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Abstract. We prove that every key agreement protocol in the random oracle model in
which the honest usersmake atmost n queries to the oracle can be broken by an adversary
who makes O(n2) queries to the oracle. This improves on the previous �̃(n6) query
attack given by Impagliazzo and Rudich (STOC ’89) and resolves an open question
posed by them. Our bound is optimal up to a constant factor since Merkle proposed
a key agreement protocol in 1974 that can be easily implemented with n queries to a
random oracle and cannot be broken by any adversary who asks o(n2) queries.
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1. Introduction

In the 1970s, Diffie and Hellman [10] and Merkle [19,20] began to challenge the ac-
cepted wisdom that two parties cannot communicate confidentially over an open channel
without first exchanging a secret key using some secure means. The first such pro-
tocol (at least in the open scientific community) was proposed by Merkle [19] for a
course project in Berkeley. Even though the course’s instructor rejected the proposal,
Merkle [20] continued working on his ideas and discussing them with Diffie and Hell-
man [10], leading to the papers. Merkle’s original key exchange protocol was extremely
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simple and can be directly formalized and implemented using a random oracle1 as
follows:

Protocol 1.1. (Merkle’s 1974 Protocol using Random Oracles) Let n be the security
parameter and H : [n2] �→ {0, 1}n be a function chosen at random accessible to all
parties as an oracle. Alice and Bob execute the protocol as follows.

1. Alice chooses 10n distinct random numbers x1, . . . , x10n from [n2] and sends
a1, . . . , a10n to Bob where ai = H(xi ).

2. Similarly, Bob chooses 10n random numbers y1, . . . , y10n in [n2] and sends
b1, . . . , b10n to Alice where b j = H(y j ). (This step can be executed in paral-
lel with Alice’s first step.)

3. If there exists any ai = bi among the exchanged strings, Alice and Bob let (i, j)
to be the lexicographically first index of such pair; Alice takes xi as her key and
Bob takes y j as his key. If no such (i, j) pair exits, they both take 0 as the agreed
key.

It is easy to see that with probability at least 1 − n4/2n , the random function H :
[n2] �→ {0, 1}n is injective, and so any ai = bi will lead to the same key xi = y j used
by Alice and Bob. In addition, the probability of not finding a “collision” ai = b j is
at most (1 − 10/n)10n ≤ (1/e)100 < 2−100 for all n ≥ 10. Moreover, when there is a
collision ai = b j , Eve has to essentially search the whole input space [n2] to find the
preimage xi = y j of ai = b j (or, more precisely, make n2/2 calls to H(·) on average).
We note that in his 1978 paper Merkle [20] described a different variant of a key

agreement protocol by having Alice send to Bob n “puzzles” a1, . . . , an such that each
puzzle ai takes ≈ n “time” to solve (where the times is modeled as the number of oracle
queries), and the solver learns some secret xi . The idea is that Bob would choose at
random which puzzle i ∈ [n] to solve, and so spend ≈ n time to learn xi which he can
then use as a shared secret with Alice after sending a hash of xi to Alice so that she
knows which secret Bob chose. On the other hand, Eve would need to solve almost all
the puzzles to find the secret, thus spending ≈ n2 time. These puzzles can indeed be
implemented via a random oracle H : [n] × [n] �→ {0, 1}n × {0, 1}m as follows. The
i th puzzle with hidden secret x ∈ {0, 1}m can be obtained by choosing and k ← [n] at
random and getting ai = (H1(i, k), H2(i, k) ⊕ x) where ⊕ denotes bitwise exclusive
OR, H1(·, ·) denotes the first n bits of H ’s output, and H2(·, ·) denotes the last m bits of
H ’s output. Now, given puzzles P1 = (h1

1, h2
2), . . . , Pn = (hn

1, hn
2), Bob takes a random

puzzle Pj , solves it by asking H( j, k) for all k ∈ [n] to get H( j, k) = (h j
1, h2) for some

h2, and then retrieves the puzzle solution x = h2 ⊕ h j
2.

