2 instance as follows:

πt , μt , gk, μ̃k
U←Fq for t = 1, . . . , d; k = 1, . . . , r,

p̃∗
β,0 := ∑r

k=1

(
gkh∗

β,0 + μ̃kb∗
0,1

)
,

for t = 1, . . . , d; k = 1, . . . , r; j = 1, . . . , nt ;
p∗
β,t, j := πth∗

β,t, j + μt b∗
t, j , p̃∗

β,t,k, j := gkh∗
β,t, j + μ̃kb∗

t, j ,

k∗
0 := − p̃∗

β,0 + b∗
0,3,

for i = 1, . . . , �,

if ρ(i) = (t, �vi ), k∗
i := ∑nt

j=1 vi, j p
∗
β,t, j + ∑r

k=1 Mi,k p̃∗
β,t,k,1,

if ρ(i) = ¬(t, �vi ), k∗
i := ∑nt

j=1 vi, j (
∑r

k=1 Mi,k p̃∗
β,t,k, j ),

where (Mi,k)i=1,...,�;k=1,...,r := M .
(c) When ι ≥ h + 2, B+

2 answers normal key (k∗
0, . . . , k

∗
�) with Eq. (1), that is

computed using {B∗
t }t=0,...,d of the Problem 2 instance.
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5. When B+
2 receives an encryption query with challenge plaintexts (m(0),m(1)) and

� := {(t, �xt ) | 1 ≤ t ≤ d} from A, B+
2 computes the challenge ciphertext

(c0, {ct }(t,�xt )∈�, cd+1) such that for (t, �xt ) ∈ �,

c0 := e0 + ζ b0,3 + q0, ct := ∑nt
j=1 xt, j et, j + qt , cd+1 := gζTm

(b),

where ζ
U←Fq , b

U←{0, 1}, q0
U← span〈b0,5〉, qt

U← span〈bt,3nt+1〉, and
(b0,3, e0, {et, j }t=1,..,d; j=1,..,nt ) is a part of the Problem 2 instance.

6. When a key query is issued byA after the encryption query, B+
2 executes the same

procedure as that of step 4.3.
7. A finally outputs bit b′. If b = b′, B+

2 outputs β ′ := 1. Otherwise, B+
2 outputs

β ′ := 0.

Remark 3. p̃∗
β,0, p

∗
β,t, j , p̃

∗
β,t,k, j for t = 1, . . . , d; k = 1, . . . , r; j = 1, . . . , nt calcu-

lated in case (b) of steps 4 and 6 in the above simulation are expressed as:

θt :=πtδ+μt , fk :=gkδ+μ̃k, s0 :=∑r
k=1 fk, a0 :=∑r

k=1 gk, w0 :=a0/z0 (= a0u0),

p̃∗
0,0 = (s0, 0, 0, a0δ0, 0)B∗

0
, p̃∗

1,0 = (s0, w0, 0, a0δ0, 0)B∗
0
,

nt
︷ ︸︸ ︷

nt
︷ ︸︸ ︷

nt
︷ ︸︸ ︷

1
︷︸︸︷

p∗
0,t, j := ( θt �et, j , 0nt , πt �δt, j , 0 )B∗

t
,

p̃∗
0,t,k, j := ( fk �et, j , 0nt , gk �δt, j , 0 )B∗

t
,

p∗
1,t, j := ( θt �et, j , πt �ut, j , πt �δt, j , 0 )B∗

t
,

p̃∗
1,t,k, j := ( fk �et, j , gk �ut, j , gk �δt, j , 0 )B∗

t
,

where δ, z0, δ0, {�et, j , �ut, j , �δt, j }t=1,...,d; j=1,..,nt are defined in Problem 2. Note that vari-
ables {θt , πt }t=1,...,d , { fk, gk}k=1,...,r are independently anduniformlydistributed.There-
fore, {k∗

i }i=0,...,� are distributed as Eq. (6) except w0 := a0/r0, i.e., w0r0 = a0, using

a0 and r0 := z0
U←Fq in c0 (Eq.3).

Claim 1. The distribution of the view of adversary A in the above-mentioned game
simulated by B+

2 given a Problem 2 instance with β ∈ {0, 1} is the same as that in
Game 2-h (resp. Game 2-h+) if β = 0 (resp. β = 1) except with probability (d + 2)/q
(resp.1/q).

Proof. It is clear that B+
2 ’s simulation of the public key generation (step 4.3) and the

ιth key query’s answer for ι �= h + 1 (cases (a) and (c) of steps 4.3 and 6) is perfect, i.e.,
exactly the same as the Setup and the KeyGen oracle in Game 2-h and Game 2-h+.

Therefore, to prove this lemma we will show that the joint distribution of the (h + 1)-
the key query’s answer and the challenge ciphertext byB+

2 ’s simulation given a Problem
2 instance with β is equivalent to that in Game 2-h (resp. Game 2-h+), when β = 0
(resp. β = 1).
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When β = 0, it is straightforward to show that they are equivalent except that δ
defined in Problem 2 is zero or there exists t ∈ {0, . . . , d} such that �rt = �0, where �rt are
defined in Eqs. (3) and (4), i.e., except with probability (d + 2)/q.

When β = 1, the distribution by B+
2 ’s simulation is Eq. (6) for the key and Eqs. (3),

(5), and (7) for the challenge ciphertext, where the distribution is the same as that defined

in these equations except w0 := a0/r0, i.e., w0r0 = a0, using a0 := �1 · �gT and r0
U←Fq

in c0 (Eq.3) from Remark 3. The corresponding distribution in Game 2-h+ is Eq. (6)

and Eqs. (3), (5), and (7) where r0, w0
U←Fq as defined in the equations.

Therefore, we will show that a0 is uniformly and independently distributed from
the other variables in the joint distribution of B+

2 ’s simulation. Since a0 := �1 · �gT
is only related to (a1, . . . , a�)T := M · �gT and Ut = (Z−1

t )T holds, a0 is only re-
lated to { �wi }i=1,...,�, { �wi }i=1,...,� and {�rt }t=1,...,d , where �wi := (ai �et,1 + πi �vi ) · Zt :=
((ai , 0, . . . , 0)+πi �vi )·Zt and �wi := ai �vi ·Zt in Eq. (6) for i = 1, . . . , �, and �rt := �xt ·Ut

inEq. (7) for t = 1, . . . , d with t := ρ̃(i). (ρ̃ is defined at the start of Sect. 4.)With respect
to the joint distribution of these variables, there are five cases for each i ∈ {1, . . . , �}.
Note that for any i ∈ {1, . . . , �}, (Zt ,Ut ) with t := ρ̃(i) is independent from the other
variables, since ρ̃ is injective:

1. γ (i) = 1 and [ρ(i) = (t, �vi ) ∧ (t, �xt ) ∈ � ∧ �vi · �xt = 0].
Then, from Lemma 3, the joint distribution of ( �wi , �rt ) is uniformly and indepen-

dently distributed on Cai := {( �w, �r)| �w · �r = ai } (over Zt
U←GL(nt ,Fq)).

2. γ (i) = 1 and [ρ(i) = ¬(t, �vi ) ∧ (t, �xt ) ∈ � ∧ �vi · �xt �= 0].
Then, from Lemma 3, the joint distribution of ( �wi , �rt ) is uniformly and indepen-

dently distributed on C(�vi ·�xt )·ai (over Zt
U←GL(nt ,Fq)).

3. γ (i) = 0 and [ρ(i) = (t, �vi ) ∧ (t, �xt ) ∈ �] (i.e., �vi · �xt �= 0).
Then, from Lemma 3, the joint distribution of ( �wi , �rt ) is uniformly and indepen-

dently distributed on C(�vi ·�xt )·πt+ai (over Zt
U←GL(nt ,Fq)) where πt is defined in

Remark 3. Since πt is uniformly and independently distributed on Fq , the joint

distribution of ( �wi , �rt ) is uniformly and independently distributed over F 2nt
q .

4. γ (i) = 0 and [ρ(i) = ¬(t, �vi ) ∧ (t, �xt ) ∈ �] (i.e., �vi · �xt = 0).
Then, from Lemma 3, the joint distribution of ( �wi , �rt ) is uniformly and indepen-

dently distributed on C0 (over Zt
U←GL(nt ,Fq)).

5. [ρ(i) = (t, �vi ) ∧ (t, �xt ) �∈ �] or [ρ(i) = ¬(t, �vi ) ∧ (t, �xt ) �∈ �].
Then, the distribution of �wi is uniformly and independently distributed on F

nt
q

(over Zt
U←GL(nt ,Fq)).

We then observe the joint distribution (or relation) of a0, { �wi }i=1,...,�, { �wi }i=1,...,�
and {�rt }t=1,...,d . Those in cases 3-5 are obviously independent from a0. Due to the
restriction of adversaryA’s key queries, �1 �∈ span〈(Mi )γ (i)=1〉. Therefore, a0 := �1 · �gT
is independent from the joint distribution of {ai := Mi · �gT | γ (i) = 1} (over the random
selection of �g), which can be given by ( �wi , �rt ) in case 1 and ( �wi , �rt ) in case 2. Thus, a0 is
uniformly and independently distributed from the other variables in the joint distribution
of B+

2 ’s simulation.
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Therefore, the view of adversary A in the game simulated by B+
2 given a Problem 2

instance with β = 1 is the same as that in Game 2-h+ except that δ defined in Problem
2 is zero, i.e., except with probability 1/q. �

This completes the proof of Lemma 5. �

Lemma 6. For any adversary A, there exists a probabilistic machine B2, whose run-
ning time is essentially the same as that of A, such that for any security parameter λ,

|Adv(2−h+)
A (λ) − Adv(2−(h+1))

A (λ)| ≤ AdvP2B2,h+1
(λ) + (d + 3)/q, where B2,h+1(·) :=

B2(h, ·).

Proof. In order to prove Lemma 6, we construct a probabilistic machine B2 against
Problem 2 using an adversaryA in a security game (Game 2-h+ or 2-(h+1)) as a black
box. B2 acts in the same way as B+

2 in the proof of Lemma 5 except the following two
points:

1. In case (b) of step 4; k∗
0 is calculated as

k∗
0 := − p̃∗

β,0 + r ′
0b

∗
0,2 + b∗

0,3,

where r ′
0

U←Fq , p̃∗
β,0 is calculated from h∗

β,0 and b∗
0,1 as in the proof of Lemma 5,

and B
∗ := (b∗

0,1, b
∗
0,2, b

∗
0,3) is in the Problem 2 instance.

2. In the last step; if b = b′, B2 outputs β ′ := 0. Otherwise, B2 outputs β ′ := 1.

When β = 0, it is straightforward that the distribution by B2’s simulation is equiv-
alent to that in Game 2-(h + 1) except that δ defined in Problem 2 is zero, i.e., ex-
cept with probability 1/q. When β = 1, the distribution by B2’s simulation is equiv-
alent to that in Game 2-h+ except that δ defined in Problem 2 is zero or there exists
t ∈ {0, . . . , d} such that �rt = �0 are defined inEqs. (3) and (4), i.e., exceptwith probability
(d + 2)/q. �

Lemma 7. For any adversary A, Adv(3)A (λ) ≤ Adv(2−ν)A (λ)+ 1/q.

Proof. To prove Lemma 7, we will show distribution (param�n, {B̂t }t=0,...,d ,

{sk( j)∗
S

} j=1,...,ν , c) in Game 2-ν and that in Game 3 are equivalent, where sk( j)∗
S

is
the answer to the j th key query, and c is the challenge ciphertext. By definition, we only
need to consider elements on V0 or V∗

0. We define new bases D0 of V0 and D∗
0 of V

∗
0 as

follows: We generate θ
U←Fq , and set

d0,2 := (0, 1,−θ, 0, 0)B = b0,2 − θb0,3, d∗
0,3 := (0, θ, 1, 0, 0)B = b∗

0,3 + θb∗
0,2.

We set D0 := (b0,1, d0,2, b0,3, b0,4, b0,5), D∗
0 := (b∗

0,1, b
∗
0,2, d

∗
0,3, b

∗
0,4, b

∗
0,5).We then

easily verify that D0 and D
∗
0 are dual orthonormal, and are distributed the same as the

original bases, B0 and B
∗
0.
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The V0 components ({k( j)∗0 } j=1,...,ν , c0) in keys and challenge ciphertext

({sk( j)∗
S

} j=1,...,ν , ct�) in Game 2-ν are expressed over bases B0 and B
∗
0 as k( j)∗0 =

(−s( j)0 , w
( j)
0 , 1, η( j)0 , 0)B∗

0
, c0 = (δ, r0, ζ, 0, ϕ0)B0 . Then,

k( j)∗0 =
(
−s( j)0 , w

( j)
0 , 1, η( j)0 , 0

)

B
∗
0

=
(
−s( j)0 , w

( j)
0 + θ, 1, η( j)0 , 0

)

D
∗
0

=
(
−s( j)0 , ϑ

( j)
0 , 1, η( j)0 , 0

)

D
∗
0

,

whereϑ( j)0 := w
( j)
0 + θ which are uniformly, independently distributed sincew( j)

0
U←Fq .

c0 = (δ, r0, ζ, 0, ϕ0)B0 = (δ, r0, ζ + r0θ, 0, ϕ0)D0 = (δ, r0, ζ ′, 0, ϕ0)D0

where ζ ′ := ζ + r0θ which is uniformly, independently distributed since θ
U←Fq .

In the light of the adversary’s view, both (B0,B
∗
0) and (D0,D

∗
0) are consistent with

public key pk := (1λ,param�n, {B̂t }t=0,...,d). Therefore, {sk( j)∗S
} j=1,...,ν and ct� can be

expressed as keys and ciphertext in two ways, in Game 2-ν over bases (B0,B
∗
0) and in

Game 3 over bases (D0,D
∗
0). Thus, Game 2-ν can be conceptually changed to Game 3

if r0 �= 0, i.e., except with probability 1/q. �

Lemma 8. For any adversary A, Adv(3)A (λ) = 0.

Proof. The value of b is independent from the adversary’s view in Game 3. Hence,
Adv(3)A (λ) = 0. �

5. CP-FE Scheme

This section presents a CP-FE scheme with the large class of relations, which is defined
in Sect. 3.3.

5.1. Construction

ρ̃ : {1, . . . , �} → {1, . . . , d} is defined at the start of Sect. 4. In the proposed scheme,
we assume that ρ̃ is injective for S := (M, ρ) with ciphertext ctS. We will show how to
relax the restriction in “Appendix E”.

In the description of the scheme, we assume that input vector �xt := (xt,1, . . . , xt,nt )
is normalized such that xt,1 := 1. (If �xt is not normalized, change it to a normalized one
by (1/xt,1) · �xt assuming that xt,1 is nonzero). In addition, we assume that input vector
�vi := (vi,1, . . . , vi,nt ) satisfies that vi,nt �= 0.
Random dual basis generator Gob(1λ, �n) is defined at the end of Sect. 2.1. We refer to

Sect. 1.5 for notations on DPVS.

Setup(1λ, �n := (d; n1, . . . , nd )) : (param�n, {Bt ,B
∗
t }t=0,...,d )

R←Gob(1
λ, �n),

B̂0 := (b0,1, b0,3, b0,5), B̂t := (bt,1, . . . , bt,nt , bt,3nt+1) for t = 1, . . . , d,

B̂
∗
0 := (b∗

0,1, b
∗
0,3, b

∗
0,4), B̂

∗
t := (b∗

t,1, . . . , b
∗
t,nt , b

∗
t,2nt+1, . . . , b

∗
t,3nt ) for t = 1, . . . , d,
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pk := (1λ,param�n, {B̂t }t=0,...,d ), sk := {B̂∗
t }t=0,...,d ,

return pk, sk.

KeyGen(pk, sk, � := {(t, �xt := (xt,1, . . . , xt,nt ) ∈ F
nt
q \{�0}) | 1 ≤ t ≤ d, xt,1 := 1}) :

δ, ϕ0
U←Fq , �ϕt U←F

nt
q such that (t, �xt ) ∈ �,

k0 := (δ, 0, 1, ϕ0, 0)B∗
0
,

nt
︷ ︸︸ ︷

nt
︷ ︸︸ ︷

nt
︷ ︸︸ ︷

1
︷︸︸︷

k∗
t := ( δ�xt , 0nt , �ϕt , 0 )B∗

t
for (t, �xt ) ∈ �,

sk� := (�, k∗
0, {k∗

t }(t,�xt )∈�),
return sk�.

Enc(pk, m, S := (M, ρ)) :
�f R←F

r
q , �sT := (s1, . . . , s�)

T := M · �f T, s0 := �1 · �f T, η0, ηi , θi , ζ U←Fq (i = 1, .., �),

c0 := (−s0, 0, ζ, 0, η0)B0 ,

for i = 1, . . . , �,

if ρ(i) = (t, �vi := (vi,1, . . . , vi,nt ) ∈ F
nt
q \{�0}) (vi,nt �= 0),

nt
︷ ︸︸ ︷

nt
︷ ︸︸ ︷

nt
︷ ︸︸ ︷

1
︷︸︸︷

ci := ( si �et,1 + θi �vi , 0nt , 0nt , ηi )Bt ,

if ρ(i) = ¬(t, �vi ),
nt

︷ ︸︸ ︷
nt

︷ ︸︸ ︷
nt

︷ ︸︸ ︷
1

︷︸︸︷

ci := ( si �vi , 0nt , 0nt , ηi )Bt ,

cd+1 := gζT m, ctS := (S, c0, c1, . . . , c�, cd+1),

return ctS.

Dec(pk, sk� := (�, k∗
0, {k∗

t }(t,�xt )∈�), ctS := (S, c0, c1, . . . , c�, cd+1)) :
If S := (M, ρ) accepts � := {(t, �xt )}, then compute I and {αi }i∈I such that

�1 = ∑
i∈I αi Mi , where Mi is the i th row of M, and

I ⊆ {i ∈ {1, . . . , �}| [ρ(i) = (t, �vi ) ∧ (t, �xt ) ∈ � ∧ �vi · �xt = 0]
∨ [ρ(i) = ¬(t, �vi ) ∧ (t, �xt ) ∈ � ∧ �vi · �xt �= 0] },

K := e(c0, k∗
0)

∏

i∈I ∧ ρ(i)=(t,�vi )
e(ci , k∗

t )
αi ·

∏

i∈I ∧ ρ(i)=¬(t,�vi )
e(ci , k∗

t )
αi /(�vi ·�xt ),

return m′ := cd+1/K .

[Correctness] If S := (M, ρ) accepts � := {(t, �xt )},

e(c0, k∗
0)
∏

i∈I ∧ ρ(i)=(t,�vi ) e(ci , k
∗
t )
αi · ∏i∈I ∧ ρ(i)=¬(t,�vi ) e(ci , k

∗
t )
αi /(�vi ·�xt )

= g−δs0+ζ
T

∏
i∈I ∧ ρ(i)=(t,�vi ) g

δαi si
T

∏
i∈I ∧ ρ(i)=¬(t,�vi ) g

δαi si (�vi ·�xt )/(�vi ·�xt )
T

= g
δ(−s0+∑

i∈I αi si )+ζ
T = gζT .

5.2. Security

We can prove adaptively payload-hiding security for the CP-FE scheme similarly as the
proposed KP-FE case (Theorem 1).
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Theorem 2. TheproposedCP-FEscheme is adaptively payload-hidingagainst chosen-
plaintext attacks under the DLIN assumption.
For any adversary A, there exist probabilistic machines E1, E+

2 , E2, whose running
times are essentially the same as that of A, such that for any security parameter λ,

AdvCP-FE,PH
A (λ) ≤ AdvDLINE1 (λ)+

ν−1∑

h=0

(

AdvDLINE+
2,h

(λ)+ AdvDLINE2,h+1
(λ)

)

+ ε,

where E+
2,h(·) := E+

2 (h, ·), E2,h+1(·) := E2(h, ·) (h = 0, . . . , ν − 1), ν is the maximum
number of A’s key queries and ε := (2dν + 16ν + 2d + 8)/q.

Proof Outline of Theorem 2: As in the proof of Theorem 1, we follow the dual system
encryption methodology proposed by Waters [49], at the top level of strategy of the
security proof. In addition, the description of the game transformation is very similar
to that of Theorem 1, and the three forms of ciphertexts and secret keys, normal, semi-
functional, and pre-semi-functional, are also used as before. Therefore, here, we only
describe these forms of ciphertexts and secret keys for the proof of Theorem 2.

For sk� := (�, k∗
0, {k∗

t }(t,�xt )∈�) and ctS := (S, c0, c1, . . . , c�, cd+1), we focus on
�k∗
� := (k∗

0, {k∗
t }(t,�xt )∈�) and �cS := (c0, c1, . . . , c�), and ignore the other part of sk�

and ctS (and call them secret key and ciphertext, respectively) in this proof outline.
A normal secret key, �k∗norm

� (with attribute set�), is a correct form of the secret key of
the proposed CP-FE scheme, and is expressed by Eq. (9). Similarly, a normal ciphertext
�c norm
S

:= (c0, . . . , c�) (with access structure S) is Eq. (10). A semi-functional secret

key, �k∗ semi
� , is Eq. (16), and a semi-functional ciphertext, �c semi

S
, is Eqs. (11)–(13). A pre-

semi-functional secret key, �k∗pre−semi
� , and pre-semi-functional ciphertext, �c pre−semi

S
,

are Eq. (14) and Eqs. (11), (15) and (13), respectively.

Proof of Theorem 2. To prove Theorem 2, we consider the following (2ν1 + ν2 + 3)
games. In Game 0, a part framed by a box indicates coefficients to be changed in a
subsequent game. In the other games, a part framed by a box indicates coefficients
which were changed in a game from the previous game.

