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Abstract. We define a novel notion of quasi-adaptive non-interactive zero-knowledge
(NIZK) proofs for probability distributions on parameterized languages. It is quasi-
adaptive in the sense that the common reference string (CRS) generator can generate
the CRS depending on the language parameters. However, the simulation is required
to be uniform, i.e., a single efficient simulator should work for the whole class of pa-
rameterized languages. For distributions on languages that are linear subspaces of vec-
tor spaces over bilinear groups, we give computationally sound quasi-adaptive NIZKs
that are shorter and more efficient than Groth–Sahai NIZKs. For many cryptographic
applications quasi-adaptive NIZKs suffice and our constructions can lead to signifi-
cant efficiency improvements in the standard model. Our construction can be based on
any k-linear assumption, and in particular under the eXternal Diffie Hellman (XDH)
assumption our proofs are even competitive with Random Oracle-based �-protocol
NIZK proofs. We also show that our system can be extended to include integer tags in
the defining linear equations, where the tags are provided adaptively by the adversary.
This leads to applicability of our system to many applications that use tags, e.g., ap-
plications using Cramer–Shoup projective hash proofs. Our techniques also lead to the
shortest known (ciphertext) fully secure identity-based encryption scheme under stan-
dard static assumptions. Further, we also get a short publicly verifiable CCA2-secure
IBE scheme.

Keywords. NIZK,Groth–Sahai,Bilinear pairings, Signatures,Dual-system IBE,DLIN,
SXDH.
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1. Introduction

In [20] a remarkably efficient non-interactive zero-knowledge (NIZK) proof system [5]
was given for groups with a bilinear map, which has found many applications in de-
sign of cryptographic protocols in the standard model. All earlier NIZK proof systems
(except [19], which was not very efficient) were constructed by reduction to Circuit
Satisfiability or other NP-complete problems. Underlying this system, now commonly
known as Groth–Sahai NIZKs, is a homomorphic commitment scheme. Each variable in
the system of algebraic equations to be proven is committed to using this scheme. Since
the commitment scheme is homomorphic, group operations in the equations are trans-
lated to corresponding operations on the commitments and new terms are constructed
involving the constants in the equations and the randomness used in the commitments.
It was shown that these new terms along with the commitments to variables constitute a
zero-knowledge proof [20].
While the Groth–Sahai system is quite efficient, it still falls short in comparison

with Schnorr-based �-protocols [14] turned into NIZK proofs in the Random Oracle
model [7] using the Fiat–Shamir paradigm [18]. Thus, the quest remains to obtain even
more efficient NIZK proofs. In particular, in a linear system of rank t , some t of the
equations already serve as commitments to t variables. Thus, the question ariseswhether,
at the very least, fresh commitments to these variables as done in Groth–Sahai NIZKs
can be avoided.

Our contributions In this paper, we show that for languages that are linear subspaces of
vector spaces of the bilinear groups, one can indeedobtainmore efficient computationally
sound NIZK proofs in a slightly different quasi-adaptive setting, which suffices for
many cryptographic applications. In the quasi-adaptive setting, we consider a class of
languages {Lρ}, parameterized by ρ, and we allow the CRS generator to generate the
CRS based on the language parameter ρ. However, the CRS simulator in the zero-
knowledge setting is required to be a single efficient algorithm that works for the whole
parameterized class or probability distributions of languages, by taking the parameter
as input. We will refer to this property as uniform simulation.
Many hard languages that are commonly used in cryptography are distributions on

class of parameterized languages. For example, the DDH language based on the deci-
sional Diffie–Hellman (DDH) assumption is hard only when in the tuple 〈g, f , x · g, x ·
f 〉,1 even f is chosen at random (in addition to x · g being chosen randomly). However,
applications (or trusted parties) usually set f , once and for all, by choosing it at random,
and then all parties in the application can use multiple instances of the above language
with the same fixed f . Thus, we can consider f as a parameter for a class of languages
that only specify the last two components above. If NIZK proofs are required in the
application for this parameterized language, then the NIZK CRS can be generated by
the trusted party that chooses the language parameter f . Hence, it can base the CRS on
the language parameter.2

1Group operation represented additively.
2However, in the security definition the efficient CRS simulator does not itself generate f , but is given f

as input chosen randomly.
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We remark that adaptive NIZK proofs [5] also allow the CRS to depend on the lan-
guage, but without requiring uniform simulation. Such NIZK proofs that allow different
efficient simulators for each particular language (fromaparameterized class) are unlikely
to be useful in applications. Thus, most NIZK proofs, including Groth–Sahai NIZKs,
actually show that the same efficient simulator works for the whole class, i.e., they show
uniform simulation. The Groth–Sahai system achieves uniform simulation without mak-
ing any distinction between different classes of parameterized languages, i.e., it shows a
single efficient CRS simulator that works for all algebraic languages without taking any
language parameters as input. Thus, there is potential to gain efficiency by considering
quasi-adaptive NIZK proofs, i.e., by allowing the (uniform) simulator to take language
parameters as input.3

Our approach to building more efficient quasi-adaptive NIZK proofs for linear sub-
spaces is quite different from the Groth–Sahai techniques. In fact, our system does not
require any commitments to the witnesses at all. If there are t free variables in defining
a subspace of the n-dimensional vector space and assuming the subspace is full-ranked
(i.e., has rank t), then t components of the vector already serve as commitment to the
variables. As an example, consider the language L (over a cyclic bilinear group G of
order q, in additive notation) to be

L =
{
〈l1, l2, l3〉 ∈ G

3 | ∃x1, x2 ∈ Zq :
l1 = x1 · g, l2 = x2 · f , l3 = (x1 + x2) · h

}

where g, f , h are parameters defining the language. Then, l1 and l2 are already binding
commitments to x1 and x2. Thus, we only need to show that the last component l3 is
consistent.
The main idea underlying our construction can be summarized as follows. Suppose

the CRS can be set to be a basis for the null-space L⊥
ρ of the language Lρ . Then, just

(bilinear-) pairing a potential language candidate with L⊥
ρ and testing for all-zero suf-

fices to prove that the candidate is in Lρ , as the null-space of L⊥
ρ is just Lρ . However,

efficiently computing null-spaces in hard bilinear groups is itself hard. Thus, an efficient
CRS simulator cannot generate L⊥

ρ , but can give a (hiding) commitment that is com-
putationally indistinguishable from a binding commitment to L⊥

ρ . To achieve this we
use a homomorphic commitment just as in the Groth–Sahai system, but we can use the
simpler ElGamal encryption style commitment as opposed to the more involved Groth–
Sahai commitments, and as a bonus this allows for a more efficient verifier.4 As we will
see later in Sect. 5, a more efficient verifier is critical for obtaining short identity-based
encryption schemes (IBE).
In fact, the idea of using the null-space of the language is reminiscent ofWaters’ dual-

system IBE construction [39], and indeed our system is inspired by that construction,5

3It is important to specify the information about the parameter which is supplied as input to the CRS
simulator. We defer this important issue to Sect. 2 where we formally define quasi-adaptive NIZK proofs.

4Our quasi-adaptive NIZK proofs are already shorter than Groth–Sahai as they require no commitments
to variables, and as mentioned earlier we have to prove lesser number of equations.

5In Sect. 5 and in theAppendix, we show that the design of our system leads to a shorter SXDHassumption-
based dual-system IBE.
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Table 1. Comparison with Groth–Sahai NIZKs for linear subspaces.

XDH DLIN

Proof CRS #Pairings Proof CRS #Pairings

Groth–Sahai n + 2t 4 2n(t + 2) 2n + 3t 9 3n(t + 3)
This paper n − t 2t (n − t) + 2 (n − t)(t + 2) 2n − 2t 4t (n − t) + 3 2(n − t)(t + 2)

Parameter t is the number of unknowns or witnesses, and n is the dimension of the vector space, or in other
words, the number of equations

although the idea of using it for NIZK proofs and, in particular, proving their soundness
is novel.
For n equations in t variables, our quasi-adaptive computationally sound NIZK proofs

for linear subspaces require only k(n − t) group elements, under the k-linear decisional
assumption [21,38]. Thus, under the XDH assumption for bilinear groups, our proofs
require only (n−t) group elements. In contrast, theGroth–Sahai system requires (n+2t)
group elements. Similarly, under the decisional linear assumption (DLIN), our proofs
require only 2(n−t) group elements, whereas the Groth–Sahai system requires (2n+3t)
group elements. These parameters are summarized in Table 1.While our CRS size grows
proportional to t (n−t), more importantly there is a significant comparative improvement
in the number of pairings required for verification. Specifically, under XDH we require
at most half the number of pairings, and under DLIN we require at most 2/3 the number
of pairings. The �-protocol NIZK proofs based on the Random Oracle model require
n group elements, t elements of Zq and 1 hash value. Although our XDH-based proofs
require less number of group elements, the �-protocol proofs do not require bilinear
groups and have the advantage of being proofs of knowledge (PoK). We remark that the
Groth–Sahai system is also not a PoK for witnesses that are Zq elements. A recent paper
byEscala et al. [16] has also optimizedproofs of linear subspaces in a language dependent
CRS setting. Their system also removes the need for commitment to witnesses but still
implicitly uses Groth–Sahai proofs. In comparison, our proofs are still much shorter.
Thus, for the language L above, which is just a DLIN tuple used ubiquitously for

encryption, our system only requires two group elements under the DLIN assumption,
whereas the Groth–Sahai system requires twelve group elements (note, t = 2, n = 3
in L above). For the Diffie–Hellman analogue of this language 〈x · g, x · f〉, our system
produces a single element proof under the XDH assumption, which we demonstrate in
Sect. 3 (whereas the Groth–Sahai system requires (n + 2t =) 4 elements for the proof
with t = 1 and n = 2).

Our NIZK proofs also satisfy some interesting new properties. Firstly, the proofs
in our system are unique for each language member. This has interesting applications
as we will see later in a CCA2-IBE construction. Secondly, the CRS in our system,
though dependent on the language parameters, can be split into two parts. The first part
is required only by the prover, and the second part is required only by the verifier, and the
latter can be generated independent of the language. This is surprising since our verifier
does not even take the language (parameters) as input. Only the randomization used in
the verifier CRS generation is used in the prover CRS to link the two CRSes. This is in
sharp contrast to Groth–Sahai NIZKs, where the verifier needs the language as input.
This split-CRS property has interesting applications as we will see later.
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Extension to Linear Systems with Tags Our system does not yet extend naturally to
quadratic or multi-linear equations, whereas the Groth–Sahai system does.6 However,
we can extend our system to include tags, and allow the defining equations to be polyno-
mially dependent on tags. For example, our system can prove the following language:

L ′ =
{ 〈l1, l2, l3, tag〉 ∈ G

3 × Zq | ∃x1, x2 ∈ Zq :
l1 = x1 · f , l2 = x2 · g, l3 = (x1 + tag · x2) · h

}
.

Note that this is a non-trivial extension since the tag is adaptively provided by the
adversary after the CRS has been set.
The extension to tags is important, as we now discuss. Many applications require that

the NIZK proof also be simulation sound. However, extending NIZK proofs for bilinear
groups to be unbounded simulation sound requires handling quadratic equations (see [9]
for a generic construction). On the other hand, many applications just require one-time
simulation soundness, and as has been shown in [22], this can be achieved for linear
subspaces by projective hash proofs [13]. Projective hash proofs can be defined by
linear extensions, but require use of tags. Thus, our system can handle such equations.
Many applications, such as signatures, can also achieve implicit unbounded simulation
soundness using projective hash proofs, and such applications can utilize our system
(see Sect. 5).

Applications While the cryptographic literature is replete with NIZK proofs, we will
demonstrate the applicability of quasi-adaptive NIZKs, and in particular our efficient
system for linear subspaces, to a few recent applications such as signature schemes [9],
UC commitments [17], password-based key exchange [22,26], key-dependent encryp-
tion [9]. For starters, based on [17], our systemyields an adaptiveUC-secure commitment
scheme (in the erasure model) that has only four group elements as commitment, and
another four as opening (under the DLIN assumption; and 3 + 2 under SXDH assump-
tion), whereas the original scheme using Groth–Sahai NIZKs required 5 + 16 group
elements.
We also obtain one of the shortest signature schemes under a static standard assump-

tion, i.e., SXDH, that only requires five group elements.We also show how this signature
scheme can be extended to a short fully secure (and perfectly complete) dual-system
IBE scheme, and indeed a scheme with ciphertexts that are only four group elements
plus a tag (under the SXDH assumption). This is the shortest IBE scheme under the
SXDH assumption, and is technically even shorter than a recent and independently ob-
tained scheme of [12] which requires five group elements as ciphertext. Table 2 depicts
numerical differences between the parameter sizes of the two schemes. The SXDH-IBE
scheme of [12] uses the concept of dual pairing vector spaces (due to Okamoto and
Takashima [33,34], and synthesized fromWaters’ dual-system IBE). However, the dual
vector space and its generalizations due to others [28] do not capture the idea of proof
verification. Thus, one of our contributions can be viewed as showing that the dual system

6However, since commitments in Groth–Sahai NIZKs are linear, there is scope for mixing the two systems
to gain efficiency.
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Table 2. Comparison with the SXDH-based IBE of Chen et al. [12].

