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Abstract. We present a new cryptographic primitive, called all-but-many encryption
(ABME). An ABME scheme is a tag-based public-key encryption scheme with the fol-
lowing additional properties: A sender given the secret key can generate a fake ciphertext
to open to any message with consistent randomness. In addition, anyone who does not
own the secret key can neither distinguish a fake ciphertext from a real (honestly gener-
ated) one, nor produce a fake one (on a fresh tag) even after seeing many fake ciphertexts
and their opening. A motivating application of ABME is universally composable (UC)
commitment schemes. We prove that an ABME scheme implies a non-interactive UC
commitment scheme that is secure against adaptive adversaries in the non-erasure model
under a reusable common reference string. Previously, such a “fully equipped” UC com-
mitment scheme has been known only in Canetti and Fischlin (CRYPTO 2001, vol 2139,
Lecture notes in computer science. Springer, Heidelberg, pp 19–40, 2001), Canetti et
al. (STOC 2002, pp 494–503, 2002), with expansion factor O(κ), meaning that to com-
mit λ bits, communication strictly requires O(λκ) bits, where κ denotes the security
parameter. We provide a general framework for constructing ABME and several con-
crete instantiations from a variety of assumptions. In particular, we present an ABME
scheme with expansion factor O(1) from DCR-related assumptions, which results in
showing the first fully equipped UC commitment scheme with a constant expansion fac-
tor. In addition, the DCR-based ABME scheme can be transformed to an all-but-many
lossy trapdoor function (ABM-LTF), proposed by Hofheinz (EUROCRYPT 2012, vol
7237, Lecture notes in computer science. Springer, Heidelberg, pp 209–227, 2012), with
a better lossy rate than Hofheinz (2012).
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1. Introduction

1.1. Motivating Application: Fully Equipped UC Commitments

Universal composability (UC) framework [13] guarantees that if a protocol is proven
secure in the UC framework, it remains secure even if it is run concurrently with arbitrary
(even insecure) protocols. This composable property gives a designer a fundamental
benefit, compared to the classic definitions, which only guarantee that a protocol is
secure if it is run in the stand-alone setting. UC commitment is an essential ingredient
to construct high-level UC secure protocols, which imply UC zero-knowledge proto-
cols [14,25] and UC oblivious transfer [16]. Therefore, any UC secure two-party and
multi-party computations can be realized in the presence of UC commitments. Since
UC commitments cannot be realized without an additional setup assumption [14], the
common reference string (CRS) model is widely used.

A commitment scheme consists of a two-phase protocol between two parties, a com-
mitter and a receiver. In the commitment phase, a committer gives a receiver the digital
equivalent of a sealed envelope containing value x , and, in the opening phase, the com-
mitter reveals x in a way that the receiver can verify it. From the original concept, it is
required that a committer cannot change the value inside the envelope (binding property),
whereas the receiver can learn nothing about x (hiding property) unless the committer
helps the receiver open the envelope.

Informally, a UC commitment scheme maintains the above binding and hiding prop-
erties under any concurrent composition with arbitrary protocols. To achieve this, a
UC commitment scheme requires equivocability and extractability at the same time.
Informally, equivocability of UC commitments in the CRS model can be interpreted as
follows: An algorithm (called the simulator) that takes the secret behind the CRS string
can generate an equivocal commitment that can be opened to any value. On the other
hand, extractability can be interpreted as the ability of the simulator extracting the con-
tents of a commitment generated by any adversarial algorithm, even after the adversary
sees many equivocal commitments generated by the simulator.

Several factors as shown below feature UC commitments:

1.1.1. Interactivity

If an execution of a commitment scheme is completed, simply by sending each one mes-
sage from the committer to the receiver both in the commitment and opening phases,
then it is called non-interactive, otherwise interactive. From a practical viewpoint, non-
interactivity is definitely favorable—non-interactive protocols are much easier to imple-
ment and more resilient to real threats such as denial of service attacks. Even from a
theoretical viewpoint, non-interactive protocols generally make security proofs simpler.

1.1.2. CRS Reusability

The CRS model assumes that CRS strings are generated in a trusted way and given to
every party. For practical use, it is very important that a global single CRS string can
be fixed beforehand and it can be reusable in an unbounded number of executions of
cryptographic protocols. Otherwise, a new CRS string must be set up in a trusted way
every time when a new execution of a protocol is invoked.
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1.1.3. Adaptive Security

If an adversary decides to corrupt parities only before a protocol starts, it is called a
static adversary. On the other hand, if an adversary can decide to corrupt parties at any
point in the executions of protocols, it is called an adaptive adversary. The attacks of
adaptive adversaries are more realistic in the real world. So, adaptive UC security is
more desirable.

1.1.4. Non-Erasure Model

When a party is corrupted, its complete inner state is revealed, including the randomness
being used. Some protocols are only proven UC secure under the assumption that the
parties can securely erase their inner states at any point of an execution. However, reliable
erasure is a difficult task on a real system. So, it is desirable that a non-erasure protocol
is proven secure.

1.2. Related Works

Canetti and Fischlin [14] presented the first UC secure commitment schemes. One of
their proposals is “fully equipped,” i.e., non-interactive, adaptivelyUC secure in the non-
erasure model under a reusable common reference string. By construction, this scheme
requires O(λκ) bits when committing to λ-bit secret, where κ denotes the security
parameter. Canetti et al. [16] constructed its generalized version from (enhanced) trap-
door permutations, which is simply inefficient. Damgård and Nielsen [25] proposed the
first adaptively UC secure commitment schemes in the non-erasure model with expan-
sion factor O(1), meaning that to commit to λ-bit secret, communication requires only
O(λ) bits. However, the commitment phase must take three-round interactions between
a committer and a receiver. In addition, the CRS size grows linearly in the number of
the parties. Soon after, Damgård and Groth [24] removed the dependency of the CRS
size, using the simulation sound trapdoor commitments, but the improved proposal is
still interactive.

The subsequent commitment schemes such as [7,28,45,49] are adaptively UC secure
with expansion factor O(1) under a constant size CRS string, but still sacrifice at least
one or two requirements (see Table 1). Nishimaki, Fujisaki, and Tanaka [49] proposed
non-interactive adaptively UC secure commitments, but the CRS is just one time, i.e., the
committer and the receiver need a new common reference string for each execution of the
commitment protocol. Lindell [45] presented efficient static and adaptively UC secure
commitment schemes based on the DDH assumption, which are recently improved by
Blazy et al. [7] and Fujisaki [31]. However, these constructions require interaction and
secure erasure. Fischlin, Libert, and Manulis [28] transformed Lindell’s static UC secure
commitment scheme and Camenisch and Shoup verifiable encryption scheme [12] into
non-interactive adaptively UC secure commitment schemes, by removing the interac-
tion in the sigma protocol using non-interactive Groth–Sahai proofs [35]. The resulting
protocols still require secure erasure.

To the best of our knowledge, there is no “fully equipped” UC commitment that breaks
the barrier of expansion factor O(κ). So far, efficient construction of a fully equipped UC
commitment scheme is a long-standing open problem (even with strong assumptions).
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Table 1. Comparison among UC Commitments.

Scheme Exp. rate
of commu-
nication.

Non-
interact-
iveness

Adaptive
security

Non-
erasure

Reusable
CRS

Assumption(s)

CF01 [14] O(κ) ✓ ✓ ✓ ✓ DDH +CFP
CLOS02 [16] ω(κ5log κ) ✓ ✓ ✓ ✓ eTDP
DN02 [25] O(1) ✓ ✓ ✓� DCR
DG03 [24] O(1) ✓ ✓ DCR+SRSA+sOTS
NFT12 [49] O(1) ✓ ✓ ✓ DCR
ABBCP13 [1] O(κ) ✓ ✓ ✓ SXDH
Lin11 [45] O(1) ✓ ✓ DDH+CRHF
FLM11 [28] O(1) ✓ ✓ ✓ DLIN+CRHF+Pairing
BCPV13 [7] O(1) ✓ ✓ DDH+CRHF
F16 [31] O(1) ✓ ✓ DDH+CRHF
GIKW14 [32] 1 + o(1) – ✓ UC OT+PRG
DDGN14 [23] O(1) – ✓ UC OT+PRG
CDDGNT15 [18] O(1) – ✓ UC OT+PRG
FJNT16 [29] 1 + o(1) – ✓ UC OT+PRG
CDDDN16 [17] 1 + o(1) – ✓ UC OT+PRG
Section 6 O(1) ✓ ✓ ✓ ✓ DCR+Assump. 8 and 9
Section 7 O(κ/log κ) ✓ ✓ ✓ ✓ DDH+CRHF
Appendix 3 O(κ/log κ) ✓ ✓ ✓ ✓ DDH
Section 8 O(κ3) ✓ ✓ ✓ ✓ eTDP

DDH: Decisional DH assumption. CFP: Claw-free permutations. eTDP: Enhanced trapdoor permutations.
DCR: Decisional composite residuosity assumption. SXDH: Symmetric decisional DH assumption. SRSA:
Strong RSA assumption. sOTS: Strong one-time signatures. CRHF: Collision-resistant hash family. DLIN:
Decisional linear assumption. Pairing: Pairing Groups. UC OT: UC oblivious transfer oracle. PRG: Pseudo-
random generator. �: The size of the CRS grows linearly with the number of parties

Fast Static UC Secure Commitments Recently, a series of efficient UC commitment
protocols [17,18,23,29,32] have been proposed in the UC oblivious transfer (OT) hybrid
model. It is composed of inexpensive symmetric primitives except for using OT. Using
the OT extension techniques [2,39,40], one can make the number of the execution of
commitments independent of the number of the execution of OT protocols. So, these
schemes are much faster than the above schemes relying on public-key primitives, when
sufficiently many commitments are executed. In particular, [17,29,32] achieve an expan-
sion factor of 1 + o(1) per commitment. However, these schemes are only static UC
secure.

UC Commitments in the Random Oracle Models Hofheinz and Müller-Quade [38]
and Canetti et al. [15] have proposed efficient UC commitment schemes in the different
variations of the random oracle model [6].

1.3. Our Contribution

We introduce a new primitive, called all-but-many encryption (ABME). We prove that
ABME implies “fully equipped” UC commitments. There are a lot of obstacles to study
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the UC framework, due to complicated definitions and proofs with many subtleties.
Therefore, we believe that it is desirable to translate the essence of basic UC secure
protocols into simple cryptographic primitives.

We divide the functionality of ABME into two primitives. We then provide a con-
dition to be able to construct ABME from the primitives successfully. We believe that
this framework is helpful to find more constructions in the future. We remark that our
constructions are inspired by that of all-but-many lossy trapdoor function (ABM-LTF)
given by Hofheinz [37]. We will expose the relation in Sections 1.4 and 6.4.

We present a compact ABME scheme related to the DCR assumption, which can
be seen as the first fully equipped UC commitment scheme with expansion factor
O(1), meaning that to commit to λ-bit secret, it requires O(λ) bits, where λ = O(κ).
Our DCR-based ABME scheme can be transformed into an ABM-LTF scheme with
a better lossy rate than [37] under the same assumption. We also provide ABME
from the DDH assumption with overhead O(κ/log κ), which is slightly better than
prior works with O(κ). We also present a fully equipped UC commitment scheme
from weak ABME under the general assumption that (enhanced) trapdoor permuta-
tions exist, which is far more efficient than the previous work [16] under the same
assumption.

In the following, we describe more details.

1.3.1. All-But-Many Encryption

All-but-many encryption (ABME) enables a party with a secret key (e.g., the simulator
in the UC framework) to generate a fake ciphertext and to open it to any message with
consistent randomness. In the case that a party is not given the secret key (e.g., the
adversary in the UC framework), he cannot distinguish a fake ciphertext from a real
(honestly generated) ciphertext even after the message and randomness are revealed. In
addition, he cannot produce a fake ciphertext (on a fresh tag) even after seeing many
fake ciphertexts and their openings. We construct ABME from two new primitives,
denoted probabilistic pseudorandom functions and extractable sigma protocols.
The former is a probabilistic version of a pseudorandom function. The latter is a special
type of a sigma protocol [20] with some extractability.

1.3.2. Probabilistic Pseudorandom Function

A pPRF = (KG,Spl) is a probabilistic version of a pseudorandom function asso-
ciated with a key-generation algorithm KG. Let L pk(t) : ={u|∃(sk, v) : u =
Spl(pk, sk, t; v)}, where (pk, sk) is generated by KG and v denotes random coins
of Spl. The PPT algorithm Spl is a sampling algorithm that takes tag t and samples
u in L pk(t) according to the random choice of v. It should be assumed that L pk(t) is
a hidden subset in a universe set Upk and the distribution following Spl(pk, w, t) on
any tag t is computationally indistinguishable from the uniform distribution over Upk .
The universe set Upk should be efficiently samplable and an explainable domain [27]. It
should be also assumed that pPRF be unforgeable—it is difficult to sample u ∈ L pk(t)
for fresh t , if sk is not given. Sometimes, it should be unforgeable even on some superset
̂L pk(t). The superset ̂L pk(t) is determined in relation to the corresponding extractable
sigma protocol mentioned below. The meaning will be clearer later in this section.
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1.3.3. Extractable Sigma Protocols

A sigma protocol Σ [20] on NP language L is a canonical 3-round public coin interactive
proof system, so that a prover can convince a verifier that he knows witness w behind
common input x ∈ L , where the prover first sends commitment a; the verifier sends back
challenge (public coin) e; the prover responds with z; and the verifier finally accepts
or rejects conversation (a, e, z) on x . A sigma protocol is associated with simulation
algorithm simPcom

Σ that takes x (regardless of whether x ∈ L or not) and challenge
e, and produces an accepting conversation (a, e, z) ← simPcom

Σ (x, e) without witness
w. If x ∈ L , the distribution of (a, e, z) produced by simPcom

Σ (x, e) on random e is
statistically indistinguishable from the transcript generated between two honest parties,
called honest-verifier statistical zero-knowledge (HVSZK). If x �∈ L , for every a there
is at most one e such that (a, e, z) can be an accepting conversation on x , called special
soundness.

An extractable sigma protocol Σext = (Σ,Ext) on L pk is a special type of a sigma
protocol, associated with a DPT algorithm Ext, with the following properties:

– Σ is a sigma protocol on L pk .
– There is a disjoint set Lco

pk such that L pk ∩ Lco
pk = ∅ and for all pk, there is sk

such that Ext(sk, x, a) = e for all x ∈ Lco
pk and all a ∈ simPcom

Σ (x, e)1, where
simPcom

Σ (x, e)1 is the first output of simPcom
Σ (x, e).

Due to special soundness, for all (x, a) with x �∈ L pk , e is uniquely determined (if
it exists). So, the extraction algorithm is well defined. We will show how to construct
extractable sigma protocols later in this section.

1.3.4. A General Framework: pPRF + Σext → ABME

To instantiate ABME schemes, we first consider an instantiation of pPRF. Then, we
try to construct an extractable sigma protocol on the language derived from pPRF. If
we succeed to do so, we say that they are well combined. Then, we convert the well-
combined primitives to an ABME scheme. Formally, we say that pPRF = (KG,Spl)
and Σext = (Σ,Ext) are well combined if:

– KG(1κ) outputs (pk, skspl, skext), where skspl is used as a secret key of Spl and
skext is a secret key of Ext.

– For each pk, there is a set Lco
pk such that Σext is an extractable sigma protocol on

L pk = {(t, u)|∃(skspl, v) : u = Spl(pk, skspl, t; v)}, and has extractability on set
Lco
pk with skext.

– pPRF is unforgeable on ̂L pk : =U ′
pk\Lco

pk , where U ′
pk is a universe.

From well-combined pPRF and Σext, we can construct an ABME scheme, by taking
the similar method to convert an ordinary sigma protocol to an instance-dependent
commitment scheme [4,41]. Here is the transform.

– To encrypt message e on tag t , a sender picks random u, runs simPcom
Σ

on instance (t, u) with challenge e with random z, to compute (a, e, z) =
simPcom

Σ (pk, (t, u), e; z), and finally outputs (u, a) as a ciphertext. Here z is
regarded as the random coins of the ciphertext. Due to the unforgeability condition
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of pPRF, it holds that (t, u) ∈ U ′
pk\̂L pk(= Lco

pk) with an overwhelming probabil-
ity. Then, e is uniquely determined given ((t, u), a). By our precondition, we can
decrypt (t, u, a) using skext, as e = Ext(skext, (t, u), a) because (t, u) ∈ Lco

pk .
– To make a fake (equivocable) ciphertext on tag t , one picks up random v and

compute u = Spl(pk, skspl, t; v) using skspl. Then he computes a, as same as
an honest prover computes the first message on common input (t, u) with witness
(skspl, v). To open a to arbitrary e, he produces the response z in the sigma protocol.
By construction, he can open a to any e because (t, u) ∈ L pk .

We note that an adversary cannot distinguish a real ciphertext produced by a honest
sender from a fake ciphertext produced by a simulator, due to pseudorandomness of
pPRF. In addition, an adversary cannot produce a fake ciphertext even after seeing
many fake ciphertexts, due to unforgeability (on ̂L pk) of pPRF.

1.3.5. Realizing Extractable Sigma Protocols

Although sigma protocols (with HVSZK) exist on many NP languages, it is not known
how to extract the challenge as discussed above. Here we observe that sigma protocols
are often implemented on Abelian groups associated with homomorphic maps, in which
the first message of such sigma protocols implies a system of linear equations with e and
z. Hence, there is a matrix derived from the linear systems. Due to completeness and
special soundness, there is an invertible (sub) matrix if and only if x �∈ L pk (provided
that the linear system is defined in a finite field). Therefore, if one knows the contents
of the matrix, one can solve the linear systems when x �∈ L pk and obtain e if its
length is logarithmic. Suppose for instance that L pk is the DDH language—it does
not form a pPRF, but a good toy example to explain how to extract the challenge.
Let x = (g1, g2, h1, h2) �∈ L pk , meaning that x1 �= x2 where x1 : = logg1

(h1) and
x2 : = logg2

(h2). The first message (A1, A2) of a canonical sigma protocol on L pk

implies linear equations

(

a1
a2

)

=
(

1 x1
α αx2

)(

z
e

)

where A1 = ga1
1 , A2 = ga2

2 , and g2 = gα
1 . The above matrix is invertible if and only

if (g1, g2, h1, h2) �∈ L pk . We note that e is expressed as a linear combination of a1
and a2, i.e., (β1(det A)−1)a1 + (β2(det A)−1)a2, where the coefficients are determined
by the matrix. Therefore, if the decryption algorithm takes (α, x1, x2) and the length
of e is logarithmic, it can find e by checking whether (gdet A

1 )e = Aβ1
1 Aβ2

2 or not. In
a general case where a partial information on the values of the matrix is given, the
decryption algorithm can still find logarithmic length e if the matrix is made so that e
can be expressed as a linear combination of unknown values—the unknown values do
not appear with a quadratic form or a more degree of forms in the equations.