Game 0 : Original game. That is, the reply to a KeyGen query for � := {(t, �xt )} are:

k∗
0 := (δ, 0 , 1, ϕ0, 0)B∗

0
,

k∗
t := (δ�xt , 0nt , �ϕt , 0)Bt for (t, �xt ) ∈ �,

}

(9)

where δ
U←F

×
q , ϕ0

U←Fq , �ϕt U←F
nt
q for (t, �xt ) ∈ �. The challenge ciphertext for chal-

lenge plaintexts (m(0),m(1)) and access structure S := (M, ρ) is:
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c0 := (−s0, 0 , ζ , 0, η0)B0 ,

for i = 1, . . . , �,

if ρ(i) = (t, �vi ), ci := (si �et,1 + θi �vi , 0nt , 0nt , ηi )Bt ,

if ρ(i) = ¬(t, �vi ), ci := (si �vi , 0nt , 0nt , ηi )Bt ,

cd+1 := gζTm
(b),

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

(10)

where �f R←F
r
q , �sT := (s1, . . . , s�)T := M · �f T, s0 := �1 · �f T, η0, θi U←Fq �ηi U←F

nt
q

for i = 1, . . . , �, and �et,1 := (1, 0, . . . , 0) ∈ F
nt
q .

Game 1 : Same as Game 0 except that the challenge ciphertext (c0, . . . , c�, cd+1) is:

c0 := (−s0, w0 , ζ, 0, η0)B0 , (11)

for i = 1, . . . , �,

if ρ(i) = (t, �vi ), ci := (si �et,1 + θi �vi , �wi , 0nt , ηi )Bt ,

if ρ(i) = ¬(t, �vi ), ci := (si �vi , �wi , 0nt , ηi )Bt ,

⎫
⎪⎬

⎪⎭
(12)

cd+1 := gζTm
(b), (13)

wherew0
U←Fq , �wi , �wi

U←F
nt
q for i = 1, . . . , �, and all the other variables are generated

as in Game 0.

Game 2-h+ (h = 0, . . . , ν − 1) : Game 2-0 is Game 1. Game 2-h+ is the same as
Game 2-h except that k∗

t for t = 0 and (t, �xt ) ∈ � of the reply to the (h + 1)th KeyGen
query, and (c1, . . . , c�) of the challenge ciphertext are:

k∗
0 := (δ, r0 , 1, ϕ0, 0)B∗

0
,

k∗
t := (δ�xt , �xt ·Ut , �ϕt , 0)Bt for (t, �xt ) ∈ �,

}

(14)

for i = 1, . . . , �,

if ρ(i) = (t, �vi ), ci := (si �et,1 + θi �vi , (ai �et,1 + πi �vi ) · Zt , 0nt , ηi )Bt ,

if ρ(i) = ¬(t, �vi ), ci := (si �vi , ai �vi · Zt , 0nt , ηi )Bt ,

⎫
⎪⎬

⎪⎭

(15)

where r0
U←Fq , �g U←F

r
q , �aT := (a1, . . . , a�)T := M · �gT, πi U←Fq for i = 1, . . . , �,

Zt
U←GL(nt ,Fq), Ut := (Z−1

t )T for t = 1, . . . , d, and all the other variables are
generated as in Game 2-h.

Game 2-(h+ 1) (h = 0, . . . , ν − 1): Game 2-(h + 1) is the same as Game 2-h+ except
that k∗

t for (t, �xt ) ∈ � of the reply to the (h + 1)th KeyGen query, and (c1, . . . , c�) of
the challenge ciphertext are:

k∗
0 := (δ, r0, 1, ϕ0, 0)B∗

0
,

k∗
t := (δ�xt , 0nt , �ϕt , 0)Bt for (t, �xt ) ∈ �,

}
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for i = 1, . . . , �,

if ρ(i) = (t, �vi ), ci := (si �et,1 + θi �vi , �wi , 0nt , ηi )Bt ,

if ρ(i) = ¬(t, �vi ), ci := (si �vi , �wi , 0nt , ηi )Bt ,

(16)

where �wi , �wi
U←F

nt
q for i = 1, . . . , �, and all the other variables are generated as in

Game 2-h+.

Game 3 : Same as Game 2-ν except that c0 and cd+1 of the challenge ciphertext are

c0 := (−s0, w0, ζ ′ , 0, η0)B0 , cd+1 := gζTm
(b),

where ζ ′ U←Fq (i.e., independent from ζ
U←Fq ), and all the other variables are generated

as in Game 2-ν.
Let Adv(0)A (λ) be AdvCP-FE, PHA (λ) in Game 0, and Adv(1)A (λ),Adv(2−h+)

A (λ),

Adv(2−h)
A (λ),Adv(3)A (λ) be the advantage of A in Game 1, 2 − h, 2 − h+, 3, respec-

tively. It is clear that Adv(3)A (λ) = 0 by Lemma 13.
We will show four lemmas (Lemmas 9–12) that evaluate the gaps between pairs of

Adv(0)A (λ),Adv(1)A (λ),Adv(2−h)
A (λ),Adv(2−h+)

A (λ),Adv(2−(h+1))
A (λ) forh = 0, . . . , ν−

1. From these lemmas and Lemmas 1 and 2 , we obtain

AdvCP-FE, PHA (λ) = Adv(0)A (λ) ≤
∣
∣
∣Adv(0)A (λ)− Adv(1)A (λ)

∣
∣
∣ +

ν−1∑

h=0

∣
∣
∣Adv(2−h)

A (λ)− Adv(2−h+)
A (λ)

∣
∣
∣

+
ν−1∑

h=0

∣
∣
∣Adv(2−h+)

A (λ)−Adv(2−(h+1))
A (λ)

∣
∣
∣+

∣
∣
∣Adv(2−ν)A (λ)−Adv(3)A (λ)

∣
∣
∣+Adv(3)A (λ)

≤ AdvP1B1
(λ)+

ν−1∑

h=0

AdvP2B+
2,h
(λ)+

ν−1∑

h=0

AdvP2B2,h+1
(λ)+ (2dν + 6ν + d + 2)/q

≤ AdvDLINE1
(λ)+

ν−1∑

h=0

(

AdvDLINE+
2,h

(λ)+ AdvDLINE2,h+1
(λ)

)
+ (2dν + 16ν + d + 10)/q.

This completes the proof of Theorem 2. �

Lemma 9. For any adversary A, there exists a probabilistic machine B1, whose run-
ning time is essentially the same as that of A, such that for any security parameter λ,
|Adv(0)A (λ)− Adv(1)A (λ)| ≤ AdvP1B1

(λ)+ (d + 1)/q.

Proof. In order to prove Lemma 9, we construct a probabilistic machine B1 against
Problem 1 using any adversary A in a security game (Game 0 or 1) as a black box as
follows:

1. B1 is given Problem 1 instance (param�n,B0, B̂
∗
0, eβ,0, {Bt , B̂

∗
t , eβ,t,1,

et, j }t=1,...,d; j=2,...,nt ).
2. B1 plays a role of the challenger in the security game against adversary A.



1528 T. Okamoto, K. Takashima

3. At the first step of the game, B1 sets

D0 := B0, D
∗
0 := B

∗
0, D̂0 := (b0,1, b0,3, b0,5), D̂∗

0 := B̂
∗
0,

Dt := (d t, j ) j=1,...,3nt+1 := (bt,2, . . . , bt,nt , bt,1, bt,nt+1, . . . , bt,3nt+1),

D
∗
t := (d∗

t, j ) j=1,...,3nt+1 := (b∗
t,2, . . . , b

∗
t,nt , b

∗
t,1, b

∗
t,nt+1, . . . , b

∗
t,3nt+1),

D̂t := (d t,1, . . . , d t,nt , d t,3nt+1), D̂
∗
t := (d∗

t,1, . . . , d
∗
t,nt , d

∗
t,2nt+1, . . . , d

∗
t,3nt ),

for t = 1, . . . , d. B1 obtains D̂t and D̂∗
t from Bt and B̂∗

t in the Problem 1 instance,
and returns pk := (1λ,param�n, {D̂t }t=0,..,d) to A.

4. When a KeyGen query is issued for attribute sets �, B1 answers normal key sk�
computed using {D̂∗

t }t=0,..,d .
5. When B1 receives an encryption query with challenge plaintexts (m(0),m(1)) and

S := (M, ρ) from A, B1 calculates the challenge ciphertext (c0, . . . , c�, cd+1) as
follows:

c0 := −s0eβ,0 + ζ b0,3, ci := ∑nt−1
j=1 ci, j et, j+1 + ci,nt eβ,t,1 for i = 1, . . . , �, cd+1 := gζT m

(b),

where b
U←{0, 1}, �f R←F

r
q , �sT := (s1, . . . , s�)T := M · �f T, s0 := �1 · �f T, θi ,

ζ
U←Fq for i = 1, . . . , �, �ci := si �et,1 + θi �vi if ρ(i) = (t, �vi ) or �ci := si �vi if

ρ(i) = (t, �vi ) for i = 1, . . . , �, and eβ,0, b0,3, eβ,t,1, {et, j } j=2,...,nt are from the
Problem 1 instance. B1 gives the challenge ciphertext to A.

6. When a KeyGen query is issued byA after the encryption query, B1 executes the
same procedure as that of step 4.

7. A finally outputs bit b′. If b = b′, B1 outputs β ′ := 1. Otherwise, B1 outputs
β ′ := 0.

When β = 0, it is straightforward that the distribution by B1’s simulation is equivalent
to that in Game 0. When β = 1, the distribution by B1’s simulation is equivalent to that
in Game 1 except for the case that s0 = 0 or there exists an i ∈ {1, . . . , �} such that
ci,nt = 0, i.e., except with probability (�+ 1)/q ≤ (d + 1)/q since � ≤ d. �

Lemma 10. For any adversary A, there exists a probabilistic machine B+
2 , whose

running time is essentially the same as that ofA, such that for any security parameter λ,

|Adv(2−h)
A (λ)−Adv(2−h+)

A (λ)| ≤ AdvP2B+
2,h
(λ)+ (d + 3)/q, where B+

2,h(·) := B+
2 (h, ·).

Proof. In order to prove Lemma 10, we construct a probabilistic machine B+
2 against

Problem 2 using an adversary A in a security game (Game 2-h or 2-h+) as a black box
as follows:

1. B+
2 is given an integer h and a Problem 2 instance, (param�n, {B̂t ,B

∗
t }t=0,..,d ,

h∗
β,0, e0, {h∗

β,t, j , et, j }t=1,..,d; j=1,..,nt ).

2. B+
2 plays a role of the challenger in the security game against adversary A.

3. At the first step of the game, B+
2 provides A a public key pk := (1λ,

param�n, {B̂′
t }t=0,...,d) of Game 2-h (and 2-h+), where B̂′

0 := (b0,1, b0,3, b0,5) and
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B̂
′
t := (bt,1, .., bt,nt , bt,3nt+1) for t = 1, .., d, that are obtained from the Problem

2 instance.
4. When the ιth key query is issued for attribute� := {(t, �xt )},B+

2 answers as follows:

(a) When 1 ≤ ι ≤ h, B+
2 answers semi-functional key (k∗

0, {k∗
t }(t,�xt )∈�) with

Eq. (16), that is computed using {B∗
t }t=0,...,d of the Problem 2 instance.

(b) When ι = h + 1, B+
2 calculates (k∗

0, {k∗
t }(t,�xt )∈�) using b∗

0,3,

h∗
β,0, {h∗

β,t, j }t=1,..,d; j=1,..,nt of the Problem 2 instance as follows:

k∗
0 := h∗

β,0 + b∗
0,3, k∗

t := ∑nt
j=1 xt, jh

∗
β,t, j for (t, �xt ) ∈ �.

(c) When ι ≥ h + 2, B+
2 answers normal key (k∗

0, {k∗
t }(t,�xt )∈�) with Eq. (9), that

is computed using {B∗
t }t=0,...,d of the Problem 2 instance.

5. When B+
2 receives an encryption query with challenge plaintexts (m(0),m(1)) and

S := (M, ρ) from A, B+
2 computes challenge ciphertext (c0, . . . , c�, cd+1) as

follows:

π ′
t , μt , g′

k, μ̃k
U←Fq for t = 1, . . . , d; k = 1, . . . , r,

f̃ 0 := ∑r
k=1

(
g′
ke0 + μ̃kb0,1

)
,

for t = 1, . . . , d; k = 1, . . . , r; j = 1, . . . , nt ;
f t, j := π ′

t et, j + μt bt, j , f̃ t,k, j := g′
ket, j + μ̃kbt, j ,

ζ
U←Fq , c0 := − f̃ 0 + ζ b0,3 + q0,

for i = 1 . . . , �,

if ρ(i) = (t, �vi ), ci := ∑nt
j=1 vi, j f t, j + ∑r

k=1 Mi,k f̃ t,k,1 + qi ,

if ρ(i) = ¬(t, �vi ), ci := ∑nt
j=1 vi, j (

∑r
k=1 Mi,k f̃ t,k, j )+ qi ,

cd+1 := gζTm
(b),

where (Mi,k)i=1,...,�;k=1,...,r := M , q0
U← span〈b0,5〉, and qi

U← span〈bt,3nt+1〉
and (b0,1, b0,3, e0, {et, j }t=1,...,d; j=1,...,nt ) is a part of the Problem 2 instance. B+

2
gives the challenge ciphertext to A.

6. When a KeyGen query is issued byA after the encryption query, B+
2 executes the

same procedure as that of step 4.
7. A finally outputs bit b′. If b = b′, B+

2 outputs β ′ := 1. Otherwise, B+
2 outputs

β ′ := 0. �

Remark 4. f̃ 0, f t, j , f̃ t,k, j for t = 1, . . . , d; k = 1, . . . , r; j = 1, . . . , nt calculated
in the step 5 in the above simulation are expressed as:

πt := τπ ′
t , θt := πtω + μt , gk := τg′

k, fk := gkω + μ̃k,

s0 := ∑r
k=1 fk, a0 := ∑r

k=1 gk, w0 := a0/u0 (= a0z0),

f̃ 0 = (s0, w0, 0, 0, 0)B0 ,
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nt
︷ ︸︸ ︷

nt
︷ ︸︸ ︷

nt
︷ ︸︸ ︷

1
︷︸︸︷

f t, j := ( θt �et, j , πt�zt, j , 0nt , 0 )Bt ,

f̃ t,k, j := ( fk �et, j , gk�zt, j , 0nt , 0 )Bt ,

where τ, ω, u0, {�et, j , �zt, j }t=1,...,d; j=1,...,nt are defined in Problem 2. Note that variables
{θt , πt }t=1,...,d , { fk, gk}k=1,...,r are independently and uniformly distributed. Therefore,
{ci }i=0,...,� are distributed as (11) and (15) except w0 := a0/r0, i.e., w0r0 = a0, using

a0 and r0 := u0
U←Fq in k∗

0 (Eq.14).

Claim 2. The distribution of the view of adversary A in the above-mentioned game
simulated by B+

2 given a Problem 2 instance with β ∈ {0, 1} is the same as that in Game
2-h (resp. Game 2-h+) if β = 0 (resp. β = 1) except with probability (d + 2)/q (resp.
1/q).

Proof. It is clear that B+
2 ’s simulation of the public key generation (step 3) and the ιth

key query’s answer for ι �= h + 1 (cases (a) and (c) of step 4) is perfect, i.e., exactly the
same as the Setup and the KeyGen oracle in Game 2-h and Game 2-h+.
Therefore, to prove this lemma we will show that the joint distribution of the (h+1)th

key query’s answer and the challenge ciphertext by B+
2 ’s simulation given a Problem 2

instance with β is equivalent to that in Game 2-h (resp. Game 2-h+), when β = 0 (resp.
β = 1).

Whenβ = 0, it is straightforward to show that they are equivalent except that δ defined
in Problem 2 is zero or there exists i ∈ {0, . . . , �} such that �wi = �0 with ρ(i) = (t, �vi )
or �wi = �0 with ρ(i) = ¬(t, �vi ), where �wi and �wi are defined in Eqs. (11) and (12), i.e.,
except with probability (�+ 2)/q ≤ (d + 2)/q since � ≤ d.

When β = 1, the distribution by B+
2 ’s simulation is Eq. (14) for the key and Eqs. (11),

(13), and (15) for the challenge ciphertext, where the distribution is the same as that
defined in these equations except w0 := a0/r0, i.e., w0r0 = a0, using a0 := �1 · �gT and

r0
U←Fq in k∗

0 (Eq.14) from Remark 4. The corresponding distribution in Game 2-h+

is Eq. (14) and Eqs. (11), (13), and (15) where r0, w0
U←Fq as defined in the equations.

Moreover, similarly as in the proof of Claim 1, we can show that a0 is uniformly
and independently distributed from the other variables in the joint distribution of B+

2 ’s
simulation.
Therefore, the view of adversary A in the game simulated by B+

2 given a Problem 2
instance with β = 1 is the same as that in Game 2-h+ except that δ defined in Problem
2 is zero, i.e., except with probability 1/q. �

This completes the proof of Lemma 10. �

Lemma 11. For any adversary A, there exists a probabilistic machine B2, whose
running time is essentially the same as that of A, such that for any security parameter

λ, |Adv(2−h+)
A (λ)−Adv(2−(h+1))

A (λ)| ≤ AdvP2B2,h+1
(λ)+ (d + 3)/q, where B2,h+1(·) :=

B2(h, ·).
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Proof. The proof of Lemma 11 is similar to that of Lemma 6. �

Lemma 12. For any adversary A, Adv(2−ν)A (λ) ≤ Adv(3)A (λ)+ 1/q.

Proof. The proof of Lemma 12 is similar to that of Lemma 7. �

Lemma 13. For any adversary A, Adv(3)A (λ) = 0.

6. UP-FE Scheme

This section presents a UP-FE scheme with the large class of relations, which is defined
in Sect. 3.4.

6.1. Construction

In order to obtain aUP-FE scheme, we combine theKP-FE scheme in Sect. 4 and the CP-
FE scheme in Sect. 5 using the first vector spaceV0 of dimension 8, instead of dimension
5. In the security proof, the semi-functional form of secret keys (resp. ciphertexts) has
two-dimensional random component in span〈b∗

0,3, b
∗
0,4〉 (resp.span〈b0,3, b0,4〉). For

our KP-FE and CP-FE schemes, the corresponding random components are in one-
dimensional subspace of V0 (see Sects. 4, 5).
ρ̃ : {1, . . . , �} → {1, . . . , d} is defined at the start of Sect. 4. In the proposed scheme,

we assume that ρ̃ is injective for S := (M, ρ), where S := S
KP,SCP.

In thedescriptionof the scheme,weassume that input vectors, �x KP
t := (xKPt,1 , . . . , x

KP
t,nt )

and �x CP
t := (xCPt,1 , . . . , x

CP
t,nt ), are normalized such that xKPt,1 := 1 and xCPt,1 := 1. (If

�x KP
t (resp. �x CP

t ) is not normalized, change it to a normalized one by (1/xKPt,1 ) · �x KP
t

(resp. (1/xCPt,1 ) · �x CP
t ), assuming that xKPt,1 (resp. xCPt,1 ) is nonzero). In addition, we as-

sume that input vector �v CP
t := (vCPi,1 , . . . , v

CP
i,nt

) satisfies that vCPi,nt
�= 0.

For a format of attribute vectors �n := ((d KP; nKP1 , . . . , nKP
d KP), (d

CP; nCP1 , . . . , nCP
d CP))

that indicates dimensions of vector spaces, �e KP
t, j (resp. �e CP

t, j ) denotes the canonical basis

vector (

j−1
︷ ︸︸ ︷
0 · · · 0, 1,

nKPt − j
︷ ︸︸ ︷
0 · · · 0) ∈ F

nKPt
q for j = 1, . . . , nKPt (resp. (

j−1
︷ ︸︸ ︷
0 · · · 0, 1,

nCPt − j
︷ ︸︸ ︷
0 · · · 0) ∈ F

nCPt
q

for j = 1, . . . , nCPt ).
We describe random dual orthonormal basis generator GUP

ob below, which is used as a
subroutine in the proposed UP-FE scheme. We refer to Sect. 1.5 for notations on DPVS,
e.g., (x1, . . . , xN )B, (y1, . . . , yN )B∗ for xi , yi ∈ Fq .

GUP
ob (1

λ, �n := ((d KP; nKP1 , . . . , nKP
d KP ), (d

CP; nCP1 , . . . , nCP
d CP )) :

paramG := (q,G,GT ,G, e)
R←Gbpg(1

λ), ψ
U←F

×
q ,

N0 := 8, NKP
t := 3nKPt + 1 for t = 1, . . . , d KP, NCP

t := 3nCPt + 1 for t = 1, . . . , d CP,

paramV0
:= (q,V0,GT ,A0, e) := Gdpvs(1

λ, N0,paramG),
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X0 := (χ0,i, j )i, j
U←GL(N0,Fq ), (ϑ0,i, j )i, j := ψ · (XT

0 )
−1,

b0,i := (χ0,i,1, . . . , χ0,i,N0 )A0 , B0 := (b0,1, . . . , b0,N0 ),

b∗
0,i := (ϑ0,i,1, . . . , ϑ0,i,N0 )A0 , B

∗
0 := (b∗

0,1, . . . , b
∗
0,N0

),

for t = 1, . . . , d KP, param
V
KP
t

:= (q,VKP
t ,GT ,A

KP
t , e) := Gdpvs(1

λ, NKP
t ,paramG),

XKP
t := (χKP

t,i, j )i, j
U←GL(NKP

t ,Fq ), (ϑ
KP
t,i, j )i, j := ψ · ((XKP

t )T)−1,

bKPt,i := (χKP
t,i,1, . . . , χ

KP
t,i,NKP

t
)
A
KP
t
, BKP

t := (bKPt,1 , . . . , b
KP
t,NKP

t
),

b∗KP
t,i := (ϑKP

t,i,1, . . . , ϑ
KP
t,i,NKP

t
)
A
KP
t
, B∗KP

t := (b∗KP
t,1 , . . . , b∗KP

t,NKP
t
),

for t = 1, . . . , d CP, param
V
CP
t

:= (q,VCP
t ,GT ,A

CP
t , e) := Gdpvs(1λ, NCP

t ,paramG),

XCP
t := (χCP

t,i, j )i, j
U←GL(NCP

t ,Fq ), (ϑ
CP
t,i, j )i, j := ψ · ((XCP

t )T)−1,

bCPt,i := (χCP
t,i,1, . . . , χ

CP
t,i,NCP

t
)
A
CP
t
, BCP

t := (bCPt,1 , . . . , b
CP
t,NCP

t
),

b∗CP
t,i := (ϑCP

t,i,1, . . . , ϑ
CP
t,i,NCP

t
)
A
CP
t
, B∗CP

t := (b∗CP
t,1 , . . . , b∗CP

t,NCP
t
),

gT := e(G,G)ψ , param�n := (paramV0
, {param

V
KP
t

}t=1,...,d KP , {param
V
CP
t

}t=1,...,d CP , gT ),

return (param�n, {B0,B
∗
0}, {BKP

t ,B∗KP
t }t=1,...,d KP , {BCP

t ,B∗CP
t }t=1,...,d CP ).