Public Key Secret Key Ciphertext #Pairings Anonymity

[12] 8|G1| + |GT | 4|G2| 4|G1| + |GT | 4 Yes
This paper 5|G1| + |GT | 5|G2| 3|G1| + |GT | + |Zq | 3 Yes

The notation | · | denotes the bit length of an element of the given group

not only does zero-knowledge simulation but also extends to provide a computationally
sound proof system for general linear systems.
Finally, using our QA-NIZKs we show a short publicly verifiable CCA2-secure IBE

scheme. Public verifiability is an informal but practically important notionwhich implies
that one can publicly verify if the decryption will yield “invalid ciphertext.” Thus, this
can allow a network gateway to act as a filter. Our scheme only requires two additional
group elements over the basic IBE scheme.

Recent works Following the extended abstract [23] of this paper, QA-NIZKs for linear
subspaces have been considerably optimized, leading to constant size proofs [24,29], and
have been extended to provide simulation soundness [1,25,27,29].QA-NIZKs have been
applied to develop several applications, such as anonymous compact HIBEs [36], keyed-
homomorphic encryption schemes [25,29] and linear homomorphic structure preserving
signatures [27,30].

Organization of the paper We begin the rest of the paper with the definition of quasi-
adaptive NIZKs in Sect. 2. In Sect. 3 we develop quasi-adaptive NIZKs for linear sub-
spaces under the XDH assumption and then generalize to quasi-adaptive NIZKs under
the k-linear assumption. In Sect. 4, we extend our system to include tags, define a notion
called split-CRS QA-NIZKs and extend our system to construct split-CRS NIZKs for
affine spaces. Finally, we demonstrate applications of our system in Sect. 5. We defer
detailed proofs to the appendix.

Notations We will be dealing with witness relations R that are binary relations on
pairs (x, w), and where w is commonly referred to as the witness. Each witness relation
defines a language L = {x | ∃w : R(x, w)}. For every witness relation Rρ we will use
Lρ to denote the language it defines. Thus, a NIZK proof for a witness relation Rρ can
also be seen as a NIZK proof for its language Lρ .

Vectors will always be row vectors and will always be denoted by an arrow over the
letter, e.g., 	r for (row) vector of Zq elements, and 	d as (row) vector of group elements.
The notations are summarized in Table 3.

2. Quasi-Adaptive NIZK Proofs

Instead of considering NIZK proofs for a (witness-) relation R, we will consider Quasi-
Adaptive NIZK proofs for a probability distribution D on a collection of (witness-)
relations R = {Rρ}. The quasi-adaptiveness allows for the common reference string
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Table 3. Notations.

a, b, x, y, . . . :: elements of Zq
g, f, h, . . . :: elements of G1,G2 or GT
	a, 	b, 	x, 	y, . . . :: (row) vectors of Zq elements
	l, 	p, . . . :: (row) vectors of group elements
A,B,X,Y, . . . :: matrices of Zq elements
A,B,X,Y, . . . :: matrices of group elements
Am×n ,Bm×n , . . . :: matrices of dimension m × n
g + f :: group operation expressed additively
01, 02, 0T :: identity elements of G1,G2 and GT , respectively
a · g, g · a :: scalar product of Zq element and group element
A · B,A · B :: matrix multiplication with scalar product and group addition
e(A,B) :: matrix multiplication with pairing product and group addition

(CRS) to be set based on Rρ after the latter has been chosen according to D. We will
however require, as we will see later, that the simulator generating the CRS (in the
simulation world) is a single probabilistic polynomial time algorithm that works for the
whole collection of relations R.
To bemore precise, wewill consider an ensemble of distributions onwitness relations,

each distribution in the ensemble itself parameterized by a security parameter. Thus, we
will consider an ensemble {Dλ} of distributions on collection of relations Rλ, where
each Dλ specifies a probability distribution on Rλ = {Rλ,ρ}. When λ is clear from
context, we will just refer to a particular relation as Rρ , and writeRλ = {Rρ}.

Since in the quasi-adaptive setting the CRS could depend on the relation, we must
specify what information about the relation is given to the CRS generator. Thus, we
will consider an associated parameter language such that a member of this language is
enough to characterize a particular relation, and this language member is provided to the
CRS generator. For example, consider the class of parameterized relations R = {Rρ},
where parameterρ is a tuple g, f,h of three elements from a groupG of order q. Suppose,
Rρ (on 〈l1, l2, l3〉, 〈x1, x2〉) is defined as

R〈g,f,h〉(〈l1, l2, l3〉, 〈x1, x2〉) def=
(

x1, x2 ∈ Zq , l1, l2, l3 ∈ G and
l1 = x1 · g, l2 = x2 · f, l3 = (x1 + x2) · h

)
.

For this class of relations, one could seek aquasi-adaptiveNIZKwhere theCRSgenerator
is just given ρ as input. Thus in this case, the associated parameter languageLpar will just
be triples of group elements.7 Moreover, the distributionD can just be on the parameter
language Lpar, i.e., D just specifies a ρ ∈ Lpar. Again, Lpar is technically an ensemble.

Definition 1. (QA-NIZK) We call a tuple of efficient algorithms (K0,K1,P,V) a QA-
NIZK proof system for witness relations Rλ = {Rρ} with parameters sampled from
a distribution D over associated parameter language Lpar, if there exists a probabilis-

7It is worth remarking that alternatively the parameter language could also be discrete logarithms of these
group elements (w.r.t. to some base), but a NIZK proof under this associated language may not be very useful.
Thus, it is critical to define the proper associated parameter language.
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tic polynomial time simulator (S1,S2), such that for all non-uniform PPT adversaries
A1,A2,A3 we have:8

Quasi-Adaptive Completeness:

Pr

⎡
⎣

λ ← K0(1m); ρ ← Dλ; ψ ← K1(λ, ρ);
(x, w) ← A1(λ, ψ, ρ); π ← P(ψ, x, w) :

V(ψ, x, π) = 1 if Rρ(x, w)

⎤
⎦ = 1

Quasi-Adaptive Soundness:

Pr

[
λ ← K0(1m); ρ ← Dλ; ψ ← K1(λ, ρ); (x, π) ← A2(λ, ψ, ρ) :

V(ψ, x, π) = 1 and ¬(∃w : Rρ(x, w))

]
≈ 0

Quasi-Adaptive Zero-Knowledge:

Pr
[
λ ← K0(1

m); ρ ← Dλ; ψ ← K1(λ, ρ) : AP(ψ,·,·)
3 (λ, ψ, ρ) = 1

]
≈

Pr
[
λ ← K0(1

m); ρ ← Dλ; (ψ, τ) ← S1(λ, ρ) : AS(ψ,τ,·,·)
3 (λ, ψ, ρ)=1

]
,

where S(ψ, τ, x, w) = S2(ψ, τ, x) for (x, w) ∈ Rρ and both oracles (i.e., P and
S) output failure if (x, w) �∈ Rρ . We call the property Perfect Zero-Knowledge, if
the above probabilities are in fact equal.

Note that ψ is the CRS in the above definitions.

3. QA-NIZK for Linear Subspaces

Setup Let G1,G2 and GT be cyclic groups of prime order q with a bilinear map
e : G1×G2 → GT chosen by a group generation algorithm. Let g1 and g2 be generators
of the group G1 and G2, respectively. Let 01, 02 and 0T be the identity elements in
the three groups G1,G2 and GT , respectively. We use additive notation for the group
operations in all the groups.
The bilinear pairing e naturally extends to Zq -vector spaces ofG1 andG2 of the same

dimension n as follows: e(	a, 	b�) = ∑n
i=1 e(ai ,bi ), where 	a, 	b are row vectors. Thus,

if 	a = 	x · g1 and 	b = 	y · g2, where 	x and 	y are now vectors over Zq , then e(	a, 	b�) =
(	x · 	y�) · e(g1, g2).
Linear Subspace Languages To start off with an example, a set of equations l1 =
x1 · g, l2 = x2 · f, l3 = (x1 + x2) · h will be expressed in the form 	l = 	x ·A as follows:

	l = [
l1 l2 l3

] = [
x1 x2

] ·
[
g 01 h
01 f h

]

8The approx sign “≈" indicates negligible difference, in the security parameterm, between LHS and RHS.
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where 	x is a vector of unknowns andA is a matrix specifying the group constants g, f,h.
The scalars in this system of equations are from the field Zq . In general, we consider

languages that are linear subspaces of vectors ofG1 elements. These are justZq -modules,
and since Zq is a field, they are vector spaces. In other words, the languages we are
interested in can be characterized as languages parameterized by A as below:

LA = {	x · A ∈ G
n
1 | 	x ∈ Z

t
q} , where A is a t × n matrix of G1 elements.

Here A is an element of the associated parameter language Lpar, which is all t × n
matrices ofG1 elements. The parameter languageLpar also has a corresponding witness
relationRpar, where the witness is a matrix of Zq elements :Rpar(A,A) iff A = A · g1.

Robust and Efficiently Witness-Samplable Distributions Let the t × n-dimensional
matrixA be chosen according to a distributionD onLpar. We will call the distributionD
robust if with overwhelming probability the left-most t columns ofA are full-ranked.We
will call a distribution D on Lpar efficiently witness samplable if there is a probabilistic
polynomial time algorithm such that it outputs a pair of matrices (A,A) that satisfy
the relation Rpar (i.e., Rpar(A,A) holds), and further the resulting distribution of the
outputA is same asD. For example, the uniformdistribution onLpar is efficientlywitness
samplable, by first pickingA at random, and then computingA. As an example of a robust

distribution, consider a distributionD on (2× 3)-dimensional matrices

[
g 01 h
01 f h

]
with

g, f and h chosen randomly from G1. It is easy to see that the first two columns are
full-ranked if g �= 01 and f �= 01, which holds with probability (1 − 1/q)2.

3.1. QA-NIZK Construction Under the XDH Assumption

Wenowdescribe a computationally sound quasi-adaptiveNIZK (K0,K1,P,V) for linear
subspace languages {LA}with parameters sampled froma robust and efficientlywitness-
samplable distribution D over the associated parameter language Lpar.
AlgorithmK0:K0 is same as the group generation algorithm forwhich theXDHassump-

tion holds. λ
def= (q,G1,G2,GT , e, g1, g2) ← K0(1m), with (q,G1,G2,GT , e, g1, g2)

as described above.
We will assume that the size t × n of the matrix A is either fixed or determined by the

security parameter m. In general, t and n could also be part of the parameter language,
and hence t, n could be given as part of the input to CRS generator K1.
Algorithm K1: The algorithm K1 generates the CRS as follows. Let At×n be the pa-

rameter supplied to K1. Let s
def= n − t : This is the number of equations in excess of

the unknowns. It generates a matrix Dt×s with all elements chosen randomly from Zq

and a single element b chosen randomly from Zq . The common reference string (CRS)
ψ has two parts CRSp and CRSv which are to be used by the prover and the verifier,
respectively.

CRSt×s
p := A ·

[
Dt×s

b−1 · Is×s

]
CRS(n+s)×s

v :=
⎡
⎣

b · D
Is×s

−b · Is×s

⎤
⎦ · g2
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Here, I denotes the identity matrix. Note that CRSv is independent of the parameter.
Prover P: Given candidate 	l = 	x · A with witness vector 	x, the prover generates the
following proof consisting of s elements in G1:

	p:=	x · CRSp

Verifier V: Given candidate 	l, and a proof 	p, the verifier checks the following:

e
([	l 	p ]

,CRSv

) ?= 01×s
T

The security of the above system depends on the DDH assumption in group G2.
Since G2 is a bilinear group, this assumption is known as the XDH assumption. These
assumptions are standard and are formally described in “Appendix 1.”

Remark. The proofs are unique for language members as the bottom s rows of CRSv

are invertible.

Theorem 2. Theabovealgorithms (K0,K1,P,V) constitute a perfectly complete, com-
putationally sound and perfectly zero-knowledge quasi-adaptive NIZK proof system for
linear subspace languages {LA} with parameters A sampled from a robust and effi-
ciently witness-samplable distribution D over the associated parameter language Lpar,
given the DDH assumption holds for group G2, with respect to the group generation
algorithm K0.