In a good case, the decryption algorithm can invert homomorphic map f (a) = ga ,
using trapdoor f −1. Then, one can obtain (a1, a2) as well as the entire values of the
matrix and hence extract even polynomial length e. This corresponds to the case of our
DCR-based implementation, where the corresponding linear system is defined on a finite
ring, such as Znd . The matrix (say A) derived from the linear system is invertible if and
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only if (det A)−1 mod nd exists, which corresponds to the condition x �∈ ̂L pk for some
superset̂L pk . We note that although x �∈ L pk iff det A �= 0 (mod nd), it does not suffice
for the above because of the divisors. We require unforgeability not on L pk but on ̂L pk ,
so that the output produced by an adversary can be forced in Lco

pk = U ′
pk\̂L pk .

1.3.6. Concrete Instantiations

We present ABME schemes from three different types of pPRFs. We first propose a
pPRF from Waters signature scheme [56] defined over a ring equipped with no bilinear
map. As the associated homomorphic map, we employ Damgård–Jurik (DJ) PKE [22].
The output of the Waters signature-based pPRF looks pseudorandom, thanks to IND-
CPA security of DJ PKE. The construction inherits unforgeability from the original
Waters signature scheme under an analogue of the DH assumption in the additive homo-
morphic encryption. Precisely, we require one more assumption related to DJ PKE,
because we require unforgeability on some superset of the language derived from the
Waters signature-based pPRF. we construct an extractable sigma protocol on it. Since
the homomorphic map is invertible using the secret key of DJ PKE, we can obtain a com-
pact ABME scheme and hence a fully equipped UC commitment scheme with expansion
factor O(1) with a constant number of computational complexity.

In “Appendix 3”, we simply use as pPRF the Waters signature scheme on a pairing-
free prime-order group and provide the DDH version of the ABME scheme above.
Although its expansion factor is just O(κ/log κ), it is better than the prior work [14]
(with O(κ)). This scheme is helpful to understand our main proposal, because of the
simpler construction. So, we recommend the reader to read that section first, if the
proposal above looks complicated.

We present another construction of pPRF by combining an IND-CPA secure PKE
scheme with an IND-CCA secure Tag-PKE scheme. We combine ElGamal PKE with
tag-based Twin-Cramer–Shoup PKE [19] and construct an ABME scheme from the
resulting pPRF under the DDH assumption. The expansion factor of this scheme is also
O(κ/log κ). The advantage of this scheme is that it has a short public key (of a constant
number of group elements), unlike the proposed schemes above.

We also provide a generic construction ofpPRF from a pseudorandom function family
and an IND-CPA secure PKE scheme. We employ this type of pPRFs to construct a UC
commitment scheme from general assumptions.

1.4. Other Related Works

Fehr et al. [27] proposed a PKE scheme secure against simulation-based selective
opening chosen ciphertext attack (SIM-SO-CCA). In general, the notion of SIM-SO-
CCA secure PKE is related to that of ABME, but both are incomparable. Indeed,
Fehr et al. scheme [27] does not satisfy the requirements of ABME, while ABME does
not satisfy SIM-SO-CCA PKE in general, because it does not support CCA security.
Although [27] could be tailored to a fully equipped UC commitment scheme, it cannot
overcome the barrier of expansion factor O(κ), because it strictly costs O(λκ) bits to
encrypt λ bit.
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Hofheinz presented the notion of all-but-many lossy trapdoor function (ABM-
LTF) [37], mainly to construct indistinguishability-based selective opening CCA (IND-
SO-CCA) secure PKE. ABM-LTF is a lossy trapdoor function (LTF) [52] with
(unbounded) many lossy tags. The relation between ABM-LTF and ABME is a gen-
eralized analogue of LTF and lossy encryption [3,51] with unbounded many loss tags.
However, unlike the lossy encryption, ABME always requires an efficient opening algo-
rithm that can open a ciphertext on a lossy tag to any message with consistent random-
ness. As mentioned earlier, our construction idea of ABME is strongly inspired by that of
ABM-LTF [37]. Hofheinz provided a matrix-based function Y = AX , where A denotes
a square matrix and Y , X denote column vectors. The algorithm to produce lossy tags
is pPRF in our definition. The lossy tags are carefully embedded in matrix X so that the
matrix can be non-invertible if tags are lossy, otherwise invertible. Hofheinz proposed
two instantiations. In the DCR-based ABM-LTF, the lossy tags are an analogue of Waters
signatures defined in DJ PKE, which is the same as our DCR-based pPRF. Therefore, it
is not surprising that our DCR-based ABME scheme requires the same assumptions as
the Hofheinz’s ABM-LTF counterpart does. In the latest e-print version [37], Hofheinz
has shown that the DCR-based ABM-LTF can be converted to SIM-SO-CCA PKE. To
realize this, an opening algorithm for ABM-LTF is essentially needed. So, he gave it by
sacrificing efficiency. We remark that ABM-LTF equipped with an opening algorithm
meets the notion of ABME. However, compared to our DCR-based ABME scheme in
Sect. 6, Hofheinz’s ABM-LTF-based ABME scheme is less efficient for practical use.
Indeed, its expansion rate of ciphertext length per message length is ≥ 31. In addition,
you must use a modulus of ≥ n6. On the other hand, our DCR-based ABME scheme
has a small expansion rate of (5+1/d) and you can use modulus of nd+1 for any d ≥ 1.
On the contrary, our DCR-based ABME can be converted to ABM-LTF and is more
efficient than Hofheinz’s ABM-LTF scheme. We compare them in Sect. 6.4.

2. Preliminaries

For n ∈ N, [n] denotes the set {1, . . . , n}. We denote by O and ω the standard notations
to classify the growth of functions. We let negl(κ) to denote an unspecified function
f (κ) such that f (κ) = κ−ω(1), saying that such a function is negligible in κ . We write
PPT and DPT algorithms to denote probabilistic polynomial-time and deterministic
poly-time algorithms, respectively. For PPT algorithm A, we write y ← A(x) to denote
the experiment of running A for given x , picking inner coins r uniformly from an
appropriate domain, and assigning the result of this experiment to the variable y, i.e.,
y = A(x; r). Let X = {Xκ}κ∈N and Y = {Yκ }κ∈N be probability ensembles such that
each Xκ and Yκ are random variables ranging over {0, 1}κ . The (statistical) distance
between Xκ and Yκ is Dist(Xκ ,Yκ ) � 1

2 · | Prs∈{0,1}κ [X = s] − Prs∈{0,1}κ [Y = s]|. We
say that two probability ensembles, X and Y , are statistically indistinguishable (in κ),

denoted X
s≈ Y , if Dist(Xκ ,Yκ ) = negl(κ). We say that X and Y are computationally

indistinguishable (in κ), denoted X
c≈ Y , if for every (non-uniform) PPT D (ranging

over {0, 1}), it holds that {D(1κ , Xκ )}κ∈N
s≈ {D(1κ ,Yκ )}κ∈N. Let A and B be PPT

algorithms that both take x ∈ S(κ), where S(κ) is a set associated with each κ ∈ N. We
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write {A(x)}κ∈N,x∈S(κ)

s≈ {B(x)}κ∈N,x∈S(κ) to denote {A(xκ)}κ∈N
s≈ {B(xκ)}κ∈N for

every sequence {xκ }κ∈N such that xκ ∈ S(κ).

3. Definitions

In this section, we define new cryptographic primitives. We put the definitions of known
primitives in “Appendix 1”. We formally introduce a probabilistic pseudorandom func-
tion (pPRF), an extractable sigma protocol, and all-but-many encryption (ABME). As
already mentioned, the first two primitives are used to construct an ABME scheme.

3.1. Probabilistic Pseudorandom Function

A probabilistic pseudorandom function pPRF = (KG,Spl) consists of the following
two algorithms:

– KG, the key-generation algorithm, is a PPT algorithm that takes 1κ as input and
creates (pk, sk).

– Spl, the sampling algorithm, is a PPT algorithm that takes (pk, sk) and t ∈ {0, 1}κ ,
picks up inner random coins v ← COINspl, and outputs u = Spl(pk, sk, t; v). We
often omit to write pk and instead write this experiment as u ← Splsk(t).

Let L pk(t) = {u | ∃ sk, ∃ v : u = Spl(pk, sk, t; v)}, and let L pk = {(t, u) | t ∈
{0, 1}κ and u ∈ L pk(t)}. We assume that pk defines set Upk such that L pk(t) ⊂ Upk

for all t ∈ {0, 1}κ . Let U ′
pk = {(t, u) | t ∈ {0, 1}κ and u ∈ Upk}. We are interested in

the case that L pk(t) is so small in Upk , that no one can sample an element from L pk(t)
by chance. We require that pPRF satisfies the following security requirements:

3.1.1. Efficiently Samplable and Explainable Domain

For all pk given by KG and all t ∈ {0, 1}κ , Upk is efficiently samplable and explain-
able [27], that is, there is an PPT sampling algorithm U that takes (pk, t), picks up
random coins R, and outputs u that is uniformly distributed in domain Upk . In addition,
for every pk, every t ∈ {0, 1}κ , and every u ∈ Upk , there is an efficient explaining
algorithm that takes (pk, t) and outputs random coins R behind u, where R is uniformly
distributed subject to U (pk, t; R) = u.

3.1.2. Pseudorandomness

No adversary A, given pk, can distinguish whether it has access to Spl(pk, sk, ·) or
U (pk, ·). Here U (pk, ·) denotes the uniform sampling algorithm mentioned above. We
say that pPRF is pseudorandom if, for all PPT A,

AdvprfpPRF,A(κ) =
∣

∣

∣Pr
[

ExptprfpPRF,A(κ) = 1
]

− Pr
[

ExptprfU,A(κ) = 1
]∣

∣

∣

is negligible in κ , where
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ExptprfpPRF,A(κ):

(pk, sk) ← KG(1κ )

b ← ASpl(pk,sk,·)(pk)
return b.

ExptprfU,A(κ):
(pk, sk) ← KG(1κ )

b ← AU (pk,·)(pk)
return b

We note that if Spl(pk, sk, ·) is deterministic, we change oracle U (pk, ·) as follows:
Given fresh t as input, it picks up random R and computes u = U (pk, t; R). It returns
u and register (t, u). Given the same query t , it outputs the same u.

3.1.3. Unforgeability

Let ̂L pk(t) be some superset of L pk(t). Let ̂L pk = {(t, u) | t ∈ {0, 1}κ and u ∈ ̂L pk(t)}.
We define the game of unforgeability on ̂L pk as follows: An adversary A takes pk
generated by KG(1κ) and may have access to Spl(pk, sk, ·). The aim of the adversary
is to output (t∗, u∗) ∈ ̂L pk such that t∗ has not been queried. We say that pPRF

is unforgeable on ̂L pk if, for all PPT A, Adveuf-
̂L

pPRF,A(κ) = Pr[Expteuf-̂LpPRF,A(κ) = 1]
(where Expteuf-

̂L
pPRF,A is defined in Fig. 1) is negligible in κ .

In some application, we require a stronger requirement, where in the same experiment
above, it is difficult for the adversary to output (t∗, u∗) in ̂L pk , which did not appear in
the query/answer list QA. We say that pPRF is strongly unforgeable on ̂L pk if, for

all PPT A, Advseuf-
̂L

pPRF,A(κ) = Pr[Exptseuf-̂LpPRF,A(κ) = 1] (where Exptseuf-
̂L

pPRF,A is defined in
Fig. 1) is negligible in κ .

We remark that if Spl is a DPT algorithm and ̂L pk = L pk , unforgeability is implied
by pseudo randomness.

3.2. Extractable Sigma Protocol

We define extractable sigma protocols. Let L = {L pk}pk be an NP language
consisting of a collection of set L pk indexed by pk ∈ PK, where PK is an
infinite sequence of pk. Let Rpk be the relation derived from L pk . Let Σext =
(Pcom

Σ ,Pans
Σ ,Vvrfy

Σ , simPcom
Σ ,Ext) be a tuple of algorithms (associated with L) as fol-

lows:

– Pcom
Σ is a PPT algorithm that takes (x, w) ∈ Rpk , picks up inner coins ra , and

outputs a = Pcom
Σ (x, w; ra).

– Pans
Σ is a DPT algorithm that takes (x, w, ra, e) and outputs z = Pans

Σ (x, w, ra, e),
where e is an element in a specific domain determined by pk.

Expteuf-LpPRF,A(κ):
(pk, w) ← KGpprf(1κ)
(t∗, u∗) ← ASpl(pk,w,·)(pk)
If t∗ has not been queried

and u∗ ∈ Lpk(t∗),
return 1; otherwise 0.

Exptseuf-LpPRF,A(κ):
(pk, w) ← KGpprf(1κ)
(t∗, u∗) ← ASpl(pk,w,·)(pk)
(t∗, u∗)

and u∗ ∈ Lpk(t∗),
return 1; otherwise 0.

Fig. 1. The experiments of unforgeability (in the left) and strong unforgeability (in the right).
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– Vvrfy
Σ is a DPT algorithm that accepts or rejects (x, a, e, z).

– simPcom
Σ is a PPT algorithm that takes (x, e) and outputs (a, e, z) = simPcom

Σ

(x, e; rz), where rz is inner coins. For our purpose,we additionally require that
rz = z, i.e., (a, e, rz) = simPcom

Σ (x, e; rz). We note that many sigma protocols
satisfy this property.

– Ext is a DPT algorithm that takes (sk, x, a) and outputs e or ⊥, where sk is a string
with respects to pk.

We say that Σext is an extractable sigma protocol on L = {L pk}pk , if for all pk,
there is a set Lco

pk such that L pk ∩ Lco
pk = ∅, and it satisfies the following properties:

3.2.1. Completeness

For every (x, w) ∈ Rpk and every ra , e (in appropriate specified domains, respectively),

it always holds that Vvrfy
Σ (x,Pcom

Σ (x, w; ra), e,Pans
Σ (x, w, ra, e)) = 1.

3.2.2. Special Soundness

For every x �∈ L and every a, there is at most one e such that Vvrfy
Σ (x, a, e, z) = 1. This

implies that if there are two different accepting conversations for the same a on x , i.e.,
(a, e, z) and (a, e′, z′), with e �= e′, it must hold that x ∈ L . We say that such a pair
is a collision on x . We require for our purpose that there is some superset U ′ such that
L ⊂ U ′, and for every x ∈ U ′\L and every e, there is an accepting conversation (a, e, z)
on x .

3.2.3. Extractability

We write (pk, skext) ∈ Rext if it holds that Vvrfy
Σ (x, a, e′, z) = 1 for all x ∈ Lco

pk and all

a so that there are (e, z) such that Vvrfy
Σ (x, a, e, z) = 1, where e′ = Ext(skext, x, a). We

call that Σext has extractability on {Lco
pk}pk if for all pk ∈ PK, there exists skext such

that (pk, skext) ∈ Rext.
We note that, combining with special soundness, we can say that for all x ∈ Lco

pk ,
all e, and all z, it always holds that e = Ext(sk, x, simPcom

Σ (x, e; z)1), where
simPcom

Σ (x, e; z)1 denotes the first output of simPcom
Σ (x, e; z).

3.2.4. Enhanced Honest-Verifier Statistical Zero-Knowledge (eHVSZK)

For all (pk, skext) ∈ Rext, all (x, w) ∈ Rpk , and all e in a specific domain, the following
ensembles are statistically indistinguishable in κ:

{

simPcom
Σ (x, e; rz)

}

κ∈N, pk, (x,w)∈Rpk , e

s≈ {(

Pcom
Σ (x, w; ra), e,Pans

Σ (x, w, ra, e)
)}

κ∈N, pk, (x,w)∈Rpk , e

Here the probability of the left-hand side is taken over random variable rz and the
right-hand side is taken over random variable ra . We remark that since (a, e, rz) =
simPcom

Σ (x, e; rz) (by our precondition), we have Vrfy(x, a, e, z) = 1 if and only if
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(a, e, z) = simPcom
Σ (x, e; z). Therefore, one can instead use simPcom

Σ to verify (a, e, z)
on x .

We note that the concept of the extractable sigma protocol is not entirely new. A
weaker notion, called weak extractable sigma protocol, appears in [30] to construct
(interactive) simulation sound trapdoor commitment (SSTC) schemes (see [33,34,47]
for SSTC). This paper requires a stronger notion, which is used in a different way.

3.3. ABM Encryption

All-but-many encryption scheme ABM.Enc = (ABM.gen,ABM.spl,ABM.enc,
ABM.dec,ABM.col) consists of the following algorithms:

– ABM.gen is a PPT algorithm that takes 1κ and outputs (pk, skspl, skext), where
pk defines a universe U ′

pk = {0, 1}κ × Upk , which contains two disjoint sets (as

defined below), L td
pk and Lext

pk , i.e., L td
pk ∩ Lext

pk = ∅ and L td
pk ∪ Lext

pk ⊂ U ′
pk .

– ABM.spl is a PPT algorithm that takes (pk, skspl, t), where t ∈ {0, 1}κ , picks up
inner random coins v ← COINspl, and computes u ∈ Upk . We let

L td
pk(t) =

{

u ∈ Upk | ∃ skspl, ∃ v : u = ABM.spl
(

pk, skspl, t; v
)}

.

We let L td
pk = {(t, u) | t ∈ {0, 1}κ and u ∈ L td

pk(t)}. Define ̂L td
pk = U ′

pk\Lext
pk . Since

L td
pk ∩ Lext

pk = ∅, we have L td
pk ⊆ ̂L td

pk ⊂ U ′
pk .

– ABM.enc is a PPT algorithm that takes pk, (t, u) ∈ U ′
pk , and message x

∈ MSP, picks up inner random coins r ← COINenc, and computes c =
ABM.enc(t,u)(pk, x; r).

– ABM.dec is a DPT algorithm that takes skext, (t, u), and ciphertext c, and outputs
x = ABM.dec(t,u)(skext, c).