The proposed UP-FE scheme is given as:

Setup(1λ, �n := ((d KP; nKP1 , . . . , nKP
d KP ), (d

CP; nCP1 , . . . , nCP
d CP ))) :

(param�n,B0,B
∗
0, {BKP

t ,B∗KP
t }t=1,...,d KP , {BCP

t ,B∗CP
t }t=1,...,d CP )

R←GUP
ob (1

λ, �n),
B̂0 := (b0,1, b0,2, b0,5, b0,8), B̂

∗
0 := (b∗

0,1, b
∗
0,2, b

∗
0,5, b

∗
0,6, b

∗
0,7),

for t = 1, .., d KP, B̂
KP
t := (bKPt,1 , .., b

KP
t,nKPt

, bKP
t,3nKPt +1

),

B̂
∗KP
t := (b∗KP

t,1 , .., b∗KP
t,nKPt

, b∗KP
t,2nKPt +1

, .., b∗KP
t,3nKPt

),

for t = 1, .., d CP, B̂
CP
t := (bCPt,1 , .., b

CP
t,nCPt

, bCP
t,3nCPt +1

),

B̂
∗CP
t := (b∗CP

t,1 , .., b∗CP
t,nCPt

, b∗CP
t,2nCPt +1

, .., b∗CP
t,3nCPt

),

pk := (1λ,param�n, B̂0, {B̂KP
t }t=1,...,d KP , {B̂CP

t }t=1,...,d CP ),

sk := (B̂∗
0, {B̂∗KP

t }t=1,...,d KP , {B̂∗CP
t }t=1,...,d CP ),

return pk, sk.

KeyGen(pk, sk, SKP := (MKP, ρKP),

�CP := {(t, �x CP
t := (xCPt,1 , . . . , x

CP
t,nCPt

) ∈ F
nCPt
q \{�0}) | 1 ≤ t ≤ d CP, xCPt,1 := 1})

�f KP U←F
rKP
q , (�s KP)T := (sKP1 , . . . , sKP

�KP
)T := MKP · ( �f KP)T, sKP0 := �1 · ( �f KP)T,

δCP
U←Fq , �ηCP

t
U←F

nCPt
q such that (t, �x CP

t ) ∈ �CP, (η0,1, η0,2)
U←F

2
q ,

k∗
0 := (−sKP0 , δCP, 0, 0, 1, η0,1, η0,2, 0)B∗

0
,

for i = 1, . . . , �KP,

if ρKP(i) = (t, �v KP
i := (vKPi,1 , . . . , v

KP
i,nKPt

) ∈ F
nKPt
q \{�0}), θKPi

U←Fq , �ηKP
i

U←F
nKPt
q ,
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nKPt
︷ ︸︸ ︷

nKPt
︷ ︸︸ ︷

nKPt
︷ ︸︸ ︷

1
︷︸︸︷

k∗KP
i := ( sKPi �e KP

t,1 + θKPi �v KP
i , 0n

KP
t , �ηKP

i , 0 )
B

∗KP
t

,

if ρKP(i) = ¬(t, �v KP
i ), �ηKP

i
U←F

nKPt
q ,

nKPt
︷ ︸︸ ︷

nKPt
︷ ︸︸ ︷

nKPt
︷ ︸︸ ︷

1
︷︸︸︷

k∗KP
i := ( sKPi �v KP

i , 0n
KP
t , �ηKP

i , 0 )
B

∗KP
t

,

nCPt
︷ ︸︸ ︷

nCPt
︷ ︸︸ ︷

nCPt
︷ ︸︸ ︷

1
︷︸︸︷

k∗CP
t := ( δCP �x CP

t , 0n
CP
t , �ηCP

t , 0 )
B

∗CP
t

for (t, �x CP
t ) ∈ �CP,

return sk(SKP,�CP) := (k∗
0; S

KP, k∗KP
1 , . . . , k∗KP

�KP
; �CP, {k∗CP

t }
(t,�x CP

t )∈�CP ).

Enc(pk, m, �KP := {(t, �x KP
t := (xKPt,1 , .., x

KP
t,nKPt

) ∈ F
nKPt
q \{�0}) | 1 ≤ t ≤ d KP, xKPt,1 := 1},

S
CP := (MCP, ρCP)) :

ωKP, ϕ0, ϕ
KP
t , ζ

U←Fq for (t, �x KP
t ) ∈ �KP,

�f CP R←F
rCP
q , (�s CP)T := (sCP1 , . . . , sCP

�CP
)T :=MCP · ( �f CP)T, sCP0 :=�1 · ( �f CP)T,

c0 := (ωKP,−sCP0 , 0, 0, ζ, 0, 0, ϕ0)B0 ,

nKPt
︷ ︸︸ ︷

nKPt
︷ ︸︸ ︷

nKPt
︷ ︸︸ ︷

1
︷︸︸︷

cKPt := ( ωKP �x KP
t , 0n

KP
t , 0n

KP
t , ϕKPt )

B
KP
t

for (t, �x KP
t ) ∈ �KP,

for i = 1, . . . , �CP,

if ρCP(i) = (t, �v CP
i := (vCPi,1 , . . . , v

CP
i,nCPt

) ∈ F
nCPt
q \{�0}) (vCP

i,nCPt
:= 1), ϕCPi , θCPi

U←Fq ,

nCPt
︷ ︸︸ ︷

nCPt
︷ ︸︸ ︷

nCPt
︷ ︸︸ ︷

1
︷︸︸︷

cCPi := ( sCPi �e CP
t,1 + θCPi �v CP

i , 0n
CP
t , 0n

CP
t , ϕCPi )

B
CP
t
,

if ρCP(i) = ¬(t, �v CP
i ), ϕCPi

U←Fq ,

nCPt
︷ ︸︸ ︷

nCPt
︷ ︸︸ ︷

nCPt
︷ ︸︸ ︷

1
︷︸︸︷

cCPi := ( sCPi �v CP
i , 0n

CP
t , 0n

CP
t , ϕCPi )

B
CP
t
,

cd+1 := gζT m,

return ct(�KP,SCP) := (c0; �KP, {cKPt }
(t,�x KP

t )∈�KP ; S
CP, cCP1 , . . . , cCP

�CP
; cd+1).

Dec(pk, sk(SKP,�CP) := (k∗
0; S

KP, k∗KP
1 , . . . , k∗KP

�KP
; �CP, {k∗CP

t }
(t,�x CP

t )∈�CP ),

ct(�KP,SCP) := (c0; �KP, {cKPt }
(t,�x KP

t )∈�KP ; S
CP, cCP1 , . . . , cCP

�CP
; cd+1)) :

If SKP := (MKP, ρKP) accepts �KP := {(t, �x KP
t )}

and S
CP := (MCP, ρCP) accepts �CP := {(t, �x CP

t )},
then compute (IKP, {αKPi }i∈IKP ) and (ICP, {αCPi }i∈ICP ) such that

�1 = ∑
i∈IKP αKPi MKP

i , where MKP
i is the i th row of MKP, and

IKP ⊆ {i ∈ {1, . . . , �KP} | [ρKP(i) = (t, �v KP
i ) ∧ (t, �x KP

t ) ∈ �KP ∧ �v KP
i · �x KP

t = 0]
∨ [ρKP(i) = ¬(t, �v KP

i ) ∧ (t, �x KP
t ) ∈ �KP ∧ �v KP

i · �x KP
t �= 0] }, and

�1 = ∑
i∈ICP αCPi MCP

i , where MCP
i is the i th row of MCP, and

ICP ⊆ {i ∈ {1, . . . , �CP} | [ρCP(i) = (t, �v CP
i ) ∧ (t, �x CP

t ) ∈ �CP ∧ �v CP
i · �x CP

t = 0]
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∨ [ρCP(i) = ¬(t, �v CP
i ) ∧ (t, �x CP

t ) ∈ �CP ∧ �v CP
i · �x CP

t �= 0] },
K := e(c0, k∗

0) ·
∏

i∈IKP ∧ ρKP(i)=(t,�v KP
i )

e(cKPt , k∗KP
i )α

KP
i

∏
i∈IKP ∧ ρKP(i)=¬(t,�v KP

i )
e(cKPt , k∗KP

i )α
KP
i /(�v KP

i ·�x KP
t ) ·

∏
i∈ICP ∧ ρCP(i)=(t,�vCP

i )
e(cCPt , k∗CP

i )α
CP
i

∏
i∈ICP ∧ ρCP(i)=¬(t,�vCP

i )
e(cCPt , k∗CP

i )α
CP
i /(�v CP

i ·�x CP
t ),

return m′ := cd+1/K .

[Correctness] IfSKP :=(MKP, ρKP) accepts�KP :={(t, �x KP
t )} andSCP :=(MCP, ρCP)

accepts �CP :={(t, �x CP
t )},

e(c0, k∗
0) ·

∏
i∈IKP ∧ ρKP(i)=(t,�v KP

i )
e(cKPt , k∗KP

i )α
KP
i · ∏i∈IKP ∧ ρKP(i)=¬(t,�v KP

i )
e(cKPt , k∗KP

i )α
KP
i /(�v KP

i ·�x KP
t ) ·

∏
i∈ICP ∧ ρCP(i)=(t,�vCP

i )
e(cCPt , k∗CP

i )α
CP
i · ∏i∈ICP ∧ ρCP(i)=¬(t,�vCP

i )
e(cCPt , k∗CP

i )α
CP
i /(�v CP

i ·�x CP
t )

= g
−(ωKPsKP0 +δCPsCP0 )+ζ
T · gω

KP(
∑

i∈IKP αKPi sKPi )

T · gδ
CP(

∑
i∈ICP αCPi sCPi )

T = gζT .

6.2. Security

The following theorem can be proved similarly as Theorems 1 and 2 .

Theorem 3. TheproposedUP-FEscheme is adaptively payload-hidingagainst chosen-
plaintext attacks under the DLIN assumption.

7. CCA-Secure CP-FE Scheme

Wecan transform the proposed (KP,CP andUP)-FE schemes toCCA-secure (KP,CP and
UP)-FE schemes, respectively, by using the Canetti–Halevi–Katz (CHK) transformation
[17] or the Boneh–Katz (BK) transformation [13].
This section shows a CCA-secure CP-FE scheme, that is modified from the CP-FE

scheme in Sect. 5 through the CHK transformation, in which a strongly unforgeable
one-time signature scheme (Gen,Sig,Ver) is employed.
We can similarly apply the CHK transformation to our KP-FE scheme and the BK

transformation to the FE schemes.

7.1. Strongly Unforgeable One-Time Signatures

Definition 14. (Signatures) A signature scheme consists of three algorithms.

Gen This is a randomized algorithm that takes as input the security parameter 1λ. It
outputs a verification key verk and a signing key sigk.

Sig This is a randomized algorithm that takes as input a signing key sigk and a message
m (in some implicit message space). It outputs a signature σ .

Ver This takes as input a verification key verk, a message m, and a signature σ , and
outputs a boolean value accept := 1 or reject := 0.
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A signature scheme should have the following correctness property: for all

(verk, sigk)
R←Gen(1λ), all messagesm, and all signatures σ

R←Sig(sigk,m), it holds
that 1 = Ver(verk,m, σ ) with probability 1.

Definition 15. (Strongly unforgeable one-time signatures) For an adversary, we define
AdvOS,SUF

A (λ) to be the success probability in the following experiment for any security
parameter λ. A signature scheme is a strongly unforgeable one-time signature scheme
if the success probability of any polynomial-time adversary is negligible:

1. Run (verk, sigk)
R←Gen(1λ) and give verk to the adversary.

2. The adversary is given access to signing oracle Sig(sigk, ·) at most once. We
denote the pair of message and signature by (m, σ ) if the signing oracle is queried.

3. At the end, the adversary outputs (m′, σ ′).
We say the adversary succeeds if Ver(verk,m′, σ ′) = 1 and (m′, σ ′) �= (m, σ ) (assum-
ing the signing oracle is queried).

7.2. Construction

ρ̃ : {1, . . . , �} → {1, . . . , d} is defined at the start of Sect. 4. In the proposed scheme,
we assume that ρ̃ is injective for S := (M, ρ).
In thedescriptionof the scheme,weassume that an input vector, �xt := (xt,1, . . . , xt,nt ),

is normalized such that xt,1 := 1. (If �xt is not normalized, change it to a normalized one
by (1/xt,1) · �xt , assuming that xt,1 is nonzero). In addition, we assume that input vector
�vt := (vi,1, . . . , vi,nt ) satisfies that vi,nt �= 0.
Random dual basis generator Gob(1λ, �n) is defined at the end of Sect. 2.1. We refer to

Sect. 1.5 for notations on DPVS, e.g., (x1, . . . , xN )B, (y1, . . . , yN )B∗ for xi , yi ∈ Fq ,
and �et, j .
For simplicity, we assume verification key verk is an element in Fq . (We can extend

the construction to verification key over any distribution D by first hashing verk using
a collision resistant hash H : D → Fq .)

Setup(1λ, �n := (d; n1, . . . , nd )) :
nd+1 := 2, �n′ := (d + 1; {nt }t=1,...,d+1), (param�n′ , {Bt ,B

∗
t }t=0,...,d+1)

R←Gob(1
λ, �n′),

B̂0 := (b0,1, b0,3, b0,5), B̂t := (bt,1, . . . , bt,nt , bt,3nt+1) for t = 1, . . . , d + 1,

B̂
∗
0 := (b∗

0,1, b
∗
0,3, b

∗
0,4), B̂

∗
t := (b∗

t,1, . . . , b
∗
t,nt , b

∗
t,2nt+1, . . . , b

∗
t,3nt ) for t = 1, . . . , d + 1,

pk := (1λ,param�n, {B̂t }t=0,...,d+1), sk := {B̂∗
t }t=0,...,d+1,

return pk, sk.

KeyGen(pk, sk, � := {(t, �xt := (xt,1, . . . , xt,nt ) ∈ F
nt
q \{�0}) | 1 ≤ t ≤ d, xt,1 := 1}) :

δ, ϕ0
U←Fq , �ϕt U←F

nt
q such that (t, �xt ) ∈ �, �ϕd+1,1, �ϕd+1,2

U←F
2
q

k0 := (δ, 0, 1, ϕ0, 0)B∗
0
,

nt
︷ ︸︸ ︷

nt
︷ ︸︸ ︷

nt
︷ ︸︸ ︷

1
︷︸︸︷

k∗
t := ( δ�xt , 0nt , �ϕt , 0 )B∗

t
for (t, �xt ) ∈ �,

k∗
d+1,1 := (δ(1, 0), 02, �ϕd+1,1, 0)B∗

d+1
, k∗

d+1,2 := (δ(0, 1), 02, �ϕd+1,2, 0)B∗
d+1

,
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sk� := (�, k∗
0, {k∗

t }(t,�xt )∈�, k∗
d+1,1, k

∗
d+1,2),

return sk�.

Enc(pk, m, S := (M, ρ)) : �f R←F
r
q , �sT := (s1, . . . , s�)

T := M · �f T, s0 := �1 · �f T,
s�+1, η0, ηi , θi , ζ

U←Fq for i = 1, . . . , �+ 1, (sigk, verk)
R←Gen(1λ),

c0 := (−s0 − s�+1, 0, ζ, 0, η0)B0 ,

for i = 1, . . . , �,

if ρ(i) = (t, �vi := (vi,1, . . . , vi,nt ) ∈ F
nt
q \{�0}) (vi,nt �= 0),

nt
︷ ︸︸ ︷

nt
︷ ︸︸ ︷

nt
︷ ︸︸ ︷

1
︷︸︸︷

ci := ( si �et,1 + θi �vi , 0nt , 0nt , ηi )Bt ,

if ρ(i) = ¬(t, �vi ),
nt

︷ ︸︸ ︷
nt

︷ ︸︸ ︷
nt

︷ ︸︸ ︷
1

︷︸︸︷

ci := ( si �vi , 0nt , 0nt , ηi )Bt ,

c�+1 := (s�+1 − θ�+1 · verk, θ�+1, 0
2, 02, η�+1)Bd+1 ,

cd+2 := gζT m, C := (S, c0, . . . , c�+1, cd+2), σ
R←Sig(sigk,C),

return ctS := (verk,C, σ ).

Dec(pk, sk� := (�, k∗
0, {k∗

t }(t,�xt )∈�, k∗
d+1,1, k

∗
d+1,2), ctS := (verk, (S, c0, . . . , c�+1, cd+2), σ )) :

if Ver(verk,C, σ ) �= 1, return ⊥,where C := (S, c0, . . . , c�+1, cd+2),

if S := (M, ρ) accepts � := {(t, �xt )}, then compute I and {αi }i∈I such that
�1 = ∑

i∈I αi Mi , where Mi is the i th row of M, and

I ⊆ {i ∈ {1, . . . , �}| [ρ(i) = (t, �vi ) ∧ (t, �xt ) ∈ � ∧ �vi · �xt = 0]
∨ [ρ(i) = ¬(t, �vi ) ∧ (t, �xt ) ∈ � ∧ �vi · �xt �= 0] },

s∗d+1 := k∗
d+1,1 + verk · k∗

d+1,2,

K := e(c0, k∗
0)
∏

i∈I ∧ ρ(i)=(t,�vi ) e(ci , k
∗
t )
αi · ∏i∈I ∧ ρ(i)=¬(t,�vi ) e(ci , k

∗
t )
αi /(�vi ·�xt ) · e(c�+1, s∗d+1),

return m′ := cd+1/K .

[Correctness] If S := (M, ρ) accepts � := {(t, �xt )},

e(c0, k∗
0)
∏

i∈I ∧ ρ(i)=(t,�vi ) e(ci , k
∗
t )
αi · ∏i∈I ∧ ρ(i)=¬(t,�vi ) e(ci , k

∗
t )
αi /(�vi ·�xt ) · e(c�+1, s∗d+1)

= gδ(−s0−s�+1)+ζ
T

∏
i∈I ∧ ρ(i)=(t,�vi ) g

δαi si
T

∏
i∈I ∧ ρ(i)=¬(t,�vi ) g

δαi si (�vi ·�xt )/(�vi ·�xt )
T gδs�+1

T

= g
δ(−s0−s�+1+∑

i∈I αi si+s�+1)+ζ
T = gζT .

7.3. Security

Theorem 4. TheproposedCP-FEscheme is adaptively payload-hidingagainst chosen-
ciphertext attacks under the DLIN assumption provided that the underlying signature
scheme (Gen,Sig,Ver) is a strongly unforgeable one-time signature scheme.
For any adversary A, there exist probabilistic machines E1, E+

2 , E2, E3, E4, whose
running times are essentially the same as that ofA, such that for any security parameter
λ,
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AdvCP-FE, CCA-PHA (λ) ≤ AdvDLINE1 (λ)+ ∑ν1−1
h=0

(

AdvDLINE+
2,h

(λ)+ AdvDLINE2,h+1
(λ)

)

+∑ν2
h=1

(
AdvDLINE3,h (λ)+ AdvOS,SUF

E4,h (λ)
)

+ ε,

where E+
2,h(·) := E+

2 (h, ·), E2,h+1(·) := E2(h, ·) (h = 0, . . . , ν1 − 1), E3,h(·) :=
E3(h, ·), E4,h(·) := E4(h, ·) (h = 1, . . . , ν2), ν1 is the maximum number ofA’sKeyGen
queries, ν2 is the maximum number ofA’sDec queries, and ε := (2dν1 +16ν1 +8ν2 +
d + 10)/q.

Proof Outline of Theorem 4: To prove Theorem 4, we consider the following (2ν1 +
ν2 + 3) games. In Game 0, a part framed by a box indicates coefficients to be changed
in a subsequent game. In the other games, a part framed by a box indicates coefficients
which were changed in a game from the previous game.

Game 0 : Original game. That is, the reply to a KeyGen query for � := {(t, �xt )} are:

k∗
0 := (δ, 0 , 1, ϕ0, 0)B∗

0
,

k∗
t := (δ�xt , 0nt , �ϕt , 0)Bt for (t, �xt ) ∈ �,

k∗
d+1,1 := (δ(1, 0), 02, �ϕd+1,1, 0)B∗

d+1
, k∗

d+1,2 := (δ(0, 1), 02, �ϕd+1,2, 0)B∗
d+1

,

where δ
U←F

×
q , ϕ0

U←Fq , �ϕt U←F
nt
q for (t, �xt ) ∈ �, �ϕd+1,1, �ϕd+1,2

U←F
2
q . In answering

Dec query for ctS := (verk, (S, c0, . . . , c�+1, cd+2), σ ) when Ver(verk,C, σ ) = 1,
where C := (S, c0, . . . , c�+1, cd+2), the used key for � := {(t, �xt )} such that S accepts
� are:

k∗
0 := (̃δ, 0 , 1, ϕ̃0, 0)B∗

0
,

k∗
t := (̃δ�xt , 0nt , �̃ϕt , 0)Bt for (t, �xt ) ∈ �,

s∗d+1 := (̃δ(1, verk), 02 , �̃ϕd+1, 0)B∗
d+1

,

where δ̃
U←F

×
q , ϕ̃0

U←Fq , �̃ϕt U←F
nt
q for (t, �xt ) ∈ �, �̃ϕd+1

U←F
2
q .