Completeness and zero-knowledge are fairly straightforward as we will see below.
Soundness is the most non-trivial part of proving this theorem.
Completeness: For a candidate 	x · A (which is a language member), the left-hand side
of the verification equation is:

e
([	l 	p ]

,CRSv

) = e
([ 	x · A 	x · CRSp

]
,CRSv

)

= e

⎛
⎝	x · A ·

[
In×n D

b−1 · Is×s

]
·
⎡
⎣

b · D
Is×s

−b · Is×s

⎤
⎦ , g2

⎞
⎠

= e

(
	x · A ·

([
b · D
Is×s

]
− b ·

[
D

b−1 · Is×s

])
, g2

)
= e

(
01×s
1 , g2

)
= 01×s

T

Hence completeness follows.

Zero-Knowledge: The CRS is generated exactly as above. In addition, the simulator

is given the trapdoor

[
D

b−1 · Is×s

]
. Now, given a language candidate 	l, the proof is

simply 	p := 	l ·
[

D
b−1 · Is×s

]
. If 	l is in the language, i.e., it is 	x · A for some 	x, then

the distribution of the simulated proof is identical to the real-world proof. Therefore,
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the simulated NIZK CRS and simulated proofs of language members are identically
distributed as the real world. Hence the system is perfect zero-knowledge.

Soundness: We prove soundness by transforming the system over two games. Game
G0 just replicates the soundness security definition. In game G1 the CRS is generated
using witness A and its null-space, and this can be done efficiently by the challenger as
the distribution is efficiently witness samplable. After this transformation, we show that
a verifying proof of a non-language member implies breaking DDH in group G2.

Game G0: This is just the original system, i.e., the challenger takes a security para-
meter m, generates λ using K0, then generates A according to D, generates the CRS ψ

using K1 and passes λ,A and the CRS (i.e., CRSp, CRSv ) to an Adversary B. Let the
B produce candidate 	l and proof 	p. We say B wins if e

([	l 	p ]
,CRSv

) ?= 01×s
T while 	l

is not in LA. LetW0 denote the event that B wins gameG0. If we can show that Pr[W0]
is negligible (in m), then soundness follows.
Game G1: SinceD is efficiently witness samplable, say using a PPT machineM, in

this game the challenger generates A = A · g1 using M, and hence the challenger also
gets A (the witness to A in language Lpar). Next the challenger checks whether the left-
most t columns of A are full-ranked. If they are not full-ranked, the Challenger declares
the Adversary as winner. We will also call this event BAD. The probability of event
BAD happening is negligible by definition as the distribution D is robust. Otherwise,

it computes a rank s matrix

[
Wt×s

Is×s

]
of dimension (t + s) × s whose columns form

a complete basis for the null-space of A, which means A ·
[
Wt×s

Is×s

]
= 0t×s . Next,

the NIZK CRS is computed as follows: The challenger generates matrix D′ t×s with
elements randomly chosen from Zq and element b randomly chosen from Zq (just as in
the real CRS). Now set,

[
D

b−1 · Is×s

]
=

[
D′
0s×s

]
+ b−1 ·

[
W
Is×s

]

Therefore the challenger produces,

CRSt×s
p = A ·

[
D

b−1 · Is×s

]
= A ·

([
D

b−1 · Is×s

]
− b−1 ·

[
W
Is×s

])
= A ·

[
D′
0s×s

]

CRS(n+s)×s
v =

⎡
⎣

b · D
Is×s

−b · Is×s

⎤
⎦ · g2 =

⎡
⎣b ·

[
D′
0s×s

]
+

[
W
Is×s

]

−b · Is×s

⎤
⎦ · g2

Observe that D has identical distribution as in gameG0 and the rest of the computations
were same. So gameG1 is statistically indistinguishable from gameG0, conditioned on
BAD not happening. LetW1 denote the event that Adversary wins gameG1. Since event
BAD implies event W1, it follows that Pr[W1] ≥ Pr[W0]. Moreover,
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Pr[W1] = Pr[W1 ∧ BAD] + Pr[W1 ∧ ¬BAD]
≤ Pr[BAD] + Pr[W1 ∧ ¬BAD]

Since probability of event BAD is negligible, if we can show Pr[W1 ∧ ¬BAD] to
be negligible, soundness would follow. We remark that the Challenger in game G1 is
efficient (i.e., it can be implemented by a PPT).

Lemma 3. Pr[W1 | ¬BAD] is negligible given the DDH assumption in group G2.

Proof. We will condition on the event BAD not happening in GameG1. We show that
if adversary B can produce a “proof” 	p for which the pairing test holds and yet the
candidate 	l is not in LA, then it implies an efficient adversary that can break DDH in
group G2. So consider a DDH game, where a challenger either provides a real DDH
tuple 〈g2, b̂ · g2, r · g2,χ = b̂r · g2〉 or a fake DDH tuple 〈g2, b̂ · g2, r · g2,χ = b̂r ′ · g2〉.

The QA-NIZK challenger sets b · g2 to be the same as b̂ · g2 in the description of
G1. Observe that due to our transformations, CRS1 does not use b at all and CRS2 can
be constructed from b · g2 alone. Let us partition the Zq matrix A as

[
At×t
0 At×s

1

]
and

the candidate vector 	l as
[
	l1×t
0

	l1×s
1

]
. Note that, since A0 has rank t , the elements of 	l0

are ‘free’ elements and 	l0 can be extended to a unique n element vector 	l ′, which is a
member of LA. This member vector 	l ′ can be computed as 	l ′ := [	l0 −	l0 · W ]

, where

W is the same matrix as in GameG1, and can be computed as −A−1
0 A1. The proof of 	l ′

is computed as 	p ′ := 	l0 ·D′. Since both (	l, 	p) and (	l ′, 	p ′) pass the verification equation,
we obtain: 	l ′

1 −	l1 = b(	p ′ − 	p), where 	l1 = −	l0 ·W. In particular there exists i ∈ [1, s],
such that, l′1i − l1i = b(p′

i − pi ) �= 01. This gives us a straightforward test for the DDH

challenge: e(l′1i − l1i , r · g2) ?= e(p′
i − pi ,χ). �

This concludes our proof of soundness of the QA-NIZK.

Remark. Observe from theproof above that the soundness canbebasedon the following
computational assumption which is implied by XDH, which is a decisional assumption:

Definition 4. Consider a generation algorithmG taking the security parameter as input,
that outputs a tuple (q,G1,G2,GT , e, g1, g2), whereG1,G2 andGT are groups of prime
order q with generators g1, g2 and e(g1, g2), respectively, and which allow an efficiently
computable Zq -bilinear pairing map e : G1 × G2 → GT . The assumption asserts that

the following problem is hard: Given f, b · f $←− G2, output h,h′ ∈ G1, such that
h′ = b · h �= 01.

This assumption is called theDouble PairingAssumption in [2] and can also be framed
as the Kernel-MDH assumption [31] for the Diffie–Hellman distribution.

Example: QA-NIZK for a DH tuple. In this example, we instantiate our general system
to provide a NIZK for a DH tuple, that is a tuple of the form (x · g, x · f) for an a priori
fixed base (g, f) ∈ G

2
1. We assume DDH for the group G2.
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As in the setup described before, we have A = [
g f

]
. The language is: L = {[x] ·

A | x ∈ Zq}.
Now proceeding with the framework, we generate D as [d] and the element b where

d and b are random elements of Zq . With this setting, the NIZK CRS is:

CRSp := A ·
[

D
b−1 · I1×1

]
=

[
d · g + b−1 · f

]
,

CRSv :=
⎡
⎣

b · D
I1×1

−b · I1×1

⎤
⎦ · g2 =

⎡
⎣
bd · g2
g2

−b · g2

⎤
⎦

The proof of a tuple (r, r̂)with witness r , is just the single element r · (d ·g+b−1 · f).
In the proof of zero-knowledge, the simulator trapdoor is (d, b) and the simulated proof
of (r, r̂) is just (d · r + b−1 · r̂).

3.2. QA-NIZK Construction Under the k-Linear Assumption

In this section we generalize our QA-NIZK proof system to be based on the k-linear
assumption for any k ≥ 1. The hardness assumption is defined in Appendix 5.5. We
speciallymention DL I N , which is the case of k = 2, since it is awidely used assumption
and note that XDH is the case of k = 1.

Let G1,G2 and GT be cyclic groups of prime order q with a bilinear map e : G1 ×
G2 → GT . Let g1 and g2 be randomly chosen generators of the group G1 and G2,
respectively. We assume that the k-linear problem is hard in the group G2. The groups
G1 andG2 are in fact allowed to be the same for k ≥ 2. In the rest of the subsection, we
adopt the same symbols and conventions as in the former subsection.

NIZK CRS: Suppose the language is LA = {	x ·At×n ∈ G
n
1 | 	x ∈ Z

t
q}. Let s def= n − t :

this is the number of equations in excess of the unknowns. Generate a matrixDt×ks with
all elements chosen randomly from Zq and k elements b1, · · · , bk chosen randomly
from Zq . Let

Eks×ks def=
⎡
⎢⎣
b1 · · · 0
...

. . .
...

0 · · · bk

⎤
⎥⎦ ⊗ Is×s, Fs×ks def= [

Is×s · · · Is×s
]

︸ ︷︷ ︸
k times

·E−1

In other words, E is a diagonal matrix with s copies of each of the bi ’s in the diagonal.
The common reference string (CRS) has two parts CRS1 and CRS2 which are to be
used by the prover and the verifier, respectively.

CRSt×ks
p = A ·

[
D
F

]
CRS(n+ks)×ks

v =
⎡
⎣
[
D
F

]
· E

−E

⎤
⎦ · g2
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Prover: Given candidate 	x ·Awith witness vector 	x, the prover generates the following
proof:

	p := 	x · CRSp

Verifier: Given a proof 	p of candidate 	l , the verifier checks the following:

e
([	l 	p ]

,CRSv

) ?= 01×ks
T

Theorem 5. Theabovealgorithms (K0,K1,P,V) constitute a perfectly complete, com-
putationally sound and perfectly zero-knowledge quasi-adaptive NIZK proof system for
linear subspace languages {LA} with parameters A sampled from a robust and effi-
ciently witness-samplable distribution D over the associated parameter language Lpar,
given the DDH assumption holds for group G2, with respect to the group generation
algorithm K0.

A detailed proof of the theorem can be found in Appendix 5.5.

4. Extensions

In this section we consider some useful extensions of the concepts and constructions of
QA-NIZK systems. We show how the previous system can be extended to include tags.
The tags are elements of Zq , are included as part of the proof and are used as part of
the defining equations of the language. We define a notion called split-CRS QA-NIZK
system, where the prover and verifier use distinct parts of a CRS and we construct a
split-CRS system for affine systems.

4.1. Tags

While our system works for any number of components in the tuple (except the first t)
being dependent on any number of tags, to simplify the presentation we will focus on
only one dependent element and only one tag. Also for simplicity, we will assume that
this element is an affine function of the tag (the function being defined by parameters).
We can handle arbitrary polynomial functions of the tags as well, but we will focus on
affine functions here as most applications seem to need just affine functions. Then, the
languages we handle can be characterized as

LA,	a1,	a2 =
{
〈	x · [A (	a�

1 + tag · 	a�
2 )

]
, tag〉 | 	x ∈ Z

t
q , tag ∈ Zq

}

where At×(n−1), 	a1×t
1 and 	a1×t

2 are parameters of the language.
Algorithm K0 is just the group generation algorithm as before. A distribution is still

called robust (as in Sect. 3) if with overwhelming probability the first t columns ofA are
full-ranked. WriteA as [At×t

l | At×(n−1−t)
r ], where without loss of generality,Al is non-
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singular. While the first n−1− t components in excess of the unknowns, corresponding
to Ar , can be verified just as in Sect. 3, for the last component we proceed as follows.
Algorithm K1: The CRS is generated as:

CRSt×1
p,1 := [

Al 	a�
1

] ·
[
D1

b−1

]
CRSt×1

p,2 := [
Al 	a�

2

] ·
[
D2

b−1

]

CRS(t+2)×1
v,1 :=

⎡
⎣
b · D1
1

−b

⎤
⎦ · g2 CRS(t+2)×1

v,2 :=
⎡
⎣
b · D2
0
0

⎤
⎦ · g2

whereD1 andD2 are randommatrices of order t×1 independent of the matrixD chosen
for proving the other components. The Zq element b can be re-used from the other
components.

Prover P: Let 	l ′ def= 	x · [Al (	a�
1 + tag · 	a�

2 )
]
. The prover generates the following

proof for the last component, which is just 1 element in G1:

	p := 	x · (CRSp,1 + tag · CRSp,2)

Verifier V: Given a proof 	p for candidate 〈	l ′, tag〉 the verifier checks the following:

e
([	l ′ 	p ]

,CRSv,1 + tag · CRSv,2
) ?= 0T

Theorem 6. Theabovealgorithms (K0,K1,P,V) constitute a perfectly complete, com-
putationally sound and perfectly zero-knowledge quasi-adaptive NIZK proof system for
tagged subspace languages {LA,	a1,	a2} with parameters (A, 	a1, 	a2) sampled from a ro-
bust and efficiently witness-samplable distribution D over the associated parameter
languageLpar, given the DDH assumption holds for groupG2, with respect to the group
generation algorithm K0.

