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Abstract. We provide a provable-security treatment of “robust” encryption. Robust-
ness means it is hard to produce a ciphertext that is valid for two different users. Robust-
nessmakes explicit a property that has been implicitly assumed in the past.We argue that
it is an essential conjunct of anonymous encryption. We show that natural anonymity-
preserving ways to achieve it, such as adding recipient identification information before
encrypting, fail. We provide transforms that do achieve it, efficiently and provably. We
assess the robustness of specific encryption schemes in the literature, providing simple
patches for some that lack the property. We explain that robustness of the underlying
anonymous IBE scheme is essential for public-key encryption with keyword search
(PEKS) to be consistent (meaning, not have false positives), and our work provides the
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first generic conversions of anonymous IBE schemes to consistent (and secure) PEKS
schemes. Overall, our work enables safer and simpler use of encryption.

Keywords. Anonymity, Identity-based encryption, Robustness.

1. Introduction

This paper provides a provable-security treatment of encryption “robustness.” Robust-
ness reflects the difficulty of producing a ciphertext valid under two different encryption
keys. The value of robustness is conceptual, “naming” something that has been unde-
fined yet at times implicitly (and incorrectly) assumed. Robustness helps make encryp-
tion more misuse resistant. We provide formal definitions of several variants of the goal;
consider and dismiss natural approaches to achieve it; provide two general robustness-
adding transforms; test robustness of existing schemes and patch the ones that fail; and
discuss some applications.

The definitions. Both the PKE and the IBE settings are of interest, and the explication
is simplified by unifying them as follows. Associate to each identity an encryption key,
defined as the identity itself in the IBE case and its (honestly generated) public key in
the PKE case. The adversary outputs a pair id0, id1 of distinct identities. For strong
robustness, it also outputs a ciphertext C∗; for weak, it outputs a message M∗, and C∗ is
defined as the encryption of M∗ under the encryption key ek1 of id1. The adversary wins
if the decryptions ofC∗ under the decryption keys dk0, dk1 corresponding to ek0, ek1 are
both non-⊥. Both weak and strong robustness can be considered under chosen-plaintext
or chosen-ciphertext attacks, resulting in four notions (for each of PKE and IBE) that
we denote WROB-CPA, WROB-CCA, SROB-CPA, SROB-CCA.

Why robustness? The primary security requirement for encryption is data privacy, as
captured by notions IND-CPA or IND-CCA [13,16,29,35,45]. Increasingly, we are also
seeing a market for anonymity, as captured by notions ANO-CPA and ANO-CCA [1,7].
Anonymity asks that a ciphertext does not reveal the encryption key under which it was
created.
Where you need anonymity, there is a good chance you need robustness too. Indeed,

we would go so far as to say that robustness is an essential companion of anonymous
encryption. The reason is that without it we would have security without basic com-
munication correctness, likely upsetting our application. This is best illustrated by the
following canonical application of anonymous encryption, but shows up also, in less
direct but no less important ways, in other applications. A sender wants to send a mes-
sage to a particular target recipient, but, to hide the identity of this target recipient,
anonymously encrypts it under her key and broadcasts the ciphertext to a larger group.
But as a member of this group I need, upon receiving a ciphertext, to know whether or
not I am the target recipient. (The latter typically needs to act on the message.) Of course
I can’t tell whether the ciphertext is for me just by looking at it since the encryption is
anonymous, but decryption should divulge this information. It does, unambiguously,
if the encryption is robust (the ciphertext is for me iff my decryption of it is not ⊥)
but otherwise I might accept a ciphertext (and some resulting message) of which I am
not the target, creating mis-communication. Natural “solutions,” such as including the
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encryption key or identity of the target recipient in the plaintext before encryption and
checking it upon decryption, are, in hindsight, just attempts to add robustness without
violating anonymity and, as we will see, don’t work.
We were led to formulate robustness upon revisiting public-key encryption with key-

word search (PEKS) [12]. In a clever usage of anonymity, Boneh, Di Crescenzo, Ostro-
vsky and Persiano (BDOP) [12] showed how this property in an IBE scheme allowed
it to be turned into a privacy-respecting communications filter. But Abdalla et. al [1]
noted that the BDOP filter could lack consistency, meaning turn up false positives. Their
solution was to modify the construction. What we observe instead is that consistency
would in fact be provided by the original construct if the IBE scheme was robust. PEKS
consistency turns out to correspond exactly to communication correctness of the anony-
mous IBE scheme in the sense discussed above. (Because the PEKS messages in the
BDOP scheme are the recipients identities from the IBE perspective.) Besides resurrect-
ing the BDOP construct, the robustness approach allows us to obtain the first consistent
IND-CCA-secure PEKS without random oracles.
Sako’s auction protocol [47] uses anonymous PKE to hide the bids of losers. We

present an attack on fairness whose cause is ultimately a lack of robustness in the
anonymous encryption scheme.
All this underscores a number of the claims we are making about robustness: that

it is of conceptual value; that it makes encryption more resistant to misuse; that it has
been implicitly (and incorrectly) assumed; and that there is value to making it explicit,
formally defining and provably achieving it.

Weak versus strong. The above-mentioned auction protocol fails because an adver-
sary can create a ciphertext that decrypts correctly under any decryption key. Strong
robustness is needed to prevent this. Weak robustness (of the underlying IBE) will yield
PEKS consistency for honestly encrypted messages but may allow spammers to bypass
all filters with a single ciphertext, something prevented by strong robustness. Strong
robustness trumps weak for applications and goes farther toward making encryption
misuse resistant. We have defined and considered the weaker version because it can
be more efficiently achieved, because some existing schemes achieve it and because
attaining it is a crucial first step in our method for attaining strong robustness.

Achieving robustness.As the reader has surely already noted, robustness (even strong)
is trivially achieved by appending the encryption key to the ciphertext and checking for
it upon decryption. The problem is that the resulting scheme is not anonymous and, as
we have seen above, it is exactly for anonymous schemes that robustness is important.
Of course, data privacy is important too. Letting AI-ATK = ANO-ATK + IND-ATK
for ATK ∈ {CPA,CCA}, the target notions of interest are AI-ATK + XROB-ATK for
ATK ∈ {CPA,CCA} and X ∈ {W,S}. Figure 1 shows the relations between these
notions, which hold for both PKE and IBE. We note in particular that AI-CCA does
not imply any form of robustness, refuting the possible impression that CCA-security
automatically provides robustness.

Transforms. Toward achieving robustness, it is natural to begin by seeking a general
transform that takes an arbitrary AI-ATK scheme and returns a AI-ATK + XROB-ATK
one. This allows us to exploit known constructions of AI-ATK schemes, supports mod-
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AI-CCA WROB-CCA+AI-CCA SROB-CCA+AI-CCA

AI-CPA WROB-CPA+AI-CPA SROB-CPA+AI-CPA

Fig. 1. Relations between notions. An arrowA → B is an implication, meaning every scheme that is A-secure
is also B-secure, while a barred arrow A �→ B is a separation, meaning that there is a A-secure scheme that
is not B-secure (Assuming of course that there exists a A-secure scheme in the first place).

[7,27]

[5]

[1,15]
[23]

Fig. 2. Achieving Robustness. The first table summarizes our findings on the encryption with redundancy
transform. “No”means themethod fails to achieve the indicated robustness for all redundancy functions, while
“yes” means there exists a redundancy function for which it works. The second table summarizes robustness
results about some specific AI-CCA schemes.

ular protocol design and also helps understand robustness divorced from the algebra
of specific schemes. Furthermore, there is a natural and promising transform to con-
sider. Namely, before encrypting, append to the message some redundancy, such as the
recipient encryption key, a constant, or even a hash of the message, and check for its
presence upon decryption. (Adding the redundancy before encrypting rather than after
preserves AI-ATK.) Intuitively this should provide robustness because decryption with
the “wrong” key will result, if not in rejection, then in recovery of a garbled plaintext,
unlikely to possess the correct redundancy.
The truth is more complex. We consider two versions of the paradigm and summarize

our findings in Fig. 2. In encryption with unkeyed redundancy, the redundancy is a
function RC of the message and encryption key alone. In this case, we show that the
method fails spectacularly, not providing even weak robustness regardless of the choice
of the function RC. In encryption with keyed redundancy, we allow RC to depend on a
key K that is placed in the public parameters of the transformed scheme, out of direct
reach of the algorithms of the original scheme. In this form, the method can easily
provide weak robustness, and that too with a very simple redundancy function, namely
the one that simply returns K .
But we show that even encryption with keyed redundancy fails to provide strong

robustness. To achieve the latter we have to step outside the encryption with redun-
dancy paradigm. We present a strong robustness conferring transform that uses a (non-
interactive) commitment scheme. For subtle reasons, for this transform to work the
starting scheme needs to already be weakly robust. If it isn’t already, we can make it so
via our weak robustness transform.
In summary, on the positive side we provide a transform conferring weak robustness

and another conferring strong robustness. Given any AI-ATK scheme the first transform
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returns a WROB-ATK + AI-ATK one. Given any AI-ATK + WROB-ATK scheme the
second transform returns a SROB-ATK + AI-ATK one. In both cases, it is for both
ATK = CPA and ATK = CCA and in both cases the transform applies to what we call
general encryption schemes, of which both PKE and IBE are special cases, so both are
covered.
The Fujisaki–Okamoto (FO) transform [32] and the Canetti–Halevi–Katz (CHK)

transform [9,25] both confer IND-CCA, and a natural question is whether they con-
fer robustness as well. It turns out that neither transform generically provides strong
robustness (SROB-CCA) and CHK does not provide weak (WROB-CCA) either. We do
not know whether or not FO provides WROB-CCA.

Robustness of specific schemes. The robustness of existing schemes is important
because they might be in use. We ask which specific existing schemes are robust, and,
for those that are not, whether they can be made so at a cost lower than that of applying
one of our general transforms. The decryption algorithms of most AI-CPA schemes
never reject, which means these schemes are not robust, so we focus on schemes that are
known to be AI-CCA. This narrows the field quite a bit. The main findings and results
we discuss next are summarized in Fig. 2.

The Cramer–Shoup (CS) PKE scheme is known to be AI-CCA in the standard model
[7,27].We show that it isWROB-CCAbut not SROB-CCA, the latter because encryption
with 0 randomness yields a ciphertext valid under any encryption key. We present a
modified version CS∗ of the scheme that disallows 0 randomness. It continues to be
AI-CCA, and we show is SROB-CCA. Our proof that CS∗ is SROB-CCA builds on
the information-theoretic part of the proof of [27]. The result does not need to assume
hardness of DDH. It relies instead on pre-image security of the underlying hash function
for random range points, something not implied by collision resistance but seemingly
possessed by candidate functions. The same approach does not easily extend to variants
of the CS scheme such as the hybrid Damgård–ElGamal scheme as proved secure by
Kiltz et al. [41]. We leave their treatment to future work.

In the IBE setting, the CCA version BF of the RO model Boneh–Franklin scheme
is AI-CCA [1,15], and we show it is SROB-CCA. The standard model Boyen–Waters
scheme BW is AI-CCA [23], but we show it is neitherWROB-CCA nor SROB-CCA. Of
course it can be made robust via our transforms. We note that the BF scheme is obtained
via the FO transform [32] and BW via the CHK transform [9,25]. As indicated above,
neither transform generically provides strong robustness. This doesn’t say whether they
do or not when applied to specific schemes, and indeed the first does for BF and the
second does not for BW.
DHIES is a standardized, in-use PKE scheme due to [5], who show that it is AI-CCA.

The situation for robustness is analogous to that forCS discussed above.Namely,we show
DHIES is WROB-CCA but not SROB-CCA (due to the possibility of the randomness in
the asymmetric component being 0) and present amodified versionDHIES∗ (it disallows
0 randomness and is still AI-CCA) that we show is SROB-CCA. This result assumes
(only) a form of collision resistance from the MAC.
Our coverage is intended to be illustrative rather than exhaustive. There are many

more specific schemes about whose robustness one may ask, and we leave these as open
questions.
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Summary. Protocol design suggests that designers have the intuition that robustness is
naturally present. This seems to be more often right than wrong when considering weak
robustness of specific AI-CCA schemes. Prevailing intuition about generic ways to add
even weak robustness is wrong, yet we show it can be done by an appropriate tweak
of these ideas. Strong robustness is more likely to be absent than present in specific
schemes, but important schemes can be patched. Strong robustness can also be added
generically, but with more work.