The challenge ciphertext for challenge plaintexts (m(0),m(1)) and access structure
S := (M, ρ) is:

c0 := (−s0 − s�+1, 0 , ζ , 0, η0)B0 ,

for i = 1, . . . , �,

if ρ(i) = (t, �vi ), ci := (si �et,1 + θi �vi , 0nt , 0nt , ηi )Bt ,

if ρ(i) = ¬(t, �vi ), ci := (si �vi , 0nt , 0nt , ηi )Bt ,

c�+1 := (s�+1 − θ�+1 · verk, θ�+1, 02 , 02, η�+1)Bd+1 ,

cd+2 := gζTm
(b),
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where �f R←F
r
q , �sT := (s1, . . . , s�)T := M · �f T, s0 := �1 · �f T, s�+1, ζ, η0, ηi , θi

U←Fq

for i = 1, . . . , �+ 1, and �et,1 := (1, 0, . . . , 0) ∈ F
nt
q .

Game 1 : Same as Game 0 except that the challenge ciphertext for challenge plaintexts
(m(0),m(1)) and access structure S := (M, ρ) is:

c0 := (−s0 − s�+1, w0 , ζ, 0, η0)B0 ,

for i = 1, . . . , �,

if ρ(i) = (t, �vi ), ci := (si �et,1 + θi �vi , �wi , 0
nt , ηi )Bt ,

if ρ(i) = ¬(t, �vi ), ci := (si �vi , �wi , 0
nt , ηi )Bt ,

c�+1 := (s�+1 − θ�+1 · verk, θ�+1, �w�+1 , 0
2, η�+1)Bd+1 ,

wherew0
U←Fq , �wi , �wi

U←F
nt
q for i = 1, . . . , �, �w�+1

U←F
2
q , and all the other variables

are generated as in Game 0.

Game 2-h+ (h = 0, . . . , ν1−1) andGame 2-(h+1) (h = 0, . . . , ν1−1) are the same
as Game 2-h+ and Game 2-(h + 1) in the proof of Theorem 2, respectively.

Game 3-h (h = 1, . . . , ν2) : Game 3-0 is Game 2-ν1. Game 3-h is the same as Game
3-(h − 1) except that k∗

0, s
∗
d+1 of the key used in answering the hth Dec query when

Ver(verk,C, σ ) = 1 are:

k∗
0 := (̃δ, r̃0 , 1, ϕ̃0, 0)B∗

0
,

s∗d+1 := (̃δ(1, verk), �̃rd+1 , �̃ϕd+1, 0)B∗
d+1

,

where r̃0
U←Fq , �̃rd+1

U←F
2
q , and all the other variables are generated as in Game 3-

(h − 1).

Game 4 : Same as Game 3-ν2 except that c0 in the challenge ciphertext is:

c0 := (−s0 − s�+1, w0, ζ ′ , 0, η0)B0 ,

where ζ ′ U←Fq (i.e., independent from all the other variables), and all the other variables
are generated as in Game 3-ν2.

We follow the argument in [17] used for the chosen-ciphertext security, and the rest
of the proof of Theorem 4 is similar to that of Theorem 2.

Let Adv(0)A (λ) be AdvCP-FE, CCA-PHA (λ) in Game 0, and Adv(1)A (λ),Adv(2−h+)
A (λ),

Adv(2−h)
A (λ), Adv(3−h)

A (λ),Adv(4)A (λ) be the advantage of A in Game 1, 2 − h, 2 −
h+, 3 − h, 4, respectively. (Adv(4)A (λ) = 0.) We can evaluate the gaps between pairs of

Adv(0)A (λ),Adv(1)A (λ),Adv(2−h)
A (λ),Adv(2−h+)

A (λ),Adv(2−(h+1))
A (λ) forh = 0, . . . , ν1−

1 using Problems 3 and 4 (given in “Appendix D”) as in the proof of Theorem 2.
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Moreover,we can evaluate thegaps betweenpairs ofAdv(3−h)
A (λ) andAdv(3−(h+1))

A (λ)

for h = 0, . . . , ν2 − 1 using Problem 5 in “Appendix D”. �

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Inter-
national License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons license, and indicate if changes were made.

A. Dual Pairing Vector Spaces (DPVS)

A.1. Summary

We now briefly explain our approach, DPVS, constructed on symmetric pairing groups
(q,G,GT , G, e), where q is a prime, G and GT are cyclic groups of order q, G is
a generator of G, e : G × G → GT is a non-degenerate bilinear pairing operation,
and e(G,G) �= 1. Here we denote the group operation of G by addition and GT by
multiplication, respectively.Note that this construction alsoworks on asymmetric pairing
groups (in this paper, we use symmetric pairing groups for simplicity of description).

Vector space V: V :=
N

︷ ︸︸ ︷
G × · · · × G, whose element is expressed by N -dimensional

vector, x := (x1G, . . . , xNG) (xi ∈ Fq for i = 1, . . . , N ).
Canonical base A: A := (a1, . . . , aN ) of V, where a1 := (G, 0, . . . , 0), a2 :=

(0,G, 0, . . . , 0), . . . , aN := (0, . . . , 0,G).
Pairing operation: e(x, y) := ∏N

i=1 e(xiG, yiG) = e(G,G)
∑N

i=1 xi yi = e(G,G)�x ·�y ∈
GT ,where x := (x1G, . . . , xNG) = x1a1+· · ·+xN aN ∈ V, y := (y1G, . . . , yNG)
= y1a1 +· · ·+ yN aN ∈ V, �x := (x1, . . . , xN ) and �y := (y1, . . . , yN ). Here, x and
y can be expressed by coefficient vector over basis A such that (x1, . . . , xN )A =
(�x)A := x and (y1, . . . , yN )A = (�y)A := y.

Base change:Canonical basisA is changed to basisB := (b1, . . . , bN ) ofV using a uni-

formly chosen (regular) linear transformation, X := (χi, j )
U←GL(N ,Fq), such that

bi = ∑N
j=1 χi, j a j , (i = 1, . . . , N ).A is also changed to basisB∗ := (b∗

1, . . . , b
∗
N )

of V, such that (ϑi, j ) := (XT )−1, b∗
i = ∑N

j=1 ϑi, j a j , (i = 1, . . . , N ). We see

that e(bi , b∗
j ) = e(G,G)δi, j , (δi, j = 1 if i = j , and δi, j = 0 if i �= j), i.e., B and

B
∗ are dual orthonormal bases of V.

Here, x := x1b1 + · · · + xN bN ∈ V and y := y1b∗
1 + · · · + yN b∗

N ∈ V can
be expressed by coefficient vectors over B and B

∗ such that (x1, . . . , xN )B =
(�x)B := x and (y1, . . . , yN )B∗ = (�y)B∗ := y, and e(x, y) = e(G,G)

∑N
i=1 xi yi =

e(G,G)�x ·�y ∈ GT .
Intractable problem:One of themost natural decisional problems in this approach is the

decisional subspace problem [35]. It is to tell v := vN2+1bN2+1 + · · · + vN1bN1 (=
(0, . . . , 0, vN2+1, . . . , vN1)B), from u := v1b1 +· · ·+vN1bN1 (= (v1, . . . , vN1)B),

where (v1, . . . , vN1)
U←F

N1
q and N2 + 1 < N1.

http://creativecommons.org/licenses/by/4.0/
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Trapdoor: Although the decisional subspace problem is assumed to be intractable, it
can be efficiently solved using trapdoor t∗ ∈ span〈b∗

1, . . . , b
∗
N2

〉. Given v :=
vN2+1bN2+1 + · · · + vN1bN1 or u := v1b1 + · · · + vN1bN1 , we can tell v from u
using t∗ since e(v, t∗) = 1 and e(u, t∗) �= 1 with high probability.

Advantage of this approach: Higher-dimensional vector treatment of bilinear pairing
groups have been already employed in literature especially in the areas of IBE, ABE
and BE (e.g., [5,8,12,16,28,44]). For example, in a typical vector treatment, two
vector forms of P := (x1G, . . . , xNG) and Q := (y1G, . . . , yNG) are set and pair-
ing for P and Q is operated as e(P, Q) := ∏N

i=1 e(xiG, yiG). Such treatment can
be rephrased in this approach such that P = x1a1+· · ·+xN aN (= (x1, . . . , xN )A),
and Q = y1a1 + · · · + yN aN (= (y1, . . . , yN )A) over canonical basis A.

The major drawback of this approach is the easily decomposable property over
A (i.e., the decisional subspace problem is easily solved). That is, it is easy to
decompose xi ai = (0, . . . , 0, xiG, 0, . . . , 0) from P := x1a1 + · · · xN aN =
(x1G, . . . , xNG).

In contrast, our approach employs basis B, which is linearly transformed from A

using a secret random matrix X ∈ F
n×n
q . A remarkable property over B is that it

seems hard to decompose xi bi from P ′ := x1b1 + · · · xN bN (and the decisional
subspace problem seems intractable). In addition, the secret matrix X (and the dual
orthonormal basis B∗ of V) can be used as a source of the trapdoors to the decom-
posability (and distinguishability for the decisional subspace problem through the
pairing operation over B and B

∗ as mentioned above). The hard decomposability
(and indistinguishability) and its trapdoors are ones of the key tricks in this paper.
Note that composite-order pairing groups are often employed with similar tricks
such as hard decomposability (and indistinguishability) of a composite-order group
to the prime-order subgroups and its trapdoors through factoring (e.g., [30,45]).

A.2. Dual Pairing Vector Spaces by Direct Product of Asymmetric Pairing Groups

Definition 16. “Asymmetric bilinear pairing groups” (q,G1,G2,GT ,G1,G2, e) are
a tuple of a prime q, cyclic additive groups G1,G2 and multiplicative group GT of
order q, G1 �= 0 ∈ G1,G2 �= 0 ∈ G2, and a polynomial-time computable non-
degenerate bilinear pairing e : G1 × G2 → GT , i.e., e(sG1, tG2) = e(G1,G2)

st and
e(G1,G2) �= 1.
Let Gbpg be an algorithm that takes input 1λ and outputs a description of bilinear

pairing groups paramG := (q,G1,G2,GT ,G1,G2, e) with security parameter λ.

Definition 17. “Dual pairing vector spaces (DPVS)” (q,V,V∗,GT ,A,A
∗, e) by di-

rect product of asymmetric pairing groups paramG := (q,G1,G2,GT ,G1,G2, e) are

a tuple of a prime q, two N -dimensional vector spaces V :=
N

︷ ︸︸ ︷
G1 × · · · × G1 and V∗ :=

N
︷ ︸︸ ︷
G2 × · · · × G2 overFq , a cyclic groupGT of orderq, and their canonical bases, i.e.,A :=
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(a1, . . . , aN ) ofV andA∗ := (a∗
1, . . . , a

∗
N ) ofV

∗, where ai := (

i−1
︷ ︸︸ ︷
0, . . . , 0,G1,

N−i
︷ ︸︸ ︷
0, . . . , 0)

and a∗
i := (

i−1
︷ ︸︸ ︷
0, . . . , 0,G2,

N−i
︷ ︸︸ ︷
0, . . . , 0), and pairing e : V × V

∗ → GT .

Thepairing is definedby e(x, y) := ∏N
i=1 e(Di ,Hi ) ∈ GT where x := (D1, . . . , DN )

∈ V and y := (H1, . . . , HN ) ∈ V
∗. This is non-degenerate bilinear, i.e., e(sx, t y) =

e(x, y)st and if e(x, y) = 1 for all y ∈ V, then x = 0. For all i and j , e(ai , a∗
j ) = g

δi, j
T

where δi, j = 1 if i = j , and 0 otherwise, and e(G1,G2) �= 1 ∈ GT .
DPVS generation algorithm Gdpvs takes input 1λ (λ ∈ N), N ∈ N and a descrip-

tion of bilinear pairing groups paramG, and outputs a description of paramV :=
(q,V,V∗,GT ,A,A

∗, e) constructed abovewith security parameterλ and N -dimensional
(V,V∗).

Right multiplication by W ∈ GL(N ,Fq) is defined as in Remark 1 in Sect. 2.1.

B. Hierarchical Reduction to DLIN: Proofs of Main Lemmas (Lemmas 1 and 2 )

B.1. Outline

The DLIN Problem is reduced to (complicated) Problems 1 and 2 through several inter-
mediate steps, or intermediate problems, as indicated below (See Fig. 1 in Sect. 4.3):

1. DLIN Problem (in Definition3)
2. Basic Problem 0 with three-dimensional DPVS (in Definition18)
3. Basic Problems 1 and 2 with �n := (d; n1, . . . , nd) (in Definitions19 and 20)
4. Problems 1 and 2 with �n (in Definitions4, 5)

Wewill explain how the simplest problem, DLIN, is sequentially transformed to more
complicated ones according to parameter �n, which indicates degree of complexity.

DLIN → Basic Problem 0 : Basic Problem 0 uses three-dimensional DPVS. In this
first reduction step, a DLIN instance on (symmetric) pairing group is transformed
to a Basic Problem 0 instance on the DPVS, i.e., higher-level concept. It is proven
in Lemma 14.

Basic Problem 0 → Basic Problems 1 and 2 : Format �n := (d; n1, . . . , nd) corre-
sponds to d + 1 DPVSs, Vt (t = 0, . . . , d). The dimension of V0 is 5, and the
dimensions of Vt are 3nt + 1 for t = 1, . . . , d. In this reduction step, vector
elements (and additional group elements) in a Basic Problem 0 instance are trans-
formed to the corresponding elements in Vt for t = 0, . . . , d. They are proven in
Lemmas 15 and 17.

Basic Problem 1 → Problem 1 : The proof is given in Lemmas 16.
Basic Problem 2 → Problem 2 : The proof is given in Lemma 18.

B.2. Preliminary Lemma

We will use the following lemma (Lemma 14) in the proofs of Lemmas 1 and 2.
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Definition 18. (Basic Problem 0) Basic Problem 0 is to guess β ∈ {0, 1}, given
(paramBP0, B̂,B

∗, y∗
β, f , κG, ξG, δξG)

R←GBP0
β (1λ), where

GBP0
β (1λ) : paramG := (q,G,GT ,G, e)

R←Gbpg(1λ),
paramV := (q,V,GT ,A, e) := Gdpvs(1λ, 3,paramG),

X :=
⎛

⎝
�χ1
�χ2
�χ3

⎞

⎠ := (χi, j )i, j
U←GL(3,Fq), (ϑi, j )i, j :=

⎛

⎝

�ϑ1
�ϑ2
�ϑ3

⎞

⎠ := (XT)−1, κ, ξ
U←F

×
q ,

bi := κ( �χi )A = κ
∑3

j=1 χi, j a j for i = 1, 3, B̂ := (b1, b3),

b∗
i := ξ(�ϑi )A = ξ

∑3
j=1 ϑi, j at, j for i = 1, 2, 3, B

∗ := (b∗
1, b

∗
2, b

∗
3),

gT := e(G,G)κξ , paramBP0 := (paramV, gT )

δ, σ, ω
U←Fq , ρ, τ

U←F
×
q ,

y∗
0 := (δ, 0, σ )B∗ , y∗

1 := (δ, ρ, σ )B∗ , f := (ω, τ, 0)B,

return (paramBP0, B̂,B
∗, y∗

β, f , κG, ξG, δξG).

for β
U←{0, 1}. For a probabilistic machine D, we define the advantage of D for Basic

Problem 0, AdvBP0D (λ), is similarly defined as in Definition 4.

Lemma 14. For any adversary D, there is a probabilistic machine E , whose run-
ning time is essentially the same as that of E , such that for any security parameter λ,
AdvBP0D (λ) ≤ AdvDLINE (λ)+ 5/q.

Proof. Given a DLIN instance

(paramG, G, ξG, κG, δξG, σκG,Yβ),

E calculates

paramV := (q,V,GT ,A, e) := Gdpvs(1λ, 3,paramG),

gT := e(κG, ξG)
(= e(G,G)κξ

)
, paramBP0 := (paramV, gT ).

E sets 3 × 3 matrices �∗,� as follows:

�∗ :=
⎛

⎝
ξ 1

1
κ 1

⎞

⎠ , � :=
⎛

⎝
κ

−κ −ξ κξ
ξ

⎞

⎠ ,

Then, � · (�∗)T = κξ · I3. By using matrices � and �∗, E sets

u∗
1 := (ξ, 0, 1)A, u∗

2 := (0, 0, 1)A, u∗
3 := (0, κ, 1)A,

u1 := (κ, 0, 0)A, u2 := (−κ,−ξ, κξ)A, u3 := (0, ξ, 0)A,
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E can compute u∗
i for i = 1, 2, 3 and ui for i = 1, 3 from the above DLIN instance.

Let bases U := (ui )i=1,2,3, U∗ := (u∗
i )i=1,2,3 of V. E then generates η, ϕ

U←Fq such
that η �= 0, and sets

v := (ϕG,−ηG, η(κG)) (= (ϕ,−η, ηκ)A) and w∗
β := (δξG, σκG,Yβ).

E generates a random matrix W
U←GL(3,Fq), then calculates

bi := uiW for i = 1, 3, b∗
i := u∗

i (W
−1)T for i = 1, 2, 3,

B̂ := (b1, b3). B
∗ := (b∗

1, b
∗
2, b

∗
3),

f = vW, y∗
β = w∗

β(W
−1)T,

where right multiplication by W (and (W−1)T) is given as in Remark 1 in Sect. 2.1. E
then gives (paramBP0, B̂,B

∗, y∗
β, f , κG, ξG, δξG) to D, where δξG is contained in

the DLIN instance, and outputs β ′ ∈ {0, 1} if D outputs β ′.
If we set

τ := ξ−1η, ω := τ + κ−1ϕ,

then τ �= 0 (since η �= 0),

v = (ϕ,−η, ηκ)A = ((ω − τ)κ,−τξ, τκξ)A = ωu1 + τu2 = (ω, τ, 0)U, and

f = vW = ((ω, τ, 0)U)W = (ω, τ, 0)B.

If β = 0, i.e., Yβ = Y0 = (δ + σ)G, then

w∗
0 = (δξG, σκG, (δ + σ)G) = (δξ, σκ, δ + σ)A = δu∗

1 + σu∗
3 = (δ, 0, σ )U∗ and

y∗
0 = w∗

0(W
−1)T = ((δ, 0, σ )U∗) (W−1)T = (δ, 0, σ )B∗ .

Therefore, the distribution of (paramBP0, B̂,B
∗, y∗

0, f , κG, ξG, δξG) is exactly the

same as

{

�

∣
∣
∣
∣ �

R←GBP0
0 (1λ)

}

when κ �= 0 and ξ �= 0, i.e., except with probability 2/q.

If β = 1, i.e., Yβ = Y1 (= ψG) is uniformly distributed inG, we set ρ := ψ − δ−σ .
Then

w∗
1 = (δξG, σκG, (δ + ρ + σ)G) = (δξ, σκ, δ + ρ + σ)A

= δu∗
1 + ρu∗

2 + σu∗
3 = (δ, ρ, σ )U∗ , and

y∗
1 = w∗

1(W
−1)T = ((δ, ρ, σ )U∗) (W−1)T = (δ, ρ, σ )B∗ ,

where ρ is also uniformly distributed. Therefore, the distribution of (paramBP0,

B̂,B∗, y∗
1, f , κG, ξG, δξG) is exactly the same as

{

�

∣
∣
∣
∣ �

R←GBP0
1 (1λ)

}

when κ �= 0,

ξ �= 0 and ρ �= 0, i.e., except with probability 3/q.
Therefore, AdvBP0D (λ) ≤ AdvDLINE (λ)+ 2/q + 3/q = AdvDLINE (λ)+ 5/q. �
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B.3. Proof of Lemma 1

Combining Lemmas 14, 15 and 16, we obtain Lemma 1.

Definition 19. (Basic Problem 1) Basic Problem 1 is to guess β ∈ {0, 1}, given
(param�n, {Bt , B̂

∗
t }t=0,...,d , f β,0, { f β,t,1, f t,i }t=1,...,d;i=2,...,nt )

R←GBP1
β (1λ, �n), where

GBP1
β (1λ, �n := (d; n1, . . . , nd)) : (param�n, {Bt ,B

∗
t }t=0,...,d)

R←Gob(1λ, �n),
ω, γ

U←Fq , τ
U←F

×
q ,

B̂
∗
0 := (b∗

0,1, b
∗
0,3, .., b

∗
0,5), f 0,0 := (ω, 0, 0, 0, γ )B0 , f 1,0 := (ω, τ, 0, 0, γ )B0 ,

for t = 1, . . . , d,

�et,1 := (1, 0nt−1) ∈ F
nt
q , B̂

∗
t := (b∗

t,1, . . . , b
∗
t,nt , b

∗
t,nt+2, . . . , b

∗
t,3nt+1),

nt
︷ ︸︸ ︷

nt
︷ ︸︸ ︷

nt
︷ ︸︸ ︷

1
︷︸︸︷

f 0,t,1 := ( ω�et,1, 0nt , 0nt , γ )Bt ,

f 1,t,1 := ( ω�et,1, τ �et,1, 0nt , γ )Bt ,

f t,i := ωbt,i i = 2, . . . , nt ,

return (param�n, {Bt , B̂
∗
t }t=0,...,d , f β,0, { f β,t,1, f t,i }t=1,...,d;i=2,...,nt ).

for β
U←{0, 1}. For a probabilistic adversary C, the advantage of C for Basic Problem 1,

AdvBP1C (λ), is similarly defined as in Definition 4.

Lemma 15. For any adversary C, there is a probabilistic machine D, whose run-
ning time is essentially the same as that of C, such that for any security parameter λ,
AdvBP1C (λ) ≤ AdvBP0D (λ) for any �n := (d; {nt }) := (d; n1, . . . , nd).

Proof. D is given a Basic Problem 0 instance

(paramBP0, B̂,B
∗, y∗

β, f , κG, ξG, δξG).