One problem with Merkle’s protocol is that its security was only analyzed in the
random oracle model which does not necessarily capture security when instantiated
with a cryptographic one-way or hash function [8]. Biham et al. [2] took a step toward
resolving this issue by providing a security analysis forMerkle’s protocol under concrete

1In this work, random oracles denote any randomized oracle O : {0, 1}∗ �→ {0, 1}∗ such that O(x) is
independent of O({0, 1}∗ \ {x}) for every x (see Definition 2.2). The two protocols of Merkle we describe
here can be implemented using a length-preserving random oracle (by cutting the inputs and the output to the
right length). Our negative results, on the other hand, apply to any random oracle.
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complexity assumptions. In particular, they proved that assuming the existence of one-
way functions that cannot be inverted with probability more than 2−αn by adversaries
running in time 2αn for α ≥ 1/2 − δ, there is a key agreement protocol in which Alice
and Bob run in time n but any adversary whose running time is at most n2−10δ has o(1)
chance of finding the secret.
Perhaps amore serious issuewithMerkle’s protocol is that it only provides a quadratic

gap between the running time of the honest parties and the adversary. Fortunately, not
too long after Merkle’s work, Diffie and Hellman [10] and later Rivest et al. [24] gave
constructions for key agreement protocols that are conjectured to have super-polynomial
(even subexponential) security and are of course widely used to this day. But because
these and later protocols are based on certain algebraic computational problems, they
could perhaps be vulnerable to unforseen attacks using this algebraic structure.
It remained, however, an important open question to show whether there exist key

agreement protocols with super-polynomial security that use only a random oracle.2

The seminal paper of Impagliazzo and Rudich [17] answered this question negatively
by showing that every key agreement protocol, even in its full general form that is allowed
to run in polynomially many rounds, can be broken by an adversary asking O(n6 log n)

queries if the two parties ask n queries in the random oracle model.3 A random oracle is
in particular a one-way function (with high probability)4, and thus an important corollary
of [17]’s result is that there is no construction of key agreement protocols based on one-
way functions with a proof of super-polynomial security that is of the standard black-box
type (i.e., the implementation of the protocol uses the one-way function as an oracle, and
its proof of security uses the one-way function and any adversary breaking the protocol
also as oracles).5

Question and Motivation. Impagliazzo and Rudich [17, Section 8] mention as an open
question (which they attribute toMerkle) to find outwhether their attack can be improved
to O(n2)queries (hence showing the optimality ofMerkle’s protocol in the randomoracle
model) or there exist key agreement protocols in the random oracle model with ω(n2)

security. Beyond just being a natural question, it also has some practical and theoretical
motivations. The practical motivation is that protocols with sufficiently large polynomial
gap could be secure enough in practice—e.g., a key agreement protocol taking 109

operations to run and (109)6 = 1054 operations to break could be good enough for many

2This is not to be confused with some more recent works such as [6], that combine the random oracle
model with assumptions on the intractability of other problems such as factoring or the RSA problem to obtain
more efficient cryptographic constructions.

3More accurately, [17] gave an O(m6 logm)-query attack where m is the maximum of the number of
queries n and the number of communication rounds, though we believe their analysis could be improved to
an O(n6 log n)-query attack. For the sake of simplicity, when discussing [17]’s results we will assume that
m = n, though for our result we do not need this assumption.

4The proof of this statement for the case of non-uniform adversaries is quite non-trivial; see [12] for a
proof.

5This argument applies to our result as well, and of course extends to any other primitive that is implied
by random oracles (e.g., collision-resistant hash functions) in a black-box way.
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applications.6 In fact, as was argued by Merkle himself [19], as technology improves
and honest users can afford to run more operations, such polynomial gaps only become
more useful since the ratio between the work required by the attacker and the honest user
will grow as well. Thus, if known algebraic key agreement protocols were broken, one
might look to polynomial-security protocol such as Merkle’s for an alternative. Another
motivation is theoretical—Merkle’s protocol has very limited interaction (consisting of
one round in which both parties simultaneously broadcast a message) and in particular
it implies a public key encryption scheme. It is natural to ask whether more interaction
can help achieve some polynomial advantage over this simple protocol. Brakerski et
al. [4] show a simple O(n2)-query attack for protocols with perfect completeness based
on a random oracles,7 where the probability is over both the oracle and parties’ random
seeds. In this work, we focus on the main question of [17] in full fledged form.