Relatedwork.There is growing recognition that robustness is important in applications
and worth defining explicitly, supporting our own claims to this end. Thus, the strong
correctness requirement for public-key encryption of [8] and the correctness requirement
for hidden vector and predicate encryption of [24,40] imply a formofweak robustness. In
work that was concurrent to, and independent of, the preliminary version of our work [3],
Hofheinz and Weinreb [38] introduced a notion of well-addressedness of IBE schemes
that is just like weak robustness except that the adversary gets the IBE master secret key.
These works do not consider or achieves strong robustness, and the last does not treat
PKE. Well-addressedness of IBE implies WROB-CCA but does not imply SROB-CCA
and, on the other hand, SROB-CCA does not imply well-addressedness. Also in work
that was concurrent to, and independent of, the preliminary version of our work [3],
Canetti et al. [26] define wrong-key detection for symmetric encryption, which is a form
of robustness. The term robustness is also used in multi-party computation to denote the
property that corrupted parties cannot prevent honest parties from computing the correct
protocol output [18,36,37]. This meaning is unrelated to our use of the word robustness.

Subsequent work. Since the publication of a preliminary version of our work in [2,3],
several extensions have appeared in the literature.
Mohassel [44] observes thatweak robustness is needed to ensure the chosen-ciphertext

security of hybrid constructions and provides several new robustness-adding transforms
providing different trade-offs between ciphertext size and computational overhead. He
also proposes a new relaxation of robustness, known as collision-freeness, which may
already be sufficient for certain applications. Informally, collision-freeness states that a
ciphertext should not decrypt to the same message under two different decryption keys.
Other security notions related to robustness have also been proposed in [11,14].While

the notion of decryption verifiability in [14] can be interpreted as a weak form of robust-
ness in the context of encryption schemes, the notion of unambiguity in [11] can be seen
as an analogue of robustness for signatures.
Libert et al. [43] show that robustness is important when building anonymous broad-

cast encryption generically from identity-based encryption. In their construction, the
correctness of the broadcast encryption crucially depends on the weak robustness of
the underlying identity-based encryption scheme. The relation between robustness and
anonymous broadcast encryption was also observed in an earlier work by Barth et al. [8].

Farshim et al. [31] introduce further notions of robustness including a strengthening
and simplification of our strong robustness that they call complete robustness. They show
that Sako’s protocol [47] is still vulnerable to attacks even if it uses a strongly robust
encryption scheme, a gap addressed by complete robustness.
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Boneh et al. [21] remark that our robustness conferring transforms also applies to
function-private identity-based encryption schemes since they do not change the decryp-
tion keys and hence preserve function privacy.
Seurin and Treger [48] propose a variant of Schnorr-Signed ElGamal encryption

[39,50] and show that it is both AI-CCA and SROB-CCA. While the proof of AI-CCA
relies on the hardness of DDH in the random oracle model, the proof of SROB-CCA
only assumes collision resistance security of the underlying hash function.

Versions of this paper. A preliminary version of this paper appeared at the Theory of
Cryptography Conference 2010 [3]. This full version, apart from containing full proofs
for all security statements, adds a discussion about the robustness of other schemes and
transforms in Sects. 6 and 7, as well as more details about the application of our results
to auctions and searchable encryption in Sects. 8 and 9.

2. Definitions

Notation and conventions. If x is a string then |x | denotes its length, and if S
is a set then |S| denotes its size. The empty string is denoted ε. By a1‖ . . . ‖an , we
denote a string encoding of a1, . . . , an from which a1, . . . , an are uniquely recoverable.
(Usually, concatenation suffices.) By a1‖ . . . ‖an ← a, we mean that a is parsed into its
constituents a1, . . . , an . Similarly, if a = (a1, . . . , an), then (a1, . . . , an) ← a means
we parse a as shown. Unless otherwise indicated, an algorithm may be randomized.

By y
$← A(x1, x2, . . .), we denote the operation of running A on inputs x1, x2, . . . and

fresh coins and letting y denote the output. We denote by [A(x1, x2, . . .)] the set of all
possible outputs of A on inputs x1, x2, . . .. We assume that an algorithm returns ⊥ if
any of its inputs is ⊥.

Games. Our definitions and proofs use code-based game playing [20]. Recall that a
game—look at Fig. 3 for an example— has an Initialize procedure, procedures to
respond to adversary oracle queries, and a Finalize procedure. A game G is executed

Fig. 3. Game AIGE defining AI-ATK security of general encryption scheme GE = (PG,KG,Enc,Dec).
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with an adversary A as follows. First, Initialize executes and its outputs are the inputs to
A. Then A executes, its oracle queries being answered by the corresponding procedures
of G. When A terminates, its output becomes the input to the Finalize procedure. The
output of the latter, denoted GA, is called the output of the game, and we let “GA” denote
the event that this game output takes value true. Boolean flags are assumed initialized
to false. Games Gi ,G j are identical until bad if their code differs only in statements
that follow the setting of bad to true. Our proofs will use the following.

Lemma 2.1. [20] Let Gi ,G j be identical until bad games, and A an adversary. Then

∣
∣
∣Pr

[

GA
i

]

− Pr
[

GA
j

]∣
∣
∣ ≤ Pr

[

GA
j sets bad

]

.

The running time of an adversary is the worst case time of the execution of the adver-
sary with the game defining its security, so that the execution time of the called game
procedures is included.

General encryption.We introduce and use general encryption schemes, ofwhich both
PKE and IBE are special cases. This allows us to avoid repeating similar definitions and
proofs. A general encryption (GE) scheme is a tuple GE = (PG,KG,Enc,Dec) of
algorithms. The parameter generation algorithm PG takes no input and returns common
parameter pars and a master secret key msk. On input pars,msk, id, the key genera-
tion algorithm KG produces an encryption key ek and decryption key dk. On inputs
pars, ek,M, the encryption algorithm Enc produces a ciphertext C encrypting plaintext
M. On input pars, ek, dk,C, the deterministic decryption algorithm Dec returns either
a plaintext message M or ⊥ to indicate that it rejects. We say that GE is a public-key
encryption (PKE) scheme if msk = ε and KG ignores its id input. To recover the usual
syntax, we may in this case write the output of PG as pars rather than (pars,msk) and
omit msk, id as inputs to KG. We say that GE is an identity-based encryption (IBE)
scheme if the encryption key created by KG on inputs pars,msk, id only depends on
pars and id. To recover the usual syntax, we may in this case write the output of KG as
dk rather than (ek, dk). It is easy to see that in this waywe have recovered the usual prim-
itives. But there are general encryption schemes that are neither PKE nor IBE schemes,
meaning that the primitive is indeed more general.

Correctness. Correctness of a general encryption scheme GE = (PG,KG,Enc,Dec)
requires that, for all (pars,msk) ∈ [PG], all plaintexts M in the underlying message
space associated with pars, all identities id, and all (ek, dk) ∈ [KG(pars,msk, id)],
we have Dec(pars, ek, dk,Enc(pars, ek,M)) = M with probability one, where the
probability is taken over the coins of Enc.
AI-ATK security.Historically, definitions of data privacy (IND) [13,16,29,35,45] and
anonymity (ANON) [1,7] have been separate. We are interested in schemes that achieve
both, so rather than use separate definitions we follow [17] and capture both simulta-
neously via game AIGE of Fig. 3. A cpa adversary is one that makes no Dec queries,
and a cca adversary is one that might make such queries. The ai-advantage of such an
adversary, in either case, is
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Fig. 4. Games WROBGE and SROBGE defining WROB-ATK and SROB-ATK security (respectively) of
general encryption scheme GE = (PG,KG,Enc,Dec). The procedures on the left are common to both
games, which differ only in their Finalize procedures.

AdvaiGE(A) = 2 · Pr
[

AIAGE
]

− 1.

We will assume an ai-adversary makes only one LR query, since a hybrid argument
shows that making q of them can increase its ai-advantage by a factor of at most q.
Oracle GetDK represents the IBE key extraction oracle [16]. In the PKE case, it is

superfluous in the sense that removing it results in a definition that is equivalent up to
a factor depending on the number of GetDK queries. That’s probably why the usual
definition has no such oracle. But conceptually, if it is there for IBE, it ought to be there
for PKE, and it does impact concrete security.
The traditional notions of data privacy (IND-ATK) and anonymity (ANO-ATK) are

obtained by adding a restriction to the AI-ATK game in Fig. 3 so that a LR query
returns ⊥ whenever id∗

0 �= id∗
1 or M∗

0 �= M∗
1 , respectively. It is easy to see that ai

security is implied by ind security and ano security, i.e., for each ai-atk adversary A,
there exist an ind-atk adversary B1 and an ano-atk adversary B2 such thatAdvai-atkGE (A) =
Advind-atkGE (B1) + Advano-atkGE (B2).

Robustness. Associated with general encryption scheme GE = (PG,KG,Enc,Dec)
are games WROB, SROB of Fig. 4. As before, a cpa adversary is one that makes noDec
queries, and a cca adversary is one that might make such queries. The wrob and srob
advantages of an adversary, in either case, are

AdvwrobGE (A) = Pr
[

WROBA
GE

]

and AdvsrobGE (A) = Pr
[

SROBA
GE

]

.

The difference between WROB and SROB is that in the former the adversary produces
a message M , and C is its encryption under the encryption key of one of the given
identities, while in the latter it produces C directly and may not obtain it as an honest
encryption. It is worth clarifying that in the PKE case the adversary does not get to
choose the encryption (public) keys of the identities it is targeting. These are honestly and
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Fig. 5. Examples of redundancy codes, where the data x is of the form ek‖M . The first four are unkeyed and
the last two are keyed.

independently chosen, in real life by the identities themselves and in our formalization
by the games.

Relations between notions. Figure 1 shows implications and separations in the style
of [13]. We consider each robustness notion in conjunction with the corresponding AI
one since robustness is interesting only in this case. The implications are all trivial.
The first separation shows that the strongest notion of privacy fails to imply even the
weakest type of robustness. The second separation shows that weak robustness, even
under CCA, doesn’t imply strong robustness. We stress that here an implication A → B
means that any A-secure, unaltered, is B-secure. Correspondingly, a non-implication
A �→ Bmeans that there is an A-secure that, unaltered, is not B-secure. (It doesn’t mean
that an A-secure scheme can’t be transformed into a B-secure one.) Only a minimal set
of arrows and barred arrows is shown; others can be inferred. The picture is complete
in the sense that it implies either an implication or a separation between any pair of
notions.

3. Robustness Failures of Encryption with Redundancy

A natural privacy-and-anonymity-preserving approach to add robustness to an encryp-
tion scheme is to add redundancy before encrypting, and upon decryption reject if the
redundancy is absent. Herewe investigate the effectiveness of this encryptionwith redun-
dancy approach, justifying the negative results discussed in Sect. 1 and summarized in
the first table of Fig. 2.

Redundancy codes and the transform. A redundancy code RED = (RKG,RC,

RV) is a triple of algorithms. The redundancy key generation algorithm RKG generates
a key K . On input K and data x the redundancy computation algorithm RC returns
redundancy r . Given K , x , and claimed redundancy r , the deterministic redundancy
verification algorithm RV returns 0 or 1. We say that RED is unkeyed if the key K
output by RKG is always equal to ε, and keyed otherwise. The correctness condition
is that for all x we have RV(K , x,RC(K , x)) = 1 with probability one, where the
probability is taken over the coins of RKG and RC. (We stress that the latter is allowed
to be randomized.)
Given a general encryption scheme GE = (PG,KG,Enc,Dec) and a redundancy

code RED = (RKG,RC,RV), the encryption with redundancy transform associates
to them the general encryption scheme GE = (PG,KG,Enc,Dec) whose algorithms
are shown on the left side of Fig. 6. Note that the transform has the first of our desired
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Fig. 6. Left transformed scheme for the encryption with redundancy paradigm. Top right counterexample for
WROB. Bottom right counterexample for SROB.

properties, namely that it preserves AI-ATK. Also if GE is a PKE scheme then so is GE,
and if GE is an IBE scheme then so is GE, which means the results we obtain here apply
to both settings.
Figure 5 shows example redundancy codes for the transform. With the first, GE is

identical to GE, so that the counterexample below shows that AI-CCA does not imply
WROB-CPA , justifying the first separation of Fig. 1. The second and third rows show
redundancy equal to a constant or the encryption key as examples of (unkeyed) redun-
dancy codes. The fourth row shows a code that is randomized but still unkeyed. The hash
function H could be a MAC or a collision-resistant function. The last two are keyed
redundancy codes, the first the simple one that just always returns the key, and the second
using a hash function. Obviously, there are many other examples.