By using paramG := (q,G,GT ,G, e) underlying paramBP0, D calculates

param0 := (q,V0,GT ,A0, e) := Gdpvs(1λ, 5,paramG),

paramt := (q,Vt ,GT ,At , e) := Gdpvs(1λ, 3nt + 1,paramG) for t = 1, . . . , d,

param�n := ({paramt }t=0,...,d , gT ),

where gT is contained in paramBP0. D generates random matrices Wt
U←GL(Nt ,Fq)

with N0 := 5, Nt := 3nt + 1 for t = 1, . . . , d, then sets

d0,ι := (b∗
ι , 0, 0)W0 for ι = 1, 2, d0,3 := (0, 0, 0, ξG, 0)W0,

d0,4 := (b∗
3, 0, 0)W0, d0,5 := (0, 0, 0, 0, ξG)W0,

d∗
ι := (bι, 0, 0) (W

−1
0 )T for ι = 1, 2, d∗

0,3 := (0, 0, 0, κG, 0) (W−1
0 )T,
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d∗
0,4 := (b3, 0, 0) (W

−1
0 )T d∗

0,5 := (0, 0, 0, 0, κG) (W−1
0 )T,

gβ,0 := ( y∗
β, 0, 0)W0,

for t = 1, . . . , d,

d t,1 := (b∗
1, 0

Nt−3)Wt , dt,nt+1 := (b∗
2, 0

Nt−3)Wt , d t,Nt := (b∗
3, 0

Nt−3)Wt ,

otherwise, dt,i := (0ι, ξG, 0Nt−ι−1)Wt where

{
ι := i + 1 if i ∈ {2, . . . , nt },
ι := i if i ∈ {nt + 2, . . . , Nt − 1},

d∗
t,1 := (b1, 0Nt−3) (W−1

t )T, d∗
t,nt+1 := (b2, 0Nt−3) (W−1

t )T, d∗
t,Nt

:= (b3, 0Nt−3) (W−1
t )T,

otherwise, d∗
t,i := (0ι, κG, 0Nt−ι−1) (W−1

t )T where

{
ι := i + 1 if i ∈ {2, . . . , nt },
ι := i if i ∈ {nt + 2, . . . , Nt − 1},

gβ,t,1 := ( y∗
β, 0

Nt−3)Wt , gt,i := (0i+1, δξG, 0Nt−i−2)Wt for i = 2, . . . , nt ,

where (v, 0Nt−3) := (G̃1, G̃2, G̃3, , 0Nt−3) for any v := (G̃1, G̃2, G̃3) ∈ V = G
3 and

right multiplication by Wt (and (W
−1
t )T) for t ≥ 0 is given as in Remark 1 in Sect. 2.1.

Then, D0 := (d0,i )i=1,...,5 and D
∗
0 := (d∗

0,i )i=1,...,5, Dt := (d t,i )i=1,...,3nt+1 and D
∗
t :=

(d∗
t,i )i=1,...,3nt+1 are dual orthonormal bases.D can computeDt for t = 0, . . . , d, D̂∗

0 :=
(d∗

0,1, d
∗
0,3, . . . , d

∗
0,5), D̂

∗
t := (d∗

t,1, . . . , d
∗
t,nt , d

∗
t,nt+2, . . . , d

∗
t,3nt+1) for t = 1, . . . , d

from B̂ := (b1, b3), B∗, κG, and ξG. D then gives (param�n, {Dt , D̂
∗
t }t=0,...,d , gβ,0,

{gβ,t,1, gt,i }t=1,...,d;i=2,...,nt ) to C, and outputs β ′ ∈ {0, 1} if C outputs β ′.
We can see that

g0,0 := (ω′, 0, 0, 0, γ ′)D0 , g1,0 := (ω′, τ ′, 0, 0, γ ′)D0 ,

for t = 1, . . . , d,
nt

︷ ︸︸ ︷
nt

︷ ︸︸ ︷
nt

︷ ︸︸ ︷
1

︷︸︸︷

g0,t,1 := ( ω′�et,1, 0nt , 0nt , γ ′ )Dt ,

g1,t,1 := ( ω′�et,1, τ ′�et,1, 0nt , γ ′ )Dt ,

gt,i := ω′d t,i for i = 2, . . . , nt ,

where ω′ := δ, γ ′ := σ , and τ ′ := ρ which are distributed uniformly in Fq . There-
fore, the distribution of (param�n, {Dt , D̂

∗
t }t=0,...,d , gβ,0, {gβ,t,1, gt,i }t=1,...,d;i=2,...,nt )

is exactly the same as

{

�

∣
∣
∣
∣ �

R←GBP1
β (1λ, �n)

}

. �

Lemma 16. For any adversary B, there is a probabilistic machine C, whose run-
ning time is essentially the same as that of B, such that for any security parameter
λ, AdvP1B (λ) ≤ AdvBP1C (λ)+ (d + 1)/q.

Proof. Given a Basic Problem 1 instance

(param�n, {Bt , B̂
∗
t }t=0,...,d , f β,0, { f β,t,1, f t,i }t=1,...,d;i=2,...,nt ),

C calculates

r t
U← span〈bt,3nt+1〉, eβ,t,1 := f β,t,1 + r t for t = 1, . . . , d.
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C generates u0
U←F

×
q ,

⎛

⎜
⎝

�ut,1
...

�ut,nt

⎞

⎟
⎠ := Ut

U←GL(nt ,Fq) for t = 1, . . . , d. C then

calculates

d0,2 := (0, u0, 0, 0, 0)B0 ,

nt
︷ ︸︸ ︷

nt
︷ ︸︸ ︷

nt
︷ ︸︸ ︷

1
︷︸︸︷

d t,nt+i := ( 0nt , �ut,i , 0nt , 0 )Bt for t = 1, . . . , d; i = 1, . . . , nt ,

C then sets dual orthonormal basis vectors

d∗
0,2 := (0, u−1

0 , 0, 0, 0)B∗
0
,

nt
︷ ︸︸ ︷

nt
︷ ︸︸ ︷

nt
︷ ︸︸ ︷

1
︷︸︸︷

d∗
t,nt+i := ( 0nt , �zt,i , 0nt , 0 )B∗

t
for t = 1, . . . , d; i = 1 . . . , nt ,

where

⎛

⎜
⎝

�zt,1
...

�zt,nt

⎞

⎟
⎠ := (U−1

t )T. C cannot calculate above d∗
0,2 and d∗

t,i for i = nt +

1, . . . , 2nt because of lack of b∗
0,2 and b∗

t,nt+1. C then sets

D0 := (b0,1, d0,2, b0,3, b0,4, b0,5), D∗
0 := (b∗

0,1, d
∗
0,2, b

∗
0,3, b

∗
0,4, b

∗
0,5), D̂

∗
0 := (b∗

0,1, b
∗
0,3, b

∗
0,4, b

∗
0,5),

Dt := (bt,1, . . . , bt,nt , d t,nt+1, . . . , d t,2nt , bt,2nt+1, . . . , bt,3nt+1),

D
∗
t := (b∗

t,1, . . . , b
∗
t,nt , d

∗
t,nt+1, . . . , d

∗
t,2nt , b

∗
t,2nt+1, . . . , b

∗
t,3nt+1)

D̂
∗
t := (b∗

t,1, . . . , b
∗
t,nt , b

∗
t,2nt+1, . . . , b

∗
t,3nt+1).

C gives (param�n, {Dt , D̂
∗
t }t=0,..,d , f β,0, {eβ,t,1, f t,i }t=1,...,d;i=2,...,nt ) to B, and outputs

β ′ ∈ {0, 1} if B outputs β ′.
Then, with respect to Dt ,D

∗
t (instead of Bt ,B

∗
t , respectively), the above answer to B

has the same distribution as the Problem 1 instance, i.e., the above instance has the same
distribution as the one given by generator GP1

β (1λ, �n) if z0 in Problem 1 is not equal to

0 and (zt,1, . . . , zt,nt ) in Problem 1 is not equal to �0 for any t = 1, . . . , d, i.e., except
with probability (d + 1)/q for β = 1. �

B.4. Proof of Lemma 2

Combining Lemmas 14, 17 and 18 , we obtain Lemma 2.

Definition 20. (Basic Problem 2) Basic Problem 2 is to guess β ∈ {0, 1}, given
(param�n, {B̂t ,B

∗
t }t=0,..,d , y∗

β,0, f 0, { y∗
β,t,i , f t,i }t=1,..,d;i=1,..,nt )

R←GBP2
β (1λ, �n),where

GBP2
β (1λ, �n := (d; n1, . . . , nd)) : (param�n, {Bt ,B

∗
t }t=0,...,d)

R←Gob(1λ, �n),
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B̂0 := (b0,1, b0,3, . . . , b0,5),

B̂t := (bt,1, . . . , bt,nt , bt,2nt+1, . . . , bt,3nt+1) for t = 1, . . . , d,

δ, δ0, ω
U←Fq , ρ, τ

U←F
×
q ,

y∗
0,0 := (δ, 0, 0, δ0, 0)B∗

0
, y∗

1,0 := (δ, ρ, 0, δ0, 0)B∗
0
, f 0 := (ω, τ, 0, 0, 0)B0 ,

for t = 1, . . . , d, i = 1, . . . , nt ;
�et,i := (0i−1, 1, 0nt−i ) ∈ F

nt
q ,

nt
︷ ︸︸ ︷

nt
︷ ︸︸ ︷

nt
︷ ︸︸ ︷

1
︷︸︸︷

y∗
0,t,i := ( δ�et,i , 0nt , δ0�et,i , 0 )B∗

t

y∗
1,t,i := ( δ�et,i , ρ�et,i , δ0�et,i , 0 )B∗

t

f t,i := ( ω�et,i , τ �et,i , 0nt , 0 )Bt ,

return (param�n, {B̂t ,B
∗
t }t=0,..,d , y∗

β,0, f 0, { y∗
β,t,i , f t,i }t=1,..,d;i=1,..,nt ).

for β
U←{0, 1}. For a probabilistic machine C, we define the advantage of C for Basic

Problem 2, AdvBP2C (λ), as in Definition 4.

Lemma 17. For any adversary C, there is a probabilistic machine D, whose run-
ning time is essentially the same as that of C, such that for any security parameter λ,
AdvBP2C (λ) = AdvBP0D (λ) for any �n := (d; {nt }) := (d; n1, . . . , nd).

Proof. D is given a Basic Problem 0 instance

(paramBP0, B̂,B
∗, y∗

β, f , κG, ξG, δξG).

By using paramG := (q,G,GT ,G, e) underlying paramBP0, D calculates

param0 := (q,V0,GT ,A0, e) := Gdpvs(1λ, 5,paramG),

paramt := (q,Vt ,GT ,At , e) := Gdpvs(1λ, 3nt + 1,paramG) for t = 1, . . . , d,

param�n := ({paramt }t=0,...,d , gT ),

where gT is contained in paramBP0. D generates random matrices Wt
U←GL(Nt ,Fq)

with N0 := 5, Nt := 3nt + 1 for t = 1, . . . , d, then sets

d0,ι := (bι, 0, 0)W0 for ι = 1, 2, d0,3 := (0, 0, 0, κG, 0)W0,

d0,4 := (b3, 0, 0)W0, d0,5 := (0, 0, 0, 0, κG)W0,

d∗
ι := (b∗

ι , 0, 0) (W
−1
0 )T for ι = 1, 2, d∗

0,3 := (0, 0, 0, ξG, 0) (W−1
0 )T,

d∗
0,4 := (b∗

3, 0, 0) (W
−1
0 )T d∗

0,5 := (0, 0, 0, 0, ξG) (W−1
0 )T,

p∗
β,0 := ( y∗

β, 0, 0) (W
−1
0 )T, g0 := ( f , 0, 0)W0,

for t = 1, . . . , d,
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d t,(ι−1)nt+i := (03(i−1), bι, 03(nt−i), 0)Wt for ι = 1, 2, 3; i = 1, . . . , nt ,

d t,3nt+1 := (03nt , κG)Wt ,

d∗
t,(ι−1)nt+i := (03(i−1), b∗

ι , 0
3(nt−i), 0) (W−1

t )T for ι = 1, 2, 3; i = 1, . . . , nt ,

d∗
t,3nt+1 := (03nt , ξG) (W−1

t )T,

p∗
β,t,i := (03(i−1), y∗

β, 0
3(nt−i), 0) (W−1

t )T for i = 1, . . . , nt ,

gt,i := (03(i−1), f , 03(nt−i), 0)Wt for i = 1, . . . , nt .

where (0l1 , v, 0l2) := (0l1 , G̃1, G̃2, G̃3, 0l2) for any v := (G̃1, G̃2, G̃3) ∈ V = G
3

and l1, l2 ∈ Z≥0, and right multiplication by Wt (and (W
−1
t )T) for t ≥ 0 is given as

in Remark 1 in Sect. 2.1. Then, D0 := (d0,i )i=1,...,5 and D
∗
0 := (d∗

0,i )i=1,...,5, Dt :=
(d t,i )i=1,...,3nt+1 and D

∗
t := (d∗

t,i )i=1,...,3nt+1 for t = 1, . . . , d are dual orthonormal
bases. D can compute

D̂0 := (d0,1, d0,3, . . . , d0,5), D
∗
0 := (d∗

0,1, . . . , d
∗
0,5),

for t = 1, . . . , d, D̂t := (d t,1, . . . , d t,nt , d t,2nt+1, . . . , d t,3nt+1),D
∗
t := (d∗

t,1, . . . , d
∗
t,3nt+1),

from B̂ := (b1, b3),B∗, κG, and ξG. D then gives (param�n, {D̂t ,D
∗
t }t=0,...,d , p∗

β,0,

g0, { p∗
β,t,i , gt,i }t=1,...,d;i=1,...,nt ) to C, and outputs β ′ ∈ {0, 1} if C outputs β ′.

We can see that

p∗
0,0 = (δ, 0, 0, δ0, 0)D∗

0
, p∗

1,0 = (δ, ρ, 0, δ0, 0)D∗
0
, g0 = (ω, τ, 0, 0, 0)D0 ,

nt
︷ ︸︸ ︷

nt
︷ ︸︸ ︷

nt
︷ ︸︸ ︷

1
︷︸︸︷

p∗
0,t,i = ( δ�et,i , 0nt , δ0�et,i , 0 )D∗

t

p∗
1,t,i = ( δ�et,i , ρ�et,i , δ0�et,i , 0 )D∗

t

gt,i = ( ω�et,i , τ �et,i , 0nt , 0 )Dt ,

t = 1, . . . , d; i = 1, . . . , nt ,

Therefore, the distribution of (param�n, {D̂t ,D
∗
t }t=0,...,d , p∗

β,0, g0, { p∗
β,t,i ,

gt,i }t=1,...,d;i=1,...,nt ) is exactly the same as

{

�

∣
∣
∣
∣ �

R←GBP2
β (1λ, (d, {nt }))

}

. �

Lemma 18. For any adversary B, there is a probabilistic machine C, whose run-
ning time is essentially the same as that of B, such that for any security parameter
λ, AdvP2B (λ) = AdvBP2C (λ).

Proof. Given a Basic Problem 2 instance

(param�n, {B̂t ,B
∗
t }t=0,..,d , y∗

β,0, f 0, { y∗
β,t,i , f t,i }t=1,..,d;i=1,..,nt ),

C calculates

r∗
t,i

U← span〈b∗
t,2nt+1, . . . , b

∗
t,3nt 〉, h∗

β,t,i := y∗
β,t,i + r∗

t,i .
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C then generates z′0
U←F

×
q and

⎛

⎜
⎝

�z′t,1
...

�z′t,nt

⎞

⎟
⎠ := Z ′

t
U←GL(nt ,Fq), for t = 1, . . . , d, and

calculates

d∗
0,2 := (0, z′0, 0, 0, 0)B∗

0
,

nt
︷ ︸︸ ︷

nt
︷ ︸︸ ︷

nt
︷ ︸︸ ︷

1
︷︸︸︷

d∗
t,nt+i := ( 0nt , �z′t,i , 0nt , 0 )B∗

t
for t = 1, . . . , d; i = 1 . . . , nt .

C then sets z0 := ρ−1z′0, u0 := z−1
0 ,

⎛

⎜
⎝

�zt,1
...

�zt,nt

⎞

⎟
⎠ := Zt := ρ−1Z ′

t and

⎛

⎜
⎝

�ut,1
...

�ut,nt

⎞

⎟
⎠ :=

(Z−1
t )T, where ρ is defined in Basic Problem 2. Then,

d∗
0,2 = (0, ρz0, 0, 0, 0)B∗

0
,

nt
︷ ︸︸ ︷

nt
︷ ︸︸ ︷

nt
︷ ︸︸ ︷

1
︷︸︸︷

d∗
t,nt+i = ( 0nt , ρ�zt,i , 0nt , 0 )B∗

t
for t = 1, . . . , d; i = 1 . . . , nt .

C then sets dual orthonormal basis vectors

d0,2 := (0, ρ−1u0, 0, 0, 0)B0 ,

nt
︷ ︸︸ ︷

nt
︷ ︸︸ ︷

nt
︷ ︸︸ ︷

1
︷︸︸︷

d t,nt+i := ( 0nt , ρ−1�ut,i , 0nt , 0 )Bt for t = 1, . . . , d; i = 1 . . . , nt .

C cannot calculate above d0,2 and d t,i for i = nt + 1, . . . , 2nt . C then sets

D0 := (b0,1, d0,2, b0,3, b0,4, b0,5), D̂0 := (b0,1, b0,3, b0,4, b0,5),D∗
0 := (b∗

0,1, d
∗
0,2, b

∗
0,3, b

∗
0,4, b

∗
0,5),

Dt := (bt,1, . . . , bt,nt , d t,nt+1, . . . , d t,2nt , bt,2nt+1, . . . , bt,3nt+1),

D̂t := (bt,1, . . . , bt,nt , bt,2nt+1, . . . , bt,3nt+1),

D
∗
t := (b∗

t,1, . . . , b
∗
t,nt , d

∗
t,nt+1, . . . , d

∗
t,2nt , b

∗
t,2nt+1, . . . , b

∗
t,3nt+1).

C gives (param�n, {D̂t ,D
∗
t }t=0,..,d , y∗

β,0, f 0, {h∗
β,t,i , f t,i }t=1,..,d;i=1,..,nt ) to B, and out-

puts β ′ ∈ {0, 1} if B outputs β ′.
For τ in Basic Problem 2, let τ ′ := ρτ . Then, with respect to τ ′,Dt ,D

∗
t (instead of

τ,Bt ,B
∗
t ), the above answer toB has the same distribution as the Problem 2 instance, i.e.,

the above instance has the same distribution as the one given by generator GP2
β (1λ, �n).

�
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C. Proof of Main Lemma (Lemma 3)

Proof. We first remind the definition of cofactor (and cofactor matrix). When n ≥ 2,
for n × n matrix Z := (zi, j ), let �i, j the minor obtained by removing the i th row and
the j th column from Z . Cofactors z̃i, j are defined by (−1)i+ j�i, j . The determinant of
Z is given as det Z = ∑n

j=1 zi, j z̃i, j . In particular, when i = 1, we obtain

det Z =
n∑

j=1

z1, j z̃1, j . (17)

In addition, when det Z �= 0, we have

U := (Z−1)T = 1

det Z

⎛

⎜
⎝

z̃1,1 . . . z̃1,n
...

...

z̃n,1 . . . z̃n,n

⎞

⎟
⎠ . (18)

Below, we denote row vectors �zi := (zi,1, . . . , zi,n) of Z and �̃zi := (̃zi,1, . . . , z̃i,n) of
(det Z) · (Z−1)T for i = 1, . . . , n.

Case that �x · �v = p �= 0: For normalized pair of vectors

�x := (p, 0, . . . , 0), �v := (1, 0, . . . , 0), (19)

we will show that (�xU, �vZ) is uniformly distributed on Cp for Z
U←GL(n,Fq),U :=

(Z−1)T. By that, for any pair (�x, �v) ∈ Cp, we see that (�xU, �vZ) is uniformly dis-

tributed on Cp for Z
U←GL(n,Fq),U := (Z−1)T. Therefore, we consider (�x, �v) given

by Eq. (19) in the following.
Since Z = (zi, j ) and Eq. (18) holds, we have

�xU = p · �̃z1
det Z

= p

det Z
(̃z1,1, . . . , z̃1,n), �vZ = �z1 = (z1,1, . . . , z1,n). (20)

(Eqs. (17) and (20) give that (�xU ) · (�vZ) = p.) Cofactors z̃1, j are determined by n − 1
row vectors, �z2, . . . , �zn of Z . That is, �̃z1 is orthogonal to hyperplane span〈�z2, . . . , �zn〉
which is uniformly distributed in the spaces of hyperplanes H with the condition �z1 �∈ H

when Z
U←GL(n,Fq) with fixed (random) �z1. Hence, from one-to-one correspondence

of hyperplanes and their normal vectors (up to scalars), we see that (�xU, �vZ) is uniformly

distributed in Cp when Z
U←GL(n,Fq).

Case that �x · �v = 0 : For normalized pair

�x := (0, 1, . . . , 0), �v := (1, 0, . . . , 0),
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we will show that (�xU, �vZ) is uniformly distributed on C0 for Z
U←GL(n,Fq),U :=

(Z−1)T because of the similar reason as above.
Since Z = (zi, j ) and Eq. (18) holds, we have

�xU = �̃z2
det Z

= 1

det Z
(̃z2,1, . . . , z̃2,n), �vZ = �z1 = (z1,1, . . . , z1,n).