– ABM.col = (ABM.col1,ABM.col2) is a pair of PPT and DPT algorithms, respec-
tively, such that

• ABM.col1 takes (pk, (t, u), skspl, v) and outputs (c, ξ) ← ABM.col(t,u)
1

(pk, skspl, v), where v ∈ COINspl.
• ABM.col2 takes ((t, u), ξ, x), with x ∈ MSP, and outputs r ∈ COINenc.

We require that all-but-many encryption schemes satisfy the following properties:

1. Adaptive all-but-many property. (ABM.gen,ABM.spl) is a probabilistic pseu-
dorandom function (pPRF) as defined in Sect. 3.1 with unforgeability on ̂L td

pk(=
U ′

pk\Lext
pk ).

2. Dual mode property.

– (Decryption mode) For all κ ∈ N, all (pk, skext) ∈ ABM.gen(1κ), all (t, u) ∈
Lext
pk , and every x ∈ MSP, it always holds that

ABM.dec(t,u)
(

skext,ABM.enc(t,u)(pk, x)
)

= x .
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– (Trapdoor mode) Define the following random variables:

• distenc(pk, t, skspl, skext, x) denotes random variable (pk, t, u, c, r)
defined as follows: v ← COINspl; u = ABM.spl(pk, skspl, t; v); r ←
COINenc; c = ABM.enc(t,u)(pk, x; r).
• distcol(pk, t, skspl, skext, x) denotes random variable (pk, t, u, c, r)
defined as follows: v ← COINspl; u = ABM.spl(pk, skspl, t; v);
(c, ξ) ← ABM.col(t,u)

1 (pk, skspl, v); r = ABM.col(t,u)
2 (ξ, x).

Then, for all (pk, skspl, skext) ∈ ABM.gen(1κ), all t ∈ {0, 1}κ , all x ∈ MSP,
the following ensembles are statistically indistinguishable in κ:
{

distenc(pk, t, skspl, skext, x)
}

κ∈N,(pk,skspl,skext)∈ABM.gen(1κ ),t∈{0,1}κ ,x∈MSP
s≈
{

distcol(pk, t, skspl, skext, x)
}

κ∈N,(pk,skspl,skext)∈ABM.gen(1κ ),t∈{0,1}κ ,x∈MSP

We say that a ciphertext c on (t, u) under pk is valid if there exist x ∈ MSP and
r ∈ COINenc such that c = ABM.enc(t,u)(pk, x; r). We say that a valid ciphertext c on
(t, u) under pk is real if (t, u) ∈ Lext

pk , otherwise fake. We remark that as long as c is a
real ciphertext, regardless of how it is generated, there is only one consistent x in MSP
and it is equivalent to ABM.dec(t,u)(sk, c).

To suit actual instantiations, we assume that COINspl and MSP are defined by pk.
We further allow COINenc to depend on message x to be encrypted as well as pk, in
order to be consistent with our weak ABM encryption scheme from general assumption
in Sect. 8.

4. ABME Implies Fully Equipped UC Commitment

In this section, we prove that ABME implies fully equipped UC commitments.
We work in the standard universal composability (UC) framework of Canetti [13].

We concentrate on the same model in [14] where the network is asynchronous, the
communication is public but ideally authenticated, and the adversary is adaptive in
corrupting parties and is active in its control over corrupted parties. Any number of
parties can be corrupted and parties cannot erase any of their inner state. We provide
a brief description of the UC framework and the ideal commitment functionality for
multiple commitments, denoted FMCOM, in “UC Framework and Ideal Commitment
Functionality of Appendix 2”.

To construct fully equipped UC commitment, we first put public key pk of ABME in
the common reference string. A committer Pi takes tag t = (sid,ssid, Pi , Pj ) and
a message x committed to. It then picks up random u from Upk and compute an ABM
encryption c = ABM.enc(t,u)(pk, x; r) to send (t, u, c) to receiver Pj , which outputs
(receipt,sid,ssid, Pi , Pj ). To open the commitment, Pi sends (sid,ssid, x, r)
to Pj and Pj accepts if and only if c = ABM.enc(t,u)(pk, x; r). If Pj accepts, he
outputs (open, t, x), otherwise do nothing. We formally describe our framework for
constructing a UC commitment scheme from ABME in Fig. 2.
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Common reference string: pk where (pk, sk) ← ABM.gen(1κ).
pk uniquely determines Upk = {0, 1}κ ×Upk. We implicitly assume that there is injective map ι : {0, 1}κ → MSP such
that ι−1 is efficiently computable and ι−1(y) = ε for every y ι({0, 1}κ), and also assume that (sid, ssid, Pi, Pj) ∈
{0, 1}κ.
The commitment phase:

– Upon input (commit, sid, ssid, Pi, Pj , x) where x ∈ {0, 1}κ, party Pi proceed as follows: If a tuple
(commit, sid, ssid, Pi, Pj , x) with the same (sid, ssid) was previously recorded, Pi does nothing. Otherwise,
Pi sets t= (sid, ssid, Pi, Pj)∈ {0, 1}κ. It picks up u ← Upk and r ← COINenc, and encrypts message ι(x) to
compute c = ABM.enc(t,u)(pk, ι(x); r). Pi sends (t, u, c) to party Pj , and stores (sid, ssid, Pi, Pj , (t, u), x, r).

– Pj ignores the commitment if t = (sid, ssid, Pi, Pj), u Upk, or a tuple (sid, ssid, . . . ) with the same (sid, ssid)
was previously recorded. Otherwise, Pj stores (sid, ssid, Pi, Pj , (t, u, c)) and outputs (receipt, sid, ssid, Pi, Pj).

The decommitment phase:

– Upon receiving input (open, sid, ssid), Pi proceeds as follows: If a tuple (sid, ssid, Pi, Pj , x, r) was previously
recorded, then Pi sends (sid, ssid, x, r) to Pj . Otherwise, Pi does nothing.

– Upon receiving input (sid, ssid, x, r), Pj proceeds as follows: Pj outputs (reveal, sid, ssid, Pi, Pj , x) if a tuple
(sid, ssid, Pi, Pj , (t, u, c)) with the same (sid, ssid, Pi, Pj) was previously recorded, and it holds that x ∈ {0, 1}κ,
r ∈ COINenc, and c = ABM.enc(t,u)(pk, ι(x); r). Otherwise, Pj does nothing.

Fig. 2. Fully Equipped UC commitment from ABME.

Theorem 1. The proposed scheme in Fig.2 UC securely realizes theFMCOM function-
ality in theFCRS-hybridmodel in the presence of adaptive adversaries in the non-erasure
model.

Proof (Sketch). For simplicity, we remove the injective map ι : {0, 1}κ → MSP from
the scheme. The formal proof is given in “Proof of Theorem 1 of Appendix 2”. We here
sketch the essence. We consider the man-in-the-middle attack, where we will show that
the view of environment Z in the real world (in the CRS model) can be simulated in the
ideal world. Let C , R be honest players, and let Pa be a corrupted player controlled by
adversaryA. In the man-in-the-middle attack, Pa (i.e.,A) is simultaneously participating
in the left and right interactions. In the left interaction, A interacts with C , as playing the
role of the receiver. In the right interaction, A interacts with R, as playing the role of the
committer. In the ideal world, simulator S simulates the task of C and R by interacting
with A.

In the left interaction: In the real world,Z chooses (commit,sid,ssid,C, Pa, x)
and gives it to C to start the commitment protocol with A. However, in the ideal world
S cannot receive x until the decommit phase, but must start the commitment protocol
only with t = (sid,ssid,C, Pa). At the decommit phase, S receives x for the first
time and needs to open to x correctly.

More precisely, in both worlds, Z sends (commit,sid,ssid,C, Pa, x) to C ,
but in the ideal world C simply conveys it from Z to FMCOM. Then, FMCOM sends
(receipt,sid,ssid,C, Pa) to S so that S can start the commit phase with A
(without given x). In both worlds, Z sends (open,sid,ssid) to activate C to start
the decommit phase, but in the ideal world C simply sends it to FMCOM, which sends
(reveal,sid,ssid,C, Pa, x) to S so that S can start the decommit protocol with x
with A.
In the right interaction: In the real world,Z receives (open,sid′,ssid′, Pa, R, x ′)

opened by A from R at the decommit phase. In the ideal world, S must correctly extract
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x̃ from (t ′, u′, c′) sent byA, where t ′ = (sid′,ssid′, Pa, R), and commit it to the ideal
commitment functionality FMCOM at the commit phase. At the decommit phase, when
A correctly opens the commitment, S must let FMCOM reveal stored x̃ to Z , instead of
the value that A actually opened to.

More precisely, in the ideal world, when receiving (open,sid′,ssid′) (from S),
FMCOM sends (reveal,sid′,ssid′, Pa, R, x̃) to R, where x̃ is the stored value at
the commit phase. R simply conveys it from FMCOM to Z .
Adaptive corruption: In the real world, when C or R is corrupted, A may read their

inner state and start to fully control the parties. In the ideal world, the honest parties
do nothing except storing inputs to them. So, S simulates the inner state of the real-
world honest party (after S read the inner state of the ideal-world honest party when
it is corrupted) and gives it to A as if it comes from the real world. The inner state of
the real-world honest party includes randomness it has used. In the non-erasure model,
honest parties cannot erase any of their state.
The view of Z: In the real world,Z have access toA to order many tasks, for instance,

to execute the right interaction with R with value x ′, to corrupt either party, or to send
the adversary’s entire view in the left and right interactions. In the ideal world, Z instead
have access to (the ideal-world adversary) S, which tries to simulate the role of A. The
view of Z consists of each interaction with C , R, and the (real-world or ideal-world)
adversary, as well as its inner state.

As usual, we consider a sequence of hybrid games on which the probability spaces
are identical, but we change the rules of games step by step. See Table 2 for summary.
Ideal World: In the Ideal world, A interacts with simulator S in both interac-

tions, where S simulates the roles of C and R respectively. In the setup, S generates
(pk, skspl, skext) ← ABM.gen(1κ), puts pk in the common reference string, and keeps
(skspl, skext). In the left interaction,S first receives (receipt,sid,ssid,C, Pa) and
starts the commitment phase with adversaryA as the committerwithout givenmessage
x . S computes u = ABM.spl(pk, skspl, t; v) and (c, ξ) ← ABM.col(t,u)

1 (pk, skspl, v),
to send (commit, t, (u, c)) to adversary A, where t = (sid,ssid,C, Pa). At
the decommit phase, S receives (reveal,sid,ssid,C, Pa, x) and then computes
r = ABM.col(t,u)

2 (ξ, x) to send (t, x, r) to A. In the right interaction, S receives
(commit, t ′, u′, c′) from A where t ′ = (sid′,ssid′, Pa, R). S then extracts
x̃ = ABM.dec(t ′,u′)(sk, c′) and sends (commit, t ′, x̃) to FMCOM. At the decommit
phase when A opens (t ′, u′, c′) correctly with (x ′, r ′), S sends (open,sid,ssid)

to FMCOM, otherwise do nothing. Upon receiving (open,sid,ssid), if the same
(sid,ssid, ..) was previously recorded, FMCOM reveals stored x̃ to environment Z ,
otherwise do nothing.

In case of adaptive corruption of C after the commit phase but before the decommit
phase, S read x from the inner state of C and computes r as in the case of the decommit
phase and compute R such that Upk(t; R) = u, which can be efficiently computable
because Upk is an explainable domain. Finally, it reveals (x, r, R).
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Table 2. The man-in-the-middle attack in the hybrid games.

Games C(S) Pa (A) R(S) FMCOM

Ideal u = ABM.spl(pk, skspl, t; v) Send to FMCOM (commit, t ′, x̃) s.t

(c, ξ) ← ABM.col(t,u)
1 (pk, skspl, v) x̃ = ABM.dec(t ′,u′)(skext, c′). x̃

r = ABM.col(t,u)
2 (ξ, x) Send to FMCOM (open,sid′,ssid′)

if c′ = ABM.enc(t ′,u′)(pk, x ′; r ′)
Hybrid1 u = ABM.spl(pk, skspl, t; v) Send to FMCOM (commit, t ′, x̃) s.t

r ← COINenc x̃ = ABM.dec(t ′,u′)(skext, c′) x̃

c = ABM.enc(t,u)(pk, x; r) Send to FMCOM (open,sid′,ssid′)
if c′ = ABM.enc(t ′,u′)(pk, x ′; r ′)

Hybrid2 u ← ABM.spl(pk, skspl, t) Send to FMCOM (commit, t ′, ε)
r ← COINenc Send to FMCOM (open,sid′,ssid′, x ′) x ′
c = ABM.enc(t,u)(pk, x; r) if c′ = ABM.enc(t ′,u′)(pk, x ′; r ′)

Hybrid3 u ← Upk (t) Send to FMCOM (commit, t ′, ε)
r ← COINenc Send to FMCOM (open,sid′,ssid′, x ′) x ′
c = ABM.enc(t,u)(pk, x; r) if c′ = ABM.enc(t ′,u′)(pk, x ′; r ′)

HybridFcrs u ← Upk (t)
r ← COINenc Output x ′ to Z –

(Real world) c = ABM.enc(t,u)(pk, x; r) if c′ = ABM.enc(t ′,u′)(pk, x ′; r ′)

In the commit phase (of the left interaction of A), committerC sends (t, u, c) to corrupted party Pa(A), where
t = (sid,ssid,C, Pa). In the decommit phase, C opens (x, r) such that c = ABM.enc(t,u)(pk, x; r). In
the commit phase (of the right interaction of A), corrupted Pa(A) sends (t ′, u′, c′) to receiver R, where
t ′ = (sid′,ssid′, Pa , R). In the decommit phase, it opens (x ′, r ′). Upon receiving (open,sid′,ssid′),
FMCOM reveals the value in the entry to environment Z

Hybrid Game 1: In this game, the left interaction is modified so that S instead
receives (commit, t, x) where t = (sid,ssid,C, Pa). S then computes u ←
ABM.spl(pk, skspl, t) and c = ABM.enc(t,u)(pk, x; r) where r ← COINenc, to send
(commit, t, u, c) to adversary A. In the decommit phase when S receives (open, t),
it sends (t, x, r) to A.

In case of adaptive corruption of C after the commit phase but before the decommit
phase, S outputs (t, u, x, r, R) after computing R such that Upk(t; R) = u.

The view of Z in this game is statistically close to that in the ideal world, because

{

distcol
(

pk, t, skspl, skext, x
)}

κ∈N

and
{

distenc
(

pk, t, skspl, skext, x
)}

κ∈N ,

defined in Sect. 3.3, are statistically indistinguishable in κ .
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Hybrid Game 2: In this game, the right interaction is changed as follows. After
receiving (t ′, u′, c′), where t ′ = (sid′,ssid′, Pa, R), S sends (commit, t ′, ε) to
the ideal functionality. In the decommit phase when A opens (t ′, u′, c′) correctly with
(x ′, r ′), S sends (open,sid′,ssid′, x ′) to the ideal functionality. Then, the ideal
functionality reveals x ′ (instead of ε) to Z .

In case of corruption of R before the decommit phase, S simply outputs (t ′, u′, c′).
We note that R has no secret.

The difference of the views of Z between this game and the previous game is bounded
by the following event. LetBDdenote the event thatS receives a fake ciphertext (t ′, u′, c′)
fromA in the right intersection. Remember that ciphertext c is called fake if (t, u) ∈ L td

pk
and c is a valid ciphertext (which means that there is a pair of message/randomness
consistent with c). If this event does not occur, the views of Z in both games are iden-
tical. Hence, the difference of the views of Z between the two games is bounded by
Pr[BD]. Event BD occurs (in Hybrid Game 2) if and only if A breaks unforgeability of
(ABM.gen,ABM.spl) on ̂L td

pk . Therefore, Pr[BD] is negligible in κ .
Hybrid Game 3: In this game, the left interaction is modified again. At the com-

mit phase, when receiving input (commit, t, x) where t = (sid,ssid,C, Pa), S
chooses random u = Upk(t; R) with random R and computes c = ABM.enc(t,u)

(pk, x; r), to send (t, u, c) to A. At the decommit phase, upon receiving input
(open,sid,ssid), S plays the same as in the previous game.

In case of corruption of C before the decommit phase, S simply reveals (x, r, R)

(where u = Upk(t; R)).
By construction, the difference of the two views of Z between this game and

the previous game is bounded by the advantage of pseudorandomness of pPRF =
(ABM.gen,ABM.spl).

HYBRIDFcrs Game: It corresponds to the real world in the CRS model, where
A interacts with honest C and R respectively, and executes the man-in-the-middle
attack. In the left interaction, environment Z activates C to start the commit phase
by sending (commit, t, x) to C where t = (sid,ssid,C, Pa). Z activates C to
start the decommit phase by sending (open,sid,ssid) to C . In the right interaction,
at the commit phase when R receives (t ′, u′, c′) from A, it outputs (receipt, t ′)
to Z where t ′ = (sid′,ssid′, Pa, R). At the decommit phase, upon receiving
(sid′,ssid′, x ′, r ′) from A, R checks its consistency with (t ′, u′, c′). If the opening
is correct, it outputs (reveal, t ′, x ′) to Z .

By construction, the two views of Z between this game and the previous game are
identical. �

5. A General Framework for Constructing ABME

To instantiate an ABME scheme, we use the same construction strategy. We first focus
on an instantiation of pPRF = (KG,Spl). We then manage to construct an extractable
sigma protocol Σext = (Σ,Ext) on the language derived from pPRF. If we can do
so, we say that pPRF and Σext are well combined. Then we can always convert such
well-combined primitives to an ABME scheme.

We formally say that pPRF and Σext are well combined if:
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– ABM.gen(1κ) runs KG(1κ) to output (pk, skspl, skext).
– ABM.spl(pk, skspl, t; v) outputs u = Spl(pk, skspl, t; v).
– ABM.enc(t,u)(pk, m; r) outputs a such that (a, m, r) = simPcom

Σ (pk, (t, u), m; r).
– ABM.dec(t,u)(skext, c) outputs m = Ext(skext, (t, u), c).
– ABM.col(t,u)

1 (pk, skspl, v; ra) outputs (c, ξ) such that c = Pcom
Σ (pk, (t, u), (skspl, v); ra), and ξ =

(pk, t, u, skspl, v, ra).
– ABM.col(t,u)

2 (ξ, m) outputs r = Pans
Σ (pk, (t, u), skspl, v, ra, m), where ξ = (pk, t, u, skspl, v, ra).