SROB failure.We show that encryptionwith redundancy fails to provide strong robust-
ness for all redundancy codes, whether keyed or not. More precisely, we show that for
any redundancy code RED and both ATK ∈ {CPA,CCA}, there is an AI-ATK encryp-
tion scheme GE such that the scheme GE resulting from the encryption-with-redundancy
transform applied to GE,RED is not SROB-CPA. We build GE by modifying a given
AI-ATK encryption scheme GE∗ = (PG,KG,Enc∗,Dec∗). Let l be the number of
coins used by RC, and let RC(x;ω) denote the result of executing RC on input x with
coins ω ∈ {0, 1}l . Let M∗ be a function that given pars returns a point in the message
space associated with pars in GE∗. Then GE = (PG,KG,Enc,Dec) where the new
algorithms are shown on the bottom right side of Fig. 6. The reason we used 0l as coins
for RC here is that Dec is required to be deterministic.
Our first claim is that the assumption that GE∗ is AI-ATK implies that GE is too. Our

second claim, that GE is not SROB-CPA, is demonstrated by the following attack. For a
pair id0, id1 of distinct identities of its choice, the adversary A, on input (pars, K ), begins

with queries ek0
$← GetEK(id0) and ek1

$← GetEK(id1). It then creates ciphertext
C ← 0 ‖ K and returns (id0, id1,C). We claim that Advsrob

GE
(A) = 1. Letting dk0, dk1

denote the decryption keys corresponding to ek0, ek1, respectively, the reason is the fol-
lowing. For both b ∈ {0, 1}, the output of Dec(pars, ekb, dkb,C) isM∗(pars)‖rb(pars)
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where rb(pars) = RC(K , ekb‖M∗(pars); 0l). But the correctness of RED implies that
RV(K , ekb‖M∗(pars), rb(pars)) = 1 and hence Dec((pars, K ), ekb, dkb,C) returns
M∗(pars) rather than ⊥.

WROB failure. We show that encryption with redundancy fails to provide even weak
robustness for all unkeyed redundancy codes. This is still a powerful negative result
because many forms of redundancy that might intuitively work, such as the first four of
Fig. 5, are included.More precisely,we claim that for any unkeyed redundancy codeRED
and both ATK ∈ {CPA,CCA}, there is an AI-ATK encryption scheme GE such that the
scheme GE resulting from the encryption-with-redundancy transform applied to GE and
RED is not WROB-CPA. We build GE by modifying a given AI-ATK + WROB-CPA
encryption scheme GE∗ = (PG,KG,Enc∗,Dec∗). With notation as above, the new
algorithms for the scheme GE = (PG,KG,Enc,Dec) are shown on the top right side
of Fig. 6.

Our first claim is that the assumption that GE∗ is AI-ATK implies that GE is too. Our
second claim, that GE is not WROB-CPA, is demonstrated by the following attack. For
a pair id0, id1 of distinct identities of its choice, the adversary A, on input (pars, ε),

makes queries ek0
$← GetEK(id0) and ek1

$← GetEK(id1) and returns (id0, id1, M),
where M can be any message in the message space associated with pars. We claim that
Advwrob

GE
(A) is high. Letting dk1 denote the decryption key corresponding to ek1, the

reason is the following. Let r0
$← RC(ε, ek0‖M) and C

$← Enc(pars, ek0, M‖r0). The
assumedWROB-CPA security ofGE∗ implies thatDec(pars, ek1, dk1,C) ismost proba-
blyM∗(pars)‖r1(pars)where r1(pars) = RC(ε, ek1‖M∗(pars); 0l). But the correctness
of RED implies thatRV(ε, ek1‖M∗(pars), r1(pars)) = 1 and henceDec((pars, ε), ek1,
dk1,C) returns M∗(pars) rather than ⊥.

4. Transforms That Work

We present a transform that confers weak robustness and another that confers strong
robustness. They preserve privacy and anonymity, work for PKE as well as IBE, and for
CPA as well as CCA. In both cases, the security proofs surface some delicate issues.
Besides being useful in its own right, the weak robustness transform is a crucial step in
obtaining strong robustness, so we begin there.

Weak robustness transform. We saw that encryption-with-redundancy fails to pro-
vide even weak robustness if the redundancy code is unkeyed. Here we show that if
the redundancy code is keyed, even in the simplest possible way where the redun-
dancy is just the key itself, the transform does provide weak robustness, turning any
AI-ATK secure general encryption scheme into an AI-ATK + WROB-ATK one, for
both ATK ∈ {CPA,CCA}.

The transformed scheme encrypts with the message a key K placed in the public
parameters. Inmore detail, theweak robustness transform associateswith a given general
encryption scheme GE = (PG,KG,Enc,Dec) and integer parameter k, representing
the length of K , the general encryption scheme GE = (PG,KG,Enc,Dec) whose
algorithms are depicted in Fig. 7. Note that if GE is a PKE scheme then so is GE and if
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Algorithm PG
(pars ,msk) $← PG
K

$← {0, 1}k
Return ((pars ,K),msk )

Algorithm Enc((pars ,K), ek ,M )
C $← Enc(pars , ek ,M K))
Return C

Algorithm KG((pars ,K),msk , id)
(ek , dk ) $← KG(pars ,msk , id)
Return (ek , dk)

Algorithm Dec((pars ,K), ek , dk ,C )
M ← Dec(pars , ek , dk ,C )
If M = ⊥ then return ⊥
M K∗ ← M

If (K = K∗) then return M
Else Return ⊥

Fig. 7. General encryption scheme GE = (PG,KG,Enc,Dec) resulting from applying our weak robustness
transform to general encryption scheme GE = (PG,KG,Enc,Dec) and integer parameter k.

GE is an IBE scheme then so is GE, so that our results, captured by Theorem 4.1, cover
both settings.
The intuition for the weak robustness of GE is that the GE decryption under one key,

of an encryption of M‖K created under another key, cannot, by the assumed AI-ATK
security of GE, reveal K , and hence the check will fail. This is pretty much right for
PKE, but the delicate issue is that for IBE, information about K can enter via the
identities, which in this case are the encryption keys and could be chosen by the adver-
sary as a function of K . Indeed, the counterexample from Sect. 3 can be extended to
work for any keyed redundancy code if the key can be encoded into the identity space.
Namely, the adversary can encode the key K into the identity id1 = ek1, while the
counterexample decryption algorithm could decode K from its input ek and output
M ← M∗(pars)‖RC(K , ek‖M∗(pars); 0l) as a default message. We show, however,
that this can be dealt with by making K sufficiently longer than the identities.

Theorem 4.1. Let GE = (PG,KG,Enc,Dec) be a general encryption scheme with
identity space {0, 1}n, and let GE = (PG,KG,Enc,Dec) be the general encryption
scheme resulting from applying the weak robustness transform to GE and integer param-
eter k. Then

1. AI-ATK: Let A be an ai-adversary against GE. Then there is an ai-adversary B
against GE such that

Advai
GE

(A) = AdvaiGE(B).

Adversary B inherits the query profile of A and has the same running time as A.
If A is a cpa adversary, then so is B.

2. WROB-ATK : Let A be a wrob adversary against GE with running time t, and let
� = 2n + 
log2(t)�. Then there is an ai-adversary B against GE such that

Advwrob
GE

(A) ≤ AdvaiGE(B) + 2�−k .

Adversary B inherits the query profile of A and has the same running time as A.
If A is a cpa adversary, then so is B.

The first part of the theorem implies that if GE is AI-ATK then GE is AI-ATK as well.
The second part of the theorem implies that if GE is AI-ATK and k is chosen sufficiently
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larger than 2n + 
log2(t)� then GE is WROB-ATK. In both cases, this is for both
ATK ∈ {CPA,CCA}. The theorem says it directly for CCA, and for CPA by the fact
that if A is a cpa adversary then so is B. When we say that B inherits the query profile
of A we mean that for every oracle that B has, if A has an oracle of the same name and
makes q queries to it, then this is also the number B makes.

Proof of Theorem 4.1. The proof of Part 1 of Theorem 4.1 is straightforward and is
omitted. The proof of Part 2 of Theorem 4.1 relies on the following information-theoretic
lemma.

Lemma 4.2. Let � ≤ k be positive integers and let A1, A2 be arbitrary algorithms
with the length of the output of A1 always being �. Let P denote the probability that
A2(A1(K )) = K where the probability is over K drawn at random from {0, 1}k and the
coins of A1, A2. Then P ≤ 2�−k .

Proof of Lemma 4.2. Wemay assume A1, A2 are deterministic for, if not, we can hard-
wire a “best” choice of coins for each. For each �-bit string L let SL = {K ∈ {0, 1}k :
A1(K ) = L} and let s(L) = |SL |. Let L be the set of all L ∈ {0, 1}� such that s(L) > 0.
Then

P =
∑

L∈L
Pr [ A2(L) = K | A1(K ) = L ] · Pr [ A1(K ) = L ]

=
∑

L∈L

1

s(L)
· s(L)

2k

=
∑

L∈L

1

2k

which is at most 2�−k as claimed.

Proof of Part 2 of Theorem 4.1. Games G0,G1 of Fig. 8 differ only in their Finalize
procedures, with the message encrypted at line 04 to create ciphertext C in G1 being a
constant rather than M0 in G0. We have

Advwrob
GE

(A) = Pr
[

GA
0

]

=
(

Pr
[

GA
0

]

− Pr
[

GA
1

])

+ Pr
[

GA
1

]

.

we design B so that

Pr
[

GA
0

]

− Pr
[

GA
1

]

≤ AdvaiGE(B).

On input pars, adversary B executes lines 02,03 of Initialize and runs A on input
(pars, K ). It replies to GetEK,GetDK and Dec queries of A via its own oracles of the
samename.When A haltswith outputM, id0, id1, adversary B queries itsLRoraclewith
id0, id0, 0|M|‖0k, M‖K to get back a ciphertext C . It then makes query GetDK(id1) to
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Fig. 8. Games for the proof of Part 2 of Theorem 4.1.

get backDK[id1]. Note this is a legal query for B because id1 is not one of the challenge
identities in its LR query, but it would not have been legal for A. Now B executes lines
01–09 of the code of Finalize of G1, except that it sets the value C on line 04 to be its
own challenge ciphertext. If M1 �= ⊥ it outputs 1, else 0.
To complete the proof, we show that Pr[GA

1 ] ≤ 2�−k . We observe that M as computed
at line 05 of Finalize in G1 depends only on pars,EK[id1],EK[id0],DK[id1], |M0|, k.
We would have liked to say that none of these depend on K . This would mean that the
probability that M �= ⊥ and parses as M1‖K is at most 2−k , making Pr[GA

1 ] ≤ 2−k .
In the PKE case, what we desire is almost true because the only item in our list
that can depend on K is |M0|, which can carry at most log2(t) bits of informa-
tion about K . But id0, id1 could depend on K so in general, and in the IBE case
in particular, EK[id0],EK[id1],DK[id1] could depend on K . However, we assumed
that identities are n bits, so the total amount of information about K in the list
pars,EK[id1],EK[id0],DK[id1], |M0|, k is at most 2n + log2(t) bits. We conclude
by applying Lemma 4.2 with � = 2n + 
log2(t)�.

Arbitrary identities. Theorem 4.1 converts a scheme GE with identity space {0, 1}n
into a schemeGEwith the same identity space {0, 1}n . The condition thatGE has identity
space {0, 1}n is not really a restriction, because any scheme with identity space {0, 1}∗
can be easily converted by restricting the identities to n-bit strings. At the same time, by
hashing the identities with a collision-resistant hash function, GE can be made to handle
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arbitrary identities in {0, 1}∗. It is well known that collision-resistant hashing of identities
preserves AI-ATK [6] and it’s also easy to see that it preserves WROB-ATK. Here, it is
important that the transformed scheme calls the underlying encryption and decryption
algorithms Enc and Dec of GE with the hashed identities, not the full identities. In
practice we might hash with SHA256 so that n = 256, and, assuming t ≤ 2128, setting
k = 768 would make 2�−k = 2−128.