1.1. Our Results

In this work, we answer the above question of [17], by showing that every protocol in
the random oracle model where Alice and Bobmake n oracle queries can be broken with
high probability by an adversary making O(n2) queries. That is, we prove the following:

Theorem 1.2. (Main theorem) Let � be a two-party protocol in the random oracle
model such that when executing � the two parties Alice and Bob make at most n queries
each, and their outputs are identical with probability at least ρ. Then, for every 0 <

δ < ρ, there is an eavesdropping adversary Eve making O(n2/δ2) queries to the oracle
whose output agrees with Bob’s output with probability at least ρ − δ.

To the best of our knowledge, no better bound than the ˜O(n6)-query attack of [17]
was previously known even in the case where one does not assume the one-way function
is a random oracle (which would have made the task of proving a negative result easier).
In the original publication of this work [5], the following technical result (Theorem

1.3) was implicit in the proof of Theorem 1.2. Since this particular result has found
uses in subsequent works to the original publication of this work [5], here we state and
prove it explicitly. This theorem, roughly speaking, asserts that by running the attacker
of Theorem 1.2 the “correlation” between the “views” of Alice and Bob (conditioned
on Eve’s knowledge) remains close to zero at all times. The view of a party consists of
the information they posses at any moment during the execution of the protocol: their
private randomness, the public messages, and their private interaction with the oracle.

Theorem 1.3. (Making views almost independent—informal) Let � be a two-party
protocol in the random oracle model such that when executing � the two parties Alice
and Bob make at most n oracle queries each. Then for any α, β < 1/10 there is an

6These numbers are just an example, and in practical applications the constant termswillmake an important
difference; however, we note that these particular constants are not ruled out by [17]’s attack but are ruled out
by ours by taking number of operations to mean the number of calls to the oracle.

7We are not aware of any perfectly complete n-query key agreement protocol in the random oracle with
ω(n) security. In other words, it seems conceivable that all such protocols could be broken with a linear
number of queries.
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eavesdropper Eve making poly(n/(αβ)) queries to the oracle such that with probability
at least 1 − α the following holds at the end of every round: the joint distribution of
Alice’s and Bob’s views so far conditioned on Eve’s view is β-close to being independent
of each other.

See Sect. 4 for the formal statement and proof of Theorem 1.3.

1.2. Related Work

Quantum-Resilient Key Agreement. In one central scenario in which some algebraic
key agreement protocolswill be broken—the constructionof practical quantumcomputers—
Merkle’s protocol will also be broken with linear oracle queries using Grover’s search
algorithm [13]. In the original publication of this work, we asked whether our O(n2)-
query classical attack could lead to an O(n) quantumattack against any classical protocol
(where Eve accesses the random oracle in a superposition). We note that using quantum
communication there is an information theoretically secure key agreement protocol [1].
Brassard and Salvail [7] (independently observed by [2]) gave a quantum version of
Merkle’s protocol, showing that Alice and Bob can use quantum computation (but clas-
sical communication) to obtain a key agreement protocol with superlinear n3/2 security
in the random oracle model against quantum adversaries. Finally, Brassard et al. [3]
resolved our question negatively by presenting a classical protocol in the random oracle
model with superlinear security �(n3/2−ε) for arbitrary small constant ε.

Attacks in Small Parallel Time. Mahmoody et al. [22] showed how to improve the
round complexity of the attacker of Theorem 1.2 to n (which is optimal) for the case of
one-message protocols, where a round here refers to a set of queries that are asked to
the oracle in parallel.8 Their result rules out constructions of “time-lock puzzles” in the
parallel random oracle model in which the polynomial-query solver needs more parallel
time (i.e., rounds of parallel queries to the random oracle) than the puzzle generator to
solve the puzzle. As an application back to our setting, [22] used the above result and
showed that every n-query (even multi-round) key agreement protocol can be broken
by O(n3) queries in only n rounds of oracle queries, improving the �(n2)-round attack
of our work by a factor of n. Whether an O(n)-round O(n2)-query attack is possible
remains as an intriguing open question.