Fig. 3. ABME from Σext on language derived from pPRF.

– KG(1κ) outputs (pk, skspl, skext). (Later, skspl is used as a secret key of Spl and
skext is used as a secret key of Ext.)

– For all pk, there is a set Lco
pk such that L pk ∩ Lco

pk = ∅, where L pk =
{(t, u) | ∃(skspl, v) : u = Spl(pk, skspl, t; v)}.

– Σext is an extractable sigma protocol on L pk and has extractability on Lco
pk where

skext is the extractable key.
– pPRF is unforgeable on ̂L pk : =U ′

pk\Lco
pk , where U ′

pk is a universe (with respects
to pk).

We can convert these well-combined primitives into an ABME scheme as described
in Fig. 3.

By construction, the adaptive all-but-many property holds. The dual mode property
also holds because:

– If (t, u) ∈ Lext
pk , the first output of simPcom

Σ (pk, (t, u),m) is perfectly binding to

challengem due to special soundness (because Lext
pk ⊂ U ′

pk\L td
pk , with L td

pk : =L pk),

and m can be extracted given (pk, (t, u), a) using skext due to extractability.
– If (t, u) ∈ L td

pk , ABM.col runs the real sigma protocol with witness (skspl, v).
Therefore, it can produce a fake commitment that can be opened in any way, while
it is statistically indistinguishable from that of the simulation algorithm simPcom

Σ

(that is run by ABM.enc), due to enhanced HVSZK. We note that even given the
same (fixed) skext to both algorithms, it does not affect the statistical distance,
because it is fixed.

Hence, the resulting scheme meets the notion of ABME.
We note that this conversion originally comes from the transform that converts an ordi-

nary sigma protocol into an instance-dependent commitment scheme [4,41]. We instead
apply the transform to an extractable sigma protocol well combined with a pPRF. It is
up to each construction how to really instantiate a pPRF and construct Σext on it. In the
following sections, 6, 7, and “Appendix 3”, we provide concrete instantiations of ABME.

6. ABME from Damgård–Jurik PKE with Expansion Factor O(1)

We present an ABME scheme with compact ciphertexts, based on Damgård–Jurik public-
key encryption scheme [22]. Since ABME implies the fully equipped UC commitments,
this scheme can be seen as the first fully equipped UC commitment scheme with expan-
sion factor O(1). We start by recalling Damgård–Jurik PKE.
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6.1. Damgård–Jurik PKE

Let Π = (K,E,D) be a tuple of algorithms of Damgård–Jurik (DJ) PKE [22]. A public
key of DJ PKE is pkdj = (n, d), and the corresponding secret key is skdj = (p, q) where
n = pq is a composite number of distinct odd primes, p and q, and 1 ≤ d < p, q is
a positive integer (when d = 1 it is Paillier PKE [50]). We often write Π(d) to clarify
parameter d. We let g := (1 + n) throughout this paper. To encrypt message x ∈ Znd ,

one computes Epkdj(x; R) = gx Rnd (mod nd+1) where R ← Z
×
n .1 For simplicity, we

write E(x) instead of Epkdj(x), if it is clear. DJ PKE is enhanced additively homomor-
phic as defined in “pPRF from Waters Signature on General Additively Homomorphic
Encryptions of Appendix 4”. Namely, for every x1, x2 ∈ Znd and every R1, R2 ∈ Z

×
n ,

one can efficiently compute R such that E(x1 + x2; R) = E(x1; R1) · E(x2; R2). Actu-
ally, it can be done by computing R = gγ R1R2 (mod n), where γ is an integer such
that x1 + x2 = γ nd + ((x1 + x2) mod nd). It is known that Z×

nd+1 is isomorphic to

Znd × Z
×
n (the product of a cyclic group of order nd and a group of order φ(n)), and,

for any d < p, q, element g = (1 + n) has order nd in Z
×
nd+1 [22]. Therefore, Z×

nd+1 is

the image of E(·; ·). We note that it is known that Z×
nd+1 is efficiently samplable and

explainable [25,27]. It is also known that DJ PKE is IND-CPA if the DCR assumption
(Assumption 7) holds true [22].

6.2. Construction Idea

(ABM.gen,ABM.spl) described below forms an analogue of Waters signature scheme
[56] defined over a ring equipped with no associated bilinear map, where no signing
verification algorithm exists. The “signatures” look pseudorandom assuming that DJ
PKE is IND-CPA. We then construct an extractable sigma protocol on the language
derived from (ABM.gen,ABM.spl), as discussed in Sect. 1.3.1. Here, the decryption
algorithm works only when the matrix below in (2) is invertible, which is equivalent to
that (t, (ur , ut )) ∈ Lext

pk , where

Lext
pk = {(t, (ur , ut ))|D(ut ) �≡ x1x2 + y(t)D(ur )(mod p)

∧ D(ut ) �≡ x1x2 + y(t)D(ur )(modq)} .

Therefore, we require that (ABM.gen,ABM.spl) should be unforgeable on ̂L td
pk(=

U ′
pk\Lext

pk ). To prove this statement, we additionally require two more assumptions
on DJ PKE, called the non-multiplication assumption and the non-trivial divisor
assumption. The first one is an analogue of the DH assumption in an additively homo-
morphic encryption. If we consider unforgeability on L td

pk , this assumption suffices, but

we require unforgeability on ̂L td
pk . Then we need the non-trivial divisor assumption, too.

We formally define these assumptions in “Appendix 4”. We note that the assumptions
are originally introduced in [37] to obtain the DCR-based ABM-LTF scheme.

1In the original scheme, R is chosen from Z
×
nd+1 . However, since Z

×
n is isomorphic to the cyclic group

of order nd in Z
×
nd+1 by mapping R ∈ Z

×
n to Rnd ∈ Z

×
nd+1 , we can instead choose R from Z

×
n .
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Note. In “Appendix 3”, we present the DDH version of this ABME scheme with expan-
sion factor O(κ/log κ). If the reader feels that the proposal here is complicated, we
recommend the reader to read “Appendix 3” first, to obtain more intuition behind the
construction.

6.3. ABME from Damgård–Jurik

– ABM.gen(1κ): It gets (pkdj, skdj) ← K(1κ) (the key-generation algorithm for DJ
PKE), where pkdj = (n, d) and skdj = (p, q). It computes g1 = E(x1; R1) and
g2 = E(x2; R2) by picking up randomly x1, x2 ← Znd and R1, R2 ← Z

×
nd+1 . It

chooses h̃ ← E(1) and y = (y0, . . . , yκ ) where y j ← Znd+1 for j = 0, 1, . . . , κ .
It then computes h = (h0, . . . , hκ) such that h j := h̃ y j . Let H(t) = h0

∏κ
i=1 h

ti
i

(mod nd+1), and let y(t) = y0 + ∑κ
i=1 yi ti (mod nd), where (t0, . . . , tκ ) is the

bit representation of t . We note that H(t) = h̃ y(t). It outputs (pk, skspl, skext)
where pk := (n, d, g1, g2, h), skspl := x2, and skext := (p, q, y0, y), where
U ′

pk := {0, 1}κ×(Z×
nd+1)

2 that contains the disjoint sets of L td
pk and Lext

pk as described
below.

– ABM.spl(pk, skspl, t; (r, Rr , Rt )) where skspl = x2: It chooses r ← Znd and
outputs u := (ur , ut ) such that ur := E(r; Rr ) and ut := gx2

1 E(0; Rt ) · H(t)r

where Rr , Rt ← Z
×
nd+1 . We let

L td
pk = {(t, (ur , ut )) | ∃(x2, (r, Rr , Rt )) :
ur = E(r, ; Rr ) and ut = gx2

1 E(0; Rt )H(t)r
}

.

We then define

Lext
pk = {(t, (ur , ut ))|D(ut ) �≡ x1x2 + y(t)D(ur ) mod p

∧D(ut ) �≡ x1x2 + y(t)D(ur ) mod q}.

Since (t, (ur , ut )) ∈ L td
pk holds if and only ifD(ut ) ≡ x1x2 + y(t)D(ur ) (mod nd),

it implies that D(ut ) ≡ x1x2 + y(t)D(ur ) (mod n). Hence, L td
pk ∩ Lext

pk = ∅.

– ABM.enc(t,(ur ,ut ))(pk,m; (z, s, RA, Ra, Rb)): To encrypt message m ∈ Znd , it

chooses z, s
U← Znd and computes A := gz1H(t)sumt Rnd

A (mod nd+1), a :=
E(z; Ra) ·gm2 (mod nd+1) and b := E(s; Rb) ·umr (mod nd+1), where RA, Ra, Rb
U← Z

×
nd+1 . It outputs c := (A, a, b) as the ciphertext of m on (t, (ur , ut )).

– ABM.dec(t,(ur ,ut ))(skext, c) where skext = (p, q, y0, . . . , yκ ): To decrypt c =
(A, a, b), it outputs

m := x1D(a) + y(t)D(b) − D(A)

x1x2 − (D(ut ) − y(t)D(ur ))
mod nd . (1)

– ABM.col(t,(ur ,ut ))1 (pk, skspl, (r, Rr , Rt )) where skspl = x2: It picks up ω, η
U← Znd , R′

A, R′
a, R

′
b

U← Z
×
nd+1 . It then computes A := gω

1 · H(t)η · R′
A
nd
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(mod nd+1), a := gωR′
a
nd

(mod nd+1), and b := gηR′
b
nd

(mod nd+1). It out-
puts c := (A, a, b) and ξ := (x2, (r, Rr , Rt ), (ur , ut ), ω, η, R′

A, R′
a, R

′
b).

– ABM.col2(ξ,m): To open c to m, it computes z = ω − mx2 mod nd , s = η −
mr mod nd , α = �(ω − mx2 − z)/nd�, and β = �(η − mr − s)/nd�. It then sets
RA := R′

A · R−m
t · gα

1 · H(t)β (mod nd+1), Ra := R′
a · R−m

2 · gα (mod nd+1),
and Rb := R′

b · R−m
r · gβ (mod nd+1). It outputs (z, s, RA, Ra, Rb), where A =

gz1H(t)sumt Rnd
A (mod nd+1), a = E(z; Ra) · gm2 (mod nd+1), and b = E(s; Rb) ·

umr (mod nd+1).

We note thatABM.col runs a canonical sigma protocol on L td
pk to prove that the prover

knows (x2, (r, Rr , Rt )) such that ur = Epk(r; Rr ) and ut = gx2
1 Epk(0; Rt )H(t)r .

Hence, the trapdoor mode works correctly when (t, (ur , ut )) ∈ L td
pk . On the contrary,

ABM.enc runs a simulation algorithm of the sigma protocol with message (challenge)
m. Notice that (A, a, b) implies the following linear system on Znd ,

⎛

⎝

D(A)

D(a)

D(b)

⎞

⎠ =
⎛

⎝

x1 y(t) D(ut )
1 0 x2
0 1 D(ur )

⎞

⎠

⎛

⎝

z
s
m

⎞

⎠ (2)

The matrix is invertible if

D(ut ) �= (x1x2 + y(t)D(ur )) (mod p) and D(ut ) �= (x1x2 + y(t)D(ur )) (mod q),

which means that (t, (ur , ut )) ∈ Lext
pk . Hence, the decryption mode works correctly.

Lemma 1. (Implicit in [37]) (ABM.gen,ABM.spl) is pPRF with unforgeability on
̂L td

pk(= U ′
pk\Lext

pk ), under the assumptions, 7, 8 and 9.

The proof is given in Sect. 8. By this lemma, we have:

Theorem 2. The scheme constructed as above is an ABME scheme if the DCR assump-
tion (Assumption 7), the non-trivial divisor assumption (Assumption 8), and the non-
multiplication assumption (Assumption 9) hold true.

This scheme has a ciphertext consisting of only 5 group elements (including (ur , ut ))
and optimal expansion factor O(1). This scheme requires a public key consisting of
κ + 3 group elements along with some structure parameters.

6.4. ABM-LTF from DCR-based ABME and Vice Versa

Hofheinz [37] has presented the notion of all-but-many lossy trapdoor function
(ABM-LTF). We provide the definition in “All-But-Many Lossy Trapdoor Functions
of Appendix 1”. We remark that ABM-LTF requires that, in our words, (ABM.gen,
ABM.spl) be strongly unforgeable, whereas ABME only requires it be unforgeable.
However, as shown in [37], unforgeable pPRF can be converted into strongly unforge-
able pPRF via a chameleon commitment scheme. Therefore, this difference is not
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Table 3. Comparison among ABMEs.

ABME Expansion factor Ciphertext length Message length pk-length

ABME from [37] ≥ 31∗ (5(d + 1) + 1) log n log n (κ + 3)d log n
Section 6.3 (d ≥ 1) 5 + 1/d 5(d + 1) log n d log n (κ + 3)d log n
Section 7 5κ/log κ (5� + 5) log q � log κ 7 log q

∗ d ≥ 5 is needed

important. We note that we can regard Hofheinz’s DCR-based ABM-LTF (with only
unforgeability) as a special case of our DCR-based ABME scheme by fixing a part of
the coin space as (RA, Ra, Rb) = (1, 1, 1). Although the involved matrix of his original
scheme is slightly different from ours, the difference is not essential. In the end, we can
regard Hofheinz’s DCR-based ABM-LTF as

ABM.eval(t,(ur ,ut ))(pk, (m, z, s)) := ABM.enc(t,(ur ,ut ))(pk,m; (z, s, 1, 1, 1)),

where (m, z, s) denotes a message. This ABM-LTF has ((d − 3) log n)-lossyness. In
the latest e-print version [37], Hofheinz has shown that his DCR-based ABM-LTF can
be converted to SIM-SO-CCA PKE. To construct it, Hofheinz implicitly considered the
following PKE scheme such that

ABM.enc(t,(ur ,ut ))(pk, M; (m, z, s)) := (ABM.eval(t,(ur ,ut ))(pk, (m, z, s)), M ⊕ H(m, z, s)),

where H is a suitable 2-universal hash function from (Znd )
3 to {0, 1}κ (or Z/nZ).

According to his analysis in Sect. 7.2 in [37], if d ≥ 5, it can open an ciphertext
arbitrarily using Barvinok’s algorithm, when (t, (ur , ut )) ∈ L loss. Then it turns out
ABME in our words. For practical use, it is rather inefficient, because its expansion rate
of ciphertext length per message length is ≥ 31, and the modulus of ≥ n6 is required.
The opening algorithm is also costly. Table 3 shows the comparison.

On the contrary, our DCR-based ABME (strengthened with strong unforgeabil-
ity) can be converted to ABM-LTF.2 Remember that (A, a, b) = ABM.enc(t,(ur ,ut ))

(pk,m; (z, s, RA, Ra, Rb)). It is obvious that we can extract not only message m but
(z, s) by inverting the corresponding matrix, but we point out that we can further retrieve
(RA, Ra, Rb), too. This mean that our DCR-based ABME turns out ABM-LTF. Indeed,
after extracting (m, z, s) from (A, a, b), we have (RA)n

d
, (Ra)

nd , (Rb)
nd in Z

×
nd+1 . We

remark that RA, Ra, Rb lie not in Z
×
nd+1 but in (Z/nZ)×. So, letting α = rn

d
mod nd+1

where r ∈ (Z/nZ)×, r = α(nd )−1
mod n is efficiently solved by φ(n). Thus, our DCR-

based ABME turns out ABM-LTF with (d log n)-lossyness for any d ≥ 1, whereas
Hofheinz’s DCR-based ABM-LTF is ((d − 3) log n)-lossy for any d ≥ 4 (Table 4).

2 Our approach is specific to our DCR-based ABME scheme. On the one hand, Hemenway and Ostro-
vsky [36] have shown that if the message space of lossy encryption is one bit longer than the coin space, the
Footnote 2 continued
lossy encryption can be converted to a lossy trapdoor function (LTF). Although their method can be applied
to our DCR-based ABME scheme, the resulting ABM-LTF is less efficient than ours.
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Table 4. Comparison among ABM-LTFs.

ABM-LTF Expansion factor Output length Input length Lossyness Notes

Hof12 [37] 5/3 (5(d + 1) + 1) log n 3d log n (d − 3) log n d ≥ 4
ABM-LTF (Sect. 6) 5/3 (5(d + 1) + 1) log n 3(d + 1) log n d log n d ≥ 1

7. ABME from Twin-Cramer–Shoup with Short Public Key

We construct an ABME scheme from the DDH assumption. The expansion factor of this
scheme is not optimal but O(κ/log κ). However, this expansion rate is still better than the
previous work [14] (with O(κ)). We note that we provide an alternative ABME scheme
with the same expansion factor from the DDH assumption in “Appendix 3”, which is the
DDH version of the scheme in Sect. 6. So, its public key includes O(κ) group elements.
On the other hand, this scheme has a short public key only with a constant number of
group elements.

We consider the following pPRF. Let Πcpa be an IND-CPA (or even one-way) PKE
scheme and let Πcca be an IND-CCA tag-based PKE scheme. Let pkcpa and pkcca be
public keys of both schemes, respectively. Then, see pk = (pkcpa, pkcca,Ecpa(ξ)) as
the public key of pPRF, where ξ is a random message. Then, we see Ecca(t, ξ) as the
output of Spl on tag t , where skspl = ξ . This indeed forms pPRF. We now describe a
concrete construction by using ElGamal PKE and a tag-based version of Twin-Cramer–
Shoup PKE [19,21] as ingredients, with a slight optimization.

Let CH = (CHGen,CHEval,CHColl) be a chameleon hash commitment scheme.
Let g be a generator of a multiplicative group G of prime order q, where we assume that
G is efficiently samplable and the DDH assumption holds on the group. Let TwinCS
= (CS.gen, CS.enc, CS.dec) be a tag-based version of Twin-Cramer–Shoup PKE
[19,21], where

– CS.gen(1κ): Via (pkcs, skcs) ← CS.gen(1κ), it picks up hash (pkCH, skCH) ←
CHGen(1κ), generator g ← G×, and sets X = gx , X̂ = gx̂ , Y = gy , and Ŷ = gŷ ,
where x, x̂, y, ŷ ← Z/qZ, and finally outputs pkcs := (pkCH, g, X, X̂ ,Y, Ŷ ) and
skcs := (pkcs, x, x̂, y, ŷ).