Cofactors z̃2, j are determined by n − 1 row vectors, �z1, �z3, . . . , �zn of Z . In particular,
�z2 is related to only term det Z in (�xU, �vZ).
First, since �̃z2 is orthogonal to hyperplane span〈�z1, �z3, . . . , �zn〉 which is uniformly

distributed in the spaces of hyperplanes H with the condition �z1 ∈ H when Z
U←GL(n,Fq)

with fixed (random) �z1, we see that �̃z2 is distributed uniformly on the orthogonal space
to �z1(= �vZ) up to scalar multiplication. Moreover, since det Z is uniformly distributed
in F

×
q when �z2 is uniformly distributed in F

n
q \{�0} such that det Z �= 0 and �z2 is re-

lated to only det Z in (�xU, �vZ), we see that �xU = �̃z2
det Z is distributed uniformly

on the space orthogonal to �z1, i.e., (�xU, �vZ) is uniformly distributed on C0 when

Z
U←GL(n,Fq). �

D. Problems 3, 4 and 5 for CCA-Secure CP-FE

We will show Problems 3–5 and Lemmas 19–21 for the proof of Theorem 4. The proofs
of Lemmas 19–21 are similar to those of Lemmas 1 and 2

Definition 21. (Problem 3) Problem 3 is to guess β ∈ {0, 1}, given (param�n,B0,

B̂
∗
0, eβ,0, {Bt , B̂

∗
t , eβ,t,1, et,i }t=1,...,d+1;i=2,...,nt )

R←GP3
β (1λ, �n), where

GP3
β (1λ, �n) : nd+1 := 2, �n′ := (d + 1; {nt }t=1,...,d+1),

(param�n′,B0, B̂
∗
0, eβ,0, {Bt , B̂

∗
t , eβ,t,1, et,i }t=1,...,d+1;i=2,...,nt )

R←GP1
β (1λ, �n′),

return (param�n,B0, B̂
∗
0, eβ,0, {Bt , B̂

∗
t , eβ,t,1, et,i }t=1,...,d+1;i=2,...,nt ).

forβ
U←{0, 1}. For a probabilisticmachineB, the advantageofB for Problem3,AdvP3B (λ),

is similarly defined as in Definition 4.

Lemma 19. For any adversary B, there exist probabilistic machine E , whose running
times are essentially the same as that of B, such that for any security parameter λ,
AdvP3B (λ) ≤ AdvDLINE (λ)+ (d + 7)/q.

Definition 22. (Problem 4) Problem 4 is to guess β ∈ {0, 1}, given (param�n,
{B̂t ,B

∗
t }t=0,..,d , Bd+1,B

∗
d+1, h∗β,0, e0, {h∗β,t,i , et,i }t=1,..,d;i=1,..,nt , {h∗d+1,i }i=1,2)

R←GP4
β (1λ, �n), where
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GP4
β (1λ, �n) : nd+1 := 2, �n′ := (d + 1; {nt }t=1,...,d+1),

(param�n′ , {Bt ,B
∗
t }t=0,...,d+1)

R←Gob(1
λ, �n′),

B̂0 := (b0,1, b0,3, . . . , b0,5),

B̂t := (bt,1, . . . , bt,nt , bt,2nt+1, . . . , bt,3nt+1) for t = 1, . . . , d, δ, δ0, ω
U←Fq , u0, τ

U←F
×
q , z0 := u−1

0 ,
⎛

⎜
⎜
⎝

�zt,1
.
.
.

�zt,nt

⎞

⎟
⎟
⎠ := Zt

U←GL(nt ,Fq ),

⎛

⎜
⎜
⎝

�ut,1
.
.
.

�ut,nt

⎞

⎟
⎟
⎠ := (Z−1

t )T for t = 1, . . . , d,

h∗
0,0 := (δ, 0, 0, δ0, 0)B∗

0
, h∗

1,0 := (δ, u0, 0, δ0, 0)B∗
0
, e0 := (ω, τ z0, 0, 0, 0)B0 ,

for t = 1, . . . , d; i = 1, . . . , nt ;
�et,i := (0i−1, 1, 0nt−i ) ∈ F

nt
q , �δt,i U←F

nt
q ,

nt
︷ ︸︸ ︷

nt
︷ ︸︸ ︷

nt
︷ ︸︸ ︷

1
︷︸︸︷

h∗
0,t,i := ( δ�et,i , 0nt , �δt,i , 0 )B∗

t
,

h∗
1,t,i := ( δ�et,i , �ut,i , �δt,i , 0 )B∗

t
,

et,i := ( ω�et,i , τ�zt,i , 0nt , 0 )Bt

h∗
d+1,i := δb∗

d+1,i for i = 1, 2,

return (param�n , {B̂t ,B
∗
t }t=0,..,d ,Bd+1,B

∗
d+1, h

∗
β,0, e0, {h∗

β,t,i , et,i }t=1,..,d;i=1,..,nt , {h∗
d+1,i }i=1,2).

forβ
U←{0, 1}. For a probabilisticmachineB, the advantageofB for Problem4,AdvP4B (λ),

is similarly defined as in Definition 4.

Lemma 20. For any adversary B, there exists a probabilistic machine E , whose run-
ning time is essentially the same as that of B, such that for any security parameter λ,
AdvP4B (λ) ≤ AdvDLINE (λ)+ 5/q.

Definition 23. (Problem 5) Problem 5 is to guess β ∈ {0, 1}, given (param�n,
{B̂t ,B

∗
t }t=0,d+1, {Bt ,B

∗
t }t=1,..,d , h∗

β,0, e0, {h∗
t,i }t=1,..,d;i=1,..,nt , {h∗

β,d+1,i , ed+1,i }i=1,2)

R←GP5
β (1λ, �n), where

GP5
β (1λ, �n) : nd+1 := 2, �n′ := (d + 1; {nt }t=1,...,d+1),

(param�n′ , {Bt ,B
∗
t }t=0,...,d+1)

R←Gob(1λ, �n′),
B̂0 := (b0,1, b0,3, . . . , b0,5), B̂d+1 := (bd+1,1, bd+1,2, bd+1,5, . . . , bd+1,7),

δ, δ0, ω
U←Fq , u0, τ

U←F
×
q , z0 := u−1

0 ,

h∗
0,0 := (δ, 0, 0, δ0, 0)B∗

0
, h∗

1,0 := (δ, u0, 0, δ0, 0)B∗
0
, e0 := (ω, τ z0, 0, 0, 0)B0 ,

h∗
t,i := δb∗

t,i for t = 1, . . . , d; i = 1, . . . , nt ,
( �zd+1,1

�zd+1,2

)

:= Zd+1
U←GL(2,Fq),

( �ud+1,1
�ud+1,2

)

:= (Z−1
d+1)

T,

for i = 1, 2,

�ed+1,i := (0i−1, 1, 02−i ) ∈ F
2
q ,

�δd+1,i
U←F

2
q ,
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2
︷ ︸︸ ︷

2
︷ ︸︸ ︷

2
︷ ︸︸ ︷

1
︷︸︸︷

h∗
0,d+1,i := ( δ�ed+1,i , 02, �δd+1,i , 0 )B∗

d+1
,

h∗
1,d+1,i := ( δ�ed+1,i , �ud+1,i , �δd+1,i , 0 )B∗

d+1
,

ed+1,i := ( ω�ed+1,i , τ�zd+1,i , 02, 0 )Bd+1 ,

return (param�n, {B̂t ,B
∗
t }t=0,d+1, {Bt ,B

∗
t }t=1,..,d ,

h∗
β,0, e0, {h∗

t,i }t=1,..,d;i=1,..,nt , {h∗
β,d+1,i , ed+1,i }i=1,2),

forβ
U←{0, 1}. For a probabilisticmachineB, the advantageofB for Problem5,AdvP5B (λ),

is similarly defined as in Definition 4.

Lemma 21. For any adversary B, there is a probabilistic machine E , whose run-
ning time is essentially the same as that of B, such that for any security parameter λ,
AdvP5B (λ) ≤ AdvDLINE (λ)+ 5/q.

E. How to Relax the Restriction that ρ̃ Is Injective

We assume that φ ∈ N is given in the system. For any access structure S := (M, ρ) for
ciphertext in the CP-FE scheme, φ ≥ maxdt=1 �{i | ρ̃(i) = t}. (In the proposed CP-FE
scheme in Sect. 5, we assume that φ := 1.)

We will show how to modify the CP-FE scheme to allow φ > 1 with preserving the
security of the CP-FE scheme in Sect. 5. We can also show the similar modification of
the KP-FE scheme to allow φ > 1.
In a recent work [47], another technique to allow φ > 1 in an efficient manner was

proposed.

E.1. The Modified CP-FE Scheme

1. As for Setup, given (1λ, �n := (d; n1, . . . , nd)), execute Setup(1λ, �n′ :=
(d; n′

1, . . . , n
′
d)) such that n′

t := nt + φ for t = 1, . . . , d.
2. As for KeyGen, given (pk, sk, � := {(t, �xt := (xt,1, . . . , xt,nt ) ∈ F

nt
q ) | 1 ≤

t ≤ d}) execute the same procedure as KeyGen except that:

n′
t

︷ ︸︸ ︷
n′
t

︷ ︸︸ ︷
n′
t

︷ ︸︸ ︷
1

︷︸︸︷

k∗
t := ( δ�xt , 0φ 0n

′
t , �ϕt , 0 )B∗

t
for (t, �xt ) ∈ �,

3. As for Enc, given (pk, m, S := (M, ρ)), execute the same procedure as Enc
except that:

if ρ(i) = (t, �vi := (vi,1, . . . , vi,nt ) ∈ F
nt
q ) ηi , τi

U←Fq ,

n′
t

︷ ︸︸ ︷
n′
t

︷ ︸︸ ︷
n′
t

︷ ︸︸ ︷
1

︷︸︸︷

ci := ( si �et,1 + θi �vi , 0κ−1, τi , 0ϕ−κ , 0n
′
t , 0n

′
t , ηi )Bt
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if ρ(i) = ¬(t, �vi ), ηi , τi
U←Fq ,

n′
t

︷ ︸︸ ︷
n′
t

︷ ︸︸ ︷
n′
t

︷ ︸︸ ︷
1

︷︸︸︷

ci := ( si �vi , 0κ−1, τi , 0φ−κ , 0n
′
t , 0n

′
t , ηi )Bt ,

where i is the κth index such that ρ̃(i) = t and �{ j < i | ρ̃( j) = t} = κ − 1.

E.2. Generalized Version of Lemma 3

For �p := (p1, . . . , ps) ∈ F
s
q , let

C �p :=
{

(�x, �v1, . . . , �vs)
∣
∣
∣
∣
�x �= �0, �vi �= �0, �x · �vi = pi for i = 1, . . . , s
{�vi }i=1,...,s are linearly independent over Fq ,

}

⊂ F
n
q × (F n

q )
s .

Lemma 22. For all �p such that C �p �= ∅, for all (�x, �v1, . . . , �vs) ∈ C �p, and (�r ,
�w1, . . . , �ws) ∈ C �p,

Pr
Z

U←GL(n,Fq ),

[�xU = �r ∧ �vi Z = �wi for i = 1, . . . , s
] = 1

�C �p
,

where U := (Z−1)T.

Proof. Case that there exists an i such that �x · �vi = pi �= 0: We can assume that
pi �= 0 for i = 1, . . . , t , pi = 0 for i = t + 1, . . . , s through an appropriate change of
order of coordinates. Then t ≥ 1.

For normalized tuple of vectors

�x = (p1, . . . , pt , 0, . . . , 0), �vi := (

i−1
︷ ︸︸ ︷
0, . . . , 0, 1,

n−i
︷ ︸︸ ︷
0, . . . , 0) for i = 1, . . . , s, (21)

wewill show that (�xU, �v1Z , . . . , �vs Z) is uniformlydistributedonC �p for Z
U←GL(n,Fq),

U := (Z−1)T.By that, for anypair (�x, �v1, . . . , �vs) ∈ C �p,we see that (�xU, �v1Z , . . . , �vs Z)
is uniformly distributed on C �p for Z

U←GL(n,Fq),U := (Z−1)T. Therefore, we con-
sider (�x, �v1, . . . , �vs) given by Eq. (21) in the following.
For the proof, we define

C (i)
pi :=

{

(�x, �v1, . . . , �vs)
∣
∣
∣
∣
�x �= �0, �vi �= �0, �x · �vi = pi ,
{�vi }i=1,...,s are linearly independent over Fq ,

}

⊂F
n
q ×(F n

q )
s,

for i = 1, . . . , s, then C �p = ∩s
i=1C

(i)
pi . Since Z = (zi, j ) and Eq. (18) holds, we have

�xU =
∑t

i=1 pi · �̃zi
det Z

= 1

det Z

t∑

i=1

pi (̃zi,1, . . . , z̃i,n), �vi Z = �zi = (zi,1, . . . , zi,n) for i = 1, . . . , s.
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From Lemma 3, we see that (�xU, �v1Z , . . . , �vs Z) is in C (i)
pi for i = 1, . . . , s and

moreover it is uniformly distributed in C �p = ∩s
i=1C

(i)
pi when Z

U←GL(n,Fq), i.e.,

(�xU, �v1Z , . . . , �vs Z) is uniformly distributed in C �p when Z
U←GL(n,Fq).

Case that pi = �x · �vi = 0 for all 1 ≤ i ≤ s: For normalized tuple

�x = (

s
︷ ︸︸ ︷
0, . . . , 0, 1,

n−s−1
︷ ︸︸ ︷
0, . . . , 0), �vi := (

i−1
︷ ︸︸ ︷
0, . . . , 0, 1,

n−i
︷ ︸︸ ︷
0, . . . , 0) for i = 1, . . . , s,

wewill show that (�xU, �v1Z , . . . , �vs Z) is uniformlydistributedonC�0 for Z
U←GL(n,Fq),

U := (Z−1)T because of the similar reason as above (where �0 := (0, . . . , 0)).
Since Z = (zi, j ) and Eq. (18) holds, we have

�xU = �̃zs+1

det Z
= 1

det Z
(̃zs+1,1, . . . , z̃s+1,n), �vi Z = �zi = (zi,1, . . . , zi,n) for i = 1, . . . , s.

Cofactors z̃s+1, j are determined by n − 1 row vectors, �z1, . . . , �zs, �zs+2, . . . , �zn of Z . In
particular, �zs+1 is related to only term det Z in (�xU, �vZ).
First, since �̃zs+1 is orthogonal to hyperplane span〈�z1, . . . , �zs, �zs+2, . . . , �zn〉 which is

uniformly distributed in the spaces of hyperplanes H with the condition �z1, . . . , �zs ∈ H

when Z
U←GL(n,Fq) with fixed (random) �z1, . . . , �zs , we see that �̃zs+1 is distributed

uniformly on the orthogonal space to span〈�z1, . . . , �zs〉(= span〈�v1Z , . . . , �vs Z〉) up
to scalar multiplication. Moreover, since det Z is uniformly distributed in F

×
q when

�zs+1 is uniformly distributed in F
n
q \{�0} such that det Z �= 0 and �zs+1 is related to

only det Z in (�xU, �vZ), we see that �xU = �̃zs+1
det Z is distributed uniformly on the space

orthogonal to span〈�z1, . . . , �zs〉, i.e., (�xU, �vZ) is uniformly distributed onC0 when Z
U←

GL(n,Fq). �

E.3. Security

We can prove the security of the modified CP-FE scheme in a manner similar to that
of Theorem 2 except that Problem 2 is changed to Modified Problem 2, Lemma 10 is
changed, where B+

2 ’s simulation is executed on Modified Problem 2, Game 2-h+ is
changed to Modified Game 2-h+, and Claim 2 is proven based on Lemma 22 in place
of Lemma 3.

Here we only show the essence of the change by using Modified Game 2-h+. The
Modified Game 2-h+ is the same as Game 2-h+ except that Zt

U←GL(n′
t ,Fq), Ut :=

(Z−1
t )T for t = 1, . . . , d, where for each t such that {iκ | ρ̃(iκ) = t, 1 ≤ κ ≤ φ}} is not

empty, and for κ = 1, . . . , φ, the framed part by a box in k∗
t in Eq. (14) is (�xt , 0φ)·Ut , and

the framed parts by a box in ci
(:= ciκ

)
in Eq. (15) are (ai �et,1+πi �vi , 0κ−1, τ ′

i , 0
φ−κ ) · Zt

and (ai �vi , 0κ−1, τ ′
i , 0

φ−κ ) · Zt , where τ ′
i

U←Fq for i = 1, . . . , �. By using Modified
Problem 2, B+

2 can simulate the ciphertexts, ciκ . By applying Lemma 22, we can prove
Claim 2 for the changed simulation by B+

2 in a manner similar to the proof of Claim 2.
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F. Special Cases

This section describes special cases, KP-ABE andCP-ABE, of the proposed FE schemes
given inSects. 4 and5.Here, the underlying attribute vectors, {�xt }t∈{1,...,d} and {�vi }i∈{1,...,�},
are specialized to two-dimensional vectors for the equality relation, e.g., �xt := (1, xt )
and �vi := (vi ,−1), where �xt · �vi = 0 iff xt = vi . These schemes are also adaptively
payload-hiding under the DLIN assumption.

F.1. KP-ABE with Non-Monotone Access Structures

Setup(1λ, �n := (d; 2, . . . , 2)) : (param�n, {Bt ,B
∗
t }t=0,...,d)

R←Gob(1λ, �n),
B̂0 := (b0,1, b0,3, b0,5), B̂t := (bt,1, bt,2, bt,7) for t = 1, .., d,

B̂
∗
0 := (b∗

0,1, b
∗
0,3, b

∗
0,4), B̂

∗
t := (b∗

t,1, b
∗
t,2, b

∗
t,5, b

∗
t,6) for t = 1, .., d,

return pk := (1λ,param�n, {B̂t }t=0,...,d), sk := {B̂∗
t }t=0,...,d ,

KeyGen(pk, sk, S := (M, ρ)) :
�f U←F

r
q , �sT := (s1, . . . , s�)

T := M · �f T, s0 := �1 · �f T, η0 U←Fq ,

k∗
0 := (−s0, 0, 1, η0, 0)B∗

0
,

for i = 1, . . . , �,

if ρ(i) = (t, �vi := (vi ,−1) ∈ F
2
q \{�0}), θi

U←Fq , �ηi U←F
2
q ,

2
︷ ︸︸ ︷

2
︷ ︸︸ ︷

2
︷ ︸︸ ︷

1
︷︸︸︷

k∗
i := ( si + θivi , −θi , 0, 0, �ηi , 0 )B∗

t
,

if ρ(i) = ¬(t, �vi ), �ηi U←F
2
q ,

2
︷ ︸︸ ︷

2
︷ ︸︸ ︷

2
︷ ︸︸ ︷

1
︷︸︸︷

k∗
i := ( sivi , −si , 0, 0, �ηi , 0 )B∗

t
,

return skS := (S, k∗
0, k

∗
1, . . . , k

∗
�).

Enc(pk, m, � := {(t, �xt := (1, xt ) ∈ F
2
q \{�0}) | 1 ≤ t ≤ d}) :

ω, ϕ0, ϕt , ζ
U←Fq for (t, �xt ) ∈ �,

c0 := (ω, 0, ζ, 0, ϕ0)B0 ,

2
︷ ︸︸ ︷

2
︷ ︸︸ ︷

2
︷ ︸︸ ︷

1
︷︸︸︷

ct := ( ω, ωxt , 0, 0, 0, 0, ϕt )Bt for (t, �xt ) ∈ �,

cd+1 := gζTm, ct� := (�, c0, {ct }(t,�xt )∈�, cd+1),

return ct�.

Dec(pk, skS := (S, k∗
0, k

∗
1, . . . , k

∗
�), ct� := (�, c0, {ct }(t,�xt )∈�, cd+1)) :

If S := (M, ρ) accepts � := {(t, �xt )}, then compute I and {αi }i∈I such that
�1 = ∑

i∈I αi Mi , where Mi is the i th row of M, and

I ⊆ {i ∈ {1, . . . , �} | [ρ(i) = (t, �vi ) ∧ (t, �xt ) ∈ � ∧ vi = xt ]
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∨ [ρ(i) = ¬(t, �vi ) ∧ (t, �xt ) ∈ � ∧ vi �= xt ] },
K := e(c0, k∗

0)
∏

i∈I ∧ ρ(i)=(t,�vi )
e(ct , k∗

i )
αi

∏

i∈I ∧ ρ(i)=¬(t,�vi )
e(ct , k∗

i )
αi /(vi−xt ),

return m′ := cd+1/K .

F.2. PE for Inner-Products

We describe a modified random dual orthonormal basis generator Gob′ below, which is
used as a subroutine in the proposed IPE scheme.

Gob
′(1λ, N ) : param′

V
:= (q,V,GT ,A, e)

R←Gdpvs(1λ, N ), ψ
U←F

×
q ,

X := (χi, j )
U←GL(N ,Fq ), (ϑi, j ) := ψ · (XT)−1, gT := e(G,G)ψ ,paramV := (param′

V
, gT ),

bi := ∑N
j=1 χi, j a j , B := (b1, . . . , bN ), b∗

i := ∑N
j=1 ϑi, j a j , B

∗ := (b∗
1, . . . , b

∗
N ),

return (paramV,B,B
∗).

F.2.1. Construction

In order to make a ciphertext shorter, we modify t = 1 space V := V1 by adding one
more dimension instead of using t = 0 space V0. This construction is similar to the IPE
construction in Section 3.5 in [32].
Here, we assume that the first coordinate, x1, of input vector, �x , is nonzero. We refer

to Sect. 1.5 for notations on DPVS.

Setup(1λ, n) : (paramV, B := (b0, . . . , b3n+1),B
∗ := (b∗

0, . . . , b
∗
3n+1))

R←Gob
′(1λ, 3n + 2),

B̂ := (b0, . . . , bn, b3n+1), B̂
∗ := (b∗

0, . . . , b
∗
n, b

∗
2n+1, . . . , b

∗
3n),

return pk := (1λ,paramV, B̂), sk := B̂
∗.

KeyGen(pk, sk, �v ∈ F
n
q ) : σ

U←Fq , �η U←F
n
q ,

1
︷︸︸︷

n
︷ ︸︸ ︷

n
︷ ︸︸ ︷

n
︷ ︸︸ ︷

1
︷︸︸︷

k∗ := ( 1, σ �v, 0n, �η, 0 )B∗ ,

return sk�v := k∗.

Enc(pk, m, �x ∈ F
n
q ) : ω, ϕ, ζ

U←Fq ,

1
︷︸︸︷

n
︷ ︸︸ ︷

n
︷ ︸︸ ︷

n
︷ ︸︸ ︷

1
︷︸︸︷

c1 := ( ζ, ω�x, 0n, 0n, ϕ )B, c2 := gζT m,

return ct�x := (c1, c2).

Dec(pk, sk�v := k∗, ct�x := (c1, c2)) : m′ := c2/e(c1, k∗),
return m′.