The proof of completeness, soundness and zero-knowledge for this quasi-adaptive
system is similar to proof in Sect. 3, and a proof sketch can be found in Appendix 5.5.

4.2. Split-CRS QA-NIZK Proofs

We note that the QA-NIZK described in Sect. 3 (and its extension to tags in Sect. 4.1)
has an interesting split-CRS property. In a split-CRS QA-NIZK for a distribution of
relations, the CRS generator K1 generates two CRSes ψp and ψv , such that the prover P
only needs ψp, and the verifier V only needs ψv . In addition, the CRS ψv is independent
of the particular relation Rρ . In other words the CRS generator K1 can be split into two
PPTs K11 and K12, such that K11 generates ψv using just λ, and K12 generates ψp using
ρ and a state output by K11. The key generation simulator S1 is also split similarly.
In many applications, split-CRS QA-NIZKs can lead to simpler constructions (and

their proofs) and possibly shorter proofs.

Definition 7. (Split-CRSQA-NIZK)We call a tuple of algorithms (K0,K11,K12,P,V)

a split-CRSQA-NIZK proof system for an ensemble of distributions {Dλ} on collection
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of witness relationsRλ = {Rρ} with associated parameter language Lpar if there exists
a probabilistic polynomial time simulator (S11,S12,S2), such that for all non-uniform
PPT adversaries A1,A2,A3 we have
Quasi-Adaptive Completeness.

Pr

⎡
⎣

λ ← K0(1m); (ψv, st) ← K11(λ); ρ ← Dλ; ψp ← K12(λ, ρ, st);
(x, w) ← A1(λ, ψv, ψp, ρ); π ← P(ψp, x, w) :

V(ψv, x, π) = 1 if Rρ(x, w)

⎤
⎦ = 1

Quasi-Adaptive Soundness.

Pr

⎡
⎣

λ ← K0(1m); (ψv, st) ← K11(λ); ρ ← Dλ; ψp ← K12(λ, ρ, st);
(x, π) ← A2(λ, ψv, ψp, ρ) :

V(ψv, x, π) = 1 and not (∃w : Rρ(x, w))

⎤
⎦ ≈ 0

Quasi-Adaptive Zero-Knowledge.

Pr

[
λ ← K0(1m); (ψv, st) ← K11(λ); ρ ← Dλ; ψp ← K12(λ, ρ, st) :

AP(ψp,·,·)
3 (λ, ψv, ψp, ρ) = 1

]
≈

Pr

[
λ ← K0(1m); (σv, st) ← S11(λ); ρ ← Dλ; (σp, τ ) ← S12(λ, ρ, st) :

AS(σp,τ,·,·)
3 (λ, σv, σp, ρ) = 1

]
,

where S(σp, τ, x, w) = S2(σp, τ, x) for (x, w) ∈ Rρ and both oracles (i.e., P and S)
output failure if (x, w) �∈ Rρ .

A split-CRS QA-NIZK is called a strong split-CRSQA-NIZK if the proof simulator
S2 does not use σp and the trapdoor τ is independent of ρ. In particular, in this case
τ could be generated by S11 in the above definition. We remark that the QA-NIZK
described in Sect. 3 (and its extension to tags in Sect. 4.1) is strong split-CRS QA-NIZK
proof systems as can be checked by inspecting the proofs.

StrongSplit-CRSQA-NIZK forAffineSpaces. Consider languages that are affine spaces

LA,	a = {(	x · A + 	a) ∈ G
n
1 | 	x ∈ Z

t
q}

The parameter language Lpar just specifies A and 	a. A distribution over Lpar is called
robust if with overwhelming probability the left-most t×t submatrix ofA is non-singular
(full-ranked). If 	a is given as part of the verifier CRS, then a QA-NIZK for distributions
over this class follows directly from the construction in Sect. 3. However, that would
make the QA-NIZK non-split-CRS. We now show that the techniques of Sect. 3 can
be extended to give a strong split-CRS QA-NIZK for (robust and witness samplable)
distributions over affine spaces.
AlgorithmK0 is just the group generation algorithm as before. The common reference

string (CRS) has two partsψp andψv which are to be used by the prover and the verifier,
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respectively. The split-CRS generators K11 and K12 work as follows. Let s
def= n − t :

This is the number of equations in excess of the unknowns.
Algorithm K11: The verifier CRS generator first generates a matrix Dt×s with all ele-
ments chosen randomly from Zq and a single element b chosen randomly from Zq . It

also generates a row vector 	d1×s
at random from Zq . Next, it computes

CRS(n+s)×s
v :=

⎡
⎣

b · D
Is×s

−b · Is×s

⎤
⎦ · g2 	f1×s := b · 	d · e(g1, g2)

The verifier CRS ψv is the matrix CRSv and 	f . The state st is (b, D, 	d).
Algorithm K12: The prover CRS generator K12 takes as inputs ρ = (A, 	a) and st =
(b, D, 	d) and generates

CRS(t+1)×s
p =

[
At×n

	a1×n

]
·
[

D
b−1 · Is×s

]
−

[
0t×s

	d1×s

]
· g1

The prover CRS ψp is just the matrix CRSp.
Prover P: Given candidate (	x · A + 	a) with witness vector 	x, the prover generates the
following proof:

	p := [ 	x 1
] · CRSp

Verifier V: Given a proof 	p of candidate 	l, the verifier checks the following:

e
([	l 	p ]

,CRSv

) ?= 	f

Theorem 8. The above algorithms (K0,K11,K12,P,V) constitute a perfectly com-
plete, computationally sound and perfectly zero-knowledge quasi-adaptive NIZK proof
system for affine subspace languages {LA,	a} with parameters (A, 	a) sampled from a
robust and efficiently witness-samplable distribution D over the associated parameter
languageLpar, given the DDH assumption holds for groupG2, with respect to the group
generation algorithm K0.

The proof of Theorem 8 is similar to that of Theorem 2. We highlight the main points
in the proof sketch in Appendix 5.5. The strong split-CRS QA-NIZK for affine spaces
also naturally extends to include tags as described before in this section.

5. Applications

In this sectionwemention several important applications of quasi-adaptiveNIZKproofs.
Before we go into the details of these applications, we discuss the general applicability of
quasi-adaptive NIZKs. Recall in quasi-adaptive NIZKs, the CRS is set based on the lan-
guage for which proofs are required. Inmany applications the language is set by a trusted
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party. The most prominent example of this is the trusted party that sets the CRS in some
UC applications, many of which have UC realizations only with a CRS. Also in many
public key applications, the party issuing the public key is also considered trusted, as
security is defined with respect to the public key issuing party (acting as challenger). For
example, the IBE- or HIBE-trusted authority that issues secret keys to various identities.
Thus, in all these settings if the language for which proofs are required is determined by
a trusted party, then that party can also issue a QA-NIZK CRS based on that language.

5.1. Adaptive UC Commitments in the Erasure Model

Commitment schemes in the Universal Composability [8] model were first formalized
and constructed in [10]. In a UC commitment scheme, the functionality defines two
interactions: Commit and Open. Each one takes as inputs a session id sid and an addi-
tional commitment id cid that is used to distinguish among the different commitments
that take place with the same sid.
The SXDH-based commitment scheme from [17] requires a quasi-adaptive NIZK

proof for the following language:

Lρ := {〈R, S, T, H, t〉 | ∃r : R = r · g, S = r · h, T = r · K1, H = r · (d1 + t · e1)}

with parameter ρ being (g,h, K1,d1, e1). Consider the tag-based language Lρ , with tag
t , with parameter ρ being (g,h, K1,d1, e1), and with the distribution on the parameters
being that they are chosen randomly and uniformly (as in the Cramer–Shoup Key Gen-
eration). Consider a QA-NIZK (K0,K1,P,V) for the above distribution of (tag-based)
linear languages.

UC CRS-Gen(λ): Choose g,h, K1,d1, e1 randomly from G1 and a public key H for
a collision-resistant hash function. Generate a QA-NIZK CRS ψ for language Lρ

with ρ being (g,h, K1,d1, e1). Publish crs := (ρ, ψ,H).
Commit(crs, M, sid, cid, Pi , Pj ): to commit to message M ∈ G for party Pj upon

receiving a command (commit, sid, cid, Pi , Pj , M), party Pi proceeds as follows:

1. Generate r
$←− Zq . Compute a Cramer–Shoup Encryption of M as follows:

R = r · g, S = r · h, T = M + r · K1, H = r · (d1 + t · e1)

where t is a tag generated using a collision-resistant hash function just as in
Cramer–Shoup encryption. Specifically, t = H(sid, cid, Pi , Pj , R, S, T ).

2. Generate QA-NIZK proof (using P) π of:

∃r.
(

R = r · g, S = r · h,

T − M = r · K1, H = r · (d1 + t · e1)
)

with witness r .
3. Keep π and erase r .
4. Commitment is c := (R, S, T, H) : 4 group elements
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Open(crs, M, sid, cid, Pi , Pj ): Reveal M and π , which is (4 − 1) ∗ 1 =
3 group elements .

As the proof is for (T − M) it can be shown that it suffices to hide M with the hash
key itself (see a similar remark for the signature scheme), which leads to a commitment
consisting of three elements, and a proof (opening) consisting of another two elements. A
similar schemeusingQA-NIZKs, andunder theDLINassumption leads to a commitment
consisting of 4 elements and an opening of another 4 elements, whereas [17] stated a
scheme using Groth–Sahai NIZK proofs requiring 21 elements.

5.2. One-Time Relatively Simulation Sound NIZK for DDH and Others

In [22] it was shown that for linear subspace languages, such as the DDH or DLIN
language, or the language showing that two ElGamal encryptions are of the same mes-
sage [32,37], the NIZK proof can be made one-time relatively simulation sound using a
projective hash proof [13] and proving in addition that the hash proof is correct. For the
DLIN language, this one-time relatively simulation sound proof (in Groth–Sahai sys-
tem) required 15 group elements, whereas the quasi-adaptive proof in this paper leads
to a proof size of only 5 group elements.

5.3. Signatures

We will now show a generic construction of an existentially unforgeable signature
scheme (against adaptive chosenmessage attacks) from labeledCCA2-secure encryption
schemes and split-CRSQA-NIZK proof system (as defined in Sect. 4.2) for a related lan-
guage distribution. This construction is a generalization of a signature scheme from [9]
which used (fully) adaptive NIZK proofs and required constructions based on groups in
which the CDH assumption holds. The paradigm of using encryption and NIZK together
to construct signatures is originally due to [6].

Let E = (KeyGen,Enc,Dec) be a labeled CCA2-secure encryption scheme on
messages. Let Xm be any subset of the message space of E such that 1/|Xm | is negligible
in the security parameter m. Consider the following class of (parameterized) languages
{Lρ}:

Lρ = {(c, M) | ∃r : c = Encpk(u; r; M)}

with parameter ρ = (u,pk). The notation Encpk(u; r; M) means that u is encrypted
under public key pk with randomness r and label M . Consider the following distribution
D on the parameters: u is chosen uniformly at random from Xm and pk is generated
using the probabilistic algorithm KeyGen of E on 1m (the secret key is discarded). Note
we have an ensemble of distributions, one for each value of the security parameter, but
we will suppress these details.
LetQ = (K0, 〈K11,K12〉,P,V) be a split-CRS QA-NIZK for distributionD on {Lρ}.

Note that the associated parameter language Lpar is just the set of pairs (u,pk), and D
specifies a distribution on Lpar.
Now, consider the following signature scheme S.
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Key Generation: On input a security parameter m, run K0(1m) to get λ. Let E .pk
be generated using KeyGen of E on 1m (the secret key sk is discarded). Choose u at
random from Xm . Let ρ = (u, E .pk). Generateψv by runningK11 on λ (it also generates
a state s). Generate ψp by running K12 on (λ, ρ) and state s. The public key S.pk of the
signature scheme is then ψv . The secret key S.sk consists of (u, E .pk, ψp).
Sign: The signature on M just consists of a pair 〈c, π〉, where c is an E-encryption of u
with label M (using public key E .pk and randomness r ), and π is the QA-NIZK proof
generated using prover P of Q on input (ψp, (c, M), r). Recall r is the witness to the
language member (c, M) of Lρ (and ρ = (u, E .pk)).
Verify: Given the public key S.pk (= ψv), and a signature 〈c, π〉 on message M , the
verifier uses the verifier V of Q and outputs V(ψv, (c, M), π).