Commitment schemes.Our strong robustness transformwill use commitments. A com-
mitment scheme is a 3-tuple CMT = (CPG,Com,Ver). The parameter generation algo-
rithmCPG returns public parameters cpars. The committal algorithmCom takes cpars
and data x as input and returns a commitment com to x along with a decommittal key dec.
The deterministic verification algorithmVer takes cpars, x, com, dec as input and returns
1 to indicate that accepts or 0 to indicate that it rejects. Correctness requires that, for any
x ∈ {0, 1}∗, any cpars ∈ [CPG], and any (com, dec) ∈ [Com(cpars, x)], we have that
Ver(cpars, x, com, dec) = 1 with probability one, where the probability is taken over
the coins ofCom. We require the scheme to have the uniqueness property, which means
that for any x ∈ {0, 1}∗, any cpars ∈ [CPG], and any (com, dec) ∈ [Com(cpars, x)]
it is the case that Ver(cpars, x, com∗, dec) = 0 for all com∗ �= com. In most schemes,
the decommittal key is the randomness used by the committal algorithm and verifica-
tion is by re-applying the committal function, which ensures uniqueness. The advantage
measures

AdvhideCMT(A) = 2 · Pr
[

HIDEA
CMT ⇒ true

]

− 1 and

AdvbindCMT(A) = Pr
[

BINDA
CMT ⇒ true

]

,

which refer to the games of Fig. 9, capture, respectively, the standard hiding and binding
properties of a commitment scheme.We refer to the corresponding notions as HIDE and
BIND. We refer to the corresponding notions as HIDE and BIND.

The strong robustness transform. The idea is for the ciphertext to include a com-
mitment to the encryption key. The commitment is not encrypted, but the decommittal
key is. In detail, given a general encryption scheme GE = (PG,KG,Enc,Dec) and a
commitment scheme CMT = (CPG,Com,Ver) the strong robustness transform asso-
ciates with them the general encryption scheme GE = (PG,KG,Enc,Dec) whose
algorithms are depicted in Fig. 10. Note that if GE is a PKE scheme then so is GE and
if GE is an IBE scheme then so is GE, so that our results, captured by the Theorem 4.3,
cover both settings.

proc Initialize

cpars $← CPG ; b $← {0, 1} ; Return cpars

proc LR(x0, x1)

(com , dec) $← Com(cpars , xb) ; Return com

proc Finalize(b )
Return (b = b)

proc Initialize

cpars $← CPG ; Return cpars

proc Finalize(com , x0, dec0, x1, dec1)
d0 ← Ver(cpars , x0, com , dec0)
d1 ← Ver(cpars , x1, com , dec1)
Return (x0 = x1 ∧ d0 = 1 ∧ d1 = 1)

Fig. 9. GameHIDECMT (left) captures the hiding property, while Game BINDCMT (right) captures the binding
property. The adversary may call LR only once.
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Fig. 10. General encryption scheme GE = (PG,KG,Enc,Dec) resulting from applying our strong
robustness transform to general encryption scheme GE = (PG,KG,Enc,Dec) and commitment scheme
CMT = (CPG,Com,Ver).

In this case the delicate issue is not the robustness but the AI-ATK security of GE in
the CCA case. Intuitively, the hiding security of the commitment scheme means that a
GE ciphertext does not reveal the encryption key. As a result, we would expect AI-ATK
security of GE to follow from the commitment hiding security and the assumed AI-ATK
security of GE. This turns out not to be true, and demonstrably so, meaning that there is
a counterexample to this claim. (See below.) What we show is that the claim is true if
GE is additionally WROB-ATK. This property, if not already present, can be conferred
by first applying our weak robustness transform.

Theorem 4.3. LetGE = (PG,KG,Enc,Dec) be a general encryption scheme, and let
GE = (PG,KG,Enc,Dec) be the general encryption scheme resulting from applying
the strong robustness transform to GE and commitment scheme CMT = (CPG,Com,

Ver). Then

1. AI-ATK : Let A be an ai-adversary against GE. Then there is a wrob adversary
W against GE, a hiding adversary H against CMT and an ai-adversary B against
GE such that

Advai
GE

(A) ≤ 2 · AdvwrobGE (W ) + 2 · AdvhideCMT(H) + 3 · AdvaiGE(B).

Adversaries W, B inherit the query profile of A, and adversaries W, H, B have
the same running time as A. If A is a cpa adversary then so are W, B.

2. SROB-ATK : Let A be a srob adversary against GE making q GetEK queries.
Then there is a binding adversary B against CMT such that

Advsrob
GE

(A) ≤ AdvbindCMT(B) +
(
q

2

)

· CollGE.

Adversary B has the same running time as A.

The first part of the theorem implies that if GE is AI-ATK and WROB-ATK and CMT is
HIDE thenGE is AI-ATK, and the second part of the theorem implies that if CMT is BIND
secure and GE has low encryption key collision probability then GE is SROB-ATK. In
both cases, this is for both ATK ∈ {CPA,CCA}. We remark that the proof shows
that in the CPA case the WROB-ATK assumption on GE in the first part is actually
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not needed. The encryption key collision probability CollGE of GE is defined as the
maximum probability that ek0 = ek1 in the experiment

(pars,msk)
$← PG ; (ek0, dk0)

$← KG(pars,msk, id0) ;
(ek1, dk1)

$← KG(pars,msk, id1) ,

where the maximum is over all distinct identities id0, id1. It is easy to see that GE being
AI impliesCollGE is negligible, so asking for low encryption key collision probability is
in fact not an extra assumption. (For a general encryption scheme, the adversary needs
to have hardwired the identities that achieve the maximum, but this is not necessary for
PKE because here the probability being maximized is the same for all pairs of distinct
identities.) The reason we made the encryption key collision probability explicit is that
for most schemes it is unconditionally low. For example, when GE is the ElGamal PKE
scheme, it is 1/|G| where G is the group being used.

Proof of Part 1 of Theorem 4.3. Game G0 of Fig. 11 is game AIGE tailored to the case
that A makes only one LR query, an assumption we explained we can make. If we
wish to exploit the assumed AI-ATK security of GE, we need to be able to answer Dec
queries of A using the Dec oracle in game AIGE. Thus, we would like to substitute the
Dec(pars,EK[id],DK[id],C) call in aDec((C, com), id)query ofG0 with aDec(C, id)

call of an adversary B in AIGE. The difficulty is that C might equal C∗ but com �= com∗,
so that the call is not legal for B. To get around this, the first part of our proof will show
that the decryption procedure of G0 can be replaced by the alternative one of G4, where
this difficulty vanishes. This part exploits the uniqueness of the commitment scheme
and the weak robustness of GE. After that we will exploit the AI-ATK security of GE
to remove dependence on dec∗ in LR, allowing us to exploit the HIDE security of CMT
to make the challenge commitment independent of EK[id∗

b]. This allows us to conclude
by again using the AI-ATK security of GE. We proceed to the details.
In game G0, if A makes a Dec((C∗, com), id∗

b) query with com �= com∗ then the
uniqueness of CMT implies that the procedure in question will return ⊥. This means that
line 02 of Dec in G0 can be rewritten as line 02 of Dec in G1 and the two procedures
are equivalent. Procedure Dec of G2 includes the boxed code and hence is equivalent to
procedure Dec of G1. Hence

1

2
+ 1

2
Advai

GE
(A) = Pr

[

GA
0

]

= Pr
[

GA
1

]

= Pr
[

GA
2

]

= Pr
[

GA
3

]

+ Pr
[

GA
2

]

− Pr
[

GA
3

]

≤ Pr
[

GA
3

]

+ Pr
[

GA
3 sets bad

]

.

The inequality above is by Lemma 2.1 which applies because G2,G3 are identical until
bad. We design W so that

Pr
[

GA
3 sets bad

]

≤ AdvwrobGE (W ).
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Fig. 11. Games for the proof of Part 1 of Theorem 4.3.

On input pars, adversary W executes lines 02,03,04,05 of Initialize and runs A
on input (pars, cpars). It replies to GetEK,GetDK,Dec queries of A via its own
oracles of the same name, as per the code of G3. When A makes its LR query
id∗

0, id
∗
1,M

∗
0,M

∗
1, adversary W executes lines 01,02,03 of the code of LR of G3. It

then outputs M
∗
b‖dec∗, id∗

b, id
∗
1−b and halts.

Next we bound Pr[GA
3 ]. Procedure Dec of G4 results from simplifying the code of

procedure Dec of G3, so

Pr
[

GA
3

]

= Pr
[

GA
4

]

=
(

Pr
[

GA
4

]

− Pr
[

GA
5

])

+ Pr
[

GA
5

]

.
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The step from G4 to G5 modifies only LR, replacing dec∗ with a constant. We are
assuming here that any decommitment key output by Com, regardless of the inputs to
the latter, has length d bits. We design B1 so that

Pr
[

GA
4

]

− Pr
[

GA
5

]

= AdvaiGE(B1).

On input pars, adversary B1 executes lines 02,03,04,05 of Initialize and runs A on input
(pars, cpars). It replies to GetEK,GetDK,Dec queries of A via its own oracles of the
same name, as per the code ofG4. Herewemake crucial use of the fact that the alternative
decryption rule of Dec of G4 allows B1 to respond to Dec queries of A without the need
to query its own Dec oracle on (C∗, id∗

0) or (C∗, id∗
1). When A makes its LR query

id∗
0, id

∗
1,M

∗
0,M

∗
1, adversary B1 executes lines 01,02,03 of the code of LR of G4. It then

queries id∗
b, id

∗
b,M

∗
b‖0d ,M∗

b‖dec∗ to its own LR oracle to get back a ciphertext C∗, and
returns (C∗, com∗) to A. When A halts with output a bit b′, adversary B1 outputs 1 if
b = b′ and 0 otherwise.
Next we bound Pr[GA

5 ]. Procedure LR of G6 uses a constant 0e rather than EK[id∗
b]

as data for Com at line 03. The value of e is arbitrary, and we can just let e = 1. Then

Pr
[

GA
5

]

=
(

Pr
[

GA
5

]

− Pr
[

GA
6

])

+ Pr
[

GA
6

]

.

We design H so that

Pr
[

GA
5

]

− Pr
[

GA
6

]

≤ AdvhideCMT(H).

On input cpars, adversary H executes lines 01,03,04,05 of Initialize and runs A on
input (pars, cpars). It replies to GetEK,GetDK,Dec queries of A by direct execution
of the code of these procedures in G5, possible since it knows msk. When A makes its
LR query id∗

0, id
∗
1,M

∗
0,M

∗
1, adversary H executes lines 01,02 of the code of LR of G5.

It then queries 0e,EK[id∗
b] to its own LR oracle to get back a commitment com∗. It

executes line 04 of LR of G5 and returns (C∗, com∗) to A. When A halts with output a
bit b′, adversary H returns 1 if b = b′ and 0 otherwise.

Finally we design B2 so that

2 · Pr
[

GA
6

]

− 1 ≤ AdvaiGE(B2).

On input pars, adversary B2 executes lines 02,04,05 of Initialize and runs A on input
(pars, cpars). It replies to GetEK,GetDK,Dec queries of A via its own oracles of
the same name, as per the code of G6. Again we make crucial use of the fact that the
alternative decryption rule ofDec ofG6 allows B2 to respond toDec queries of Awithout
the need to query its own Dec oracle on (C∗, id∗

0) or (C∗, id∗
1). When A makes its LR

query id∗
0, id

∗
1,M

∗
0,M

∗
1, adversary B2 executes lines 01,02,03 of the code of LR of G6.

It then queries id∗
0, id

∗
1,M

∗
0‖0d ,M∗

1‖dec∗ to its own LR oracle to get back a ciphertext
C∗, and returns (C∗, com∗) to A. When A halts with output a bit b′, adversary B2 outputs
b′.
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Adversary B of the theorem statement runs B1 with probability 2/3 and B2 with
probability 1/3.

Proof of Part 2 of Theorem 4.3. In the execution of A with game SROBGE let coll be
the event that there exist distinct id0, id1 queried by A to itsGetEK oracle such that the
encryption keys returned in response are the same. Then

Advsrob
GE

(A) = Pr
[

SROBA
GE

∧ coll
]

+ Pr
[

SROBA
GE

∧ coll
]

≤ Pr [ coll ] + Pr
[

SROBA
GE

∧ coll
]

.

But

Pr [ coll ] ≤
(
q

2

)

· CollGE

and we can design B such that

Pr
[

SROBA
GE

∧ coll
]

≤ AdvbindCMT(B).

We omit the details.

The need for weak robustness. As we said above, the AI-ATK security of GE
won’t be implied merely by that of GE. (We had to additionally assume that GE is
WROB-ATK). Here we justify this somewhat counterintuitive claim. This discussion is
informal but can be turned into a formal counterexample. Imagine that the decryption
algorithm of GE returns a fixed string of the form (M̂, ˆdec) whenever the wrong key is
used to decrypt. Moreover, imagine CMT is such that it is easy, given cpars, x, dec, to
find com so that Ver(cpars, x, com, dec) = 1. (This is true for any commitment scheme
where dec is the coins used by theCom algorithm.) Consider then theAI-ATK adversary
A against the transformed scheme that that receives a challenge ciphertext (C∗, com∗)
where C∗ ← Enc(pars,EK[idb],M∗‖dec∗) for hidden bit b ∈ {0, 1}. It then creates
a commitment ˆcom of EK[id1] with opening information ˆdec, and queries (C∗, ˆcom)

to be decrypted under DK[id0]. If b = 0 this query will probably return ⊥ because
Ver(cpars,EK[id0], ˆcom, dec∗) is unlikely to be 1, but if b = 1 it returns M̂, allowing
A to determine the value of b. The weak robustness of GE rules out such anomalies.