[Correctness] If �x · �v = 0, then e(c1, k∗) = gζ+ωσ �x ·�v
T = gζT .

Remark 5. The differences between the proposed IPE scheme and the IPE scheme in
[32] are:
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1. While the scheme in [32] employed a (2n + 3)-dimensional vector space, the
proposed scheme employs a (3n + 2)-dimensional one. The keys in [32] have
only one-dimensional randomness space, but those in our construction have n-
dimensional randomness space. The security assumption in [32] is the n-eDDH,
a non-standard (and non-static) assumption, while it is a standard (and static)
assumption, the DLIN, in our scheme. More precisely, the security of Problems
1 and 2 on a (2n + 3)-dimensional space is reduced to the n-eDDH assumption
in [32], while in the proposed scheme, the security of these problems on a (3n +
2)-dimensional space is reduced to the DLIN assumption. In other words, we
achieve the DLIN-based security (higher security) at the cost of increasing (n−1)
dimensions for the randomness space of keys (less efficiency).

2. While scalar ζ in a ciphertext c1 is a coefficient of the (2n + 1)th basis vector
b2n+1 in [32], it is that of 0th basis vector b0 here. It is just a change of notation,
i.e., not essential one.

F.2.2. (Weakly) Attribute-Hiding Security

The notion of adaptively weakly attribute-hiding security, where a type of key queries are
not allowed, and the advantage AdvIPE, wAHA (λ) of adversaryA are defined in Definition
17 of [32].

Theorem 5. The proposed IPE scheme is adaptively weakly attribute-hiding against
chosen-plaintext attacks under the DLIN assumption.
For any adversary A, there exist probabilistic machines E1 and E2, whose running

times are essentially the same as that of A, such that for any security parameter λ,

AdvIPE, wAHA (λ) ≤ AdvDLINE1 (λ)+
ν∑

h=1

AdvDLINE2,h (λ)+ ε,

where E2,h(·) := E2(h, ·), ν is the maximum number of A’s key queries and ε :=
(6ν + 5)/q.

We will employ Problem 1’ and Problem 2’ for the proof of Theorem 5, which are
almost the same as Problem 1 (in Definition 4) and Problem 2 (in Definition 5), respec-
tively. For completeness, we describe them and the security lemmas here.

Definition 24. (Problem 1’) Problem 1’ is to guess β, given (paramV,B, B̂
∗, eβ,1,

{ei }i=2,...,n)
R←GP1’

β (1λ, n), where

GP1’
β (1λ, n) : (paramV,B,B

∗) R←Gob′(1λ, 3n + 2),

B̂
∗ := (b∗

0, . . . , b
∗
n, b

∗
2n+1, . . . , b

∗
3n+1),

ω
U←Fq , �e1 := (1, 0n−1) ∈ F

n
q , �z U←F

n
q , γ

U←Fq ,
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1
︷︸︸︷

n
︷ ︸︸ ︷

n
︷ ︸︸ ︷

n
︷ ︸︸ ︷

1
︷︸︸︷

e0,1 := ( 0, ω�e1, 0n, 0n, γ )B,

e1,1 := ( 0, ω�e1, �z, 0n, γ )B,

ei := ωbi for i = 2, . . . , n,

return (paramV,B, B̂
∗, eβ,1, {ei }i=2,...,n),

for β
U←{0, 1}. For a probabilistic machine B, the advantage of B for Problem 1’,

AdvP1
′

B (λ), is similarly defined as in Definition 4.

Lemma 23. For any adversary B, there exist probabilistic machines E , whose running
times are essentially the same as that of B, such that for any security parameter λ,
AdvP1

′
B (λ) ≤ AdvDLINE (λ)+ 5/q.

The proof of Lemma 23 is similar to that of Lemma 1.

Definition 25. (Problem 2’) Problem 2’ is to guess β, given (paramV, B̂,B
∗,

{h∗
β,i , ei }i=1,...,n)

R←GP2’
β (1λ, n), where

GP2’
β (1λ, n) : (paramV,B,B

∗) R←Gob′(1λ, 3n + 2),

B̂ := (b0, . . . , bn, b2n+1, . . . , b3n+1),

δ, ω
U←Fq , τ

U←F
×
q ,

⎛

⎜
⎝

�z1
...

�zn

⎞

⎟
⎠ := Z

U←GL(n,Fq),

⎛

⎜
⎝

�u1
...

�un

⎞

⎟
⎠ := (Z−1)T,

for i = 1, . . . , n;
�ei := (0i−1, 1, 0n−i ) ∈ F

n
q ,

�δi U←F
n
q ,

1
︷︸︸︷

n
︷ ︸︸ ︷

n
︷ ︸︸ ︷

n
︷ ︸︸ ︷

1
︷︸︸︷

h∗
0,i := ( 0, δ�ei , 0n, �δi , 0 )B∗

h∗
1,i := ( 0, δ�ei , �ui , �δi , 0 )B∗

ei := ( 0, ω�ei , τ�zi , 0n, 0 )B,

return (paramV, B̂,B
∗, {h∗

β,i , ei }i=1,...,n),

for β
U←{0, 1}. For a probabilistic adversary B, the advantage of B for Problem 2’,

AdvP2
′

B (λ), is similarly defined as in Definition 4.

Lemma 24. For any adversary B, there exists a probabilistic machine E , whose run-
ning time is essentially the same as that of B, such that for any security parameter λ,
AdvP2’B (λ) ≤ AdvDLINE (λ)+ 5/q.

The proof of Lemma 24 is similar to that of Lemma 2.
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Proof of Theorem 5. To prove Theorem 5, we consider the following (ν + 3) games.
In Game 0, a part framed by a box indicates coefficients to be changed in a subsequent
game. In the other games, a part framed by a box indicates coefficients which were
changed in a game from the previous game.

Game 0 : Original game. That is, the reply to a key query for �v is:

k∗ := ( 1, σ �v, 0n , �η, 0 )B∗ ,

whereσ
U←Fq and �η ∈ F

n
q . The challenge ciphertext for challengeplaintexts (m

(0),m(1))

and vectors (�x (0), �x (1)) is:

c1 := ( ζ , ω�x (b) , 0n , 0n, ϕ )B, c2 := gζTm
(b),

where b
U←{0, 1}; ζ, ω, ϕ U←Fq .

Game 1 : Game 1 is the same as Game 0 except that c1 of the challenge ciphertext is:

c1 := ( ζ, ω�x (b), �r , 0n, ϕ )B,

where �r U←F
n
q , and all the other variables are generated as in Game 0.

Game 2-h (h = 1, . . . , ν): Game 2-0 is Game 1. Game 2-h is the same as Game
2-(h − 1) except the reply to the hth key query for �v is:

k∗ := ( 1, σ �v, �w , �η, 0 )B∗ ,

where �w U←F
n
q , and all the other variables are generated as in Game 2-(h − 1).

Game 3 : Game 3 is the same as Game 2-ν except that c1 of the challenge ciphertext
is

c1 := ( ζ ′ , �x ′ , �r , 0n, ϕ )B, c2 := gζTm
(b),

where ζ ′ U←Fq , �x ′ U←F
n
q (i.e., independent from b

U←{0, 1}), and all the other variables
are generated as in Game 2-ν.
LetAdv(0)A (λ),Adv(1)A (λ),Adv(2−h)

A (λ) andAdv(3)A (λ) be the advantage ofA in Game

0, 1, 2 − h, and 3, respectively. Adv(0)A (λ) is equivalent to AdvIPE,wAHA (λ) and it is

obtained that Adv(3)A (λ) = 0 by Lemma 28.
We will show three lemmas (Lemmas 25–27) that evaluate the gaps between pairs of

Adv(0)A (λ),Adv(1)A (λ),Adv(2−h)
A (λ) for h = 1, . . . , ν andAdv(3)A (λ). From these lemmas

and Lemmas 23 and 24, we obtain



Fully Secure Functional Encryption with a Large Class 1561

AdvIPE, wAHA (λ) = Adv(0)A (λ) ≤
∣
∣
∣Adv(0)A (λ)− Adv(1)A (λ)

∣
∣
∣ +

ν∑

h=1

∣
∣
∣Adv(2−(h−1))

A (λ)− Adv(2−h)
A (λ)

∣
∣
∣

+
∣
∣
∣Adv(2−ν)A (λ)− Adv(3)A (λ)

∣
∣
∣ + Adv(3)A (λ)

≤ AdvP1’B1
(λ)+

ν∑

h=1

AdvP2
′

B2,h
(λ)+ ν/q ≤ AdvDLINE1

(λ)+
ν∑

h=1

AdvDLINE2,h
(λ)+ (6ν + 5)/q.

This completes the proof of Theorem 5. �

Lemma 25. For any adversary A, there exists a probabilistic machine B1, whose
running time is essentially the same as that of A, such that for any security parameter
λ, |Adv(0)A (λ)− Adv(1)A (λ)| = AdvP1’B1

(λ).

Proof. In order to prove Lemma 25, we construct a probabilistic machine B1 against
Problem 1’ by using any adversary A in a security game (Game 0 or 1) as a black box.
The construction of B1 is the same as the machine B0 in the proof of Lemma 24 in

[32] except for step 5. In the step, when B1 gets challenge plaintexts (m(0),m(1)) and
challenge attributes (�x (0), �x (1)) (from A), B1 calculates and returns (c1, c2) such that
c1 := ζ b0 + x (b)1 eβ,1 + ∑n

i=2 x
(b)
i ei and c2 := gζTm

(b) where e1 and {ei }i=2,...,n are

from the Problem 1’ instance B1 obtained, ζ
U←Fq and b

U←{0, 1}.
Similar to Lemma 24 in [32], if β = 0, the distribution of (c1, c2) generated in step

5 is the same as that in Game 0. If β = 1, the distribution of (c1, c2) generated in step 5
is the same as that in Game 1.
Therefore, |Adv(0)A (λ) − Adv(1)A (λ)| = AdvP1’B1

(λ). This completes the proof of
Lemma 25. �

Lemma 26. For any adversary A, there exists a probabilistic machine B2, whose
running time is essentially the same as that of A, such that for any security parameter
λ, |Adv(2−(h−1))

A (λ)− Adv(2−h)
A (λ)| ≤ AdvP2’B2,h

(λ)+ 1
q , where B2,h(·) := B2(h, ·).

Proof. In order to prove Lemma 26, we construct a probabilistic machine B2 against
Problem 2’ by using any adversary A in a security game (Game 2-(h − 1) or 2-h) as a
black box.
The construction of B2 is the same as the machine B(:= Bk) in the proof of Lemma

25 in [32] except for the order of basis vectors. That is, while in the IPE scheme in [32],
scalar ζ is a coefficient of the (2n + 1)th basis vector b2n+1 in c1, in our IPE scheme,
the scalar ζ is that of the 0th basis vector b0 in c1 (item 2 of Remark 5). Except for
such a notational difference, the simulation of B2 is the same as that of B in the proof
of Lemma 25 in [32].
Similar to Lemma 25 in [32], the pair of secret key k∗ generated in case (b) of step

4 or 6 and ciphertext c1 generated in step 5 has the same distribution as that in Game
2-(h − 1) (resp.Game 2-h) when β = 0 (resp.β = 1) except with probability 1

q .

Therefore, |Adv(2−(h−1))
A (λ)− Adv(2−h)

A (λ)| ≤ AdvP2’B2,h
(λ)+ 1

q . This completes the
proof of Lemma 26. �
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Lemma 27. For any adversary A, Adv(2−ν)A (λ) = Adv(3)A (λ).

Proof. ToproveLemma27,wewill showdistribution (paramV, B̂, {k( j)∗} j=1,...,ν , c1, c2)
in Game 2-ν and that in Game 3 are equivalent. The proof is the same as that of Lemma
26 in [32] (except for a notational difference in item 2 of Remark 5). �

Lemma 28. For any adversary A, Adv(3)A (λ) = 0.

Proof. The value of b is independent from the adversary’s view in Game 3. Hence,
Adv(3)A (λ) = 0. �

G. HIPE Schemes

We will show two hierarchical IPE (HIPE) schemes in this appendix. The first one is
more efficient but payload-hiding (“Appendix G.3”), and the second one is (weakly)
attribute-hiding but less efficient (“Appendix G.4”), where these two schemes employ
different delegation mechanisms.

G.1. Key Idea in Constructing the Proposed HIPEs

Both schemes (without delegations) are constructed from the KP-FE scheme in Sect. 4
by specializing the policy to be �-out-of-� threshold access structures.

Let N := 2(
∑d

t=1 nt ) + 3. The HIPE scheme in [32] employs one (large) vector
space of dimension N , where public basis B and (master) secret basis B∗ consists of
N 2 elements in the pairing group G. It leads to that KeyGen and Enc require O(N 2)

scalar multiplications, i.e., they become relatively slow. Our schemes are constructed
using separated spaces V0,V1, . . .Vd with dimensions 5 and 3nt + 1 for t = 1, . . . , d
(see Sect. 4). Hence, the data sizes of dual bases {Bt ,B

∗
t }t=0,1,...,d are O(

∑d
t=1 n

2
t ), and

then functions KeyGen and Enc become more efficient than those in [32], where the
sizes of the dual bases are O((

∑d
t=1 nt )

2).
The HIPE scheme in “Appendix G.3” makes {B∗

t }t=0,...,d public except b∗
0,3, which is

denoted by {B̂∗
t }t=0,...,d , and Delegate uses {B̂∗

t }t=0,...,d . Master secret key is only one
vector b∗

0,3. Since most of keys for delegation are public, secret key sk� can be small
(compared to those in [32]). The scheme, however, cannot be attribute-hiding for �xt for
any level t = 1, . . . , d, because {b∗

t,1, . . . , b
∗
t,nt }t=1,...,d ⊂ B̂

∗
t are public.

To achieve both attribute-hiding and key delegatability, a (level-�) secret key of
the HIPE scheme in “Appendix G.4”, sk�, consists of 3 types of vector elements,
k∗
�,dec, k

∗
�,del,·, k

∗
�,ran,· as in the HIPE scheme [32]. Element k∗

�,dec is used for decryp-
tion, k∗

�,del,· is used for delegation, i.e., for embedding any level-(�+ 1) vector �v�+1 in
delegated key sk�+1, and k∗

�,ran,· is used for re-randomization of a level-(�+1) key, i.e.,
for making the distribution of a delegated key equal to that of a freshly generated key
(see “Appendix G.4.2”). The secret key size is larger than that in “Appendix G.3” due
to the additional elements, k∗

�,del,· and k∗
�,ran,·.
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G.2. Special Notations for the Proposed HIPEs

To express our delegation mechanisms in the HIPEs compactly, we will introduce new
notations, here.

Sinceweusedual orthonormal basis generatorGob given inSect. 2.1, X0
U←GL(5,Fq)

and Xt
U←GL(3nt + 1,Fq) for t = 1, . . . , d. By arranging the matrices X0, X1, . . . Xd

diagonally and other off-diagonal parts are zero, we consider a special from of bases
generation matrix X ∈ F

N×N
q with N := 5 + ∑d

t=1(3nt + 1), where

X :=

⎛

⎜
⎜
⎜
⎝

X0
X1

. . .

Xd

⎞

⎟
⎟
⎟
⎠
,

and our HIPEs are constructed on the one vector space V (∼= G
N ) with special bases

induced by X . In other words, the matrix X gives direct sum decomposition V ∼=
V0 ⊕ V1 ⊕ · · · ⊕ Vd (resp.V∗ ∼= V

∗
0 ⊕ V

∗
1 ⊕ · · · ⊕ V

∗
d ), where Vt := span〈Bt 〉

(resp.V∗
t := span〈B∗

t 〉) for t = 0, . . . , d. Based on this isomorphism, i.e., embedding
of Vt (resp.V∗

t ) in V (resp.V∗), we define the following notations as:

((�x0)B0 , . . . , (�xd)Bd )+ ((�y0)B0 , . . . , (�yd)Bd ) := ((�x0 + �y0)B0 , . . . , (�xd + �yd)Bd )

where ((�x0)B0 , . . . , (�xd)Bd ), ((�y0)B0 , . . . , (�yd)Bd ) ∈ V ∼= V0 ⊕ V1 ⊕ · · · ⊕ Vd ,

(�x)Bt := ((�0)B0 , · · · , (�0)Bt−1, (�x)Bt , (
�0)Bt+1, · · · , (�0)Bd ) ∈ V,

((�x0)B0 , (�xt )Bt : t = 1, . . . , �) := ((�x0)B0 , . . . , (�x�)B� ) := ∑�
t=0(�xt )Bt ∈ V,

((�x0)B0 , (�xt )Bt : t = 1, . . . , �, (�xτ )Bτ ) := ((�x0)B0 , . . . , (�x�)B� , (�xτ )Bτ )
:= ∑

t=0,...,�,τ (�xt )Bt ∈ V,

e(c, k∗) := ∏d
t=0 e(ct , k

∗
t ) where c := (c0, . . . , cd) ∈ V0 ⊕ · · · ⊕ Vd ,

k∗ := (k∗
0, . . . , k

∗
d) ∈ V

∗
0 ⊕ · · · ⊕ V

∗
d ,

and �et, j := (

j−1
︷ ︸︸ ︷
0, . . . , 0, 1,

nt− j
︷ ︸︸ ︷
0, . . . , 0) ∈ F

nt
q ,

and all the above notations are applied to the casewith {B∗
t }t=0,...,d instead of {Bt }t=0,...,d

G.3. Efficient Payload-Hiding HIPE Scheme

G.3.1. Construction
Setup(1λ, �n := (d; n1, . . . , nd)) : (param�n, {Bt ,B

∗
t }t=0,...,d)

R←Gob(1λ, �n),
B̂0 := (b0,1, b0,3, b0,5), B̂t := (bt,1, .., bt,nt , bt,3nt+1) for t = 1, .., d,

B̂
∗
0 := (b∗

0,1, b
∗
0,4), B̂

∗
t := (b∗

t,1, .., b
∗
t,nt , b

∗
t,2nt+1, .., b

∗
t,3nt ) for t = 1, .., d,

return pk := (1λ,param�n, {B̂t , B̂
∗
t }t=0,...,d), sk := b∗

0,3.

KeyGen(pk, sk, (�v1, . . . , �v�) ∈ F
n1
q × · · · × F

n�
q ) :
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st , θt
U←Fq for t = 1, . . . , �, s0 :=

�∑

t=1

st , �ηt U←F
nt
q for t = 0, . . . , �,

k∗
� := ( ( −s0, 0, 1, η0, 0 )B∗

0
, ( st �et,1 + θt �vt , 0nt , �ηt , 0 )B∗

t
: t = 1, . . . , �),

return sk� := ((�v1, . . . , �v�), k∗
�).

Enc(pk,m ∈ GT , (�x1, . . . , �x�) ∈ F
n1
q × · · · × F

n�
q ) :

ω, ϕ0, . . . , ϕ�
U←Fq , c1 :=( (ω, 0, ζ, 0, ϕ0)B0 , (ω�xt , 0nt , 0nt , ϕt )Bt : t=1, . . . , �),

c2 := gζTm, ct := (c1, c2), return ct.

Dec(pk, k∗
�,dec, ct) : m′ := c2/e(c1, k∗

�,dec), return m′.
Delegate�(pk, sk�, �v�+1 ∈ F

n�+1
q ) :

sdel,t , θdel,t
U←Fq for t = 1, . . . , �+ 1, sdel,0 :=

�+1∑

t=1

sdel,t ,

�ηdel,t U←F
nt
q for t = 0, . . . , �+ 1,

k∗
del := ( ( −sdel,0, 0, 0, ηdel,0, 0 )B∗

0
,

( sdel,t �et,1 + θdel,t �vt , 0nt , �ηdel,t , 0 )B∗
t

: t = 1, . . . , �+ 1),

k∗
�+1 := k∗

� + k∗
del,

return sk�+1 := ((�v1, . . . , �v�+1), k∗
�+1).

G.3.2. Security

The definition of adaptively payload-hiding security and the advantage AdvHIPE, PHA (λ)

of adversary A can be obtained through a straightforward extension of that of HIBE,
e.g., [25], with replacing ID-matching by vector-orthogonality.

Theorem 6. The proposed HIPE scheme is adaptively payload-hiding against chosen-
plaintext attacks under the DLIN assumption.
For any adversary A, there exist probabilistic machines, E1 and E2, whose running

times are essentially the same as that of A, such that for any security parameter λ,

AdvHIPE, PHA (λ) ≤ AdvDLINE1 (λ)+
ν∑

h=1

AdvDLINE2,h (λ)+ ε,

where E2,h(·) := E2(h, ·), ν is the maximum number of adversary A’s key queries, and
ε = (dν + 8ν + d + 7)/q.

Proof Outline of Theorem 6: To prove Theorem 6, we consider the following (ν + 3)
games. In Game 0, a part framed by a box indicates coefficients to be changed in a
subsequent game. In the other games, a part framed by a box indicates coefficients
which were changed in a game from the previous game.
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Game 0 : Original game. That is, the reply to a key query consists of:

k∗
� := ( ( −s0, 0 , 1, η0, 0 )B∗

0
, ( st �et,1 + θt �vt , 0nt , �ηt , 0 )B∗

t
: t = 1, . . . , �).

The challenge ciphertext consists of:

c1 := ( (ω, 0 , ζ , 0, ϕ0)B0 , (ω�xt , 0nt , 0nt , ϕt )Bt : t = 1, . . . , � ), c2 := gζTm.

Game 1 : Game 1 is the same as Game 0 except the following procedures.

1. When a create key query is issued by A, the challenger of the game only records
the specified predicates, and when a create delegated key query is issued, the
challenger only records the specified keys and predicates. In this step, just the
query is recorded, but no corresponding key is created.

2. When a reveal key query is issued for a hierarchical (level-�) predicate (�v1, . . . , �v�)
which has been already recorded, the challenger creates the queried key by using
KeyGen.

Game 2 : Same as Game 1 except that the challenge ciphertext is:

c1 := ( (ω, w0 , ζ, 0, ϕ0)B0 , (ω�xt , �wt , 0
nt , ϕt )Bt : t = 1, . . . , � ), c2 := gζTm,

where w0
U←Fq , �wt

U←F
nt
q .