Theorem 9. If E is a labeled CCA2-encryption scheme and Q is a strong split-CRS
quasi-adaptive NIZK system for distribution D on class of languages {Lρ} described
above, then the signature scheme described above is existentially unforgeable under
adaptive chosen message attacks.

Proof. Recall the security game for a signature scheme. Once the signature scheme’s
public key is given to the signature scheme adversary B, it adaptively obtains several
signatures 〈ci , πi 〉 on messages Mi of its choosing. Let T denote the set of all such
messages Mi . To win the game, B must obtain a 〈M∗, c∗, π∗〉 (M∗ �∈ T ) which passes
the public signature verification, which in this case just means that the claimed proof π∗
of (c∗, M∗) being in Lρ (where ρ = (u, E .pk))) passes the QA-NIZK verifier V using
the CRS ψv . Let W be the event that B wins. By soundness of the QA-NIZK, it follows
that Pr[W ] is at most the probability that (c, M) is in Lρ plus a negligible amount.
To show that Pr[W ] is negligible consider the following experiments:

Expt1: The challenger generates the signature scheme public keyS.pk(= ψv) just as in
the signature scheme described above, and passes it to B. Apart from retaining
the secret key S.sk = (u, E .pk, ψp), the challenger also retains the secret key
E .sk generated byKeyGen ofE . It then adaptively answersmultiple requests for
signatures on Mi by encrypting u with labels Mi (using E’s encryptor Enc with
key E .pk) and generating proofs πi usingψp and QA-NIZK ProverP. The view
ofB is identical so far to that in the signature scheme security game.When the ad-
versaryB replieswith a triple 〈M∗, c∗, π∗〉, the challenger decrypts c∗ with label
M∗ using secret key E .sk to get u∗. If u∗ = u the challenger outputsWIN, other-
wise it outputs LOSE. LetW1 be the event that challenger outputsWIN. By cor-
rectness of the encryption scheme E , the eventW1 happenswhenever c∗ is an en-
cryption of uwith labelM∗ under E .pk, i.e. whenever (c∗, M∗( are in Lρ(where
ρ = (u, E .pk)). Thus, Pr[W ] is at most Pr[W1] plus a negligible amount.

Expt2: This is same as Expt1 except that the Challenger generates the QA-NIZK
CRSes (and trapdoor) σv using S11 and σp, τ using S12. Further, it gener-
ates all the proofs using S2(σp, τ, ·). Since the QA-NIZK is a strong split-CRS
QA-NIZK, the simulator does not use σp and further τ is independent of u. Let
W2 be the event that challenger outputs WIN. By QA-NIZK zero-knowledge,
|Pr[W2] − Pr[W1]| is negligible.
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Expt3: This is same as Expt2 except that the challenger now encrypts 1 instead of u.
Let W3 be the event that challenger outputs WIN. By CCA-2 security of the
encryption scheme E , it follows that |Pr[W3] − Pr[W2]| is negligible. Tech-
nically, this requires a sequence of hybrid experiments, with each subsequent
experiment replacing u by 1 in the next signature request of B.

Now, note that in Expt3, Pr[W3] is at most 1/|Xm | as the view of the adversary B is
independent of u. Thus, by hypothesis about Xm , Pr[W3] is negligible. It follows that
Pr[W ] is negligible as well.

A couple of remarks are in order here. If we did not have a split-CRS QA-NIZK, but
a QA-NIZK where the verifier also needed a CRS that depended on ρ, then in Expt3
above the view of the Adversary B would depend on u. In such a case, one can still get
a signature scheme (as in [9]) but one has to encrypt a hard to compute challenge such
as x · u (given u, g and x · g). However, the size of the QA-NIZK proof and hence the
signature would not increase as although the number of equations to prove would go up
by one, but so would the number of variables (note the additional variable x). �

It is worth remarking here that the reason one can use a quasi-adaptive NIZK here is
because the language Lρ forwhich (multiple)NIZKproof(s) is required is set (or chosen)
by the (signature scheme) key generator, and hence the key generator can generate the
CRS for the NIZK after it sets the language. The proof of the above theorem can be
understood in terms of simulation soundness. Suppose the above split-CRS QA-NIZK
was also unbounded simulation sound. Then, one can replace the CCA2 encryption
scheme with just a CPA-encryption scheme, and still get a secure signature scheme. A
proof sketch of this is as follows: AnAdversaryB is only givenψv (which is independent
of parameters, including u). Further, the simulator for the QA-NIZK can replace all
proofs by simulated proofs (that do not use witness r used for encryption). Next, one
can employ CPA-security to replace encryptions of u by encryptions of 1. By unbounded
simulation soundness of the QA-NIZK it follows that ifB produces a verifying signature
then it must have produced an encryption of u. However, the view of B is independent
of u, and hence its probability of forging a signature is negligible.

However, the best known technique for obtaining efficient unbounded simulation
soundness itself requires CCA2 encryption (see [9]), and in addition NIZK proofs for
quadratic equations. On the other hand, if we instantiate the above theoremwith Cramer–
Shoup encryption scheme, we get remarkably short signatures (in fact the shortest signa-
tures under any static and standard assumption). The Cramer–Shoup encryption scheme
PK consists of g, f ,k,d, e chosen randomly from G1, along with a target collision-
resistant hash functionH (with a public random key). The set X from which u is chosen
is just the whole groupG1. Then an encryption of u is obtained by picking r at random,
and obtaining the tuple

〈R = r · g, S = r · f , T = u + r · k, H = r · (d + tag · e)〉

where tag = H(R, S, T, M). It can be shown that it suffices to hideuwith the hash proof
H (although one has to go into the internals of the hash proof-based CCA2 encryption;
see Appendix in [22]). Thus, we just need a (split-CRS) QA-NIZK for the tag-based
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affine system (it is affine because of the additive constant u). There is one variable r ,
and three equations (four if we consider the original CCA-2 encryption) Thus, we just
need (3 − 1) ∗ 1 (= 2) proof elements, leading to a total signature size of 5 elements
(i.e., R, S,u + H , and the two proof elements) under the SXDH assumption.

5.4. Dual-System Fully Secure IBE

It is well known that identity-based encryption (IBE) implies signature schemes (due to
Naor), but the question arises whether the above signature scheme using Cramer–Shoup
CCA2-encryption and the related QA-NIZK can be converted into an IBE scheme. To
achieve this, we take a hint from Naor’s IBE to Signature Scheme conversion, and let
the signatures (on identities) be private keys of the various identities. The verification

of the QA-NIZK from Sect. 3 works by checking e
([	l 	p ]

,CRSv

) ?= 01×s
T (or more

precisely, e
([	l 	p ]

,CRSv

) ?= 	f for the affine language). However, there are two issues:
(1) CRSv needs to be randomized, (2) there are two equations to be verified (which
correspond to the alternate decryption of Cramer–Shoup encryption, providing implicit
simulation soundness). Both these problems are resolved by first scaling CRSv by a
random value s, and then taking a linear combination of the two equations using a public
random tag. The right-hand side s ·	f can then serve as secret one-time pad for encryption.
Rather than being a provable generic construction, this is more of a hint to get to a really
short IBE. We give a construction of an IBE scheme under the SXDH assumption where
the ciphertext has only four group (G1) elements plus a Zq -tag, which is the shortest
IBE known under standard static assumptions.9

We first consider the QA-NIZK for the affine language (incorporating tags)

〈R = r · g2, S = r · f , T = u + r · (d + i · e)〉

where i is an identity, and can be viewed as a tag. More precisely, the affine-system is
given by

Lρ = {r · (
[
g2 f 0

] + [
0 0 d

] + i · [0 0 e
]
) + [

0 0 u
] | r ∈ Zq}

where ρ consists of the matrices
[
g2 f

]
and

[
0 0 u

]
(affine shift), and group elements

d and e (for defining the tag-based last component). Note that T corresponds to the
language component that depends on a tag. So, let us focus on the components 〈R, S〉
first. In the notation of Sect. 3, this is a language with rank one, and two dimensions,
i.e., n = 2, t = 1 and s = (n − t) = 1. Let f = gc2 for some c ∈ Zq . Then the matrix A
is

[
1 c

]
. Further its null-space is generated by

[−c 1
]
.

For the IBE scheme, instead of generating theCRS as in Sect. 3 for the above language,
we will generate the CRS as in gameG1 in the proof of soundness of QA-NIZK, as this
will be more in line with the original construction of Waters, and hence possibly easier
to relate. Thus, the two CRS-es are generated by choosing a matrix D′ of dimension

9[12] have recently and independently obtained a short IBE under SXDH, but our IBE ciphertexts are even
shorter. See Table 2 in the Introduction for detailed comparison.
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t × s, which in this case is just one element. This single element in D′ will be called
	3 in the IBE scheme below. The CRSp (prover CRS) is then specified by A · g2 and
	3 · g2. Recall, the prover CRS is to be used in KeyGen in IBE.
The verifier CRS, i.e., CRSp is specified by g1, b · g1 and (b ·	3 − c) · g1. Similarly,

the CRSes for the tag-based element T , and the affine shift u can be obtained from
Sects. 4.1 and 4.2 resp. The element T will require single element matrices D′

1 and D′
2

(for d and e resp.), which will be called 	1 and 	2, respectively (see Appendix 5.5).
Similarly, using Sect. 4.2, we derive the CRS element required for the affine shift, which
will be e(g1, (b · 	4 − u) · g2) (see the vector 	f in Appendix 4.2, and note we want
the representation corresponding to the simulation of game G1 in the soundness proof).
That completes the description of how we intend to setup the CRSes in the IBE using
the QA-NIZK for the above language.
Now, the verifier CRS needs to be randomized to represent IBE ciphertexts, and hence

each ciphertext is a scaling of the verifier CRS by a Zq scalar s (as in game G2 of the
soundness proof in Sect. 3). Also, there is one variable r , and two equations in excess of
the variables, and hence the verification requires testing two pairing product equations—
which is a problem as mentioned in Sect. 5. The two pairing product equation tests can
be converted into one by taking a linear combination with a random public tag, and this
gives us the final form of the ciphertext. The (fully secure) IBE scheme so obtained is
described below, along with a proof of security. For a security definition of fully secure
IBE we refer the reader to [39].
For ease of reading, we switch to multiplicative group notation in the following.

Setup: The authority uses a group generation algorithm for which the SXDH assumption
holds to generate a bilinear group (G1,G2,GT ) with g1 and g2 as generators of G1 and
G2, respectively. Assume thatG1 andG2 are of order q, and let e be a bilinear pairing on
G1×G2. It picks	1, 	2, 	3, 	4, b, c, d, e, u from Zq , and publishes the following
public key:

PK :=

⎛
⎜⎜⎜⎜⎜⎝

g1, gb1, f = gc2,
v1 = g−	1·b+d

1 ,

v2 = g−	2·b+e
1 ,

v3 = g−	3·b+c
1 ,

k = e(g1, g2)−	4·b+u

⎞
⎟⎟⎟⎟⎟⎠

The authority retains the following master secret key:

MSK := (g2, f , 	1, 	2, 	3, 	4, d, e, u)

Encrypt(PK, i, M): The encryption algorithm chooses s and tag at random from Zq .
It then computes the ciphertext as:

C :=
(
C0 = M · ks, C1 = gs1, C2 = gbs1 , C3 = vs1 · vi·s2 · vtag·s

3 , tag
)

KeyGen(MSK, i): The authority chooses r at random fromZq and creates the following
secret key Ki for identity i:
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Ki :=
(
R = gr2, S = gr ·c2 , T = gu+r ·(d+i·e)

2 , W1 = g−	4−r ·(	1+i·	2)
2 , W2 = g−r ·	3

2

)

Decrypt(Ki, C): Let C be parsed as (C0,C1,C2,C3, tag). Obtain

κ = e(C1, Stag · T ) · e(C2,W1 · W tag
2 )

e(C3, R)

and output C0/κ .

Theorem 10. Under the SXDH Assumption, the above scheme is a fully secure IBE
scheme.