Black-Box Separations and the Power of Random Oracle. The work of Impagliazzo
andRudich [17] laid down the framework for the field of black-box separations. A black-
box separation of a primitive Q from another primitive P rules out any construction of
Q from P as long as it treats the primitive P and the adversary (in the security proof)
as oracles. We refer the reader to the excellent survey by Reingold et al. [25] for the
formal definition and its variants. Due to the abundance of black-box techniques in
cryptography, a black-box separation indicates a major disparity between how hard it
is to achieve P vs. Q, at least with respect to black-box techniques. The work of [17]

8For example, a non-adaptive attacker who prepares all of its oracle queries and then asks them in one
shot, has round complexity one.
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employed the so called “oracle separation” method to derive their black-box separation.
In particular, they showed that relative to the oracle O = (R, PSPACE) in which R is a
random oracle one-way functions exist (with high probability) but secure key agreement
does not. This existence of such an oracle implies a black-box separation.
The main technical step in the proof of [17] is to show that relative to a random oracle

R, any key agreement protocol could be broken by an adversary who is computationally
unbounded and asks at most S = poly(n) number of queries (where n is the security
parameter). The smallest such polynomial S for any construction C could be considered
as a quantitative black-box security for C in the random oracle model. This is indeed the
setting of our paper, and we study the optimal black-box security of key agreement in
the random oracle model. Our Theorem 1.2 proves that 
(n2) is the optimal security
one can achieve for an n-query key agreement protocol in the random oracle model. The
techniques used in the proof of Theorem 1.2 have found applications in the contexts
of black-box separations and black-box security in the random oracle model (see, e.g.,
[4,18,23]). In the following, we describe some of the works that focus on the power of
random oracles in secure two-party computation.
Dachman-Soled et al. [11] were the first to point out that results implicit in our proof

of Theorem 1.2 in the original publication of this work [5] could be used to show the ex-
istence of eavesdropping attacks that gather enough information from the oracle in a way
that conditioned on this information the views of Alice and Bob become “close” to being
independent (see Lemma 5 of [11]). Such results were used in [11,14,21] to explore the
power of random oracles in secure two-party computation. Dachman-Soled et al. showed
that “optimally fair” coin-tossing protocols [9] cannot be based on one-way functions
with n input and n output bits in a black-box way if the protocol has o(n/ log n) rounds.
Mahmoody et al. [21] proved that random oracles are useful for secure two-party

computation of finite (or at most polynomial-size domain) deterministic functions only
as the commitment functionality. Their results showed that “non-trivial” functions cannot
be computed securely by a black-box use of one-way functions.
Haitner et al. [16] studied input-less randomized functionalities and showed that a

random oracle9 is, to a large extent, useless for such functionalities as well. In particular,
it was shown that for every protocol� in the random oraclemodel, and every polynomial
p(·), there is a protocol in the no-oracle model that is “1/p(·)-close” to �. [16] proved
this result by using the machinery developed in the original publication of this work
(e.g., the graph characterization of Sect. 3.3.2) and simplified some of the steps of the
original proof. [16] showed how to use such lower bounds for the input-less setting to
prove black-box separations from one-way functions for “differentially private” two-
party functionalities for the with-input setting.

1.3. Our Techniques

The main technical challenge in proving our main result is the issue of dependence
between the executions of the two parties Alice and Bob in a key agreement protocol.
At first sight, it may seem that a computationally unbounded attacker that monitors all
communication between Alice and Bob will trivially be able to find out their shared key.