– CS.enc(pkcs, t,m): Via c ← CS.enc(pkcs, t,m), where message m ∈ G, and

tag t ∈ {0, 1}κ , it outputs c = (r, d, e, πx , πy), by picking up r
U← COINCH, and

computing d := gv , e := m ·Xv , τ := CHEval(pkCH, (t, d, e); r), πx := (X τ X̂)v ,

and πy := (Y τ Ŷ )v , where v
U← Z/qZ.

– CS.dec(skcs, t, c): Via m = CS.dec(skcs, t, c), where c := (r, d, e, πx , πy), it

checks if πx
?= dτ x+x̂ and πy

?= dτ y+ŷ , where τ = CHEval(pkCH, (t, d, e); r)
and outputs m := e · d−x if the above equations both hold, otherwise m := ⊥.

TwinCS is an IND-CCA secure Tag-PKE scheme if the DDH assumption holds true
and CH is a chameleon commitment scheme. The proof is omitted.

pPRF = (Genspl,Spl) from TwinCS is constructed as follows:
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– Genspl(1κ): It picks up (pkcs, skcs) ← CS.gen(1κ), where pkcs =
(pkCH, g, X, X̂ ,Y, Ŷ ) and skcs = (x, x̂, y, ŷ). It picks up ζ

U← G×, v0
U← Z/qZ,

and computes (d0, e0) = (gv0 , ζ−1Xv0). It finally outputs pk := (pkcs, d0, e0) and
skspl := ζ .

– Spl(pk, skspl, t): It takes (pk, skspl, t) and outputs u = (r, d, e, πx , πy) =
CS.enc(pkcs, t, ζ ; v) where v

U← Z/qZ.

We let

L tdpk :=
{

(t, (r, d, e, πx , πy)) | ∃ (ζ, v0, v) : (d0, e0) = (gv0 , ζ−1Xv0 ) and (r, d, e, πx , πy)

= CS.enc(pkcs, t, ζ ; v)
}

.

and

̂L td
pk :=

{

(t, (r, d, e, πx , πy)) | ∃ (ṽ, v) : (d0d, e0e)

= (gṽ , X ṽ) and (d, πx , πy) = (gv, (X τ X̂)v, (Y τ Ŷ )v)
}

,

where τ = CHEval(pkCH, (t, d, e); r). We note that L td
pk = ̂L td

pk . Hence, Lext
pk =

U ′
pk\L td

pk , where U ′
pk := {0, 1}κ × COINCH × G4.

Lemma 2. The scheme obtained above is a pPRF with unforgeability on ̂L td
pk if the

DDH assumption holds true and CH is a chameleon commitment scheme.

Proof. By construction, it is obvious that the above scheme satisfies pseudorandomness.
The unforgeability follows from the following analysis.

Let us define G0 as the original unforgeability game, in which the challenger sets
up all secrets and public parameter pk = (pkcs, d0, e0). The challenger returns
(d, e, πx , πy) ← CS.enc(pkcs, t, ζ ) for every query t that the adversary A submits
as query. Let ε0 be the advantage of A in game G0, i.e., the probability that it outputs
(d ′, e′, π ′

x , π
′
y) ∈ CS.enc(pkcs, t ′, ζ ) where t ′ is not queried.

We consider a sequence of q + 1 games, G1,0, . . . ,, G1,q , where q denotes the
number of queries that A submits. We define Game G1,0 as G0. Let t1, . . . , tq be a
sequence of queries from A. In game G1,i , where i ∈ {0, . . . , q}, the challenger returns
(d, e, πx , πy) ← CS.enc(pkcs, t j , 0|ζ |) for j ≤ i , whereas returns (d, e, πx , πy) ←
CS.enc(pkcs, t j , ζ ) for j > i . Let ε1,i be the advantage of A in game G1,i , i.e., the
probability that it outputs (d ′, e′, π ′

x , π
′
y) ∈ CS.enc(pkcs, t ′, ζ ) where t ′ is not queried.

The difference of the adversary’s advantage, ε1,i − ε1,i+1, between each two games,
G1,i and G1,i+1, for every i ∈ {0, . . . , q−1}, is evaluated by the advantage of IND-CCA
security for TwinCS. Namely, we construct an algorithm B using A as oracle that breaks
IND-CCA security for TwinCS.

B takes pkcs and chooses ζ
U← G× and sets (d0, e0) := (gv0 , ζ−1Xv0) where v0

U←
Z/qZ. For the first j queries of A, with j ≤ i , B returns CS.enc(pkcs, t j , 0|ζ |). When
A submits the i + 1th query ti+1, B submits (0|ζ |, ζ ) to the encryption oracle and
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receives the challenge ciphertext (d∗, e∗, π∗
x , π∗). For the remaining queries, B returns

CS.enc(pkcs, t j , ζ ) where i + 1 < j .
When A outputs c′ = (d ′, e′, π ′

x , π
′
y) for a fresh tag t ′, B queries c′ to the decryption

oracle. If the decryption oracle returns ζ , B outputs bit 0, otherwise 1. By construction,
we have ε1,i (κ) − ε1,i+1(κ) ≤ Advind-cca

TwinCS,A(κ), for every i ∈ {0, . . . , q − 1}, which
is negligible in κ if the DDH assumption holds on G and CH is a chameleon hash
commitment scheme. We note that B needs the decryption oracle only once, to check
that c′ is a ciphertext of ζ .

In Game G2, the challenger behaves as follows: It is given pkcs and |ζ | as input,
chooses a random tag t , and obtains ciphertext (d, e, πx , πy) of a random message ζ−1

on tag t . It then sets (d0, e0) := (d, e). Here, the challenger is not given ζ . For every
query ti of A, 1 ≤ i ≤ q, the challenger returns CS.enc(pkcs, ti , 0|ζ |). Let ε2 be the
advantage of A in game G2. Since this change is conceptual from G1,q ε1,q = ε2.

Game G3 is the same game as G2 except that when A finally outputs c′ =
(d ′, e′, π ′

x , π
′
y) on a fresh tag t ′, the challenger submits it to the decryption oracle and

outputs its reply. We note that the challenger did not reveal any information on t to A,
because it feeds only (d0, e0) to A. Hence, it holds that t ′ �= t with probability 1 − q

2κ .
If c′ is a ciphertext of ζ , the challenger results in decrypting c = (d, e, πx , πy) on tag t ,
which is bounded by the advantage of an adversary that breaks one-wayness of TwinCS
in the chosen ciphertext attack. The advantage is bounded by twice of that of IND-CCA
security of TwinCS.

Hence, we have ε0(κ) ≤ (q + 2)Advind-cca
TwinCS,B(κ) + q

2κ . �

We now construct an ABME scheme from the Twin-Cramer–Shoup-based pPRF
scheme .

– ABM.gen(1κ): It gets (pkcs, skcs) ← CS.gen(1κ) (the key-generation algo-
rithm of Twin-Cramer–Shoup), where pkcs = (pkCH, g, X, X̂ ,Y, Ŷ ) and skcs =
(x, x̂, y, ŷ). It chooses ξ

U← G×, v0
U← Z/qZ, and computes d0 := gv0 ,

and e0 := ξ−1Xv0 . It sets λ = O(log κ). It finally outputs pk, skspl, skext),
where pk := (pkcs, d0, e0, λ), skext := skcs, and skspl := ζ . We let U ′

pk :=
{0, 1}κ × COINCH × G4 that contains the disjoint sets, L td

pk and Lext
pk , as defined

below.
– ABM.spl(pk, skspl, t; v): It takes (pk, skspl, t) where skspl = ζ , picks up v

U←
Z/qZ, and outputs u : =(r, d, e, πx , πy) = CS.enc(pkcs, ζ ; v), where τ :=
CHEval(pkCH, (t, d, e); r). Here we define

L td
pk = ̂L td

pk =
{

(t, (r, d, e, πx , πy)) | ∃ (ṽ, v) : d0d = gṽ , e0e = hṽ , d = gv, πx

= (X τ X̂)v, and πy = (Y τ Ŷ )v
}

.

We note that ṽ = v0 + v. We define Lext
pk = U ′

pk\̂L td
pk .

– ABM.enc(t,u)(pk,m; ( ẑ, z)): To encrypt message m ∈ {0, 1}n , it parses m as

(m1, . . . ,m�) where � = n/λ and mi ∈ {0, 1}λ. It picks up vectors, z̃, z
U← G�,
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where z̃ = (z̃1, . . . , z̃�) and z = (z1, . . . , z�), and computes 2-by-� matrix A 3-by-�
matrix B such that

A =
(

g d0d
X e0e

)(

z̃1 . . . z̃�
m1 . . . m�

)

, and B =
⎛

⎝

g d
X τ X̂ πx

Y τ Ŷ πy

⎞

⎠

(

z1 . . . z�
m1 . . . m�

)

. (3)

It finally outputs c = (A, B).
– ABM.dec(t,u)(skext, c): Let A = (a1, . . . , a�) and B = (b1, . . . , b�), where ai =

(a1,i , a2,i )
T and bi = (b1,i , b2,i , b3,i )

T. For all i ∈ [�], it searches “consistent”
mi ∈ {0, 1}λ such that

(a1,i )
x

a2,i
=
( (d0d)x

e0e

)mi
if e0e �= (d0d)x ,

(b1,i )
τ x+x̂

b2,i
=
(dτ x+x̂

πx

)mi
if πx �= dτ x+x̂ ,

and
(b1,i )

τ y+ŷ

b3,i
=
(dτ y+ŷ

πy

)mi
if πy �= dτ y+ŷ , where τ = H(t, d, e).

(4)

It aborts if it finds no mi or “inconsistent” one for some i ∈ [�], otherwise outputs
m = (m1, . . . ,m�) ∈ {0, 1}n .

– ABM.col(t,u)
1 (pk, t, skspl, v; (w̃,w)): It picks up w̃i , wi

U← Z/qZ for i ∈ [�]. It
sets a1,i := gw̃i , a2,i := X w̃i , b1,i := dwi , b2,i := (X τ X̂)wi , and b3,i := (Y τ Ŷ )wi ,
where τ = H(t, u, e). It finally outputs c = (A, B) and ξ = (v0, v, w̃,w), where
w̃ = (w̃1, . . . , w̃l) and w = (w1, . . . , wl).

– ABM.col(t,u)
2 (ξ,m): To open c = (A, B) to m, it parses m as (m1, . . . ,m�) and

computes, for all i ∈ [�], z̃i := w̃i − mi · ṽ mod q and zi := wi − mi · v mod q,
where ṽ = v0 + v. It finally outputs ( z̃, z), consistent with m in Equation (3).

Suppose that (t, (r, d, e, πx , πy)) ∈ L td
pk . Each column vector ai = (a1,i , a2,i )

T in A
fromABM.col1 can be seen as the first message in a canonical sigma protocol on common
input (d0d, e0e) to prove that logg (d0d) = logX (e0e), and z̃i from ABM.col2 corre-
sponds to the response on challengemi . Hence, (A,m, z̃) is the accepting conversation of
the parallel execution of the sigma protocol with parallel challenge m = (m1, . . . ,m�),
where mi ∈ {0, 1}λ. Similarly, (B,m, z) is the accepting conversation of the parallel
execution of a sigma protocol on common input (d, πx , πy) with parallel challenges
m to prove that logg (d) = logXτ X̂ (πx ) = logY τ Ŷ (πy). By construction, the trapdoor
mode works correctly.

The decryption mode works as follows: We note that (t, (r, d, e, πx , πy)) ∈ L td
pk

if and only if rank(A(t, u)) = 1 and rank(B(t, u)) = 1, where A(t, u) :=
(

g d0d
X e0e

)

and B(t, u) :=
⎛

⎝

g d
X τ X̂ πx

Y τ Ŷ πy

⎞

⎠ . So, when (t, (r, d, e, πx , πy)) ∈ Lext
pk (=

U ′
pk\L td

pk), rank(A(t, u)) = 2 or rank(B(t, u)) = 2. Hence, each mi can be retrieved by
checking either of equations in (4). We note that if rank(A(t, u)) = rank(B(t, u)) = 2,
the linear system (3) is overdetermined. Then, one should check if m is inconsistent to
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the system (that is, there is no solution in the system), using the other equations. If so,
the decryption is rejected.

We note, however, that the “consistency check” is unnecessary for our motivating
application (fully equipped UC commitments), because it suffices that the simulator
can decrypt valid ciphertexts correctly, because an adversary cannot correctly open an
invalid ciphertext on (t, u) ∈ Lext

pk .

Theorem 3. The scheme constructed as above is an ABME scheme if theDDHassump-
tion on G holds true and CH is a chameleon hash commitment scheme.

This scheme has a ciphertext consisting of 5� + 4 group elements plus |COINCH|-
bit string (including u = (r, d, e, πx , πy)), for encrypting message m ∈ {0, 1}�λ, with a
public key consisting of 7 group elements along with structure parameters. Therefore, the
expansion factor of this scheme is 5 κ

λ
. = O( κ

log κ
). Since the UC commitment from [14]

consists of two Cramer–Shoup encryptions plus the output of a claw-free permutation per
one-bit message, its expansion factor is 8κ plus the length of the trapdoor commitment.
This expansion factor in [14] is strict, by construction, which cannot be improved.

8. Fully Equipped UC Commitment from Trapdoor Permutations

If we can construct an ABME scheme from trapdoor permutation (family), it is done,
but we have no idea how to construct it. We instead construct a weak ABME scheme.
The only difference of weak ABME from standard ABME is that in the trapdoor mode,
distenc(pk, t, skspl, skext, x) is not statistically but computationally indistinguishable
from distcol(pk, t, skspl, skext, x). Namely,

{(

ABM.spl(pk, skspl, t; v), c, ABM.col(t,u)
2 (ξ, x)

)} c≈
{(

ABM.spl(pk, skspl, t; v), ABM.enc(t,u)(pk, x; r), r
)}

for every (pk, (sk, w)) ∈ ABM.gen(1κ), every x ∈ MSP, every t ∈ {0, 1}κ , where
v ← COINspl, (c, ξ) ← ABM.col(t,u)

1 (pk, skspl, v), and r ← COINenc. We construct
a weak ABME scheme from two independent trapdoor permutations as follows.

Let F = {( f, f −1) | f : {0, 1}κ → {0, 1}κ }κ∈N be a trapdoor permutation family
and let b : {0, 1}κ → {0, 1} be a hard-core predicate for a trapdoor permutation f .
Let Π = (K,E,D) be the generalized version of Blum–Goldwasser cryptosystem [8]
that is a semantic secure public-key encryption scheme, derived from the following
encryption algorithm E f (x; r) = f (k+1)(r) || (x1 ⊕ b(r)) || . . . || (xk ⊕ b( f (k)(r))),
where (x1, . . . , xκ ), xi ∈ {0, 1}, denotes the bit representation of x . r ∈ {0, 1}κ denotes
inner randomness of this encryption and f (k) denotes k times iteration of f . We note that
this public-key encryption scheme has efficiently samplable and explainable presumable
ciphertext space {0, 1}κ+k [14,27]. Let us denote by F : {0, 1}κ × {0, 1}κ → {0, 1}κ a
pseudorandom function (constructed from f in a standard way).
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– ABM.gen(1κ): It draws two trapdoor permutations, ( f, f −1) and ( f ′, f ′−1), over
{0, 1}κ uniformly and independently from F . Let Π = (K,E,D) be the Blum–
Goldwasser cryptosystem mentioned above. Let F be a pseudorandom function
derived from f ′. It then picks up random s ← {0, 1}κ and encrypt it to e′ =
E f ′(s; r). It outputs (pk, skspl, skext), where pk = (F, f, f ′, e′), skspl = (s, r),
and skext = f −1. We define U ′

pk = {0, 1}κ × {0, 1}k .

– ABM.spl(pk, skspl, t): It takes tag t ∈ {0, 1}κ and outputs u = Fs(t) where skspl =
(s, r). We define

L td
pk = ̂L td

pk = {

(t, u) | ∃(s, r) such that e′ = E f ′(s; r) and u = Fs(t)
}

.

– ABM.enc(t,u)(pk, x): It takes (t, u) and one-bit message x ∈ {0, 1} along with pk,
and first obtains a graph G (of q nodes) so that finding a Hamiltonian cycle in G
is equivalent to finding (s, r) such that u = Fs(t) and e′ = E f ′(s; r), by using
the NP-reduction. We note that one can find such G without knowing (s, r). In
addition, if such (s, r) does not exist for given (t, u), G so obtained does not have
a Hamiltonian cycle.

• To encrypt 0, it picks a random permutation π = (π1, . . . , πq) of q nodes,
where πi ∈ {0, 1}log q , and encrypts every πi and all the entries of the adjacency
matrix of the permuted graph H = π(G). It outputs {Ai }i∈[q] and {Bi, j }i, j∈[q],
such that Ai = E f (πi ) (∈ {0, 1}κ+log q ) and Bi, j = E f (ai, j ) (∈ {0, 1}κ+1)
where ai, j ∈ {0, 1} denotes the (i, j)-entry of the adjacency matrix of H .
• To encrypt 1, it picks q random (κ + log q)-bit string Ai (i ∈ [q]). It then
chooses a randomly labeled Hamiltonian cycle, and for all the entries in the adja-
cency matrix corresponding to edges on the Hamiltonian cycle, it encrypts 1’s.
For all the other entries, it picks up random κ +1-bit strings. It outputs {Ai }i∈[q]
and {Bi, j }i, j∈[q], where a Hamiltonian cycle is embedded in {Bi, j }i, j∈[q], but
the other strings are merely random strings.

This encryption procedure is the same as the adaptive Hamiltonian commitment
protocol in [16], except that a commitment in our scheme is encrypted under a
public key f independent of F .

– ABM.dec(t,u)(sk, c): To decrypt c = ({Ai }i∈[q], {Bi, j }i, j∈[q]), it firstly decrypts
all elements to retrieve π and matrix H , using sk = f −1. Then it checks that
H = π(G). If it holds, it outputs 0; otherwise, 1.