5. A SROB-CCA Version of Cramer–Shoup

LetG be a group of prime order p, and H : Keys(H)×G
3 → G a family of functions.

We assume G, p, H are fixed and known to all parties. Figure 12 shows the Cramer–
Shoup (CS) scheme and the variant CS∗ scheme where 1 denotes the identity element of
G. The differences are boxed. Recall that the CS scheme was shown to be IND-CCA in
[27] and ANO-CCA in [7]. However, for any messageM ∈ G the ciphertext (1, 1,M, 1)
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Fig. 12. Original CS scheme [27] does not contain the boxed code, while the variant CS∗ does. Although not
shown above, the decryption algorithm in both versions always checks to ensure that the ciphertext C ∈ G

4.
The message space is G.

in the CS scheme decrypts to M under any pars, pk, and sk, meaning in particular that
the scheme is not even SROB-CPA. The modified scheme CS∗ —which continues to be
IND-CCA and ANO-CCA— removes this pathological case by having Enc choose the
randomness u to be nonzero —Enc draws u from Z

∗
p while the CS scheme draws it

from Zp— and then having Dec reject (a1, a2, c, d) if a1 = 1. This thwarts the attack,
but is there any other attack? We show that there is not by proving that CS∗ is actually
SROB-CCA.Our proof of robustness relies only on the security—specifically, pre-image
resistance—of the hash family H : it does not make the DDH assumption. Our proof uses
ideas from the information-theoretic part of the proof of [27].
We say that a family H : Keys(H) × Dom(H) → Rng(H) of functions is pre-

image resistant if, given a key K and a random range element v∗, it is computationally
infeasible to find a pre-image of v∗ under H(K , ·). The notion is captured formally by
the following advantage measure for an adversary I :

Advpre-img
H (I )

= Pr
[

H(K , x) = v∗ : K
$← Keys(H) ; v∗ $← Rng(H) ; x

$← I (K , v∗)
]

.

Pre-image resistance is not implied by the standard notion of one-wayness, since in
the latter the target v∗ is the image under H(K , ·) of a random domain point, which
may not be a random range point. However, it seems like a fairly mild assumption on
a practical cryptographic hash function and is implied by the notion of “everywhere
pre-image resistance” of [46], the difference being that, for the latter, the advantage is
the maximum probability over all v∗ ∈ Rng(H). We now claim the following.

Theorem 5.1. Let B be an adversary making two GetEK queries, no GetDK queries
and at most q − 1 Dec queries, and having running time t. Then, we can construct an
adversary I such that

AdvsrobCS∗ (A) ≤ Advpre-img
H (I ) + 2q + 1

p
. (1)

Furthermore, the running time of I is t + q · O(texp) where texp denotes the time for one
exponentiation in G.
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Since CS∗ is a PKE scheme, the above automatically implies security even in the pres-
ence of multiple GetEK and GetDK queries as required by game SROBCS∗ . Thus, the
theorem implies that CS∗ is SROB-CCA if H is pre-image resistant. A detailed proof of
Theorem 5.1 is below. We begin by sketching some intuition.
We begin by conveniently modifying the game interface. We replace B with an adver-

sary A that gets input (g1, g2, K ), (e0, f0, h0), (e1, f1, h1) representing the parameters
that would be input to B and the public keys returned in response to B’s two GetEK
queries. Let (x01, x02, y01, y02, z01, z02) and (x11, x12, y11, y12, z11, z12) be the corre-
sponding secret keys. The decryption oracle takes (only) a ciphertext and returns its
decryption under both secret keys, setting aWin flag if these are both non-⊥. Adversary
A no longer needs an output, since it can win via a Dec query.
Suppose Amakes aDec query (a1, a2, c, d). Then the code of the decryption algorithm

Dec from Fig. 12 tells us that, for this to be a winning query, it must be that

d = ax01+y01v
1 ax02+y02v

2 = ax11+y11v
1 ax12+y12v

2

where v = H(K , (a1, a2, c)). Letting u1 = logg1(a1), u2 = logg2(a2) and s =
logg1(d), we have

s = u1(x01 + y01v) + wu2(x02 + y02v) = u1(x11 + y11v) + wu2(x12 + y12v)

(2)

However, even acknowledging that A knows little about xb1, xb2, yb1, yb2 (b ∈ {0, 1})
through itsDec queries, it is unclear why (2) is prevented by pre-image resistance—or in
fact any property short of being a random oracle—of the hash function H . In particular,
there seems no way to “plant” a target v∗ as the value v of (2) since the adversary
controls u1 and u2. However, suppose now that a2 = aw

1 . (We will discuss later why we
can assume this.) This implies wu2 = wu1 or u2 = u1 since w �= 0. Now from (2) we
have

u1(x01 + y01v) + wu1(x02 + y02v) − u1(x11 + y11v) − wu1(x12 + y12v) = 0 .

We now see the value of enforcing a1 �= 1, since this implies u1 �= 0. After canceling
u1 and rearranging terms, we have

v(y01 + wy02 − y11 − wy12) + (x01 + wx02 − x11 − wx12) = 0 . (3)

Given that xb1, xb2, yb1, yb2 (b ∈ {0, 1}) and w are chosen by the game, there is at most
one solution v (modulo p) to (3). We would like now to design I so that on input K , v∗ it
chooses xb1, xb2, yb1, yb2 (b ∈ {0, 1}) so that the solution v to (3) is v∗. Then (a1, a2, c)
will be a pre-image of v∗ which I can output.

To make all this work, we need to resolve two problems. The first is why we may
assume a2 = aw

1 —which is what enables (3)—given that a1, a2 are chosen by A. The
second is to properly design I and show that it can simulate A correctly with high
probability. To solve these problems, we consider, as in [27], a modified check under
which decryption, rather than rejectingwhen d �= ax1+y1v

1 ax2+y2v
2 , rejectswhen a2 �= aw

1
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Fig. 13. Games G0,G1,G2,G3, and G4 for proof of Theorem 5.1. G1 includes the boxed code at line 116
but G2 does not.

or d �= ax+yv
1 , where x = x1 + wx2, y = y1 + wy2, v = H(K , (a1, a2, c)) and

(a1, a2, c, d) is the ciphertext being decrypted. In our proof below, games G0–G2 move
us toward this perspective. Then, we fork off two game chains. Games G3–G6 are used
to show that the modified decryption rule increases the adversary’s advantage by at most
2q/p. Games G7–G11 show how to embed a target value v∗ into the components of the
secret key without significantly affecting the ability to answer Dec queries. Based on
the latter, we then construct I as shown below.

proof of Theorem 5.1. The proof relies on Games G0–G11 of Figs. 13, 14 and 15 and
the adversary I of Fig. 16.
We begin by transforming B into an adversary A such that

AdvsrobCS∗ (B) ≤ Pr
[

GA
0

]

. (4)

On input (g1, g2, K ), (e0, f0, h0), (e1, f1, h1), adversary A runs B on input (g1, g2, K ).
Adversary A returns to B the public key (e0, f0, h0) in response to B’s first GetEK
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Fig. 14. Games G5 and G6 for proof of Theorem 5.1.

Fig. 15. Games G7–G11 for proof of Theorem 5.1. G9 includes the boxed code at line 805 but G8 does not.

query id0, and (e1, f1, h1) in response to its second GetEK query id1. When B makes
a Dec query, which can be assumed to have the form (a1, a2, c, d), idb for some b ∈
{0, 1}, adversary A queries (a1, a2, c, d) to its own Dec oracle to get back (M0, M1)

and returns Mb to B. When B halts, with output that can be assumed to have the form
((a1, a2, c, d), id0, id1), adversary A makes a final query (a1, a2, c, d) to its Dec oracle
and also halts.
We assume that every Dec query (a1, a2, c, d) of A satisfies a1 �= 1. This is without

loss of generality because the decryption algorithm rejects otherwise. This will be crucial
below. Similarly, we assume (a1, a2, c, d) ∈ G

4. We now proceed to the analysis.
GamesG1,G2 start tomove us to the alternative decryption rule. InG1, if a2 = aw

1 and
d = axb+ybv

1 then d = axb1+yb1v
1 axb2+yb2v

2 , so Dec in G1 returns the correct decryption,
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Fig. 16. Adversary I for proof of Theorem 5.1.

like in G0. If a2 �= aw
1 or d �= axb+ybv

1 then, if d �= axb1+yb1v
1 · axb2+yb2v

2 , then Dec in G1

returns ⊥, else it returns ca−zb1
1 a−zb2

2 , so again is correct either way. Thus,

Pr
[

GA
0

]

= Pr
[

GA
1

]

= Pr
[

GA
2

]

+ (Pr
[

GA
1

]

− Pr
[

GA
2

]

)

≤ Pr
[

GA
2

]

+ Pr
[

GA
2 sets bad

]

, (5)

where the last line is by Lemma 2.1 since G1,G2 are identical until bad. We now fork
off two game chains, one to bound each term above.
First, we will bound the second term in the right-hand side of Inequality (5). Our goal

is to move the choices of xb1, xb2, yb1, yb2, zb1, zb2 (b = 0, 1) and the setting of bad
into Finalizewhile still being able to answerDec queries. We will then be able to bound
the probability that bad is set by a static analysis. Consider Game G3. If a2 �= aw

1 and
d = axb1+yb1v

1 axb2+yb2v
2 then bad is set in G2. But a2 = aw

1 and d �= axb+ybv
1 implies

d �= axb1+yb1v
1 axb2+yb2v

2 , so bad is not set in G2. So,

Pr
[

GA
2 sets bad

]

= Pr
[

GA
3 sets bad

]

. (6)

Since we are only interested in the probability that G3 sets bad, we have it always return
true. The flag badmay be set at line 315, but is not used, so we move the setting of bad
into the Finalize procedure in G4. This requires that G4 do some bookkeeping. We have
also done some restructuring, moving some loop invariants out of the loop in Dec. We
have

Pr
[

GA
3 sets bad

]

= Pr
[

GA
4 sets bad

]

. (7)

The choice of xb1, xb2, xb at lines 404, 405 can equivalently be written as first choosing
xb and xb2 at randomand then setting xb1 = xb−wxb2. This is true becausew is not equal
to 0 modulo p. The same is true for yb1, yb2, yb. Once this is done, xb1, xb2, yb1, yb2 are
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not used until Finalize, so their choice can be delayed. Game G5 makes these changes,
so we have

Pr
[

GA
4 sets bad

]

= Pr
[

GA
5 sets bad

]

. (8)

Game G6 simply writes the test of line 524 in terms of the exponents. Note that this
game computes discrete logarithms, but it is only used in the analysis and does not have
to be efficient. We have

Pr
[

GA
5 sets bad

]

= Pr
[

GA
6 sets bad

]

. (9)

We claim that

Pr
[

GA
6 sets bad

]

≤ 2q

p
, (10)

(Recall q is the number of Dec queries made by A.) We now justify (10). By the time
we reach Finalize in G6, we can consider the adversary coins, all random choices of
Initialize, and all random choices of Dec to be fixed. We will take probability only over
the choice of xb2, yb2 made at line 621. Consider a particular (a1, a2, c, d, v) ∈ S. This
is now fixed, and so are the quantities u1, u2, s, t0, t1, α and β as computed at lines
624–626. So we want to bound the probability that bad is set at line 627 when we regard
tb, α, β as fixed and take the probability over the random choices of xb2, yb2. The crucial
fact is that u2 �= u1 because (a1, a2, c, d, v) ∈ S, and lines 612, 613 only put a tuple in
S if a2 �= aw

1 . So α and β are not 0 modulo p, and the probability that tb = αxb2 +βyb2
is thus 1/p. The size of S is at most q so line 627 is executed at most 2q times. (10)
follows from the union bound.
We now return to (5) to bound the first term. Game G7 removes from G2 code that

does not affect outcome of the game. Once this is done, xb1, yb1, xb2, yb2 are used only
to define xb, yb, so G7 picks only the latter. So we have

Pr
[

GA
2

]

= Pr
[

GA
7

]

. (11)

Game G8 is the same as G7 barring setting a flag that does not affect the game outcome,
so