Proof. We will just show that ks (as used in blinding the plaintext M) is distributed
randomly in the view of an adaptive Adversary, who after obtaining the public key,
adaptively obtains secret keys for multiple identities i1, i2, . . . , in , and a ciphertext for
identity i (where all the identities are chosen adaptively by theAdversary, and i is different
from the secret key identities). The ciphertext can be obtained by the Adversary at any
stage.
We will consider a sequence of games, and show that the Adversary’s view is either

statistically or computationally indistinguishable between any two consecutive games.
Game G0 is same as the actual adaptive security IBE game above.
GameG1: In this game the challenger behaves exactly like the authoritywhile publishing
the PK, and while generating the secret keys. However, it picks another random value
s′ from Zq , and outputs the following as ciphertext (for identity i):

C0 = M · ks · e(g1, g2)u·s′ ,

C1 = gs+s′
1 ,C2 = gb·s1 ,

C3 = vs1 · vi·s2 · vtag·s
3 · g(d+i·e+tag·c)s′

1 (1)

The tag tag is chosen randomly as in game G0. This simulation of the ciphertext is
called semi-functional ciphertext in [39]. Intuitively, from the point of view of QA-NIZK
proofs, the semi-functional ciphertext provides simulation soundness as the null-space
of the language is reflected as a factor (linear combination in additive notation)“shifted”
by s′.
The view of the Adversary in games G0 and G1 is computationally indistinguishable

by employing the DDH assumption in group G1 on the tuples 〈g1, gb1, gbs1 , gs1〉, and
〈g1, gb1, gbs1 , gs+s′

1 〉. The former tuple is used in game G0 and the latter in game G1.
Note that the order of the last two components in the DDH tuples is switched from usual
formulation of DDH; however, it is easy to see that this formulation is equivalent to the
usual DDH.
Game G2: In this game the challenger chooses 	′

1, 	′
2, 	′

3, 	′
4 at random and sets

	1 = (	′
1 + d)/b, 	2 = (	′

2 + e)/b, 	3 = (	′
3 + c)/b, 	4 = (	′

4 + u)/b. Thus,
the PK is now output as

g1, gb1, v1 = g
−	′

1
1 , v2 = g

−	′
2

1 , v3 = g
−	′

3
1 , and k = e(g1, g2)−	′

4 .
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Further, the secret keys are output as

R = gr2, S = gr ·c2 , T = gu+r ·(d+i·e)
2 ,

W1 = g
[−	′

4−r ·(	′
1+i·	′

2)]/b
2 · T−1/b,

W2 = g
−r ·(	′

3+c)/b
2 . (2)

The view of the Adversary in games G2 and G1 is statistically identical.
Game G3: This game is actually a sequence of several hybrid games, with the j-th
hybrid game G3, j changing the simulation of the j-th secret key generation. Game G3,0
is just the same as game G2.

In game G3, j the challenger modifies the output of the j-th secret key as follows
(assume that the identity requested by the Adversary is i j ): It chooses r j , r ′

j and r ′′
j at

random and sets

R = g
r j
2 , S = g

r j ·c+r ′
j

2 ,

T = g
r ′′
j

2 ,

W1 = g
[−	′

4−r ·(	′
1+i·	′

2)]/b
2 · T−1/b,

W2 = g
(−r ′

j−r j ·(	′
3+c))/b

2 .

Note that u has completely vanished from the j-th (and earlier) secret key simulation.
This simulation of the secret key is called semi-functional key.

Lemma 11. The view of the Adversary in game G3, j is computationally indistinguish-
able from the view of the Adversary in game G3, j−1.

Proof. Let H0 be same as the game G3, j−1. In game H1, the challenger chooses d =
d1 + c · d2, and e = e1 + c · e2, and tag tag in the ciphertext as −(d2 + i · e2). where
d1, d2, e1 and e2 are random and independent values from Zq . It is easy to see that d, e
and tag are random and independent, and hence the view of the Adversary in games H0
and H1 is statistically identical. Note that with this value of tag, C3 (in the ciphertext)
can be generated by the challenger as

C3 = vs1 · vi·s2 · vtag·s
3 · g(d1+i·e1+(d2+i·e2)·c+tag·c)s′

1

= vs1 · vi·s2 · vtag·s
3 · g(d1+i·e1)s′

1

As a consequence c is not used at all in the simulation of the ciphertext (whose elements
are all in group G1). The simulation of PK (without using c) is unchanged from game
G2.
In game H2, the challenger generates the j-th secret key by choosing r j and r ′

j
uniformly and independently and setting
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R = g
r j
2 , S = g

r j ·c+r ′
j

2 ,

T = g
u+r j ·(d1+c·d2+i j ·(e1+c·e2))+r ′

j ·(d2+i j e2)

2

W1 = g
[−	′

4−r ·(	′
1+i·	′

2)]/b
2 · T−1/b,

W2 = g
(−r j ·(	′

3+c)−r ′
j )/b

2 .

Recall that in game H1, the secret key is being generated as in Eq. (2), with d = d1+cd2
and e = e1 + ce2. The view of the Adversary in games H2 and H1 is computationally
indistinguishable, and this is shown by employing the DDH assumption on the two

tuples 〈g2, gc2, g
r j
2 , g

cr j
2 〉 and 〈g2, gc2, g

r j
2 , g

cr j+r ′
j

2 〉, where the first tuple is employed in
simulating game H1 and the second tuple is used in simulating game H2.
In game H3, the challenger generates the j-th secret key as

R = g
r j
2 , S = g

r j ·c+r ′
j

2 ,

T = g
u+r j ·(d1+c·d2+i j ·(e1+c·e2))+r ′

j ·r ′′
j

2

W1 = g
[−	′

4−r ·(	′
1+i·	′

2)]/b
2 · T−1/b,

W2 = g
(−r j ·(	′

3+c)−r ′
j )/b

2 .

where r j , r ′
j and r ′′

j are chosen randomly and independently (and independently from
all other variables). Note that d and e are also chosen independently and randomly (back
as in game H0). Moreover, tag is also chosen at random, and C3 output just as in game

H0, i.e., vs1 · vi·s2 · vtag·s
3 · g(d+i·e+tag·c)s′

1 .
The view of the Adversary in game H3 and H2 is statistically identical by noting that

d = d1 + c · d2, and e = e1 + c · e2, tag = −(d2 + i · e2) and r ′′
j = d2 + i j e2 are

all random and independent (since i �= i j ). This can be seen by noting that the four
by four matrix of coefficients of d, e, tag, r ′′

j in their linear representation in terms of
d1, d2, e1, e2 is non-singular.
In game H4, the challenger generates d, e and tag at random (instead of d1 + cd2,

etc.), and also chooses r ′′′
j at random (and independent of r j , r ′

j and other variables) and
outputs the j-th secret key as

R = g
r j
2 , S = g

r j ·c+r ′
j

2 ,

T = g
r ′′′
j

2

W1 = g
[−	′

4−r ·(	′
1+i·	′

2)]/b
2 · T−1/b,

W2 = g
(−r j ·(	′

3+c)−r ′
j )/b

2 .

Game H4 is statistically identical to game H3, as (u + r ′
j · r ′′

j + r j · (d + i j · e)) in
game H3 is random and independent of r ′

j , and hence is distributed same as a random
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r ′′′
j as in game H4. Now note that game H4 is identical to the game G3, j as described

above the lemma 11 statement.

We now continue with the proof of the theorem. Game G4 is just the game G3,n
(where n is the number of secret key requests). Note that in game G4 the only place
that u is used is in the ciphertext component C0 which is simulated by the challenger as
C0 = M ·ks · e(g1, g2)us′ (see Eq. 1). Hence, C0 is completely random and independent
of M in the view of the Adversary in game G4 (note u is nonzero with high probability).
That completes the proof.
We also claim that the ciphertext is anonymity preserving.10 This is because in game

H4, the component C3 is randomized by d and e which do not appear elsewhere and
hence the ciphertext is independent of the identity i. �

5.5. Publicly Verifiable CCA2 Fully Secure IBE

We can also extend our IBE scheme above to be publicly verifiable CCA2-secure [4,35].
Public verifiability is an informal but practical notion: Most CCA2-secure schemes
specify a decryptor that has a test of well formedness of ciphertext, and on passing the
test aCPA-secure scheme style decryption suffices.However, if this test can be performed
publicly, i.e., without access to the secret key, thenwe call the scheme publicly verifiable.
While there is a well-known reduction from hierarchical IBE to make an IBE scheme
CCA2-secure [11], that reduction does not make the scheme publicly verifiable CCA2 in
a useful manner. In the IBE setting, publicly verifiable also requires that it be verifiable
if the ciphertext is valid for the claimed identity. This can have interesting applications
where the network can act as a filter. We show that our scheme above can be extended to
be publicly verifiable CCA2-fully secure IBE with only two additional group elements
in the ciphertext (and two additional group elements in the keys). We give a construction
of an IBE scheme, which has four group elements (and a tag), where one group element
serves as one-time pad for encrypting the plaintext. The remaining three group elements
form a linear subspace with one variable as witness and three integer tags corresponding
to: (a) the identity, (b) the tag needed in the IBE scheme and (c) a 1-1 (or universal
one-way) hash of some of the elements. We show that if these three group elements
can be QA-NIZK proven to be consistent, and given the unique proof property of our
QA-NIZKs, then the above IBE scheme can be made CCA2-secure - the dual-system
already has implicit simulation soundness as explained in the signature scheme above,
and we show that this QA-NIZK need not be simulation sound. Since there are three
components, and one variable (see the appendix for details), the QA-NIZK requires only
two group elements under SXDH.
The definition of CCA2-secure encryption [4] naturally extends to the Identity-based

encryption setting [11]. We stress that we prove fully adaptive security, i.e., the Adver-
sary can choose the identity for which it invokes the encryption oracle adaptively. Our
scheme also enjoys the informal publicly verifiability property mentioned above. While

10While our IBE scheme was obtained independently of [12] in 2012, we observed the anonymity property
only after someone pointed us to the anonymity property of the latter. Thus the credit for the first anonymous
IBE under standard static assumptions goes to [12] alone.
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one may want to define it to be a notion akin to plaintext-awareness, getting an imple-
mentation satisfying such a strong extractable property would be rather inefficient and/or
require strong hardness assumptions. Hence, we focus on obtaining only the weaker but
practically useful public verifiability property.
As in the last subsection, for ease of readingwe switch tomultiplicative group notation

in the following.
Setup: The authority uses a group generation algorithm for which the SXDH assumption
holds to generate a bilinear group (G1,G2,GT ) with g2 and g1 as generators of G1 and
G2, respectively. Assume thatG1 andG2 are of order q, and let e be a bilinear pairing on
G1 × G2. It picks 	1, 	2, 	3, 	4, b, c, d, e, z randomly from Zq , and computes:

v1 = g−	1·b+d
1 , v2 = g−	2·b+e

1 , v3 = g−	3·b+c
1 , v4 = g−	4·b+z

1

Consider the language:

L = {〈C1,C2,C3, i, tag, h〉 | ∃s : C1 = gs1, C2 = gbs1 , C3 = vs1 · vi·s2 · vtag·s
3 · vh·s

4 }

It generates a QA-NIZK CRS ψL for the language L (which uses tags i, tag and h).
It also fixes a 1-1, or Universal One-Way Hash function (UOWHF) H. Finally, it picks
	5 and u randomly from Zq and publishes the following public key:

PK :=
⎛
⎝

g1, gb1, f = gc2,
v1, v2, v3, v4,

k = e(g1, g2)−	5·b+u, ψL , H

⎞
⎠

The authority retains the following master secret key:

MSK := (g2, f , 	1, 	2, 	3, 	4, 	5, d, e, u, z)

Encrypt(PK, i, M): The encryption algorithm chooses s and tag at random from Zq .
It then computes:

C0 = M · ks, C1 = gs1, C2 = gb·s1 ,

h = H(C0,C1,C2, tag, i),
C3 = vs1 · vi·s2 · vtag·s

3 · vh·s
4 .

The ciphertext is thenC = 〈C0,C1,C2,C3, tag,p1,p2〉, where 〈p1,p2〉 is a QA-NIZK
proof that 〈C0,C1,C2,C3, i, tag, h〉 ∈ L .
KeyGen(MSK, i): The authority chooses r at random fromZq and creates the following
secret key for identity i:

Ki :=
(

R = gr2, S1 = gr ·c2 , S2 = gr ·z2 , T = gu+r ·(d+i·e)
2 ,

W1 = g−	5−r ·(	1+i·	2)
2 , W2 = g−r ·	3

2 , W3 = g−r ·	4
2

)

Decrypt(Ki, C): Let C be parsed as 〈C0,C1,C2,C3, tag, p1,p2〉. Let h = H(C0,C1,

C2, tag, i). First (publicly) check that (p1,p2) verifies as a QA-NIZK proof of 〈C0,C1,
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C2,C3, i, tag, h〉 ∈ L . If the QA-NIZK does not verify, output ⊥. This public verifia-
bility of the consistency test is informally called the publicly verifiable CCA2 security.
If the public verification succeeds, then obtain

κ = e(C1, Stag1 · Sh2 · T ) · e(C2,W1 · W tag
2 · Wh

3 )

e(C3, R)

and output C0/κ .

Theorem 12. Under the SXDH Assumption, the above scheme is a CCA2 fully secure
IBE scheme.