– ABM.col(t,u)
1 (pk, skspl, v): It first obtains a graph G (of q nodes) so that finding a

Hamiltonian cycle in G is equivalent to finding skspl = (s, r) such that u = Fs(t)
and e′ = E f ′(s; r), by using the NP-reduction. It picks a random permutation
π = (π1, . . . , πq) of q nodes and computes H = π(G). It encrypts under f all
πi ’s and all the entries of the adjacency matrix of the permutated graph H = π(G).
It outputs (c, ξ) where c = ({Ai }i∈[q], {Bi, j }i, j∈[q]) and ξ = ((t, u), ζ, π). Here ζ

denotes the Hamiltonian cycle of G.
– ABM.col2(ξ, x): If x = 0, it opens π and every entry of the adjacency matrix;

otherwise, if x = 1, it opens only the entries corresponding to the Hamiltonian
cycle ζ in the adjacency matrix.
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Then, we apply this weak ABME scheme to our framework (Fig. 2).

Theorem 4. The scheme in Fig.2 obtained by applying the above weak ABME UC
securely realizes the FMCOM functionality in the FCRS-hybrid model in the presence of
adaptive adversaries in the non-erasure setting.

Proof. The only difference from the proof of Theorem 1 is when we compare the
ideal world with Hybrid Game 1. In the proof of Theorem 1, in the trapdoor mode
when (t, u) ∈ L td

pk , the output of ABM.col is statistically indistinguishable from that of
ABM.enc. However, this case only guarantees computational difference. To show that
the environment views in both games are computationally indistinguishable, we need to
construct, for contradiction, a distinguisher that can distinguish the output of ABM.col
from the output of ABM.enc without knowing skspl, while it can extract the values
committed to by corrupted parties at the same time. Fortunately, in this construction, the
decryption key skext = f −1 is independent of the equivocable key skspl = (s, r). It is
not the case of the rest of our constructions, in which one can obtain skspl if one knows
skext. Therefore, we require statistical closeness in there. Hence, we can construct a
distinguisher that takes skext = f −1 and starts either with the ideal world or Hybrid
Game 1. Here, the environment views in both games are bounded by the distinguisher’s
advantage, which is negligible. �

We note that if the common reference string must strictly come from the uniform
distribution, we require trapdoor permutations with dense public descriptions.

We note that parallel k executions of this weak ABME scheme with one-bit mes-
sage space yield a weak ABME scheme with k-bit message space, by sending parallel
ciphertexts of the same message on the same tag under the same public key. Then, the
scheme is also transformed into a fully equipped UC secure commitment scheme with
k-bit message space.

This construction does not require non-interactive zero-knowledge proof systems. To
the best of our knowledge, the most efficient non-interactive zero-knowledge proofs
from trapdoor permutations is given by Kilian and Petrank [43], which requires a CRS
size of ω(|C |κ2 log κ) and a proof size of ω(|C |κ2 log κ), where |C | is the circuit size of
the statement. We compare our construction with the previous result [16] with the most
efficient NIZK proof system in Table 5.

Table 5. Fully Equipped UC commitments (to λ-bit secret) from general assumptions (enhanced trapdoor
permutations).

Schemes CRS size Communication Complexity of each user

CLOS02 [16] ω(κ3 log(κ)) ω(λ · q2κ3 log κ) λq2TNP + ω(λq2Ttdp(κ3 log κ))

Section 8 O(κ) O(λ · q2κ) TNP + λq2Ttdp(κ)

TNP denotes the cost of one NP-reduction from one-way function to a Hamiltonian graph. Ttdp(κ) denotes the

cost of computing one execution of trapdoor permutation over {0, 1}k . q denotes the number of the vertices
of the Hamiltonian graph
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Appendix 1: Some Other Definitions

Collision-Resistant Hash Function Family

Let H = {Hι}ι∈I be a keyed hash family of functions Hι : {0, 1}∗ → {0, 1}κ indexed
by ι ∈ Iκ (= I ∩ {0, 1}κ). A keyed hash function family H is called collision resistant
(CR) if, for every non-uniform PPT adversary C , Pr[ι ← Iκ ; (x, y) ← Cκ(Hι) : x �=
y ∧ Hι(x) = Hι(y)] = negl(κ).

Chameleon Commitment

A chameleon commitment CH = (CHGen,CHEval,CHColl) consists of three algo-
rithms: CHGen is a PPT algorithm that takes as input security parameter 1κ and outputs
a pair of public and trapdoor keys (pk, tk). CHEval is a PPT algorithm that takes
as input pk and message x ∈ {0, 1}κ , drawing random r from coin space COINpk ,
and outputs chameleon hash value c = CHEval(pk, x; r). Here COINpk is uniquely
determined by pk. CHColl is a DPT algorithm that takes as input (pk, tk), x, x ′
∈ {0, 1}κ and r ∈ COINpk , and outputs r ′ ∈ COINpk such that CHEval(pk, x; r)
= CHEval(pk, x ′; r ′). We require that for every (pk, tk) generated by CHGen(1κ),
every x, x ′ ∈ {0, 1}κ , and every r ∈ COINpk , there exists a unique r ′ ∈ COINpk such
that CHEval(pk, x; r) = CHEval(pk, x ′; r ′), and CHColl(pk, tk, x, x ′, r) always
computes r ′ in time poly(κ + |x | + |x ′|). In addition, for any x, x ′, if r is uniformly
distributed, then so is r ′. We require CH is collision resistance in the following sense:
For every non-uniform PPT adversary A,

Pr

[

(pk, tk) ← CHGen(1κ); (x1, x2, r1, r2) ← A(pk) :
CHEval(pk, x1; r1) = CHEval(pk, x2; r2) ∧ (x1 �= x2)

]

= negl(κ).

Tag-Based PKEs

A Tag-PKE Π = (Tag.Gen,Tag.Enc,Tag.Dec) is a tag-based PKE [44,46,53] that
consists of three polynomial-time algorithms: Tag.Gen, the key-generation algorithm,
is a PPT algorithm which on input 1n outputs a pair of the public and secret keys,
(pk, sk). Tag.Enc, the encryption algorithm, is a PPT algorithm that takes public
key pk, a tag t ∈ {0, 1}p(κ) for some fixed polynomial p and message m ∈ MSP,

and produces c ← Tag.Enc(pk, t,m; r), picking up r
U← COIN, where MSP and

COIN denote the message space and the coin space determined by pk, respectively.
Tag.Dec, the decryption algorithm, is a deterministic polynomial-time algorithm that
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takes a secret key sk, t , and a ciphertext c ∈ {0, 1}∗, and outputs Tag.Dec(sk, t, c).
We require that for (sufficiently large) every k ∈ N, every t ∈ {0, 1}p(κ) every
(pk, sk) generated by Tag.Gen(1k), and every message m ∈ MSP, it always holds
Tag.Dec(sk, t,Tag.Enc(pk, t,m)) = m.

IND-CCA Security. We recall CCA security for Tag-PKEs [46], called weak CCA
security [44]. We simply call it IND-CCA (for Tag-PKEs), because we only consider
Tag-PKEs.

We define IND-CCA security for Tag-PKEs as follows. To an adversary A = (A1, A2)

and b ∈ {0, 1}, we associate the following experiment Exptind-cca
Π,A,b (κ).

Exptind-cca
Π,A,b (κ):

(pk, sk) ← Tag.Gen(1κ)

(t∗,m0,m1, st) ← ADsk
1 (pk)

c∗ ← Tag.Enc(pk, t∗,mb)

b′ ← A
Tag.Decsk
2 (st, t∗, c∗)

Return b′.

The adversary A2 is restricted not to query decryption oracle Tag.Dec(sk, ·, ·) with
(t∗, �). We define the advantage of A in the experiment as

Advind-cca
Π,A (κ) = Pr

[

Exptind-cca
Π,A,1 (κ) = 1

]

− Pr
[

Exptind-cca
Π,A,0 (κ) = 1

]

.

We say that Π is IND-CCA secure if Advind-cca
Π,A (κ) = negl(κ) for every PPT A.

All-But-Many Lossy Trapdoor Functions

We recall all-but-many lossy trapdoor functions (ABM-LTF) [37], by slightly modifying
the notation to fit our purpose.

All-but-many lossy trapdoor functionABM.LTF= (ABM.gen,ABM.spl,ABM.eval,
ABM.inv) consists of the following algorithms:

– ABM.gen is a PPT algorithm that takes 1κ and outputs (pk, skspl, skext), where
pk defines a set Upk . We let U ′

pk = {0, 1}κ ×Upk . pk also determines two disjoint

sets, L loss
pk and L inj

pk , such that L loss
pk ∪ L inj

pk ⊂ U ′
pk .

– ABM.spl is a PPT algorithm that takes (pk, skspl, t), where t ∈ {0, 1}κ , picks up
inner random coins v ← COINspl, and computes u ∈ Upk . We write L loss

pk (t) to
denote the image of ABM.spl on t under pk, i.e.,

L loss
pk (t) :=

{

u ∈ Upk | ∃ skspl, ∃ v : u = ABM.spl
(

pk, skspl, t; v
)}

.

We require L loss
pk = {(t, u) | t ∈ {0, 1}κ and u ∈ L loss

pk (t)}. We set ̂L loss
pk :=

U ′
pk\L inj

pk . Since L loss
pk ∩ L inj

pk = ∅, we have L loss
pk ⊆ ̂L loss

pk ⊂ U ′
pk .
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– ABM.eval is a DPT algorithm that takes pk, (t, u), and message x ∈ MSP and com-
putes c = ABM.eval(t,u)(pk, x), where MSP denotes the message space uniquely
determined by pk.

– ABM.inv is a DPT algorithm that takes skext, (t, u), and c, and computes x =
ABM.inv(t,u)(skext, c).

We require that all-but-many encryption schemes satisfy the following properties:

1. Adaptive all-but-many property. (ABM.gen,ABM.spl) is a probabilistic pseu-
dorandom function (pPRF), as defined in Sect. 3.1, with strongly unforgeability
on ̂L loss

pk = U ′
pk\L inj

pk . Strong unforgeability in this paper is called evasiveness
in [37].

2. Inversion. For every κ ∈ N, every (pk, skspl, skext)) ∈ ABM.gen(1κ), every
(t, u) ∈ L inj

pk , and every x ∈ MSP, it always holds that

ABM.inv(t,u)
(

skext,ABM.eval(t,u)(pk, x)
)

= x .

3. �-Lossyness. For every κ ∈ N, every (pk, skspl, skext) ∈ ABM.gen(1κ), and
every (t, u) ∈ L loss

pk , the image set ABM.eval(t,u)(pk,MSP) is of size at most

|MSP| · 2−�.

Here L loss
pk (resp. L inj

pk) in ABM-LTFs corresponds to L td
pk (resp. Lext

pk ) in ABMEs.
We remark that ABM-LTFs [37] require that (ABM.gen,ABM.spl) should be strongly
unforgeable, whereas ABMEs requires that (ABM.gen,ABM.spl) be only unforgeable.

Appendix 2: UC Framework and Fully Equipped UC Commitments from ABME

UC Framework and Ideal Commitment Functionality

The UC framework defines a non-uniform probabilistic poly-time (PPT) environment
machine Z that oversees the execution of a protocol in one of two worlds. In both
worlds, there are an adversary and honest parties (some of which may be corrupted
by the adversary). In the ideal world, there additionally exists a trusted party (char-
acterized by ideal functionality F) that carries out the computation of the protocol,
instead of honest parties. In the real world, the real protocol is run among the parties.
The environment adaptively chooses the inputs for the honest parties, interacts with the
adversary throughout the computation, and receives the honest parties’ outputs. Security
is formulated by requiring the existence of an ideal-world adversary (simulator)S so that
no environment Z can distinguish the real world where it runs with the real adversary
A from the ideal world where it runs with the ideal-model simulator S.

In slightly more detail, the task of honest parties in the ideal world is only to convey
inputs from the environment to the ideal functionality and vice versa (i.e., the honest
parties in the ideal world communicate only with the environment and ideal functionali-
ties). The environment may order the adversary to corrupt any honest party in any timing
during the execution of the protocol (adaptive corruption), and it may receive the inner
state of the honest party from the adversary. Therefore, the ideal-world simulator must
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simulate the inner state of the real-world honest party as if it comes from the real world,
because the honest parties in the ideal world do nothing except storing inputs to them).
The inner state of the real-world honest party includes randomness it has used. We insist
that honest parties cannot erase any of its state (non-erasure model).

We denote by IdealF ,SA,Z (κ, z) the output of the environment Z with input z after
an ideal execution with the ideal adversary (simulator) S and functionality F , with
security parameter κ . We will only consider black-box simulator S, and so we denote
the simulator by SA that means that it works with the adversary A attacking the real
protocol. Furthermore, we denote byRealπ,A,Z (κ, z) the output of environmentZ with
input z after a real execution of the protocol π with adversary A, with security parameter
κ .

Our protocols are executed in the common reference string (CRS) model. This means
that the protocol π is run in a hybrid model where the parties have access to an ideal
functionality Fcrs that chooses a CRS according to the prescribed distribution and
hands it to any party that requests it. We denote an execution of π in such a model
by HybridFcrs

π,A,Z (κ, z). Informally, a protocol π UC realizes a functionality F in the
Fcrs hybrid model if there exists a PPT simulator S such that for every non-uniform
PPT environment Z every PPT adversary A, and every polynomial p(·), it holds that

{

IdealF ,SA,Z (κ, z)
}

κ∈N,z∈{0,1}p(κ)

c≈
{

HybridFcrs
π,A,Z (κ, z)

}

κ∈N,z∈{0,1}p(κ)
.

The importance of the universal composability framework is that it satisfies a compo-
sition theorem that states that any protocol that is universally composable is secure when
it runs concurrently with many other arbitrary protocols. For more details, see [13].

We consider UC commitment schemes that can be used repeatedly under a single com-
mon reference string (reusable common reference string). The multi-commitment
ideal functionality FMCOM from [16] is the ideal functionality of such commitments,
which is given in Fig. 4.

As in many previous works, the UC framework we use assumes authenticated commu-
nication. If it is not assumed, our protocols is executed in Fcrs and Fauth hybrid models.
For simplicity and conciseness, we simply assume communication between parties are
authenticated.

Functionality FMCOM

FMCOM proceeds as follows, running with parties, P1, . . . , Pn, and an adversary S :

– Commit phase: Upon receiving input (commit, sid, ssid, Pi, Pj , x) from Pi, proceed as follows:
If a tuple (commit, sid, ssid, . . . ) with the same (sid, ssid) was previously recorded, does
nothing. Otherwise, record the tuple (sid, ssid, Pi, Pj , x) and send (receipt, sid, ssid, Pi, Pj)
to Pj and S .

– Reveal phase: Upon receiving input (open, sid, ssid) from Pi, proceed as follows: If a tuple
(sid, ssid, Pi, Pj , x) was previously recorded, then send (reveal, sid, ssid, Pi, Pj , x) to Pj and
S . Otherwise, does nothing.

Fig. 4. The ideal multi-commitment functionality.
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Proof of Theorem 1

Theorem 1 (restated) The proposed scheme in Fig. 2 UC securely realizes the FMCOM
functionality in the FCRS-hybrid model in the presence of adaptive adversaries in the
non-erasure model.

For simplicity, we assume {0, 1}κ ⊂ MSP, without loss of generality, which enables
us to remove the injective map ι : {0, 1}κ → MSP from the scheme. The description of
the simulator’s task is described as follows:
The ideal-world adversary (simulator) S:

– Initialization step: S chooses (pk, sk) ← ABM.gen(1κ) and sets CRS to be pk
(along with Upk and U ′ = {0, 1}κ ×Upk).

– Simulating ideal functionality FCRS: Since S simulates FCRS, every request
(even from a honest party) to achieve a common reference string comes to S, it
returns the above-chosen CRS to the requested party.

– Simulating the communication with Z: Every input value that S receives from
Z is written on A’s input tape (as if coming from Z) and vice versa.

– Simulating the commit phase when Pi is honest: Upon receiving from
FMCOM the receipt message (receipt, sid, ssid, Pi , Pj ), S generates u =
ABM.spl(pk, skspl, t; v) so that (t, u) ∈ L td

pk , where t = (sid,ssid, Pi , Pj ),

and computes (c, ξ) = ABM.col(t,u)
1 (pk, skspl, v), namely, c is a fake ciphertext

on (t, u). S sends (sid,ssid, (t, u, c)) to adversary A, as it expects to receive
from Pi . S stores (sid,ssid, Pi , Pj , (t, u, c), ξ).

– Simulating the decommit phase when Pi is honest:Upon receiving fromFMCOM

the message (open, sid, ssid, Pi , Pj , x), S computes r = ABM.col(t,u)
2 (ξ, x)

and sends (sid,ssid, x, r) to adversary A.
– Simulating adaptive corruption of Pi after the commit phase but before the
decommit phase: When Pi is corrupted, S immediately read Pi ’s stored value
(sid,ssid, Pi , Pj , x), whose value previously came from Z and was sent to

FMCOM, and then computes r = ABM.col(t,u)
2 (ξ, x) and R such thatu = Upk(t; R),

which can be efficiently computable becauseUpk is an explainable domain. Finally,
it reveals (x, r, R) to A.

– Simulating the commit phase when the committer Pi is corrupted and the
receiver Pj is honest: Upon receiving (sid,ssid, (t, u), c) from A, S decrypts
x = ABM.dec(t,u)(skext, c). If the decryption is invalid, then S sends a dummy
commitment (commit,sid,ssid, Pi , Pj , ε) to FMCOM. Otherwise, S sends
(commit,sid,ssid, Pi , Pj , x) to FMCOM.

– Simulating the decommit stage when the committer Pi is corrupted and the
receiver Pj is honest: Upon receiving (sid,ssid, x ′, r ′) from A, as it expects to
send to Pj , S sends (open,sid,ssid) to FMCOM. (FMCOM follows its codes: If
a tuple (sid,ssid, Pi , Pj , x) with the same (sid,ssid) was previously stored
by FMCOM, FMCOM sends (sid,ssid, Pi , Pj , x) to Pj and S.)

– Simulating adaptive corruption of Pj after the commit phase but before the
decommit phase: When Pj has been corrupted, S simply reveals (sid,ssid,

(t, u, c)) to adversary A as if it comes from Pj .



All-But-Many Encryption 261

We remark that in the ideal world, honest parties simply convey inputs from envi-
ronment Z to the ideal functionalities and vice versa. Therefore, when FMCOM sends
something to honest Pj , it is immediately sent to Z .

We will prove that there is an ideal-world simulator S such that for every Z , every A,
and every polynomial p(·),
{

IdealFMCOM,SA,Z (κ, z)
}

κ∈N,z∈{0,1}p(κ)

c≈
{

HybridFcrs
π,A,Z (κ, z)

}

κ∈N,z∈{0,1}p(κ)
.