9[16] proved this result for a larger class of oracles, see [16] for more details.
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But the presence of the random oracle allows Alice and Bob to correlate their execu-
tions even without communicating (which is indeed the reason that Merkle’s protocol
achieves non-trivial security). Dealingwith such correlations is the cause of the technical
complexity in both our work and the previous work of Impagliazzo and Rudich [17].
We handle this issue in a different way than [17]. On a very high level, our approach can
be viewed as using more information about the structure of these correlations than [17]
did. This allows us to analyze a more efficient attacking algorithm that is more frugal
with the number of queries it uses than the attacker of [17]. Below we provide a more
detailed (though still high level) exposition of our technique and its relation to [17]’s
technique.
We now review [17]’s attack (and its analysis) and particularly discuss the subtle issue

of dependence between Alice and Bob that arises in both their work and ours. However,
no result of this section is used in the later sections, and so the reader should feel free at
any time to skip ahead to the next sections that contain our actual attack and its analysis.
1.3.1. The Approach of [17]

Consider a protocol that consists of n rounds of interaction, where each party makes
exactly one oracle query before sending its message. [17] called protocols of this type
“normal-form protocols” and gave an ˜O(n3) attack against them (their final result was
obtained by transforming every protocol into a normal-form protocol with a quadratic
loss of efficiency). Even though without loss of generality the attacker Eve of a key
agreement protocol can defer all of her computation till after the interaction between
Alice and Bob is finished, it is conceptually simpler in both [17]’s case and ours to think
of the attacker Eve as running concurrently with Alice and Bob. In particular, the attacker
Eve of [17] performed the following operations after each round i of the protocol:

• If the round i is one in which Bob sent a message, then at this point Eve samples
1000n log n random executions of Bob from the distributionD of Bob’s executions
that are consistent with the information that Eve has at that moment (which consists
of the communication transcript and previous oracle answers). That is, Eve samples
a uniformly random tape for Bob and uniformly random query answers subject to
being consistent with Eve’s information. After each time she samples an execution,
Eve asks the oracle all the queries that are asked during this execution and records
the answers. (Generally, the true answers will be different from Eve’s guessed
answers when sampling the execution.) If the round i is one in which Alice sent a
message, then Eve does similarly by changing the role of Alice and Bob.

Overall Eve will sample ˜O(n2) executions making a total of ˜O(n3) queries. It is not
hard to see that as long as Eve learns all of the intersection queries (queries asked by
both Alice and Bob during the execution) then she can recover the shared secret with
high probability. Thus the bulk of [17]’s analysis was devoted to showing the following
claim.

Claim 1.4. With probability at least 0.9 Eve never fails, where we say that Eve fails at
round i if the query made in this round by, say, Alice was asked previously by Bob but
not by Eve.
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At first look, it may seem that one could easily prove Claim 1.4. Indeed, Claim 1.4
will follow by showing that at any round i , the probability that Eve fails in round i
for the first time is at most 1/(10n). Now all the communication between Alice and
Bob is observed by Eve, and if no failure has yet happened then Eve has also observed
all the intersection queries so far. Because the answers for non-intersection queries are
completely random and independent from one another, it seems that Alice has no more
information about Bob than Eve does, and hence, if the probability that Alice’s query
q was asked before by Bob is more than 1/(10n), then this query q has probability at
least 1/(10n) to appear in each one of Eve’s sampled executions of Bob. Since Eve
makes 1000n log n such samples, the probability that Eve misses q would be bounded
by (1 − 1

10n )1000n log n � 1/(10n).

The Dependency Issue. When trying to turn the above intuition into a proof, the
assumption that Eve has as much information about Bob as Alice does translates to
the following statement: Conditioned on Eve’s information, the distributions of Alice’s
view and Bob’s view are independent from one another.10 Indeed, if this statement were
true, then the above paragraph could have been easily translated into a proof that [17]’s
attacker is successful, and it would not have been hard to optimize this attacker to achieve
O(n2) queries. Alas, this statement is false. Intuitively the reason is the following: Even
the fact that Eve has not missed any intersection queries is some non-trivial information
that Alice and Bob share and creates dependence between them.11

Impagliazzo and Rudich [17] dealt with this issue by a “charging argument,” where
they showed that suchdependence canbe charged in a certainway to oneof the executions
sampled byEve, in away that atmost n samples can be charged at each round (and the rest
of Eve’s samples are distributed correctly as if the independence assumption was true).
This argument inherently required sampling at least n executions (each of n queries) per
round, resulting in an �(n3) attack.