Pr
[

GA
7

]

= Pr
[

GA
8

]

= Pr
[

GA
9

]

+ Pr
[

GA
8

]

− Pr
[

GA
9

]

≤ Pr
[

GA
9

]

+ Pr
[

GA
8 sets bad

]

(12)

≤ Pr
[

GA
9

]

+ 1

p
. (13)
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(13) is by Lemma 2.1 since G8,G9 are identical until bad. The probability that G8 sets
bad is the probability that y1 = y0 at line 805, and this is 1/p since y is chosen at
random from Zp, justifying (12). The distribution of y1 in G9 is always uniform over
Zq − {y0}, and the setting of bad at line 805 does not affect the game outcome, so

Pr
[

GA
9

]

= Pr
[

GA
10

]

. (14)

Game G11 picks xb, yb differently from G10, but since y1− y0 �= 0, the two ways induce
the same distribution on x0, x1, y0, y1. Thus,

Pr
[

GA
10

]

= Pr
[

GA
11

]

. (15)

We now claim that

Pr
[

GA
11

]

≤ Advpre-img
H (I ) (16)

where I is depicted in Fig. 16. To justify this, say that the A makes a Dec query
(a1, a2, c, d) which returns (M0,M1) with M0 �= ⊥ and M1 �= ⊥. This means we
must have

d = ax0+y0v
1 = ax1+y1v

1 , (17)

where v = H(K , (a1, a2, c)). Let u1 = logg1(a1) and s = logg1(d). Now, the above
implies u1(x0 + y0v) = u1(x1 + y1v). But (a1, a2, c, d) is a Dec query, and we know
that a1 �= 1, so u1 �= 0. (This is a crucial point. Recall the reason we can without loss
of generality assume a1 �= 1 is that the decryption algorithm of CS∗ rejects otherwise.)
Dividing u1 out, we get x0 + y0v = x1 + y1v. Rearranging terms, we get (y1 − y0)v =
x0 − x1. However, we know that y1 �= y0, so v = (y1 − y0)−1(x0 − x1). However, this
is exactly the value v∗ due to the way I and Game G11 define x0, y0, x1, y1. Thus, we
have H(K , (a1, a2, c)) = v∗, meaning that I will be successful.
Putting together Eqs. (4)–(11), (12)–(16) concludes the proof of Theorem 5.1.

6. A SROB-CCA Version of DHIES

Let G be a group of prime order p, let SE and MAC be a symmetric encryption and
message authentication code (MAC) scheme with key lengths kSE and kM, respectively,
and let H : G �→ {0, 1}kSE+kM be a hash function. The DHIES public-key encryption
scheme depicted in Fig. 17 was shown to be IND-CCA in [4] and, in Sect. 6.1, we
show it to be ANO-CCA as well. In terms of robustness, it suffers from a similar prob-
lem as the CS scheme: the ciphertext (1, γ ∗, τ ∗) decrypts to M under any key sk for

SK∗‖MK∗ ← H(1), γ ∗ $← SEnc(SK∗,M), and τ ∗ $← Tag(MK∗, γ ∗), meaning that it
is not SROB-CPA. Similarly to the CS∗ scheme,we show that amodified schemeDHIES∗
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Fig. 17. Original DHIES scheme [5] does not contain the boxed code while the variant DHIES∗ does.

Fig. 18. Games SUFMAC (left) and OTESE (right) defining the strong unforgeability of MAC schemeMAC =
(Tag,Vf)with key length kM and the one-time security of symmetric encryption scheme SE = (SEnc,SDec)
with key length kSE, respectively.

that excludes the zero randomness and rejects ciphertexts with 1 as first component is
SROB-CCA.

Symmetric encryption. A symmetric encryption scheme SE = (SEnc,SDec)
consists of an encryption algorithm SEnc that, on input a kSE-bit key SK and
a message M, outputs a ciphertext γ ; and a decryption algorithm SDec that, on
input a key SK and ciphertext γ outputs a message M. Correctness requires that
SDec(SK,SEnc(SK,M)) = M with probability one for all M ∈ {0, 1}∗ and all
SK ∈ {0, 1}kSE . We require one-time encryption security (OTE) for SE as defined in
Fig. 18.

Message authentication codes. A message authentication code MAC = (Tag,Vf)
consists of a tagging algorithm Tag that, on input a kM-bit key MK and a message M,
outputs a tag τ ; and a verification algorithm Vf that, on input a key MK , a message
M, and a tag τ , outputs 0 or 1, indicating that the tag is invalid or valid, respectively.
Correctness requires that Vf(MK,M,Tag(MK,M, τ )) = 1 for all M ∈ {0, 1}∗ and all
MK ∈ {0, 1}kM.
Apart from the strong unforgeability (SUF) defined in Fig. 18, for robustness we

also require collision resistance of the MAC scheme, in the sense that it be hard for
an adversary to come up with two keys MK0,MK1, a message M, and a tag τ that is



336 M. Abdalla et al.

Fig. 19. Games ODHG,H (left) and ODH2G,H (right) defining the oracle Diffie–Hellman (ODH) problem

and the double ODH problem in G with respect to hash function H : G �→ {0, 1}�, respectively.

valid under both keys, i.e., such that Vf(MK0,M, τ ) = Vf(MK1,M, τ ) = 1. Collision-
resistant MAC schemes are easy to construct in the random oracle model and the HMAC
scheme [10], where Tag(MK,M) = H(MK ⊕ opad, H(MK ⊕ ipad,M)), naturally
satisfies it if the underlying hash function H is collision resistant.We define the collision-
finding advantage AdvcollMAC(A) of an adversary A for MAC as the probability that A
outputs a collision as described above.Note that a proper definition of collision resistance
would require MAC schemes to be chosen at random from a family, as is done when
formally defining collision resistance for hash functions. We refrain from doing so to
avoid overloading our notation.

Oracle diffie–hellman. We recall the oracle Diffie–Hellman (ODH) problem from
[4] in Fig. 19. The adversary’s goal is to distinguish the hash of a Diffie–Hellman
solution from a random string when given access to an oracle that returns hash values
of Diffie–Hellman solutions of any other group elements than the target group element.
The advantage of an adversary A to solve the ODH problem is defined as

Advodh
G,H (A) = 2 · Pr

[

ODHA
G,H ⇒ true

]

− 1 .

The proof by [4] that DHIES is IND-CCA relies on the assumption that ODH is hard;
we use the same assumption here to prove that is also ANO-CCA.
We also introduce a double-challenge variant of ODH called ODH2 in Fig. 19 and its

associated advantage as Advodh2
G,H (A) = 2 · Pr

[

ODH2A
G,H ⇒ true

]

− 1. The following

lemma shows that the hardness of the ODH2 problem is implied by that of the ODH
problem, but the ODH2 problem is easier to work within our proofs.
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Fig. 20. Games G0, G1, and G2 for the proof of Lemma 6.1.

Lemma 6.1. Let A be an adversary with advantage Advodh2
G,H (A) in solving the ODH2

problem. Then there exists an adversary B such that Advodh2
G,H (A) ≤ 2 · Advodh

G,H (B).

Proof. Consider the sequence of games G0, G1, and G2 in Fig. 20. GameG0 is identical
to the ODH2G,H game in the case that b = 0. Game G2 is almost identical to ODH2G,H
in the case that b = 1, except that it returns true when ODH2G,H returns false and vice
versa. We therefore have that

Advodh2
G,H (A) = 2 · Pr

[

ODH2A
G,H ⇒ true

]

− 1

= Pr
[

ODH2A
G,H ⇒ true | b = 0

]

+Pr
[

ODH2A
G,H ⇒ true | b = 1

]

− 1

= Pr
[

GA
0 ⇒ true

]

− Pr
[

GA
2 ⇒ true

]

. (18)

Game G1 differs from G0 in that Z0 is chosen at random from {0, 1}�, instead of
computed as H(Y x0). We claim that there exists an algorithm B1 such that

Pr
[

GA
0 ⇒ true

]

− Pr
[

GA
1 ⇒ true

]

= Advodh
G,H (B1). (19)

Namely, on initial input (g, X,Y, Z), B1 chooses x1
$← Z

∗
p and sets X0 ← X , X1 ←

gx1 , Z0 ← Z , and Z1 ← H(Y x1). It then runs A on initial input (g, X0, X1,Y, Z0, Z1),
answering its HDH2(W ) queries as HDH(W )‖H(Wx1). When A outputs b′, B1 also
outputs b′.
It is clear that B1 provides A with a perfect simulation of game G0 if the challenge

bit b in B1’s ODH2G,H game is zero, and of game G1 if b = 1. We therefore have
that

Advodh
G,H (B1) = Pr

[

ODHB1
G,H ⇒ true | b = 0

]

+Pr
[

ODHB1
G,H ⇒ true | b = 1

]

− 1
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= Pr
[

GA
0 ⇒ true

]

+ (1 − Pr
[

GA
1 ⇒ true

]

) − 1

= Pr
[

GA
0 ⇒ true

]

− Pr
[

GA
1 ⇒ true

]

.

By a similar reasoning, there exists an algorithm B2 such that

Pr
[

GA
1 ⇒ true

]

− Pr
[

GA
2 ⇒ true

]

= Advodh
G,H (B2). (20)

Putting Eqs. (18), (19), and (20) together and letting B be the algorithm of B1 or B2
with the highest advantage yields the lemma statement.

6.1. Anonymity of DHIES

TheDHIES scheme was already proved to be IND-CCA secure [4], so to prove AI-CCA
security, we only have left to prove ANO-CCA security. As mentioned in Sect. 2, the
ANO-CCA security game is the AI-CCA game in Fig. 3 with an added restriction that
two equal challenge messages M∗

0 = M∗
1 must be submitted to the LR oracle.

Theorem 6.2. Let DHIES be the general encryption scheme associated with groupG,
symmetric encryption scheme SE, message authentication codeMAC, and hash function
H : G �→ {0, 1}kSE+kM as per Fig. 17. Let A be an ano-cca adversary against DHIES
that makes two GetEK queries, no GetDK queries and at most q Dec queries. Then
there exist an ODH2 adversary B against G and an adversary C against the strong
unforgeability of MAC such that

Advano-ccaDHIES (A) ≤ 2 · Advodh
G

(B) + AdvsufMAC(C).

Adversaries B,C have the same running time as A, and adversary B makes q Dec
queries.

Since DHIES is a PKE scheme, the above implies security for multiple GetEK and
GetDK queries as required by the ANO-CCA game. The above result easily extends
to DHIES∗ as well, because the exclusion of r = 0 from encryption and R = 1 from
decryption only affect the ANO-CCA game if R∗ = 1 in the challenge ciphertext C∗,
which only happens with probability 1/p.

Proof of Theorem 6.2. In Fig. 21, we depict Games G0 and G1 used in the proof.
Game G0 differs from the original ANO-CCA game in that the challenge ciphertext
uses symmetric encryption and MAC keys that are randomly chosen (in line 002) rather
than computed as SK∗‖MK∗ ← H(R∗). The changes to Dec are purely cosmetic. We
first show that for any ANO-CCA adversary A, there exists an ODH2 adversary B2 such
that

Advodh2
G,H (B2) = Pr

[

ANO-CCAA
DHIES ⇒ true

]

+ Pr
[

GA
0 ⇒ true

]

− 1. (21)
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Fig. 21. Games G0 and G1 for the proof of Theorem 6.2. Game G0 includes the boxed code at line 009 but
G1 does not.

Namely, on initial input (g, X0, X1,Y, Z0, Z1), adversary B2 chooses b
$← {0, 1} and

runs A on initial input g and returns X0 and X1 as the two public encryption keys of A’s
GetEK queries id0 and id1.
To simulate A’s LR query, B2 sets R∗ ← Y , parses Zb as SK∗‖MK∗, and computes

γ ∗ $← SEnc(SK∗,M∗
b ) and τ ∗ $← Tag(MK∗, γ ∗). It returns C∗ = (R∗, γ ∗, τ ∗) as the

challenge ciphertext.
To answer A’s Dec((R, γ, τ ), idd) queries, B2 proceeds as follows. If R �= Y , then

B2 queries its ODH2 oracle to obtain SK‖MK ← ODH2(R). If R = Y , it parses Zd

as SK‖MK . In both cases, it checks that Vf(MK, γ ) = 1, and, if so, returns M ←
SDec(SK, γ ). When A outputs its guess b′, B2 outputs (b = b′).