To prove this, we then consider a sequence of the following games on which the
probability spaces are identical, but we change the rules of games step by step.

Hybrid Game 1. In this game, the ideal commitment functionality, denoted F1
MCOM,

and the simulator, denoted S1, work exactly in the same way as FMCOM and S do
respectively, except for the case that Pi is honest: In Hybrid Game 1, at the beginning
of the commit phase, F1

MCOM gives simulator S1 the committed value x together
with (receipt,sid,ssid, Pi , Pj ). S1 then sets up (t, u) ∈ L td

pk in the same way as

S does (using skspl), but S1 instead computes c as c = ABM.enc(t,u)(pk, x; r), by
picking up r

U← COINenc. When simulating the decommit phase or simulating adaptive
corruption of Pi before the decommit phase, S1 reveals (u, x, r, R) after computing R
such that u = Upk(t; R).

Consider the simulation that honest Pi opens commitment (t, u, c) in both games. The
distribution of (u, c, r) on t = (sid,ssid, Pi , Pj ) as generated in Hybrid Game 1
is statistically indistinguishable from those on the same t as generated in the ideal
world, because the two distribution ensembles, {distcol(pk, t, skspl, skext, x)}κ∈N and
{distenc(pk, t, skspl, skext, x)}κ∈N, defined in Sect. 3.3, are statistically indistinguish-
able in κ . So, we have

{

IdealFMCOM,SA,Z (κ, z)
}

κ∈N,z∈{0,1}p(κ)κ∈N
s≈
{

Hybrid1
F1

MCOM,SA
1 ,Z (κ, z)

}

κ∈N,z∈{0,1}p(κ)
.

Hybrid Game 2. In this game, the ideal commitment functionality F2
MCOM and

the simulator S2 work exactly in the same way as the counterparts do in Hybrid
Game 1, except for the case that Pi is corrupted and Pj is honest in the com-
mit phase: At the commit phase in Hybrid Game 2, when S2 receives (t, u, c)
from Pi controlled by adversary A where t = (sid,ssid, Pi , Pj ), S2 sends a
dummy commitment (commit,sid,ssid, Pi , Pj , ε) to F2

MCOM. At the decommit
phase, when S2 receives (sid,ssid, x ′, r) from Pi controlled by adversary A, S2
ignores if c �= ABM.enc(t,u)(pk, x ′; r); otherwise, it sends (open,sid,ssid, x ′)
to F2

MCOM. Then, F2
MCOM replaces the stored value ε with value x ′ and sends

(reveal,sid,ssid, Pi , Pj , x ′) to Pj and S2.
Let us define BDI as each event in Hybrid Game I , where I = 1, 2, that the simulator

receives a fake ciphertext c on (t, u) from Pi controlled by adversary A. Remember that
ciphertext c is called fake if (t, u) ∈ L td

pk and c is a valid ciphertext (which means that
there is a pair of message/randomness consistent with c). The hybrid games, 1 and 2, may
differ only when BD1 and BD2 occur in each game, which means that ¬BD1 = ¬BD2
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and thus, BD1 = BD2. So, we use the same notation BD to denote the event such that
the simulator receives a fake ciphertext from the adversary in the hybrid games, 1 and
2, namely, BD : =BD1 = BD2.

By a simple evaluation such that Pr[A]−Pr[C] ≤ Pr[B] if Pr[A∧¬B] = Pr[C∧¬B],
we have

Dist
(

Hybrid1
F1

MCOM,SA
1 ,Z (κ, z), Hybrid2

F2
MCOM,SA

2 ,Z (κ, z)
)

≤ Pr[BD],

where the output of Z is a bit.
We now show that Pr[BD] is negligible in κ .

Lemma 3. EventBDoccurs atmostwith probability qAεeuf, where qA denotes the total
number ofA sending the commitments to honest parties and εeuf denotes the maximum
advantage of an adversary breaking unforgeability of pPRF = (ABM.gen,ABM.spl)
on ̂L td

pk .

Proof. Since BD occurs with the same probability in both games, we consider the
probability in Hybrid Game 2. We construct the following algorithm B0 that takes pk
from ABM.gen and simulates the roles of S2 and F2

MCOM perfectly, interacting Z and
A, by having access to oracle ABM.spl(pk, skspl, ·) as follows:
In the case when Pi is honest: In the commit phase when Z sends

(commit.sid,ssid, Pi , Pj , x) to F2
MCOM (via honest Pi ), B0 submits t = (sid,

ssid, Pi , Pj ) to ABM.spl(pk, skspl, ·) to obtain u such that (t, u) ∈ L td
pk . Then B0

computes fake ciphertext c ← ABM.enc(t,u)(pk, x) as a commitment in the same way
as S2 (= S1) does.
In the case where Pi is corrupted and Pj is honest: In the commit phase when

corrupted Pi controlled by A sends a commitment (t, u, c) to S2 as it expects to send
to honest Pj , B0 simply plays the roles of S2 and F2

MCOM. Later, in the opening phase
when corrupted Pi controlled by A sends (sid,ssid, x ′, r) to S2 as it expects to send
to honest Pj , B0 simply plays the role of F2

MCOM.
S2 uses skspl only when it computes u ← ABM.spl(pk, skspl, t) in the commit

phase when Pi is honest. B0 instead may have access to oracle ABM.spl(pk, skspl, ·),
and simulates the roles of S2 and F2

MCOM identically without knowing skspl.
We now construct an algorithm Bχ , where χ ∈ [qA], that is the same as B0 except

that it aborts and outputs (t, u) when A generates χ th (in total) commitment (t, u, c)
to a honest party. Here, qA denotes the total number of A sending the commitments to
honest parties. We note that

Pr[BD] ≤
qA
∑

i=1

Pr
[

(t, u) ← Bi (pk)
ABM.spl(sk,·),Z,A : (t, u) ∈ ̂L td

pk

]

The probability of Bi outputting (t, u) ∈ ̂L td
pk is bounded by εeuf. Therefore, we have

Pr[BD] ≤ qAεeuf. �
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By this lemma, we have

{

Hybrid1
F1

MCOM,SA
1 ,Z (κ, z)

}

z∈{0,1}p(κ),κ∈N
c≈
{

Hybrid2
F2

MCOM,SA
2 ,Z (κ, z)

}

z∈{0,1}p(κ),κ∈N

Hybrid Game 3. In this game, F3
MCOM works exactly in the same way as F2

MCOM does.
S3 works exactly in the same way as S2 does except for the case that Pi is honest in the
commit phase: In the commit phase when receiving (receipt,sid,ssid, Pi , Pj , x)
from F3

MCOM, S3 picks up u = Upk(t; R) with random R, instead of generating
u ← ABM.spl(pk, skspl, t) where t = (sid,ssid, Pi , Pj ). With an overwhelming
probability, (t, u) ∈ L td

pk . S3 then computes c = ABM.enc(t,u)(pk, x; r).
In case of adaptive corruption of Pi after the commit phase but before the decommit

phase, S3 simply reveals (x, r, R) to A.
We note that in Hybrid Game 2, S2 makes use of skspl only when it computes u ←

ABM.spl(pk, skspl, t), whereas in Hybrid Game 3, S3 does not use skspl any more. The
difference of the views of Z between these two games is bounded by pseudorandomness
of (ABM.gen,ABM.spl), because we can construct a distinguisher D, usingZ andA as
oracle with having access to either of ABM.spl(skspl, ·) or Upk(·). When D has access
to ABM.spl(skspl, ·), it simulates Hybrid Game 2; otherwise, it simulates Hybrid Game
3. Therefore, we have

{

Hybrid2
F2

MCOM,SA
2 ,Z (κ, z)

}

κ∈N,z∈{0,1}p(κ)

c≈
{

Hybrid3
F3

MCOM,SA
3 ,Z (κ, z)

}

κ∈N,z∈{0,1}p(κ)
.

HybridFcrs
π,A,Z Game. This is the real world in the CRS model (or in the CRS hybrid

model), where a honest party activated for the commitment functionality follows the code
of the protocol in Fig. 2. The common reference string functionalityFCRS parameterized
by ABM.gen is given in Fig. 5.

It is obvious by construction that two worlds are identical.

{

Hybrid3
F3

MCOM,SA
3 ,Z (κ, z)

}

κ∈N,z∈{0,1}p(κ)
≡
{

HybridFcrs
π,A,Z (κ, z)

}

κ∈N,z∈{0,1}p(κ)
.

Functionality FCRS

FCRS parameterized by ABM.gen proceeds as follows:

– FCRS runs (pk, skspl, skext) ← ABM.gen(1κ); and sets CRS to be pk. Upon receiv-
ing message (common-reference-string, sid) with any sid, FCRS returns the
same CRS to the activating party.

Fig. 5. The common reference string functionality.
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In the end, we have

{

IdealFMCOM,SA,Z (κ, z)
}

κ∈N,z∈{0,1}p(κ)

c≈
{

HybridFcrs
π,A,Z (κ, z)

}

κ∈N,z∈{0,1}p(κ)
.

�

Appendix 3: ABME from Waters Signature in Pairing-Free Prime-Order Group

We present an ABME scheme derived from an analogue of Waters Signature [56] defined
over a pairing-free cyclic group on which the DDH assumption holds. The expansion
factor of this scheme is O(κ/log κ), but slightly better than the previously known con-
struction [14] (with O(κ)). This scheme can be seen as a warm-up of the proposal in
Sect. 6.

pPRF from Waters Signature in Pairing-Free Prime-Order Group

The construction idea is to use as pPRF Waters signature [56] defined in a pairing-free
prime order group. Since there is no associated bilinear map, there is no verification
algorithm. Instead, the output of the pairing-free analogue of Waters signature looks
pseudorandom, due to the DDH assumption. On the other hand, it inherits unforgeability
from the original Waters signature scheme.

Let g be a generator of a multiplicative group G of prime order q, on which the DDH
assumption holds. For κ + 1 elements in G, let us define H(t) = h0

∏κ
i=1 h

ti , where
t = (t1, . . . , tκ ) ∈ {0, 1}κ in which ti ∈ {0, 1} denotes i th-bit representation of string t .

• Genspl(1κ) picks up g, h0, . . . , hκ
U← G and x1, x2

U← Z/qZ to set g1 = gx1 ,
g2 = gx2 . It outputs pk = (G, g, q, g1, g2, h0, . . ., hκ), and sk = x2, where
U := G × G.

• Spl(pk, sk, t; r) takes t ∈ {0, 1}κ and outputs u = (ur , ut ), by computing ur = gr

and ut = gx2
1 (H(t))r where r

U← Z/qZ.

Theorem 5. The above construction is pPRF under the DDH assumption.

Proof. Spl is the same as Waters signature scheme when applied to a pairing-free group.
So, the unforgeability is immediately guaranteed if the computational DH assump-
tion holds true. Pseudorandomness also holds under the DDH assumption because
(gr , H(t)r ) is computationally indistinguishable from two independent random elements
in G: To explain more details, suppose that (g, ĝ, h, ĥ) is a tuple of four group elements
in G, which is either a DDH instance or a random tuple. To break the DDH problem, a
simulator sets g1 := gx1 , g2 := gx2 , K := gx1x2 , and hi := ĝai , where x1, x2, a0, . . . , aκ

← G. It then runs adversary A on the above parameters, where A is an adversary to
break pseudorandomness. For any query t , the simulator picks up random s, v ← Z/qZ
and returns (ur , ut ) such that ur = gshv and ut = K ·(ĝa0)s(ĥa0)v

∏

i≥1(ĝ
ai )sti (ĥai )vti .

We note that ur = gs+logg(h)v and ut = K H(t)s+logĝ(ŷ)v . Hence, (ur , ut ) is a Waters
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signature if (g, ĝ, h, ĥ) is a DDH tuple; otherwise it is a pair of two random elements.
The simulator outputs the same bit that A outputs. The simulator’s advantage is the same
as that of A. Under the DDH assumption, its advantage is bounded by a negligible (in
κ) function. Therefore, it also satisfies pseudorandomness. Hence, the scheme above is
an instantiation of pPRF if the DDH assumption holds true. �

ABME from Waters Signature

Let g be a generator of a multiplicative group G of prime order q, where we assume
that G is efficiently samplable. We let gi = gxi (i = 1, 2) and h = (h0, . . . , hκ) with
h j = gy j , where x1, x2, y0, y1, . . . , yκ ← Z/qZ. We write t = (t1, . . . , tκ) ∈ {0, 1}κ
where ti ∈ {0, 1} (i ∈ [κ]). We let y(t) = y0 +∑κ

i=1 ti yi (mod q) and define H(t) =
h0
∏κ

i=1 h
ti
i , that is, H(t) = gy(t). We let U ′

pk = {0, 1}κ × G2. Then we define the set

under pk = (g, g1, g2, h) as L td
pk = {(t, u) | (t, u) ∈ {0, 1}κ × L pk(t)} such that

L td
pk(t) = {

(uv, ut ) | ∃(x2, v) : uv = gv, ut = gx2
1 H(t)v, and g2 = gx2

}

.

We let ̂L td
pk = L td

pk and define Lext = U ′
pk\L td

pk . We note that as mentioned above,
Waters signature defined on a pairing-free cyclic group on which the DDH assumption
holds forms a pPRF. We then construct an ABME scheme as follows.

– ABM.gen(1κ): It generates g, (x1, x2), and y = (y0, . . . , yκ ) independently and
uniformly from the above domains, respectively. It then computes g1, g2, h =
(h0, . . . , hκ) as above. It outputs pk = (G, g, q, λ, g1, g2, h), skspl = x2, and
skext = (x1, y), where λ = O(log κ).

– ABM.spl(sk, t; v): It picks up at random v ← Z/qZ, and computes uv = gv and
ut = gx2

1 (H(t))v . It then outputs u = (uv, ut ).
– ABM.enc((t,u)(pk,m; (z, s)): To encrypt message m ∈ {0, 1}λ, where λ =

Ω(log κ), it picks up z, s ← Z/qZ independently, and then computes A =
gz1H(t)sumt , a = gzgm2 , and b = gsumv . It outputs c = (A, a, b) as ciphertext.

– ABM.dec(t,u)(skext, c)where skext = (x1, y): To decrypt c = (A, a, b), it searches
m ∈ {0, 1}λ such that

ax1by(t)

A
=
(

gx1
2

utu
−y(t)
v

)m

.

It aborts if it cannot find such x in a-priori bounded time T = O(2λ).
– ABM.col(t,u)

1 (skspl, v) where skspl = x2: It picks up at random ω, η ← Z/qZ
and computes A = gω

1 H(t)η, a = gω, and b = gη. It outputs c = (A, a, b) and
ξ = (x2, t, u, v, ω, η).

– ABM.col2(ξ, x): To open c to x ∈ {0, 1}λ, it computes z = ω − mx2 mod q and
s = η − mv mod q and outputs (z, s).

We note that ABM.enc runs the simulation algorithm of a canonical sigma protocol
on L td

pk with message (challenge) m and ABM.col runs the real protocol of the sigma

protocol on L td
pk with witness (x2, v).
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In the trapdoor mode when (t, u) ∈ L td
pk , we can consider a canonical sigma protocol

so that the prover knows (x2, v) such that ut = gx2
1 H(t)v , g2 = gx2 , and uv = gv . Then,

the first message of the canonical sigma protocol is (A, a, b), where A = gω
1 H(t)η,

a = gω, and b = gη over randomly chosen ω, η ∈ Z/qZ. For any challengem ∈ {0, 1}κ ,
the answer can be computed by z = ω − mx2 and s = η − mv. It is verified as
A = gz1H(t)sumt , a = gzgm2 , and b = gsumv .

In the decryption mode when (t, u) ∈ Lext
pk (= U ′

pk\L td
pk), the first message (A, a, b)

from the simulator for the above canonical sigma protocol commits to m in the perfect
binding manner. We now define ω, η, v as a = gω, b = gη, and uv = gv . Then, x ′

2 is

uniquely defined as ut = g
x ′

2
1 H(t)v . If (A, a, b) can be opened with (z, s,m), it implies

that

⎛

⎝

logg A
ω

η

⎞

⎠ =
⎛

⎝

x1 y(t) x1x ′
2 + y(t)v

1 0 x2
0 1 v

⎞

⎠

⎛

⎝

z
s
m

⎞

⎠

Since (t, u) �∈ L td
pk , x ′

2 �= x2 and hence, the determinant of the matrix above is nonzero
and (z, s,m) is unique.

Notice that x1ω + y(t)η − logg A = x1(x2 − x ′
2)m. Since g

x ′
2

1 = utuv
−y(t),

ax1by(t)

A
=
(

gx1
2

utu
−y(t)
v

)m

Therefore, the decryptor can find secretm ∈ {0, 1}λ in O(2λ) steps, where λ = O(log κ).
Since (ABM.gen,ABM.spl) is pPRF (under the DDH assumption), the proposed

scheme is an ABME scheme.

Theorem 6. The scheme as above is an ABME if the DDH assumption holds true.

Appendix 4: The Proof of Lemma 1

In this section, we provide the formal proof of Lemma 1. Although the proof is implicitly
shown in [37], we provide it for completeness.

To prove the statement, we require two more assumptions related to DJ PKE, along
with the standard DCR assumption, called the non-multiplication assumption and the
non-trivial divisor assumption, which originally appeared in [37]. We first prove that
our target scheme is a pPRF with unforgeability on L td

pk (not on ̂L td
pk) under the DCR

assumption and the non-multiplication assumption. We prove this in a generalized case
that DJ PKE is replaced with an arbitrary enhanced additive homomorphic encryption
scheme. We then prove that the resulting scheme has unforgeability on̂L pk , additionally
assuming the non-divisor assumption.
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Assumptions and Some Useful Lemmas

Let us write Π(d) to denote DJ PKE with parameter d.

Assumption 7. (Decisional Composite Residue Assumption [50]) We say that the
DCR assumption holds if for every PPT A, there exists a key-generation algorithm K
such that AdvdcrA (κ) =

Pr
[

Exptdcr−0
A (κ) = 1

]

− Pr
[

Exptdcr−1
A (κ) = 1

]

is negligible in κ , where

Exptdcr−0
A (κ) :

n ← K(1κ); R
U← Z

×
n2

c = Rn mod n2

return A(n, c).

Exptdcr−1
d,A (κ) :

n ← K(1κ); R
U← Z

×
n2

c = (1 + n)Rn mod n2

return A(n, c).