1.3.2. Our Approach

We now describe our approach and how it differs from the previous proof of [17]. The
discussion below is somewhat high level and vague, and glosses over some important
details. Again, the reader is welcome to skip ahead at any time to Sect. 3 that contains
the full description of our attack and does not depend on this section in any way. Our
attacking algorithm follows the same general outline as that of [17] but has two important
differences:

1. One quantitative difference is that while our attacker Eve also computes a distri-
bution D of possible executions of Alice and Bob conditioned on her knowledge,

10Readers familiar with the setting of communication complexity may note that this is analogous to the
well-known fact that conditioning on any transcript of a 2-party communication protocol results in a product
distribution (i.e., combinatorial rectangle) over the inputs. However, things are different in the presence of a
random oracle.

11As a simple example for such dependence consider a protocol where in the first round Alice chooses x
(which is going to be the shared key) to be either the string 0n or 1n at random, queries the oracle H at x and
sends y = H(x) to Bob. Bob then makes the query 1n and gets y′ = H(1n). Now even if Alice chose x = 0n

and hence Alice and Bob have no intersection queries, Bob can find out the value of x just by observing that
y′ 
= y. Still, an attacker must ask a non-intersection query such as 1n to know if x = 0n or x = 1n .
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she does not sample full executions from D; rather, she computes whether there
is any query q ∈ {0, 1}∗ that has probability more than, say, 1/(100n) of being in
D and makes only such heavy queries. Intuitively, since Alice and Bob make at
most 2n queries, the total expected number of heavy queries (and hence the query
complexity of Eve) is bounded by O(n2). The actual analysis is more involved
since the distribution D keeps changing as Eve learns more information through
the messages she observes and oracle answers she receives.

2. The qualitative difference is that here we do not consider the same distribution D
that was considered by [17]. Their attacker to some extent “pretended” that the
conditional distributions of Alice and Bob are independent from one another and
only considered one party in each round. In contrast, we define our distribution D
to be the joint distribution of Alice and Bob, where there could be dependencies
between them. Thus, to sample from our distributionD one would need to sample
a pair of executions of Alice and Bob (random tapes and oracle answers) that are
consistent with one another and Eve’s current knowledge.

The main challenge in the analysis is to prove that the attack is successful (i.e., that
Claim 1.4 above holds) and in particular that the probability of failure at each round (or
more generally, at each query of Alice or Bob) is bounded by, say, 1/(10n). Once again,
things would have been easy if we knew that the distributionD of the possible executions
of Alice and Bob conditioned on Eve’s knowledge is a product distribution, and hence
Alice has no more information on Bob than Eve has. While this is not generally true,
we show that in our attack this distribution is close to being a product distribution, in a
precise sense.
At any point in the execution, fix Eve’s current information about the system and

define a bipartite graph G whose left-side vertices correspond to possible executions of
Alice that are consistent with Eve’s information and right-side vertices correspond to
possible executions of Bob consistent with Eve’s information. We put an edge between
two executions A and B if they are consistent with one another and moreover if they do
not represent an execution in which Eve has already failed (i.e., there is no intersection
query that is asked in both executions A and B but not by Eve). Roughly speaking, the
distributionD that our attacker Eve considers can be thought of as choosing a uniformly
random edge in the graph G. (Note that the graph G and the distribution D change
at each point that Eve learns some new information about the system.) If G were the
complete bipartite clique, then D would have been a product distribution. Although G
can rarely be the complete graph, what we show is that G is still dense in the sense that
each vertex is connected to most of the vertices on the other side. Relying on the density
of this graph, we show that Alice’s probability of hitting a query that Bob asked before
is at most twice the probability that Eve does so if she chooses the most likely query
based on her knowledge.
The bound on the degree is obtained by showing that G can be represented as a

disjointness graph, where each vertex u is associated with a set S(u) (from an arbitrarily
large universe) and there is an edge between a left-side vertex u and a right-side vertex
v if and only if S(u) ∩ S(v) = ∅. The set S(u) corresponds to the queries made in
the execution corresponding to u that are not asked by Eve. The definition of the graph
G implies that |S(u)| ≤ n for all vertices u. The definition of our attacking algorithm
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implies that the distribution obtained by picking a randomedge e = (u, v) and outputting
S(u) ∪ S(v) is light in the sense that there is no element q in the universe that has
probability more than 1/(10n) of being in a set chosen from this distribution. We show
that these conditions imply that each vertex is connected to most of the vertices on the
other side.