Let b2 be the random bit chosen by B2’s challenger in the ODH2 game that B2 has to
guess. In the case that b2 = 0, we have that Z0 = H(Y x0) and Z1 = H(Y x1), so that all
symmetric encryption and MAC keys that B2 used for the challenge ciphertext and to
simulate A’s decryption queries are exactly as in the realDHIES scheme. In the case that
b2 = 1, Z0 and Z1 are random strings, so that the challenge ciphertext and decryption
responses are exactly as in Game G0. We therefore have that

Pr
[

ODH2B2
G,H ⇒ true

]

= 1

2
· Pr

[

ANO-CCAA
DHIES ⇒ true

]

+ 1

2
· Pr

[

GA
0 ⇒ true

]

.

so that (21) follows.
Games G0 and G1 are identical until bad on line 009 in Fig. 21, so by Lemma 2.1,

we have that

∣
∣
∣Pr

[

GA
0 ⇒ true

]

− Pr
[

GA
1 ⇒ true

]∣
∣
∣ ≤ Pr

[

GA
1 sets bad

]

. (22)

For any adversary A that makes Game G1 set bad, we construct an adversary C against
the strong unforgeability of the MAC scheme so that

Pr
[

GA
1 sets bad

]

= AdvsufMAC(C). (23)
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Namely, C chooses g, R∗ $← G
∗, SK∗ $← {0, 1}kSE , and b

$← {0, 1} as in Game
G1, but rather than choosing a MAC key MK∗, it uses its Tag and Verify oracles for
all operations involving MK∗. More precisely, when answering A’s LR query, it sets
τ ∗ ← Tag(γ ∗). When A sets bad, i.e., makes a queryDec(C = (R, γ, τ ))with R = R∗
and Verify(γ, τ ) = 1, then C returns its forgery (γ, τ ). By line 006, we have that
C �= (R∗, γ ∗, τ ∗), so that (γ, τ ) �= (γ ∗, τ ∗) and therefore (γ, τ ) is a valid forgery.

Note that becauseM∗
0 = M∗

1 , A’s view in Game G1 is independent of the bit b, hence

Pr
[

GA
1 ⇒ true

]

= 1

2
. (24)

By the definition of ANO-CCA advantage, we have

Advano-ccaDHIES (A) = 2 · Pr
[

ANO-CCAA
DHIES ⇒ true

]

− 1

= 2 · Advodh2
G,H (B2) − 2 · Pr

[

GA
0 ⇒ true

]

+ 1

≤ 4 · Advodh
G,H (B) − 2 ·

(

Pr
[

GA
0 ⇒ true

]

− Pr
[

GA
1 ⇒ true

])

− 2 · Pr
[

GA
1 ⇒ true

]

+ 1

≤ 4 · Advodh
G,H (B) + 2 · AdvsufMAC(C)

where the first step is due to (21), the second is by considering the ODH adversary B
from Lemma 6.1, and the third is due to (22), (23), and (24).

6.2. Robustness of DHIES

Theorem 6.3. LetDHIES∗ be the general encryption scheme associated with groupG,
symmetric encryption scheme SE, message authentication codeMAC, and hash function
H : G �→ {0, 1}kSE+kM as per Fig. 17. Let HM : G �→ {0, 1}kM be the function that
outputs the last kM bits of H(x) on input x ∈ G.
Let A be an srob-cca adversary against DHIES, making at most qGetEK queries to its

GetEK oracle. Then there exist collision-finding adversaries B and C against HM and
MAC, respectively, such that

AdvsrobDHIES(A) ≤ AdvcollHM
(B) + AdvcollMAC(C) +

(
qGetEK

2

)

/p.

Adversaries B and C have the same running time as A.

The proof intuition for the strong robustness of DHIES∗ is quite straightforward. Let
(C, id0, id1) be the output of a SROB-CCA adversary A where C = (R, γ, τ ) and
(id0, id1) are the identities associated with two different public keys y0 = gx0 and
y1 = gx1 . Let SKb‖MKb ← H(yrb) for b ∈ {0, 1}. First, yr0 �= yr1 since R �= 1
and y0 �= y1 �= 1 with overwhelming probability. Second MK0 �= MK1 with all but
negligible probability since the probability that HM(yr0) = HM(yr1) is negligible due to
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the collision resistance ofHM.Third, the probability thatC is validwith respect to both y0
and y1 (i.e., Dec(g, y0, x0,C) �= ⊥ and Dec(g, y1, x1,C) �= ⊥) is negligible since the
probability that Vf(MK0, γ, τ ) = Vf(MK1, γ, τ ) = 1 is negligible due to the collision
resistance ofMAC. Finally, the latter is true even when A knows the corresponding secret
keys x0 and x1 associated with y0 and y1 so GetDK and Dec are of no help to A.

Proof of Theorem 6.3. In order to prove the strong robustness of DHIES, we consider
a SROB-CCA adversary A that even knows the secret decryption key associated with
each public key that it obtains via GetEK queries (and therefore can decrypt all the
ciphertexts that it wants). That is, whenever A issues a GetEK query id, the challenger
in the SROB-CCA game runs the key generation algorithm KG(g) to obtain a fresh pair
of secret and public keys (x, y = gx ) for id and returns both values to A. Hence, A can
compute the answer to GetDK and Dec queries on its own.

Let (C, id0, id1) be the output of a SROB-CCA adversary A where C = (R, γ, τ )

and (id0, id1) are the identities associated with two different public keys y0 = gx0 and
y1 = gx1 . Moreover, letMKb ← HM(yrb) for b ∈ {0, 1} denote the corresponding MAC
keys. In order for A to be successful, one of the following cases needs to occur:

(1) y0 = y1;
(2) HM(yr0) = HM(yr1);
(3) Vf(MK0, γ, τ ) = Vf(MK1, γ, τ ) = 1.

Since public keys are generated honestly, the probability that y0 = y1 (i.e., Case (1))
can be upper-bounded by the probability that GetEK oracle generates the same public
and secret keys for two different id values, which is at most

(qGetEK
2

)

/p.
Assuming that y0 �= y1 and since R �= 1, it is easy to construct a collision-finding

adversary B againstHM such that the probability thatHM(yr0) = HM(yr1) (i.e., Case (2))
is at most AdvcollHM

(B). Adversary B works as follows. B starts by running A, providing
the latter with a generator g for the group G. Whenever A issues a GetEK query id,
B runs the key generation algorithm KG(g) to obtain a fresh pair of secret and public
keys (x, y = gx ) for id and returns both values to A. Finally, when A issues a Finalize
query (C, id0, id1), where C = (R, γ, τ ), let (xb, yb = gxb) be the secret and public
key pair associated with idb for b ∈ {0, 1}. B simply outputs Rx0 and Rx1 as a collision
for HM. Clearly, B wins whenever HM(yr0) = HM(yr1). Hence, the probability that
HM(yr0) = HM(yr1) is at most AdvcollHM

(B).
Finally, if we assume that HM(yr0) �= HM(yr1), then it is easy to construct a collision-

finding adversary C against MAC such that the probability that Vf(MK0, γ, τ ) =
Vf(MK1, γ, τ ) = 1 (i.e., Case (3)) is atmostAdvcollMAC(C). AdversaryC works as follows.
C starts by running A, providing the latter with a generator g for the groupG. Whenever
A issues aGetEK query id,C runs the key generation algorithmKG(g) to obtain a fresh
pair of secret and public keys (x, y = gx ) for id and returns both values to A. Finally,
when A issues a Finalize query (C, id0, id1), where C = (R, γ, τ ), let (xb, yb = gxb)
be the secret and public key pair associated with idb and let MKb ← HM(Rxb ) for
b ∈ {0, 1}. C simply outputs (MK0,MK1) as the two MAC keys, γ as the message, and
τ as the tag. Clearly, C wins whenever Vf(MK0, γ, τ ) = Vf(MK1, γ, τ ) = 1. Hence,
the probability that Vf(MK0, γ, τ ) = Vf(MK1, γ, τ ) = 1 is at most AdvcollMAC(C).
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7. Other Schemes and Transforms

In this section, we show that neither of two popular IND-CCA-providing transforms,
the Fujisaki–Okamoto (FO) transform [32] in the random oracle model and the Canetti–
Halevi–Katz (CHK) transform [9,25] in the standard model, yield robustness. Since
the FO transform even provides the stronger notion of plaintext awareness [19], the
counterexample below is at the same time a proof that even plaintext awareness does
not suffice for robustness. The fact that neither of the transforms confer robustness
generically does not exclude that they may still do so for certain specific schemes. We
show that this is actually the case for the Boneh–Franklin IBE [15], which uses the FO
transform to obtain IND-CCA security, and that it is not the case for the Boyen–Waters
IBE [23], which uses the CHK transform.

The FO transform. Given a public-key encryption scheme PKE = (PG,KG,Enc,
Dec) the FO transform yields a PKE scheme PKE = (PG,KG,Enc,Dec) where a
message M is encrypted as

(

Enc(pars, pk, x; H(x,M)) , G(x) ⊕ M
)

,

where x
$← {0, 1}k , where G(·) and H(·) are random oracles, and where H(x,M) is

used as the random coins for the Enc algorithm. To decrypt a ciphertext (C1,C2),
one recovers x by decrypting C1, recovers M ← C2 ⊕ G(x), and checks that
Enc(pars, pk, x; H(x,M)) = C1. If this is the case then M is returned, otherwise
⊥ is returned.

Given a scheme PKE∗ = (PG,KG,Enc∗,Dec∗), we show how to build a scheme
PKE = (PG,KG,Enc,Dec such that PKE obtained by applying the FO transform to
PKE is not SROB-CPA. Namely, for some fixed x∗ ∈ {0, 1}k andM∗, let encryption and
decryption be given by

Algorithm Enc(pars, pk, x; ρ)

If x = x∗ and ρ = H(x∗,M∗) then return 0
Else return 1‖Enc∗(pars, pk, x; ρ)

Algorithm Dec(pars, pk, sk, b‖C∗)
If b = 0 then return x∗
Else return Dec∗(pars, pk, sk,C∗) .

It is easy to see that if PKE∗ is one-way (the notion required by the FO transform), then
so is PKE, because for an honestly generated ciphertext the random coins H(x∗,M∗)
will hardly ever occur. Moreover, it is also straightforward to show that, if PKE∗ is γ -
uniform, then PKE is γ ′-uniform for γ ′ = max(γ, 1/2�), where � is the output length of
H (please refer to [32] for the definition of γ -uniformity). It is also easy to see that the
scheme PKE obtained by applying the FO transform to PKE is not robust: the ciphertext
C = (0 , G(x∗) ⊕ M∗) decrypts correctly toM∗ under any public key.

The Boneh--Franklin IBE. Boneh and Franklin proposed the first truly practical
provably secure IBE scheme in [15]. They also propose a variant that uses the FO
transform to obtain provable IND-CCA security in the random oracle model under the
bilinear Diffie–Hellman (BDH) assumption; we refer to it as the BF-IBE scheme here.
A straightforward modification of the proof can be used to show that BF-IBE is also
ANO-CCA in the random oracle model under the same assumption.We now give a proof
sketch that BF-IBE is also (unconditionally) SROB-CCA in the random oracle model.
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Let e: G1 × G1 → G2 be a non-degenerate bilinear map, where G1 and G2 are
multiplicative cyclic groups of prime order p [15]. Let g be a generator of G1. The

master secret key of the BF-IBE scheme is an exponent s
$← Z

∗
p, the public parameters

contain S ← gs . For random oracles H1 : {0, 1}∗ → G
∗
1, H2 : G2 → {0, 1}k , H3 :

{0, 1}k × {0, 1}� → Z
∗
p, and H4 : {0, 1}k → {0, 1}�, the encryption of a message M

under identity id is a tuple

(

gr , x ⊕ H2(e(S, H1(id))r ) , M ⊕ H4(x)
)

,

where x
$← {0, 1}k and r ← H3(x,M). To decrypt a ciphertext (C1,C2,C3), the user

with identity id and decryption key dk = H1(id)s computes x ← C2 ⊕ H2(e(C1, dk)),
M ← C3 ⊕ H4(x), and r ← H3(x,M). If C1 �= gr he rejects, otherwise he outputsM.
Let us now consider a SROB-CCA adversary A that even knows the master secret s

(and therefore can derive all keys and decrypt all ciphertexts that it wants). Since H1
maps intoG∗

1, all its outputs are of full order p. The probability that A finds two identities
id1 and id2 such that H1(id) = H1(id2) is negligible. Since S ∈ G

∗
1 and the map is non-

degenerate, we therefore have that gid1 = e(S, H1(id1)) and gid2 = e(S, H1(id2)) are
different and of full order p. Since H3 maps into Z∗

p, we have that r �= 0, and therefore
that grid1 and grid2 are different. If the output of H2 is large enough to prevent collisions
from being found, that also means that H2(grid1) and H2(grid2) are different. Decryption
under both identities therefore yields two different values x1 �= x2, and possibly different
messagesM1,M2. In order for the ciphertext to be valid for both identities, we need that
r = H3(x1,M1) = H3(x2,M2), but the probability of this happening is again negligible
in the random oracle model. As a result, it follows that the BF-IBE scheme is also
SROB-CCA in the random oracle model.