Assumption 8. (Non-Trivial Divisor Assumption [37]) We say that the non-trivial
divisor assumption holds on Π(d) if for every PPT A, AdvdivisorA,Π(d) (κ) = negl(κ) where

AdvdivisorA,Π(d) (κ) = Pr
[

(pk, sk) ← K(1κ ); A(n) = c : 1 < gcd(D(c), n) < n
]

.

This assumes that an adversary cannot compute an encryption of a non-trivial divisor
of n, i.e., E(p), under given public key pkdj only. Since the adversary is only given pkdj,
the assumption is plausible.

Lemma 4. If A is an adversary against Π(d), there is adversary A′ against Π(1) such
that

AdvdivisorA,Π(d) (κ) ≤ AdvdivisorA′,Π(1) (κ).

Assumption 9. (Non-MultiplicationAssumption [37]) We say that the non-multiplication
assumption holds on DJ PKE Π(d) if for every PPT adversary A, the advantage of A,
Advmult

A,Π(d) (κ) = negl(κ), where

Advmult
A,Π(d) (κ) = Pr

[

(pk, sk) ← K(1κ); c1, c2 ← Z
×
nd+1; c∗

← A(pk, c1, c2) : Dsk(c
∗) = Dsk(c1) · Dsk(c2)

]

.

This assumes that an adversary cannot computeE(x1·x2) for given (pkdj,E(x1),E(x2)).
If the multiplicative operation is easy, DJ PKE turns out a fully homomorphic encryp-
tion (FHE), which is unlikely. Although breaking the non-multiplication assumption
does not mean that DJ PKE turns out a FHE, this connection gives us some feeling that
this assumption is plausible (Fig. 6).



268 E. Fujisaki

τ(c) ∈ Z
×
nd+1

re-randomize=⇒ ĉ = τ(c) · E(yn) ∈ Z
×
nd+1

τ ↑ ↓ π

c ∈ Z
×
n2

D(1)(c)=D(1)(π(ĉ))⇐⇒ π(ĉ) ∈ Z
×
n2

Fig. 6. Diagram of lifting up and re-randomization.

Lemma 5. If A is an adversary against DJ PKEΠ(d), there is an adversary A′ against
Π(1) such that

Advmult
A,Π(d) (κ) ≤ Advmult

A′,Π(1) (κ).

Lifting Up and Re-Randomization We give very useful lemmas below, which are
implicitly used in [22] to prove that Π(d) for any d ≥ 1 is IND-CPA secure under
the DCR assumption. In order to prove Lemmas, 4 and 5, these lemmas are essential.

Lemma 6. (from [22,37]) Let n be a public key of both DJ PKE Π(d), where d ≥ 1,
and DJ PKE Π(1). We let τ : Z×

n2 → Z
×
nd+1 be the canonical embedding map defined

by τ(c) = c mod nd+1 where c ∈ Z
×
n2 is canonically interpreted as an integer in

{0, . . . , n2 − 1}. We let π : Z
×
nd+1 → Z

×
n2 be the canonical homomorphism defined

by π(ĉ) = ĉ mod n2 where ĉ ∈ Z
×
nd+1 is canonically interpreted as an integer in

{0, . . . , nd+1 − 1}. We then have:

– π ◦ τ is the identity map over Z×
n2 .

– For every c ∈ Z
×
n2 , D(1)(c) ≡ D(d)(τ (c)) (mod n).

– For every ĉ ∈ Z
×
nd+1 , D

(1)(π(ĉ)) ≡ D(d)(ĉ) (mod n).

Based on Lemma 6, we have the following lemma.

Lemma 7. (from [22,37]) There is an algorithm B that takes any public key pk =
(n, d) (d > 1) and any ciphertext c ∈ Z

×
n2 for Π(1), and efficiently samples random

ĉ ∈ Z
×
nd+1 conditioned on D(1)(π(ĉ)) = D(1)(c) (mod n).

Proof. B is constructed as follows: Given c ∈ Z
×
n2 , choose random y

U←
{0, 1, . . . , nd−1 − 1}; set ĉ = τ(c) · E(d)(yn); output ĉ.

Proof of Lemmas, 4 and 5. By using algorithm B, random instances given to adversary
A are converted into proper random instances given to adversary A′. Letting the output
of A′ be ĉ, we output π(ĉ) as the output of A, which obtains the Lemmas, 4 and 5.

pPRF from Waters Signature on General Additively Homomorphic Encryptions

We define enhanced additive homomorphic encryptions, which is a generalization of
Damgård–Jurik PKE.
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Let Π = (K,E,D) be a public-key encryption scheme in the standard sense. For given
(pk, sk) generated by K(1κ ), let X be the message space and R be the coin space, with
respects to pk. Let Y be the image of Epk , i.e., Y = Epk(X; R). Here we assume that X
is a commutative finite ring equipped with an additive operation + and an multiplication
operation ×. We also assume Y is a finite Abelian group with � operation.

We say that Π is an additively homomorphic public-key encryption scheme if for
every pk generated by K, every x1, x2 ∈ X , and every r1, r2 ∈ R, there exists r ∈ R
such that

Epk(x1; r1) � Epk(x2; r2) = Epk(x1 + x2; r).

In particular, we say that that Π is enhanced additively homomorphic if Π is
additively homomorphic and r ∈ R must be efficiently computable, given pk, and
(x1, x2, r1, r2).

The mapping above is homomorphic in the mathematical sense – Namely, Epk(x1) �

· · · � Epk(xn) ∈ Y for every n ∈ Z and every x1, . . . , xn ∈ X . We write cz ∈ Y , for

c ∈ Y and z ∈ Z, to denote
z

︷ ︸︸ ︷

c � · · · � c.
What we want to assume is that Π is additively homomorphic, but not equipped with

any efficient multiplicative operation � such that Epk(x1)�Epk(x2) = Epk(x1 × x2) for
any given Epk(x1) and Epk(x2). Formally, we define this property as follows:

Assumption 10. (Generalized Non-Multiplication Assumption) Let Π be an addi-
tively homomorphic public-key encryption scheme along with a ring (X,+,×) as the
message space w.r.t. pk and a group (Y, �) as the image of Epk . We say that the general-
ized non-multiplication assumption holds on Π if for every non-uniform PPT algorithm
A, Advmult

A (κ) = negl(κ), where Advmult
A (κ) �

Pr
[

(pk, sk) ← K(1κ ); c1, c2 ← Y ; c∗ ← A(pk, c1, c2) : Dsk(c
∗) = Dsk(c1) · Dsk(c2)

]

.

This assumption is a generalized version of Assumption 9.
We now construct a pPRF (Genspl,Spl). Let Π = (K,E,D) be an enhanced addi-

tively homomorphic public-key encryption scheme. Let X , R, and Y be the same as
mentioned above. In addition, let group (X,+) be cyclic, i.e., (X,+) � Z/nZ for some
integer n. Let x1, x2 ∈ X . Let g1 ∈ Epk(x1) and g2 ∈ Epk(x2). Let h0, h1, . . . , hκ ∈ Y .
Let us define H(t) = h0 �

∏κ
i=1 h

t[i] ∈ Y , where t = (t[1], . . . , t[κ]) ∈ {0, 1}κ is the
bit representation of t . Let us define L pk(t) such that

L pk(t) =
{

(ur , ut ) ∈ Y 2 | r = Dsk(ur ) and x1 × x2 = Dsk(ut � H(t)−r )
}

.

We let S = {0, 1}κ × Y 2 and L pk = {(t, (ur , ut )) | t ∈ {0, 1}κ and (ur , ut ) ∈ L pk(t)}.
A pPRF (Genspl,Spl) is constructed as follows:

– Gen(1κ): It runs K(1κ) and obtain (pk, sk). It generates x1, x2 ← X and
h0, h1, . . . , hκ ← Y uniformly. Set d = x1 × x2 ∈ X . It generates g1 ← Epk(x1)

and g2 ← Epk(x2). It outputs PK = (pk, g1, g2, h0, . . . , hκ) and SK = (PK , d).



270 E. Fujisaki

– Spl(SK , t; r): It picks up r ← X , generates ur ← Epk(r) and ut ← Epk(d) �

H(t)r , and then outputs u = (ur , ut ).

Theorem 11. Let Π be an enhanced additively homomorphic public-key encryp-
tion scheme mentioned above. Suppose that Π is IND-CPA and the generalized non-
multiplication assumption holds on Π . Then, the above (Genspl,Spl) is a pPRF with
unforgeability on L pk.

Proof. The proof of pseudorandomness is almost straightforward: Suppose that pk
is generated by K(1κ ). Let S be a simulator such that it breaks IND-CPA of Π using
A, where A is an adversary to output 1 when it decides that it has access to a pPRF.
We run S on pk. It picks up at random x1, x2 ← X , h0, h1, . . . , hκ ← Y , and sets
g1 ← Epk(x1) and g2 ← Epk(x2). It sends (m0,m1) to the challenger, where m0 = 0,
and m1 = x1 × x2 ∈ X . It then receives Epk(mb), where b is a random bit chosen
by the challenger. It then runs adversary A on PK = (pk, g1, g2, h), where h =
(h0, h1, . . . , hκ). For any query t , the simulator picks up random r ← X and returns
(ur , ut ) such that ur = Epk(r) and ut = Epk(mb) � (H(t))r . Finally, the simulator
outputs the same bit that A outputs.

When b = 0, (ur , ut ) is computationally indistinguishable from a uniform dis-
tribution over Y 2, because Epk(0) is computationally indistinguishable from a uni-
form distribution over Y . On the other hand, when b = 1. Since S outputs the same
bit that A outputs, Advind-cpa

Π S(κ) = Pr[S = 1 | b = 1] − Pr[S = 1 | b = 0]
= Pr[A = 1 | b = 1] − Pr[A = 1 | b = 0] = AdvpprfA(κ). Therefore, AdvpprfA(κ) =
Advind-cpa

Π S(κ) = negl(κ).
The proof of unforgeability on this scheme is substantially similar to that in [5,10,56].

We provide a sketch of the proof.
Let G0 be the original unforgeability game, in which PK = (pk, g1, g2, h) ←

Gen(1κ); A takes PK , queries, m1, . . . ,mqs , to Spl(sk, ·), and tries to output m0 along
with u ∈ Lu(m0) and m0 �∈ {m1, . . . ,mqs }. Let us denote by ε0 the advantage of A in
G0.

In game G1, we modify the choice of h as follows: Recall now that (X,+,×) is a
finite commutative ring such that (X,+) � Z/nZ for some integer n. Let Gen1 be
the generator in game G1. Let θ = O(

qs
ε0

), where qs denotes the maximum number
of queries A submits to Spl. Gen1 picks up (pk, g1, g2) as Gen does. It then picks
up a0, a1, . . . , aκ ← Z/nZ. It picks up y1, . . . , yκ ← [0, · · · , (θ − 1)] and y0 ∈
[0, . . . , κ(θ − 1)]. It finally outputs PK = (pk, g1, g2, h), by setting hi = gai gyi2 for
i ∈ [0, · · · , κ]. Since (X,+) � Z/nZ and Epk is additively homomorphic, Y ⊂ Z/nZ.
Hence, the distribution of h is identical to that in the previous game, and this change is
conceptual. Therefore, the advantage of A in G1, ε, is equal to ε0.

For t ∈ {0, 1}κ , let a(t) = a0 +∑

t[i] · ai (mod n) and y(t) = y0 +∑

t[i] · yi ∈ Z.
Then we have H(t) = ga(t)gy(t)2 .

Let γ y : ({0, 1}κ)qs+1 → {0, 1} be a predicate such that γ y(t) = 1 if and only if
y(t0) = 0 and ∧qs

i=1y(ti ) �= 0, where t = (t0, . . . , tqs ) ∈ ({0, 1}κ)qs+1. Let Q(t) be the



All-But-Many Encryption 271

event that at the end of game G1, adversary A queries, t1, . . . , tqs and outputs t0 as the
target message, on which A tries to generate the output of Spl(sk, t0).

We now borrow the following lemmas due to [5].

Lemma 8. [5]. Let Q(t) be the event in game G1 mentioned above. Then,

Pr
[

Q(t) ∧ (γ y(t) = 1)
] = Pr [Q(t)] Pr

[

γ y(t) = 1
]

.

Here the probability is taken over A, Gen1, and Spl.

Lemma 9. [5]. Let n, θ, κ be positive integers, such that κθ < n. Let y0, y1, . . . , yκ
be elements in the domains mentioned above and let y(t) = y0 +∑

ti · yi ∈ Z. Then,
for every t0, . . . , tκ ∈ {0, 1}κ , we have

1

κ(θ − 1) + 1

(

1 − qs
θ

)

≤ Pr
y
[γ y(t) = 1] ≤ 1

κ(θ − 1) + 1
,

where the probability is taken over random variable y = (y0, y1, . . . , yκ) uniformly
distributed over the specified domain mentioned above.

Now, in game G2 we modify the challenger as follows: When the event that γ y(t) �= 1
occurs in game G2, the challenger aborts the game. Let ε2 be the advantage of A in game
G2. It immediately follows from the above lemmas that ε1 ·mint{Pr y[γ y(t) = 1]} ≤ ε2.

In game G3, the challenger is given (pk, g1, g2) where pk ← K(1κ) and g1, g2 ← Y .
It picks up a and y as in game G2. When A queries t , it picks up r ′ ← X (� Z/nZ)

and selects ur ← g
− 1

y(t)
1 � Epk(r ′) and ut ← g

− a(t)
y(t)

1 � Epk(0) � (H(t))r
′
.

Let r = Dsk(ur ) = − x1
y(t) + r ′. Then, it holds that for y(t) �= 0, there is v ∈ R such

that ut = Epk(x1 × x2; v)�(H(t))r , because the decryption of the right-hand side under
sk is

x1x2 + (a(t) + y(t)x2)r = x1x2 + (a(t) + y(t)x2) ·
(

− x1

y(t)
+ r ′)

= −a(t)

y(t)
· x1 + (a(t) + y(t)x2) · r ′.

Therefore, the right-hand side is g
− a(t)

y(t)
1 � Epk(0; v) � (H(t))r

′
for some v ∈ R. This is

substantially equivalent to the technique of all-but-one simulation technique in [10]. As
in game G2, the simulator always abort if γ y(t) = 1 holds. Hence, the advantage of A
in this game, denoted ε3, is equivalent to ε2.

In the final game, we construct a simulator S that breaks the non-multiplication
assumption. Let (pk, sk) ← K(1κ) and c1, c2 ← Y . S takes (pk, c1, c2) as input.
Then, it sets g1 : =c1 and g2 : =c2 and runs the challenger and adversary A in game
G3 on (pk, g1, g2).

We note that when A outputs (ur (t0), ut (t0)) ∈ Lu(t0) in this game, it holds that
Dsk(ut (t0)) = x1 × x2 + r · (a(t0) + y(t0)x2) · r where r = Dsk(ur (t0)) ∈ Z/nZ and
r · (a(t0) + y(t0)x2) denotes

∑r
i=1(a(t0) + y(t0)x2). Since y(t0) = 0, S has now
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ut (t0) = Epk(x1 × x2) � (ur )
a(t0).

Finally, S outputs Epk(x1 × x2) by computing ut (t0)

u
a(t0)
r

. By construction, it is obvious that

the advantage of S is equivalent to ε3. �

Completing Proof of Lemma 1

We now complete the proof of Lemma 1. We note that we have already shown in
Theorem 11 that the proposed pPRF scheme in Sect. 6 is unforgeable on L td

pk under
Assumption 7 and Assumption 9, since DJ PKE is IND-CPA under Assumption 7 and
Assumption 10 is a generalized version of Assumption 9. We now show the following.

Lemma 1 (restated) pPRF = (ABM.gen,ABM.spl) is a probabilistic PRF with
unforgeability on ̂L td

pk as defined above, under the assumptions, 7, 8 and 9.

Proof. Let pPRF = (ABM.gen,ABM.spl) be defined on Π(d). For pk generated by
ABM.gen and integer f ≥ 1, we let

L( f )
pk :=

{

(t, (ur , ut )) | D(ut ) ≡ x1x2 + y(t)D(ur ) (mod n f )
}

,

whereD is the decryption algorithm of Π(d). By construction, it is clear that L(d)
pk = L td

pk .

We note that L td
pk ⊂ L(1)

pk . We remark that ̂L td
pk is the union of disjoint sets, L(1)

pk and
Ldivisor such that

Ldivisor :=
{

(t, (ur , ut )) | 1 < gcd

(

D
(

ut

gx2
1 uy(t)

r

)

, n

)

< n

}

.

We first show that our target pPRF has unforgeability on L(1)
pk . In the proof of Theo-

rem 11, we change the proof as follows: In the final game, the simulator instead takes
(pkdj, c1, c2) where pkdj = (n, 1) is a public key of DJ PKE Π(1) and (c1, c2), where
ci ∈ Z

×
n2 , is an instance of the non-multiplication problem on Π(1). The simulator

sets pk′
dj := (n, d) and lifts up (c1, c2) to (g1, g2) ∈ (Z×

nd+1)
2 using algorithm B in

Lemma 6. Then the simulator start game G3 with (pk′
dj, g1, g2) by playing the role of

the challenger. When adversary A outputs (t0, (ur , ut )) ∈ L(1)
pk , the simulator can solve

the non-multiplication problem on Π(1) by computing ut (t0)

u
α(t0)
r

mod n. Therefore, the prob-

ability of A outputting such pairs is negligible; otherwise, it contradicts Assumption 9.
We next prove that our target pPRF has unforgeability on Ldivisor. We directly con-

struct an algorithm C that breaks the non-trivial divisor assumption on Π(d). We let C
take pkdj from Π(d). Then, C sets up all public parameter consistent with pkdj and the
corresponding secret key except skdj. We note that C can sample (ur , ut ) on arbitrary
t under the public key, because skdj is not needed to sample (ur , ut ). C runs adver-

sary A and finally obtain (t∗, (u∗
r , u

∗
t )) ∈ Ldivisor. Then, it outputs c∗ : = u∗

t

g
x2
1 (u∗

r )
y(t∗)

.
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(t∗, (u∗
r , u

∗
t )) ∈ Ldivisor, means that 1 < gcd(Dskdj(c

∗), n) < n. Therefore, the proba-
bility that (t∗, (u∗

r , u
∗
t )) ∈ Ldivisor is negligible; otherwise, it contradicts Assumption 8.

�
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