Proof. We will just show that ks (as used in blinding the plaintext M) is distributed
randomly in the view of an adaptive Adversary, who after obtaining the public key, adap-
tively obtains secret keys for multiple identities i1, i2, . . . , in , and a challenge ciphertext
for identity i (where all the identities are chosen adaptively by the Adversary, and i is
different from the secret key identities). Moreover, the Adversary is allowed to make
decryption queries for identity i as long as the ciphertext in the query is different from
the challenge ciphertext. The challenge ciphertext can be obtained by the Adversary at
any stage.
We will consider a sequence of games, and show that the Adversary’s view is either

statistically or computationally indistinguishable between any two consecutive games.
Game G0 is same as the actual adaptive security CCA2-IBE game above.
GameG1: In this game the challenger behaves exactly like the authoritywhile publishing
the PK, and while generating the secret keys, as well as generating the ciphertext (for
identity i). It also behaves the same for serving decryption requests, except that if the
QA-NIZK verification fails then the challenger wins.
The probability of the Adversary winning in game G ′

0 is no less than the probability
of the Adversary winning in game G0 since the Adversary can itself check that a proof
is not going to verify, and hence just not make such a query. Moreover, in game G0 the
adversary gets no additional information from the challenger when the verification (and
hence decryption) fails. Thus, the view of an Adversary which does not make such calls
is identical to the view of an adversary that makes such a call in game G0.
Game G2: Recall that in the real world (and game G1), the challenger wins (outright)
if the Adversary supplies a ciphertext for decryption which is identical to the ciphertext
output by the challenger, and if the identity is also the same. In game G2 the challenger
wins if the hash h computed (usingH as above) on the Adversary supplied ciphertext is
same as the hash computed on the ciphertext output by the challenger, and the identity is
same. The probability of theAdversarywinning in gameG2 is no less than the probability
of the Adversary winning in game G1 since if the hash is same, and the identify is same,
and the QA-NIZK verifies, then it implies thatC3 is also identical in the two ciphertexts.
This further implies that the proofs are identical, as the proof is uniquely determined
once the language components are set.11

11This property can be proved by checking the structure of the CRS for prover and verifier in the tag-based
system also.
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Game G3: Recall that the decryption requests for identity j are served by obtaining

κ = e(C1, Stag1 · Sh2 · T ) · e(C2,W1 · W tag
2 · Wh

3 )

e(C3, R)

where

R = gr2, S1 = gr ·c2 , S2 = gr ·z2 , T = gu+r ·(d+i·e)
2 , W1 = g−	5−r ·(	1+i·	2)

2 ,W2 = g−r ·	3
2 ,

W3 = g−r ·	4
2

is fixed for identity j by choosing r at random. However, in game G3, each decryption
request is served by choosing this r freshly at random. This is identical to the real-world
game, since the decryption oracle first verifies the QA-NIZK, which guarantees that
C1,C2,C3 are of the correct form. This ensures that κ is independent of the value of r ,
and hence a fresh value r can be chosen for each decryption request. Thus, the view of
the Adversary in games G2 and G3 is identical.
Game G4: In this game the challenger behaves exactly like in game G3, except that
it picks another random value s′ from Zq , and outputs the following as ciphertext (for
identity i):

C0 = M · ks · e(g1, g2)u·s′ ,

C1 = gs+s′
1 ,C2 = gb·s1 ,

C3 = vs1 · vi·s2 · vtag·s
3 · vh·s

4 · g(d+i·e+tag·c+h·z)s′
1 (3)

The tag tag is chosen randomly as in game G0 (and G1).
The view of the Adversary in games G3 and G4 is computationally indistinguishable

by employing the DDH assumption in group G2 on the tuples 〈g1, gb1, gbs1 , gs1〉, and
〈g1, gb1, gbs1 , gs+s′

1 〉. The former tuple is used in game G3 and the latter in game G4.
GameG5: In this game the challenger chooses	′

1, 	′
2, 	′

3, 	′
4,	

′
5 at random and sets

	1 = (	′
1 + d)/b, 	2 = (	′

2 + e)/b, 	3 = (	′
3 + c)/b, 	4 = (	′

4 + z)/b, 	5 =
(	′

5 + u)/b. Thus, the PK is now output as

g1, gb1, v1 = g
−	′

1
1 , v2 = g

−	′
2

1 , v3 = g
−	′

3
1 , v4 = g

−	′
4

1 , and k = e(g1, g2)−	′
5 .

Further, the secret keys are output as

R = gr2, S1 = gr ·c2 , S2 = gr ·z2 , T = gu+r ·(d+i·e)
2 ,

W1 = g
[−	′

5−u−r ·(	′
1+d+i·(	′

2+e))]/b
2 ,

W2 = g
−r ·(	′

3+c)/b
2 ,W3 = g

−r ·(	′
4+z)/b

2 . (4)

The computation of κ in decryption requests is similarly changed.
The view of the Adversary in games G5 and G4 is statistically identical.

Game G6: This game is actually a sequence of several hybrid games, with the j-th
hybrid game G6, j changing the simulation of the j-th secret key generation. Game G6,0
is just the same as game G5.
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In game G6, j the challenger modifies the output of the j-th secret key as follows
(assume that the identity requested by the Adversary is i j ): It chooses r j , r ′

j and r ′′
j at

random and sets

R = g
r j
2 , S1 = g

r j ·c
2 g

r ′
j

2 , S2 = g
r j ·z
2

T = g
r ′′
j +r j ·(d+i j ·e)

2 ,

W1 = g
[−	′

5−r ′′
j −r j ·(	′

1+d+i j ·(	′
2+e))]/b

2 ,

W2 = g
(−r ′

j−r j ·(	′
3+c))/b

2 ,W3 = g
(−r j ·(	′

4+z))/b
2 .

Note that u has completely vanished from the j-th (and earlier) secret key simulation.

Lemma 13. The view of the Adversary in game G6, j is computationally indistinguish-
able from the view of the Adversary in game G6, j−1.

Proof of this lemma is identical to the proof of the corresponding lemma (Lemma 11)
in the plain IBE proof.
Game G7: This game is again a sequence of several hybrid games, with the j-th hybrid
game G7, j changing the simulation of the j-th decryption request. Game G7,0 is just
the game G6,n (where n is the number of secret key requests).
In game G7, j the challenger chooses r j , r ′

j , r
′′
j at random and uses the following in

computation of κ (w.l.o.g.12 let the identity for the decryption request be same as i. Let
tag j be the tag supplied and h j be the hash computed on the given ciphertext):

R = g
r j
2 ,

S
tag j
1 · T · Sh j

2 = g
r j ·(tag j ·c+h j ·z+d+i·e)+r ′

j+r ′′
j

2 ,

and

W1 · W tag j
2 · Wh j

3 =g
[−	′

5−r ′′
j −r j ·(	′

1+d+i·(	′
2+e))]/b

2 ·
g

(−r j ·tag j ·(	′
3+c)−tag j ·r ′

j )/b

2 ·
g

(−r j ·h j ·(	′
4+z))/b

2

Lemma 14. The view of the Adversary in game G7, j is computationally indistinguish-
able from the view of the Adversary in game G7, j−1.

12Although the Adversary might as well request the keys for identities different from i, it may not want to
do that before the identity i is chosen. Thus strictly speaking, we should allow decryption requests for different
identities, but our proof extends as we have already shown earlier in game G6 how to handle giving keys to
the Adversary for other identities.
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Proof. Let H0 be same as the game G6, j−1. In game H1, the challenger chooses z =
z1 + c · z2, d = d1 + c · d2, and tag tag in the ciphertext as −(d2 + h · z2). where
c, z1, z2, d1 and d2 are random and independent values from Zq . It is easy to see that
c, z, d, and tag are random and independent, and hence the view of the Adversary in
games H0 and H1 is statistically identical. Note that with this value of tag, C3 (in the
ciphertext) can be generated by the challenger as

C3 = vs1 · vi·s2 · vtag·s
3 · vh·z

4 · g(d1+i·e+h·z1+(d2+h·z2)·c+tag·c)s′
1

= vs1 · vi·s2 · vtag·s
3 · vh·z

4 · g(d1+i·e+h·z1)s′
1

As a consequence c is not used at all in the simulation of the ciphertext (whose elements
are all in group G2). The simulation of PK (without using c) is unchanged from game
G5.
In game H2, the challenger generates the components in j-th decryption request by

choosing r j and r ′
j uniformly and independently and setting

R = g
r j
2 , S

tag j
1 · T · Sh j

2 = g
u+r j ·((tag j+h j ·z2)·c+h j ·z1+d1+c·d2+i·e)+r ′

j (d2+tag j+h j ·z2)
2 ,

and

W1 · W tag j
2 · Wh j

3 = g
[−	′

5−u−r j ·(	′
1+d1+d2·c+i·(	′

2+e))]/b
2

· g
(−r j ·tag j ·(	′

3+c)−tag j ·r ′
j )/b

2

· g
(−r j ·h j ·(	′

4+z)−h j ·z2·r ′
j )/b

2 · g
−r ′

j (d2+tag j+h j ·z2)/b
2

Recall that in game H1, the secret key is being generated as in Equation (4), with
d = d1 + c · d2. The view of the Adversary in games H2 and H1 is computationally
indistinguishable, and this is shown by employing the DDH assumption on the two

tuples 〈g2, gc2, g
r j
2 , g

cr j
2 〉 and 〈g2, gc2, g

r j
2 , g

cr j+r ′
j

2 〉, where the first tuple is employed in
simulating game H1 and the second tuple is used in simulating game H2.
In game H3, the challenger generates the components in the j-th decryption as

R = g
r j
2 , S

tag j
1 · T · Sh j

2 = g
u+r j ·(tag j ·c+h j ·z+d+i·e)+r ′

j ·r ′′
j

2 ,

and

W1 · W tag j
2 · Wh j

3 = g
[−	′

5−u−r j ·(	′
1+d+i·(	′

2+e))]/b
2

· g
(−r j ·tag j ·(	′

3+c))/b
2

· g
(−r j ·h j ·(	′

4+z))/b
2 · g

−r ′
j ·r ′′

j /b

2
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where r j , r ′
j and r ′′

j are chosen randomly and independently (and independently from
all other variables). Note that d and z are also chosen independently and randomly (back
as in game H0). Moreover, tag is also chosen at random, and C3 output just as in game
H0.
The view of the Adversary in game H3 and H2 is statistically identical by noting that

d = d1 + c · d2, z = z1 + c · z2, tag = −(d2 + h · z2) and r ′′
j = d2 + tag j + h j · z2

are all random and independent (since h j �= h). This can be seen by noting that the four
by four matrix of coefficients of d, z, tag, r ′′

j in their linear representation in terms of
d1, d2, z1, z2 is non-singular.
In game H4, the challenger generates d, z and tag at random (instead of d1 + c · d2,

etc.), and also chooses r ′′′
j at random (and independent of r j , r ′

j and other variables) and
uses the following in decryption

R = g
r j
2 , S

tag j
1 · T · Sh j

2 = g
r ′′′
j +r j ·((tag j+h j ·z2)·c+h j ·z1+d1+c·d2+i·e)

2 ,

and

W1 · W tag j
2 · Wh j

3 = g
[−	′

5−r ′′′
j −r j ·(	′

1+d1+d2·c+i·(	′
2+e))]/b

2

· g
(−r j ·tag j ·(	′

3+c))/b
2

· g
(−r j ·h j ·(	′

4+z))/b
2

Game H4 is statistically identical to game H3, as (= u+r ′
j ·r ′′

j ) in game H3 is random
and independent of r ′

j , and hence is distributed same as a random r ′′′
j as in game H4.

Now note that game H4 is identical to the game G7, j as described above the Lemma 13
statement. �

Game G8 is just the game G7,n where n is the number of decryption queries. Note
that in game G8 the only place that u is used is in the ciphertext component C0 which is
simulated by the challenger as C0 = M · ks · e(g1, g2)us′ (see equation (1)). Hence, C0
is completely random and independent of M in the view of the Adversary in game G7
(note u is nonzero with high probability). That completes the proof. �

Appendix 1: Hardness Assumptions

Definition 15. (DDH [15]) Assuming a generation algorithm G that outputs a tuple
(q,G, g) such that G is of prime order q and has generator g, the DDH assumption
asserts that it is computationally infeasible to distinguish between (g, a · g, b · g, c · g)
and (g, a · g, b · g, ab · g) for a, b, c

$←− Zq . More formally, for all PPT adversaries A
there exists a negligible function ν() such that
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∣∣∣∣
Pr[(q,G, g) ← G(1m); a, b, c ← Zq : A(g, a · g, b · g, c · g) = 1]−
Pr[(q,G, g) ← G(1m); a, b ← Zq : A(g, a · g, b · g, ab · g) = 1]

∣∣∣∣ < ν(m)

Definition 16. (XDH [3]) Consider a generation algorithm G taking the security para-
meter as input, that outputs a tuple (q,G1,G2,GT , e, g1, g2), whereG1,G2 andGT are
groups of prime order q with generators g1, g2 and e(g1, g2), respectively, and which
allow an efficiently computable Zq -bilinear pairing map e : G1 × G2 → GT . The eX-
ternal decisional Diffie–Hellman (XDH) assumption asserts that the Decisional Diffie–
Hellman (DDH) problem is hard in one of the groups G1 and G2.