2. Preliminaries

We use bold fonts to denote random variables. By Q ← Q we indicate that Q is sampled
from the distribution of the random variable Q. By (x, y) we denote a joint distribution
over random variables x, y. By x ≡ y we denote that x and y are identically distributed.
For jointly distributed (x, y), by (x | y = y) we denote the distribution of x conditioned
on y = y. When it is clear from the context, we might simply write (x | y) instead of
(x | y = y). By (x × y) we denote a product distribution in which x and y are sampled
independently. For a finite set S, by x ← S we denote that x is sampled from S uniformly
at random. By Supp(x) we denote the support set of the random variable x defined as
Supp(x) = {x | Pr[x = x] > 0}. For any event E , by ¬E we denote the complement of
the event E .

Definition 2.1. A partial function F is a function F : D �→ {0, 1}∗ defined over some
domain D ⊆ {0, 1}∗. We call two partial functions F1, F2 with domains D1, D2 consis-
tent if F1(x) = F2(x) for every x ∈ D1 ∩ D2. (In particular, F1 and F2 are consistent if
D1 ∩ D2 = ∅.)

In previous work, random oracles are defined as either Boolean functions [17] or
length-preserving functions [6]. In this work, we use a general definition that captures
both cases by only requiring the oracle answers to be independent. Since our goal is
to give attacks in this model, using this definition makes our results more general and
applicable to both scenarios.

Definition 2.2. (Random oracles) A random oracle H(·) is a random variable whose
values are functions H : {0, 1}∗ �→ {0, 1}∗ such thatH(x) is distributed independently of
H({0, 1}∗ \ {x}) for all x ∈ {0, 1}∗ and that Pr[H(x) = y] is a rational number for every
pair (x, y).12 For any finite partial function F , by PrH[F] we denote the probability that
the random oracle H is consistent with F . Namely, PrH[F] = PrH←H[F ⊆ H ] and
PrH[∅] = 1 where F ⊆ H means that the partial function F is consistent with H .

Remark 2.3. (Infinite vs. Finite Random Oracles) In this work, we will always work
with finite random oracles which are only queried on inputs of length n ≤ poly(κ)

where κ is a (security) parameter given to parties. Thus, we only need a finite variant
of Definition 2.2. However, in case of infinite random oracles (as in Definition 2.2) we

12Our results extend to the case where the probabilities are not necessarily rational numbers; however, since
every reasonable candidate random oracle we are aware of satisfies this rationality condition, and it avoids
some technical subtleties, we restrict attention to oracles that satisfy it. In Sect. 4.2 we show how to remove
this restriction.
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need a measure space over the space of full infinite oracles that is consistent with the
finite probability distributions of H(·) restricted to inputs {0, 1}n for all n = 1, 2, . . . .
By Caratheodory’s extension theorem, such measure space exists and is unique (see
Theorem 4.6 of [15]).

Since for every random oracle H(·) and fixed x the random variable H(x) is indepen-
dent of H(x ′) for all x ′ 
= x , we can use the following characterization of PrH[F] for
every F ⊆ {0, 1}∗ × {0, 1}∗. Here we only state and use this lemma for finite sets.

Proposition 2.4. For every random oracle H(·) and every finite set F ⊂ {0, 1}∗ ×
{0, 1}∗ we have

Pr
H

[F] =
∏

(x,y)∈F

Pr[H(x) = y].

Now we derive the following lemma from the above proposition.

Lemma 2.5. For consistent finite partial functions F1, F2 and random oracle H it
holds that

Pr
H

[F1 ∪ F2] = PrH[F1] · PrH[F2]
PrH[F1 ∩ F2] .

Proof. Since F1 and F2 are consistent, we can think of F = F1 ∪ F2 as a partial
function. Therefore, by Proposition 2.4 and the inclusion–exclusion principle we have:

Pr
H

[F1 ∪ F2] =
∏

(x,y)∈F1∪F2

Pr[H(x) = y]

=
∏

(x,y)∈F1
Pr[H(x) = y] · ∏(x,y)∈F2

Pr[H(x) = y]
∏

(x,y)∈F1∩F2
Pr[H(x) = y]

= PrH[F1] · PrH[F2]
PrH[F1 ∩ F2] .