Game 3-h (h = 1, . . . , ν) : Game 3-0 is Game 2. Game 3-h is the same as Game
3-(h − 1) except that the hth reveal key query’s reply, k∗

� , is:

k∗
� := ( ( −s0, r0 , 1, η0, 0 )B∗

0
, ( st �et,1 + θt �vt , �rt , �ηt , 0 )B∗

t
: t = 1, . . . , �),

where r0
U←Fq , �rt U←F

nt
q for t = 1, . . . , �, and the other variables are generated as in

Game 3-(h − 1).

Game 4 : Game 4 is the same as Game 3-ν except that the challenge ciphertext is:

c1 := ( (ω,w0, ζ
′ , 0, ϕ0)B0 , (ω�xt , �wt , 0

nt , ϕt )Bt : t = 1, . . . , � ), c2 := gζTm,

where ζ, ζ ′ U←Fq .

Let Adv(0)A (λ), Adv(1)A (λ),Adv(2)A (λ), Adv(3-h)A (λ) and Adv(4)A (λ) be the advantage of

A in Game 0, Game 1, Game 2, Game 3-h andGame 4. It is obtained thatAdv(4)A (λ) = 0.
We can evaluate the gaps between pairs of the above advantages using Problems 1

and 2 as in the proof of Theorem 1. �
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G.4. Attribute-Hiding HIPE Scheme

G.4.1. Construction

Setup(1λ, �n := (d; n1, . . . , nd )) : (param�n, {Bt ,B
∗
t }t=0,...,d )

R←Gob(1λ, �n),
B̂0 := (b0,1, b0,3, b0,5), B̂t := (bt,1, .., bt,nt , bt,3nt+1) for t = 1, .., d,

B̂
∗
0 := (b∗

0,1, b
∗
0,3), B̂

∗
t := (b∗

t,1, .., b
∗
t,nt ) for t = 1, .., d,

return pk := (1λ, param�n, {B̂t }t=0,...,d , b∗
0,4, {b∗

t,2nt+1, .., b
∗
t,3nt }t=1,...,d ), sk := {B̂∗

t }t=0,...,d .

KeyGen(pk, sk, (�v1, . . . , �v�) ∈ F
n1
q × · · · × F

n�
q ) :

for j = 1, . . . , 2�; τ = �+ 1, . . . , d; ι = 1, . . . , nτ ;
ψ, sdec,t , sran,1, j,t , θdec,t , θran,1, j,t

U←Fq for t = 1, . . . , �,

sdel,(τ,ι),t , sran,2,τ,t , θdel,(τ,ι),t , θran,2,τ,t
U←Fq for t = 1, . . . , �+ 1,

sdec,0 := ∑�
t=1 sdec,t , sdel,(τ,ι),0 := ∑�+1

t=1 sdel,(τ,ι),t ,

sran,1, j,0 := ∑�
t=1 sran,1, j,t , sran,2,τ,0 := ∑�+1

t=1 sran,2,τ,t ,

�ηdec,t , �ηran,1, j,t U←F
nt
q for t = 0, . . . , �,

�ηdel,(τ,ι),t , �ηran,2,τ,t U←F
nt
q , for t = 0, . . . , �+ 1,

k∗
�,dec := ( ( −sdec,0, 0, 1, ηdec,0, 0 )B∗

0
,

( sdec,t �et,1 + θdec,t �vt , 0nt , �ηdec,t , 0 )B∗
t

: t = 1, . . . , �),

k∗
�,del,(τ,ι) := ( ( −sdel,(τ,ι),0, 0, 0, ηdel,(τ,ι),0, 0 )B∗

0
,

( sdel,(τ,ι),t �et,1 + θdel,(τ,ι),t �vt , 0nt , �ηdel,(τ,ι),t , 0 )B∗
t

: t = 1, . . . , �,

( sdel,(τ,ι),�+1�eτ,1 + ψ �eτ,ι, 0nτ , �ηdel,(τ,ι),�+1, 0 )B∗
τ
),

k∗
�,ran,1, j := ( ( −sran,1, j,0, 0, 0, ηran,1, j,0, 0 )B∗

0
,

( sran,1, j,t �et,1 + θran,1, j,t �vt , 0nt , �ηran,1, j,t , 0 )B∗
t

: t = 1, . . . , �),

k∗
�,ran,2,τ := ( ( −sran,2,τ,0, 0, 0, ηran,2,τ,0, 0 )B∗

0
,

( sran,2,τ,t �et,1 + θran,2,τ,t �vt , 0nt , �ηran,2,τ,t , 0 )B∗
t

: t = 1, . . . , �,

( sran,2,τ,�+1�eτ,1, 0nτ , �ηran,2,τ,�+1, 0 )B∗
τ
),

sk� := (k∗
�,dec, {k∗

�,del,(τ,ι)}τ=�+1,...,d; ι=1,...,nτ , {k∗
�,ran,1, j , k∗

�,ran,2,τ } j=1,...,2�; τ=�+1,...,d ),

return sk�.

Enc(pk,m ∈ GT , (�x1, . . . , �x�) ∈ F
n1
q × · · · × F

n�
q ) :

ω, ϕ0, . . . , ϕ�
U←Fq , c1 := ( (ω, 0, ζ, 0, ϕ0)B0 , (ω�xt , 0nt , 0nt , ϕt )Bt : t = 1, . . . , �),

c2 := gζT m, ct := (c1, c2), return ct.

Dec(pk, k∗
�,dec, ct) : m′ := c2/e(c1, k∗

�,dec), return m′.
Delegate�(pk, sk�, �v�+1 := (v�+1,1, . . . , v�+1,n�+1 )) :
for j ′ = 1, . . . , 2(�+ 1); τ = �+ 2, . . . , d; ι = 1, . . . , nτ ;
φdel,(τ,ι), φran,2,τ , ψ

′ U←Fq ,

p∗
dec, p

∗
del,(τ,ι), p

∗
ran,1, j ′ , p

∗
ran,2,τ

R←CoreDel�(pk, sk�, �v�+1),

where CoreDel�(pk, sk�, �v�+1) : σ, α j
U←Fq for j = 1, . . . , 2�+ 1,

return p∗ := σ(
∑n�+1

i=1 v�+1,i k∗
�,del,(�+1,i))+ ∑2�

j=1 α j k∗
�,ran,1, j + α2�+1k∗

�,ran,2,�+1,

r∗
dec, r

∗
ran,1, j ′

U← span〈b∗
0,4, {b∗

t,2nt+i }t=1,...,�+1; i=1,...,nt 〉,
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r∗
del,(τ,ι), r

∗
ran,2,τ

U← span〈b∗
0,4, {b∗

t,2nt+i }t=1,...,�+1,τ ; i=1,...,nt 〉,
k∗
�+1,dec := k∗

�,dec + p∗
dec + r∗

dec,

k∗
�+1,del,(τ,ι) := p∗

del,(τ,ι) + φdel,(τ,ι)k
∗
�,ran,2,τ + ψ ′k∗

�,del,(τ,ι) + r∗
del,(τ,ι),

k∗
�+1,ran,1, j ′ := p∗

ran,1, j ′ + r∗
ran,1, j ′ ,

k∗
�+1,ran,2,τ := p∗

ran,2,τ + φran,2,τ k∗
�,ran,2,τ + r∗

ran,2,τ ,

sk�+1 := (k∗
�+1,dec, {k∗

�+1,del,(τ,ι)}τ=�+2,...,d; ι=1,...,nτ , {k∗
�,ran,1, j ′ , k∗

�,ran,2,τ } j ′=1,...,2(�+1); τ=�+2,...,d ),

return sk�+1.

G.4.2. Equivalence of Delegated and Freshly Generated Keys

Lemma 29. If sk� is generated by KeyGen(pk, sk, (�v1, . . . , �v�)), the distribution of
sk�+1 generated byDelegate(pk, sk�, �v�+1) is equivalent to that of sk�+1 generated by
KeyGen(pk, sk, (�v1, . . . , �v�, �v�+1)) except with probability at most (2d − 2�+ 3)/q.

Proof. The distribution of (a part of) level-� key k∗
�,J for J = dec, (ran, 1, 1),

. . . , (ran, 1, 2�) is represented by that of the 2� coefficients, (sJ,1, . . . , sJ,�, θJ,1, . . . ,
θJ,�), of (�e1,1, . . . , �e�,1, �v1, . . . , �v�) (and random-part coefficients, �ηJ,t ). The distri-
bution of level-� key k∗

�,J for J = (del, (� + 1, 1)), . . . , (del, (d, nd)) (resp. J =
(ran, 2, � + 1), . . . , (ran, 2, d)) is represented by that of the 2� + 2 (resp. 2� + 1)
coefficients, (sJ,1, . . . , sJ,�, sJ,τ , θJ,1, . . . , θJ,�, ψ), of (�e1,1, . . . , �e�,1, �eτ,1, �v1, . . . , �v�,
�eτ,ι) (resp. (sJ,1, . . . , sJ,�, sJ,τ , θJ,1, . . . , θJ,�), of (�e1,1, . . . , �e�,1, �eτ,1, �v1, . . . , �v�)) (and
random-part coefficients, �ηJ,t ).
Similarly, the distribution of level-(� + 1) key k∗

�+1,J is represented by that of the
2(�+1), 2(�+1)+2 or 2(�+1)+1 coefficients, �yJ := (sJ,1, . . . , sJ,�, θJ,1, . . . , θJ,�),
(sJ,1, . . . , sJ,�, sJ,τ , θJ,1, . . . , θJ,�, ψ), or (sJ,1, . . . , sJ,�, sJ,τ , θJ,1, . . . , θJ,�).
Claim 3 shows the coefficients of delegated key is uniformly distributed in the first

case.
�

Claim 3. If sk� is generated by KeyGen(pk, sk, (�v1, . . . , �v�)), the distribution of
k∗
�+1,ran,1, j ′ generated in Delegate(pk, sk�, �v�+1) is equivalent to that of k∗

�+1,ran,1, j ′
generated by KeyGen(pk, sk, (�v1, . . . , �v�, �v�+1)) except with probability at most 3/q.

Proof of Claim 3. The distribution of k∗
�,J (J = (del, (τ, ι)), (ran, 1, j), (ran, 2, τ ))

in sk� is represented by 2�+ 1-dimensional vectors as (except for ψ):

�y�,J := (s�,J,1, . . . , s�,J,�, s�,J,τ , θ�,J,1, . . . , θ�,J,�) if J = (del, (τ, ι)),

:= (s�,J,1, . . . , s�,J,�, 0, θ�,J,1, . . . , θ�,J,�) if J = (ran, 1, j),

:= (s�,J,1, . . . , s�,J,�, s�,J,τ , θ�,J,1, . . . , θ�,J,�) if J = (ran, 2, τ ).

The coefficients �y�+1,ran,1, j ′ of k
∗
�+1,ran,1, j ′ except for that of �v�+1 are given as:

�y�+1,ran,1, j ′ := (s�+1,ran,1, j ′,1, . . . , s�+1,ran,1, j ′,�+1, θ�+1,ran,1, j ′,1, . . . , θ�+1,ran,1, j ′,�)

= σran,1, j ′
∑n�+1

i=1 v�+1,i �y�,del,(�+1,i) + ∑2�
j=1 αran,1, j ′, j �y�,ran,1, j + αran,1, j ′,2�+1 �y�,ran,2,�+1

= σran,1, j ′
∑n�+1

i=1 v�+1,i �y�,del,(�+1,i) + �αran,1, j ′ · Y�,ran ∈ F
2�+1
q ,
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where �αran,1, j ′ := (αran,1, j ′,1, . . . , αran,1, j ′,2�, αran,1, j ′,2�+1)
U←F

2�+1
q ,

Y�,ran :=

⎛

⎜
⎜
⎜
⎝

�y�,ran,1,1
.
.
.

�y�,ran,1,2�
�y�,ran,2,�+1

⎞

⎟
⎟
⎟
⎠

∈ F
(2�+1)×(2�+1)
q .

Moreover, the coefficient of �v�+1 in kran,1, j
′
of level-(�+1) is givenby θ�+1,ran,1, j ′,�+1 :=

σran,1, j ′ · ψ , where ψ is given in the level-� key and σran,1, j ′ is generated in CoreDel�
in the delegation.
We consider the joint distribution of �y�+1,ran,1, j ′ and θ�+1,ran,1, j ′,�+1,

i.e., {s�+1,ran,1, j ′,t , θ�+1,ran,1, j ′,t }t=1,...,�+1.

If the matrix Y�,ran is regular andψ �= 0, since �αran,1, j ′ U←F
2�+1
q , σran,1, j ′

U←Fq , and
variables �αran,1, j ′ ·Y�,ran andσran,1, j ′ ·ψ are independent, (�y�+1,ran,1, j ′ , θ�+1,ran,1, j ′,�+1)

∈ F
2(�+1)
q for j ′ = 1, . . . , 2(� + 1) are uniformly and independently distributed in

F
2(�+1)
q .
Here, Y�,ran ((2� + 1) × (2� + 1) matrix) of sk� is regular and ψ �= 0 except with

probability at most 2/q + 1/q = 3/q, from Claim 4. �

Since k∗
�+1,ran,1, j ′ +b∗

0,3 ( j
′ = 1, . . . , 2(�+1)) has the same distribution as k∗

�+1,dec,
Lemma 29 holds for k∗

�+1,dec from Claim 3.
For k∗

�+1,ran,2,τ (τ = � + 2, . . . , d), the level-(� + 1) coefficient s�+1,ran,2,τ,�+1 of
�eτ,1 is given by φran,2,τ · s�,ran,2,τ,�+1 where φran,2,τ is generated in Delegate� and
s�,ran,2,τ,�+1 the level-� coefficient of �eτ,1. Therefore, Lemma 29 holds for k∗

�+1,ran,2,τ
from Claim 3 except for negligible probability, i.e., at most (d − �)/q.

Since k∗
�+1,ran,2,τ +ψb∗

τ,ι (τ = �+2, . . . , d; ι = 1, . . . , nτ ) has the same distribution
as k∗

�+1,del,(τ,ι), Lemma 29 holds for k∗
�+1,del,(τ,ι) from Claim 3 except for negligible

probability, i.e., at most (d − �+ 1)/q.
Therefore, Lemma 29 holds except for negligible probability, i.e., at most (2d − 2�+

3)/q.
�

Claim 4. (Claim 4 in [32]) Let q > 2 and � := {M | det M �= 0} ⊂ F
l×l
q . Then,

|�|
ql2

< 2
q .

G.4.3. Security

The definition of adaptively weakly attribute-hiding security and the advantage
AdvHIPE, wAHA (λ) of adversary A are shown in Definition 47 of the full version of [32].
In the definition, the levels � and �′ of the two challenge vectors given by an adversary,
(�x (0)i )i=1,...,� and (�x (1)i )i=1,...,�′ , can be different, i.e., � �= �′ is allowed. The proposed
HIPE scheme only satisfies the security definition under the restriction that � = �′.
Here, this restricted security ensures the anonymity of attributes of a ciphertext but with
revealing the number of levels of attributes, while the security definition in [32] ensures
the anonymity of attributes as well as the number of levels. (The HIPE scheme in [32]
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satisfies the unrestricted security.) Our scheme can bemodified to satisfy the unrestricted
security in [32] as: when generating a ciphertext in Enc, input vectors (�xi )i=1,...,� are
padded with random vectors (�xi )i=�+1,...,d for a maximum level d, in the same manner
as the HIPE in [32].

Theorem 7. The proposed HIPE scheme is adaptively weakly attribute-hiding against
chosen-plaintext attacks under the DLIN assumption.
For any adversary A, there exist probabilistic machines, E1 and E2, whose running

times are essentially the same as that of A, such that for any security parameter λ,

AdvHIPE, wAHA (λ) < AdvDLINE1 (λ)+
ν∑

h=1

L∑

I=1

AdvDLINE2,(h,I ) (λ)+ ε,

where E2,(h,I )(·) := E2((h, I ), ·) (h = 1, . . . , ν; I = 1, . . . , L), ν is the maximum
number of adversary A’s key queries, L := d + 2 + ∑d

τ=2 nτ , and ε = ((d + 8)Lν +
3d + 8)/q.

Proof Outline of Theorem 7: To prove Theorem 7, we consider the following (Lν+ 3)
games. In Game 0, a part framed by a box indicates coefficients to be changed in a
subsequent game. In the other games, a part framed by a box indicates coefficients
which were changed in a game from the previous game.

Game 0 : Original game. That is, the reply to a key query consists of:

k∗
�,dec := ( ( −sdec,0, 0 , 1, ηdec,0, 0 )B∗

0
,

( sdec,t �et,1 + θdec,t �vt , 0nt , �ηdec,t , 0 )B∗
t

: t = 1, . . . , �),

k∗
�,del,(τ,ι) := ( ( −sdel,(τ,ι),0, 0 , 0, ηdel,(τ,ι),0, 0 )B∗

0
,

( sdel,(τ,ι),t �et,1 + θdel,(τ,ι),t �vt , 0nt , �ηdel,(τ,ι),t , 0 )B∗
t

: t = 1, . . . , �,

( sdel,(τ,ι),�+1�eτ,1 + ψ �eτ,ι, 0nτ , �ηdel,(τ,ι),�+1, 0 )B∗
τ
),

k∗
�,ran,1, j := ( ( −sran,1, j,0, 0 , 0, ηran,1, j,0, 0 )B∗

0
,

( sran,1, j,t �et,1 + θran,1, j,t �vt , 0nt , �ηran,1, j,t , 0 )B∗
t

: t = 1, . . . , �),

k∗
�,ran,2,τ := ( ( −sran,2,τ,0, 0 , 0, ηran,2,τ,0, 0 )B∗

0
,

( sran,2,τ,t �et,1 + θran,2,τ,t �vt , 0nt , �ηran,2,τ,t , 0 )B∗
t

: t = 1, . . . , �,

( sran,2,τ,�+1�eτ,1, 0nτ , �ηran,2,τ,�+1, 0 )B∗
τ
).

The challenge ciphertext consists of:

c1 := ( (ω, 0 , ζ , 0, ϕ0)B0 , ( ω�xt , 0nt , 0nt , ϕt )Bt : t = 1, . . . , � ),

c2 := gζTm.
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Remark 6. In the following, queried keys, k∗
�,J for J ∈ {dec, (del, (τ, ι)), (ran, 1, j),

(ran, 2, τ ) | j = 1, . . . , 2�, τ = �+ 1, . . . , d, ι = 1, . . . , nτ }, are described in a unified
way as:

k∗
�,J := ( ( −sJ,0, 0 , 1, ηJ,0, 0 )B∗

0
,

( sJ,t �et,1 + θJ,t �vt , 0nt , �ηJ,t , 0 )B∗
t

: t = 1, . . . , �

( sJ,�+1�eτ,1 + ψ̃ �eτ,ι, 0nτ , �ηJ,�+1, 0 )B∗
τ
),

where sJ,�+1 := 0, �ηJ,�+1 := 0nτ if J = dec, (ran, 1, j),

ψ̃ := ψ if J = (del, (τ, ι)), ψ̃ := 0 otherwise,

and all the other variables, i.e., sJ,·, θJ,· for J �= dec, (ran, 1, j), are defined in the
description of Game 0. (This notation is well-defined when J = dec, (ran, 1, j) and
τ = �+ 1, . . . , d.)

Game 1 : Game 1 is the same as Game 0 except the following procedures.

1. When a create key query is issued by A, the challenger of the game only records
the specified predicates, and when a create delegated key query is issued, the
challenger only records the specified keys and predicates. In this step, just the
query is recorded, but no corresponding key is created.

2. When a reveal key query is issued for a hierarchical (level-�) predicate (�v1, . . . , �v�)
which has been already recorded, the challenger creates the queried key by using
KeyGen.

Game 2 : Same as Game 1 except that the challenge ciphertext is:

c1 := ( (ω, w0 , ζ, 0, ϕ0)B0 , (ω�xt , �wt , 0nt , ϕt )Bt : t = 1, . . . , � ),

c2 := gζTm,

where w0
U←Fq , �wt

U←F
nt
q .

Game 3-(h, J) (h = 1, . . . , ν; J∈� := {dec, (del, (τ, ι)), (ran, 1, j), (ran, 2, τ ) |
j = 1, . . . , 2�, τ = � + 1, . . . , d, ι = 1, . . . , nτ }) : Index J is incremented in the
lexicographic order given in the description of �. Game 3-(1, 0) is Game 2. Game
3-(h, (ran, 2, d)) is Game 3-(h + 1, 0).

Game 3-(h, J ) is the same as Game 3-(h, J − 1) except that the J th key, k∗
�,J : in the

hth reveal key query’s reply is:

k∗
�,J := ( ( −sJ,0, rJ,0 , 1, ηJ,0, 0 )B∗

0
,

( sJ,t �et,1 + θJ,t �vt , �rJ,t , �ηJ,t , 0 )B∗
t

: t = 1, . . . , �

( sJ,�+1�eτ,1 + ψ̃ �eτ,ι, �rJ,τ , �ηJ,�+1, 0 )B∗
τ
),
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where rJ,0
U←Fq , �rJ,t U←F

nt
q for t = 1, . . . , �, τ , and the other variables are generated

as in Game 3-(h, J − 1).

Game 4 : Game 4 is the same as Game 3-(ν, (ran, 2, d) except that the challenge
ciphertext is:

c1 := ( (ω,w0, ζ
′ , 0, ϕ0)B0 , ( �x ′

t , �wt , 0nt , ϕt )Bt : t = 1, . . . , � ),

c2 := gζTm,

where ζ, ζ ′ U←Fq , �x ′
t

U←F
nt
q .

Let Adv(0)A (λ), Adv(1)A (λ),Adv(2)A (λ), Adv(3-(h,J ))A (λ) and Adv(4)A (λ) be the advantage
of A in Game 0, Game 1, Game 2, Game 3-(h, J ) and Game 4. It is obtained that
Adv(4)A (λ) = 0.
We can evaluate the gaps between pairs of the above advantages using Problems 1

and 2 as in the proof of Theorem 1. �
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