Definition 17. (SXDH [3]) Consider a generation algorithm G taking the security pa-
rameter as input, that outputs a tuple (q,G1,G2,GT , e, g1, g2), where G1,G2 and GT

are groups of prime order q with generators g1, g2 and e(g1, g2) respectively, and which
allow an efficiently computable Zq -bilinear pairing map e : G1 × G2 → GT . The
Symmetric eXternal decisional Diffie–Hellman (SXDH) assumption asserts that the
Decisional Diffie–Hellman (DDH) problem is hard in both the groups G1 and G2.

Definition 18. (DLIN [3]) Assuming a generation algorithm G that outputs a tuple

(q,G) such that G is of prime order q and has generators g, f,h
$←− G, the DL I N as-

sumption asserts that it is computationally infeasible to distinguish between (g, f,h, x1 ·
g, x2 · f, x3 · h) and (g, f,h, x1 · g, x2 · f, (x1 + x2) · h) for x1, x2, x3

$←− Zq . More
formally, for all PPT adversaries A there exists a negligible function ν() such that

∣∣∣∣∣∣∣∣∣

Pr[(q,G) ← G(1m); g, f,h $←− G; x1, x2, x3 $←− Zq :
A(g, f,h, x1 · g, x2 · f, x3 · h) = 1]−

Pr[(q,G) ← G(1m); g, f,h $←− G; x1, x2 $←− Zq :
A(g, f,h, x1 · g, x2 · f, (x1 + x2) · h) = 1]

∣∣∣∣∣∣∣∣∣
< ν(m)

Definition 19. (k-linear [21,38]) For a constant k ≥ 1, assuming a generation algo-
rithm G that outputs a tuple (q,G) such that G is of prime order q and has generators

g1, · · · , gk+1
$←− G, the k-linear assumption asserts that it is computationally infeasible

to distinguish between (g1, . . . , gk+1, x1 · g1, . . . , xk+1 · gk+1) and (g1, . . . , gk+1, x1 ·
g1, . . . , (x1 + · · · + xk) · gk+1) for x1, . . . , xk+1

$←− Zq . More formally, for all PPT
adversaries A there exists a negligible function ν() such that

∣∣∣∣∣∣∣∣∣

Pr[(q,G) ← G(1m); g1, · · · , gk+1
$←− G; x1, . . . , xk+1

$←− Zq :
A(g1, . . . , gk+1, x1 · g1, . . . , xk+1 · gk+1) = 1]−

Pr[(q,G) ← G(1m); g1, · · · , gk+1
$←− G; x1, . . . , xk $←− Zq :

A(g1, . . . , gk+1, x1 · g1, . . . , (x1 + · · · + xk) · gk+1) = 1]

∣∣∣∣∣∣∣∣∣
< ν(m)
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Appendix 2: Proof of QA-NIZK under the k-Linear Assumption

Completeness: For a candidate 	x · A (which is a language member), the LHS of the
verification equation is:

e
([	l 	p ]

,CRSv

)

= e

⎛
⎝	x · A ·

[
In×n D

F

]
·
⎡
⎣
[
D
F

]
· E

−E

⎤
⎦ , g2

⎞
⎠

= e

(
	x · A ·

([
D
F

]
· E −

[
D
F

]
· E

)
, g2

)
= e(01×ks

1 , g2) = 01×ks
T

Hence completeness follows.
Zero-Knowledge: The CRS is generated exactly as above. In addition, the simulator

is given the trapdoor

[
D
F

]
. Now, given a language candidate 	l, the proof is simply

	p := 	l ·
[
D
F

]
. If 	l is in the language, i.e., it is 	x · A for some 	x, then the distribution of

the simulated proof is identical to the real-world proof. Therefore, the simulated NIZK
CRS and simulated proofs of language members are identically distributed as the real
world. Hence the system is perfect Zero-Knowledge.
Soundness: We prove soundness by transforming the system over two games. Game
G0 just replicates the soundness security definition. In game G1 the CRS is generated
using witness A and its null-space, and this can be done efficiently by the challenger as
the distribution is efficiently witness samplable. After this transformation, we show that
a verifying proof of a non-language member implies breaking the k-linear assumption
in group G2.
Game G0: This is just the original system.
Game G1: In this game, the discrete logarithms of the defining constants of the

language L are given to the CRS generator, or in other words A is given. Since A is a

t × (t + s)-dimensional rank t matrix, there is a rank s matrix

[
Wt×s

Is×s

]
of dimension

(t + s) × s whose columns form a complete basis for the null-space of A, which means

A ·
[
Wt×s

Is×s

]
= 0t×s . In this game, the NIZK CRS is computed as follows: Generate

matrix D′ t×ks with elements randomly chosen from Zq and diagonal matrix Eks×ks as
in the real CRS. Implicitly set,

[
D
F

]
=

[
D′

0s×ks

]
+

[
W · · · W
Is×s · · · Is×s

]

︸ ︷︷ ︸
k times

·E−1
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where Fs×ks def= [
Is×s · · · Is×s

]
︸ ︷︷ ︸

k times

·E−1. Therefore we have,

CRSt×ks
p = A ·

[
D
F

]
= A ·

⎛
⎝

[
D
F

]
−

[
W · · · W
Is×s · · · Is×s

]

︸ ︷︷ ︸
k times

·E−1
⎞
⎠ = A ·

[
D′

0s×ks

]

CRS(n+ks)×ks
v =

⎡
⎣
[
D
F

]
· E

−E

⎤
⎦ · g2 =

⎡
⎢⎢⎣

[
D′

0s×ks

]
· E +

[
W · · · W
Is×s · · · Is×s

]

︸ ︷︷ ︸
k times

−E

⎤
⎥⎥⎦ · g2

Observe that D has identical distribution as in gameG0 and the rest of the computations
were same. So game G1 is statistically indistinguishable from game G0.

We show that if adversary B can produce a “proof” 	p for which the pairing test holds
and yet the candidate 	l is not in LA, then it implies an efficient adversary that can break
the k-linear assumption in group G2.
So now suppose we are given a k-linear challenge distribution

(b1 · g2, . . . , bk · g2, g2, b1r1 · g2, . . . , bkrk · g2,χ)

in the groupG2, where χ is either (
∑n

i=1 ri ) · g2 or random. We generate the CRS using
the challenge components g2, b1 · g2, · · · , bk · g2.

Let us partition the Zq matrix A as
[
At×t
0 At×s

1

]
and the candidate vector 	l as[

	l 1×t
0

	l1×s
1

]
. Note that, since A0 has rank t , the elements of 	l0 are ‘free’ elements

and 	l0 can be extended to a unique n element vector 	l ′, which is a member of LA. This

member vector 	l ′ can be computed as 	l ′ := [	l0 −	l0 · W ]
, where W = −A−1

0 A1. The

proof of 	l ′ is computed as 	p ′ := 	l0 ·D′. Since both (	l, 	p) and (	l′, 	p′) pass the verification
equation, we obtain:

(	l′1 −	l1) · [ Is×s · · · Is×s
]

︸ ︷︷ ︸
k times

= (	p′ − 	p) · E,

where	l′1 = −	l0 ·W. If we represent the ks-element vector 	p as the sequence of k vectors:[	p1 · · · 	pk
]
, then the above equation implies:

	l′1 −	l1 = (	p′
1 − 	p1)b1 = · · · = (	p′

k − 	pk)bk

In particular there exists i ∈ [1, s], such that,

l′1i − l1i = (p′
1i − p1i )b1 = · · · = (p′

ki − pki )bk �= 01
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This gives us a straightforward test for the k-linear challenge:

e(l′1i − l1i ,χ)
?=

k∑
j=1

e(p′
j i − p j i , r j b j · g2)

This concludes our proof of soundness of the QA-NIZK.

Appendix 3: Proof of QA-NIZK for Tag-Based Linear Subspaces

Completeness: We have,

[
	l′ 	p

]
= [ 	x · Al 	x · (	a�

1 + tag · 	a�
2 ) 	x · (Al · D1 + Al · tag · D2 + (	a�

1 + tag · 	a�
2 ) · b−1)

]

and

CRSv,1 + tag · CRSv,2 =
⎡
⎣
b · (D1 + tag · D2)

1
−b

⎤
⎦ · g2

Therefore,

e
([

	l′ 	p
]
,CRSv,1 + tag · CRSv,2

)

= e

⎛
⎝
⎛
⎝

	x · Al · b · (D1 + tag · D2) +
	x · (	a�

1 + tag · 	a�
2 ) −

	x · (Al · D1 + Al · tag · D2 + (	a�
1 + tag · 	a�

2 ) · b−1) · b

⎞
⎠ , g2

⎞
⎠ = 0T

Zero-Knowledge: This is straightforward with the simulator being given trapdoors
D1,D2 and b.

Soundness: As in the proof of Theorem 2, we compute the CRS’s in game G1 as

follows. Let Al = Al · g1, 	a1 = 	a1 · g1 and 	a2 = 	a2 · g1. Further, let
[
Wt×1

1
1

]
be the

null-space of
[
Al 	a�

1

]
and let

[
Wt×1

2
1

]
be the null-space of

[
Al 	a�

2

]
. Then the CRS’s

in game G1 are:

CRSp,1 := [
Al 	a�

1

] ·
([

D′
1
0

]
+

[
W1
1

]
· b−1

)
= [

Al 	a�
1

] ·
[
D′
1
0

]

CRSp,2 := [
Al 	a�

2

] ·
([

D′
2
0

]
+

[
W2
1

]
· b−1

)
= [

Al 	a�
2

] ·
[
D′
2
0

]

CRS(t+2)×1
v,1 :=

⎡
⎣
b · D′

1 + W1
1

−b

⎤
⎦ · g2 CRS(t+2)×1

v,2 :=
⎡
⎣
b · D′

2 + W2
0
0

⎤
⎦ · g2
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We now claim that 	w� def=
[
W1 + tag · W2

1

]
is the null-space of A′ def=

[
Al (	a�

1 + tag · 	a�
2 )

]
. This is because 	w� is a nonzero t × 1 matrix and satisfies:

A′ · 	w� = [
Al (	a�

1 + tag · 	a�
2 )

] ·
[
W1 + tag · W2

1

]
= Al · (W1 + tag · W2)

+ (	a�
1 + tag · 	a�

2 )

= [
Al 	a�

1

] ·
[
W1
1

]
+ tag · [Al 	a�

2

] ·
[
W2
1

]
= 0

The rest of the proof is similar to the rest of the proof of soundness in Theorem 2, since
A′ defines the tag-based language.

Appendix 4: Proof of Strong Split-CRS QA-NIZK for Affine Spaces

Completeness:

e
([	l 	p ]

,CRSv

) = [ 	x 1
] · e

⎛
⎝−

[
0t×n 0t×s

01×n 	d1×s

]
· g1,

⎡
⎣

b · D
Is×s

−b · Is×s

⎤
⎦ · g2

⎞
⎠

= [ 	x 1
] ·

[
0t×s

b · 	d1×s

]
· e (g1, g2)

= 	f

Zero-Knowledge: This is straightforward with the simulator retaining trapdoors D, 	d,
and b. Note that the trapdoors do not depend on the language parameters. Further,
the simulator only uses the trapdoors and not the simulated prover CRS. Hence, this
constitutes a strong split-CRS QA-NIZK proof system.

Soundness: As in the proof of Theorem 2, we compute the CRS’s in game G1 as

follows. Compute

[
Wt×s

Is×s

]
of dimension (t + s) × s whose columns form a complete

basis for the null-space of A, which means A ·
[
Wt×s

Is×s

]
= 0t×s .

Next, the NIZK CRS is computed as follows: The challenger generates matrix D′ t×s

with elements randomly chosen from Zq and element b randomly chosen from Zq (just
as in the real CRS). Now set,

[
D

b−1 · Is×s

]
=

[
D′
0s×s

]
+ b−1 ·

[
W
Is×s

]
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Also choose 	d ′ at random and set

	d = 	d ′ + 	a · b−1 ·
[

W
Is×s

]

Then, 	f can be computed as

e

(
g1, b · 	d ′ · g2 − 	a ·

[
W
Is×s

]
· g2

)

Further CRSp can be computed as

CRS(t+1)×s
p =

[
At×n

	a1×n

]
·
[

D′
0s×s

]
−

[
0t×s

	d ′ 1×s

]
· g1

Rest of the proof is as in the proof of Theorem 2, but crucially noting that in the proof
of Lemma 3 while employing DDH in group G2, the challenge value b · g2 suffices to
simulate all occurrences of b in both the CRSes (including 	f).
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