The Canetti--Halevi--Katz transform. The CHK transform turns an IBE scheme
and a one-time signature scheme [30,42] into a PKE scheme as follows. For each cipher-
text, a fresh signature keypair (spk, ssk) is generated. The ciphertext is a tuple (C, spk, σ )

where C is the encryption of M to identity spk and σ is a signature of C under ssk. To
decrypt, one verifies the signature σ , derives the decryption key for identity spk, and
decrypts C.
Given a scheme IBE∗ = (Setup,Ext,Enc∗,Dec∗), consider the scheme IBE =

(Setup,Ext,Enc,Dec) where Enc(pars, id,M) = 1‖Enc∗(pars, id,M) and where
Dec(pars, id, dk, b‖C∗) returns Dec∗(pars, id, dk,C∗) if b = 1 and simply returns C∗
if b = 0. This scheme clearly inherits the privacy and anonymity properties of IBE∗.
However, if IBE is used in the CHK transformation, then one can easily generate a
ciphertext (0‖M, spk, σ ) that validly decrypts to M under any parameters pars (which
in the CHK transform serve as the user’s public key).
An extension of the CHK transform turns any IND-CPA secure �+1-level hierarchical

IBE (HIBE) into an IND-CCA secure �-level HIBE. It is easy to see that this transform
does not confer robustness either.

The Boyen--Waters IBE. Boyen and Waters [23] proposed a HIBE scheme which
is IND-CPA and ANO-CPA in the standard model, and a variant that uses the CHK
transform to achieve IND-CCA and ANO-CCA security. Decryption in the IND-CPA



344 M. Abdalla et al.

secure schemenever rejects, so it is definitely notWROB-CPA.Without going into details
here, it is easy to see that the IND-CCA variant is not WROB-CPA either, because any
ciphertext that is valid with respect to one identity will also be valid with respect to
another identity, since the verification of the one-time signature does not depend on the
identity of the recipient. (The natural fix to include the identity in the signed data may
ruin anonymity.)
The IND-CCA-secure variant of Gentry’s IBE scheme [34] falls to a similar robust-

ness attack as the original Cramer–Shoup scheme, by choosing a random exponent
r = 0. We did not check whether explicitly forbidding this choice restores robustness,
however.

Composite-order pairing-based schemes.Asmentioned in the introduction, a number
of encryption schemes based on composite-order bilinear maps satisfy a variant of our
weak robustness notion [24,40]. They achieve this by restricting the message space to
a negligible fraction of the group and by proving that decryption of a ciphertext with an
incorrect secret key yields a message with a random component in one of the subgroups.
This message has a negligible probability of falling within the valid message space. It
is unclear whether the same approach can be used to satisfy our robustness notions or
whether it extends to other schemes.
There is growing recognition that robustness is important in applications and worth

defining explicitly, supporting our own claims to this end. In particular, the strong cor-
rectness requirement for public-key encryption [8] and the correctness requirement for
hidden vector and predicate encryption [40,41] imply a form of weak robustness. In
work concurrent to, and independent of, ours, Hofheinz and Weinreb [38] introduced a
notion of well-addressedness of IBE schemes that is just like weak robustness except
that the adversary gets the IBE master secret key.
Neither of these works considers or achieves strong robustness, and neither treats

PKE. Well-addressedness of IBE implies WROB-CCA but does not imply SROB-CCA
and, on the other hand, SROB-CCA does not imply well-addressedness. Note that
the term robustness is also used in multi-party computation to denote the prop-
erty that corrupted parties cannot prevent honest parties from computing the cor-
rect protocol output [18,36,37]. This meaning is unrelated to our use of the word
robustness.

8. Application to Auctions

Robustness of ElGamal. The parameters of the ElGamal encryption scheme consist
of the description of a group G of prime order p with generator g. The secret key of a

user is x
$← Zp, the corresponding public key is X = gx . The encryption of a message

M is the pair (gr , Xr ·M) for r
$← Zp. A ciphertext (R, S) is decrypted asM ← R/Sx .

Since the decryption algorithm never returns ⊥, the ElGamal scheme is obviously not
robust. Stronger even, the ciphertext (1,M) decrypts toM under any secret key.

It is this strong failure of robustness that opens the way to attacks on applications like
Sako’s auction protocol [47].
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The protocol. Sako’s auction protocol [47] is important because it is the first truly
practical one to hide the bids of losers. Let 1, . . . , N be the range of possible bid-
ding prices. In an initialization step, the auctioneer generates N ElGamal key pairs
(x1, X1), . . . , (xN , XN ) and publishes g, X1, . . . , XN and a fixed message M ∈ G. A
bidder places a bid of value v ∈ {1, . . . , N } by encrypting M under Xv and posting the
ciphertext. Note that the privacy of the bids is guaranteed by the anonymity of ElGamal
encryption. The authority opens bids C1 = (R1, S1), . . . ,Cn = (Rn, Sn) by decrypting
all bids under secret keys xN , . . . , x1, until the highest index w where one or more bids
decrypt to M. The auctioneer announces the identity of the winner(s), the price of the
item w, and the secret key xw. All auctioneers can then check that Si/R

xw

i = M for all
winners i .

An attack. Our attack permits a dishonest bidder and a colluding auctioneer to break
the fairness of the protocol. (Security against colluding auctioneers was not considered
in [47], so we do not disprove their results, but it is a property that one may expect the
protocol to have.) Namely, a cheating bidder can place a bid (1,M). If w is the highest
honest bid, then the auctioneer can agree to open the corrupted bid to with xw+1, thereby
winning the auction for the cheating bidder at one dollar more than the second-highest
bidder.
Sako came close to preventing this attack with an “incompatible encryption” property

that avoids choosing r = 0 at encryption. A dishonest bidder, however, may deviate
from this encryption rule; the problem is that the decryption algorithm does not reject
ciphertexts (R, S) when R = 1. While such a ciphertext would surely look suspicious
to a human observing the network traffic, it will most likely go unnoticed to the users
if the software doesn’t explicitly check for such ciphertexts. It is therefore up to the
decryption algorithm to explicitly specify which cases need to be checked and up to the
security proof to show that, if these cases are checked, the system indeed has the desired
properties.
The attack above can easily be prevented by using any of our robust encryption

schemes, so that decryption under any other secret key than the intended one results in
⊥ being returned. Note that for this application we really need the strong robustness
notion with adversarially generated ciphertexts.
Though necessary, our notion of strong robustness may not be sufficient to guar-

antee the fairness of the protocol in the case where a dishonest bidder has access the
secret key held by the colluding auctioneer or when the public key of the scheme is not
honestly generated, as our notion does not take these settings into account. Hence, to
achieve fairness in Sako’s auction protocol, it would be important to consider encryp-
tion schemes that achieve an even stronger notion of robustness in which public keys
may be maliciously generated by the adversary [31]. Interestingly, as pointed out in
their paper, our strong robustness transform in Sect. 4 already achieves this stronger
notion.
It is worth noting that, to enforce that all bids are independent of each other even in the

presence of a colluding auctioneer, all bidders would also need to commit to their sealed
bids (using a non-malleable commitment scheme) during a first round of communication
and only open their commitments once all commitments made public.
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Fig. 22. PEKS = (PG,KG,PEKS,Td,Test) is a PEKS scheme. Games IND-CCAPEKS and IND-CPAPEKS
are on the left, where the latter omits procedure Test. The LR procedure may be called only once. Game
CONSISTPEKS is on the right.

9. Applications to Searchable Encryption

Public-key encryption with keyword search. A public-key encryption with key-
word search (PEKS) scheme [12] is a tuple PEKS = (KG,PEKS,Td,Test) of algo-

rithms. Via (pk, sk)
$← KG, the key generation algorithm produces a pair of public and

private keys. Via C
$← PEKS(pk,w), the encryption algorithm encrypts a keyword w

to get a ciphertext under the public key pk. Via tw
$← Td(sk,w), the trapdoor extrac-

tion algorithm computes a trapdoor tw for keyword w. The deterministic test algorithm
Test(tw,C) returns 1 if C is an encryption of w and 0 otherwise.

Privacy and consistency of PEKS schemes.We formulate privacy notions for PEKS
using the games of Fig. 22. Let ATK ∈ {CPA,CCA}. We define the advantage of an
adversary A against the indistinguishability of PEKS as follows:

Advind-atkPEKS (A) = 2 · Pr
[

IND-ATKA
PEKS ⇒ true

]

− 1.

We re-formulate the consistency definition of PEKS schemes of [1] using the game of
Fig. 22. We define the advantage of an adversary A against the consistency of PEKS as
follows:

AdvconsistPEKS (A) = Pr
[

CONSISTA
PEKS ⇒ true

]

.

Furthermore, we also recall the advantage measure AdvconsistPEKS (A), which captures the
notion CONSIST of computational consistency of PEKS scheme PEKS.

Transforming IBE to PEKS. The bdop-ibe-2-peks transform of [12] transforms an
IBE scheme into a PEKS scheme. Given an IBE scheme IBE = (Setup,Ext,Enc,
Dec), the transform associates with it the PEKS scheme PEKS = (KG,PEKS,Td,
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Test), where the key generation algorithmKG returns (pk, sk)
$← Setup; the encryption

algorithmPEKS(pk,w) returnsC ← Enc(pk,w, 0k); the trapdoor extraction algorithm

Td(sk,w) returns t
$← Ext(pk, sk,w); the test algorithm Test(t,C) returns 1 if and

only if Dec(pk, t,C) = 0k . Abdalla et al. [1] showed that this transform generally
does not provide consistency and presented the consistency-providing new-ibe-2-peks
transform as an alternative. We now show that the original bdop-ibe-2-peks transform
does yield a consistent PEKS if the underlying IBE scheme is robust.We also show that if
the base IBEscheme isANO-CCA, then thePEKSscheme is IND-CCA, therebyyielding
the first IND-CCA-secure PEKS schemes in the standard model, and the first consistent
IND-CCA-secure PEKS schemes in the RO model. (Non-consistent IND-CCA-secure
PEKS schemes in the RO model are easily derived from [33]).

Proposition 9.1. Let IBE be an IBE scheme, and let PEKS be the PEKS scheme asso-
ciated with it per the bdop-ibe-2-peks transform. Given any adversary A running in
time t, we can construct an adversary B running in time t + O(t) executions of the
algorithms of IBE such that

AdvconsistPEKS (A) ≤ Advwrob-cpaIBE (B) and Advind-ccaPEKS (A) ≤ Advano-ccaIBE (B).

To see why the first inequality is true, it suffices to consider the adversary B that on input

pars runs (w,w′) $← A(pars) and outputs these keywords alongwith themessage 0k . The
proof of the second inequality is an easy adaptation of the proof of the new-ibe-2-peks
transform in [1], where B answers A’s Test queries using its own Dec oracle.

Securely combining PKE and PEKS. Searchable encryption by itself is only of lim-
ited use since it can only encrypt individual keywords, and since it does not allow
decryption. Fuhr and Paillier [33] introduce a more flexible variant that allows decryp-
tion of the keyword. An even more powerful (and general) primitive can be obtained
by combining PEKS with PKE to encrypt non-searchable but recoverable content. For
example, one could encrypt the body of an email using a PKE scheme and append
a list of PEKS-encrypted keywords. The straightforward approach of concatenating
ciphertexts works fine for CPA security, but is insufficient for a strong, combined
IND-CCA security model where the adversary, in addition to the trapdoor oracle, has
access to both a decryption oracle and a testing oracle. Earlier attempts to combine
PKE and PEKS [22,51] do not give the adversary access to the latter. A full IND-CCA-
secure PKE/PEKS scheme in the standard model can be obtained by combining the
IND-CCA-secure PEKS schemes obtained through our transformation with the tech-
niques of [28]. Namely, one can consider label-based [49] variants of the PKE and
PEKS primitives, tie the different components of a ciphertext together by using as a
common label the verification key of a one-time signature scheme, and append to the
ciphertext a signature of all components under the corresponding signing key. Though
we omit the details, we note that the same techniques can be used to handle multiple
encrypted keywords and avoid reordering attacks such as those mentioned by Boneh et
al. [12].
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