�

Lemma 2.6. (Lemma 6.4 in [17]) Let E be any event defined over a random variable
x, and let x1, x2, . . . be a sequence of random variables all determined by x. Let D be
the event defined over (x1, . . . ) that holds if and only if there exists some i ≥ 1 such that
Pr[E | x1, . . . , xi ] ≥ λ. Then Pr[E | D] ≥ λ.

Lemma 2.7. Let E be any event defined over a random variable x, and let x1, x2, . . . be
a sequence of random variables all determined by x. Suppose Pr[E] ≤ λ and λ = λ1 ·λ2.
Let D be the event defined over (x1, . . . ) that holds if and only if there exists some i ≥ 1
such that Pr[E | x1, . . . , xi ] ≥ λ1. Then it holds that Pr[D] ≤ λ2.
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Proof. Lemma 2.6 shows that Pr[E | D] ≥ λ1. Now we prove the contrapositive of
Lemma 2.7. If Pr[D] > λ2, then we would get Pr[E] ≥ Pr[E ∧ D] ≥ Pr[D] · Pr[E |
D] > λ1 · λ2 = λ. �

2.1. Statistical Distance

Definition 2.8. (Statistical distance) By 
(x, y) we denote the statistical distance
between random variables x, y defined as 
(x, y) = 1

2 · ∑

z |Pr[x = z] − Pr[y = z]|.
We call random variables x and y ε-close, denoted by x ≈ε y, if 
(x, y) ≤ ε.

We use the following useful well-known lemmas about statistical distance.

Lemma 2.9. 
(x, y) = ε if and only if either of the following holds:

1. For every (even randomized) function D it holds that Pr[D(x) = 1] − Pr[D(y) =
1] ≤ ε.

2. For every event E it holds that Prx[E] − Pry[E] ≤ ε.

Moreover, if 
(x, y) = ε, then there is a deterministic (detecting) Boolean function D
that achieves Pr[D(x) = 1] − Pr[D(y) = 1] = ε.

Lemma 2.10. It holds that 
((x, z), (y, z)) = Ez←z 
((x | z), (y | z)).

Lemma 2.11. If 
(x, y) ≤ ε1 and 
(y, z) ≤ ε2, then 
(x, z) ≤ ε1 + ε2.

Lemma 2.12. 
((x1, x2), (y1, y2)) ≥ 
(x1, y1).

We use the convention for the notation 
(·, ·) that whenever Pr[x ∈ E] = 0 for some
event E , we let 
((x | E), y) = 1 for every random variable y.

Lemma 2.13. Suppose x, y are finite random variables, and suppose G is some event
defined over Supp(x). Then 
(x, y) ≤ Prx[G] + 
((x | ¬G), y).

Proof. Let δ = 
(x, y). Let g be a Boolean random variable jointly distributed with x
as follows: g = 1 if and only if x ∈ G. Suppose y is sampled independently of (x, g)

(and so (y, g) ≡ (y × g)). By Lemmas 2.12 and 2.10, we have:


(x, y) ≤ 
((x, g), (y, g))

= E
g←g


((x | g), (y | g))

= E
g←g


((x | g), y)

= Pr[g = 1] · 
((x | g = 1), y) + Pr[g = 0] · 
((x | g = 0), y)

≤ Pr[g = 1] + 
((x | g = 0), y)

= Pr
x
[G] + 
((x | ¬G), y).

�
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Definition 2.14. (Key agreement) A key agreement protocol consists of two interac-
tive polynomial-time probabilistic Turing machines (A, B) that both get 1n as security
parameter, each get secret randomness rA, rB , and after interacting for poly(n) rounds A
outputs sA and B outputs sB . We say a key agreement scheme (A, B) has completeness
ρ if Pr[sA = sB] ≥ ρ(n). For an arbitrary oracle O , we define key agreement proto-
cols (and their completeness) relative to O by simply allowing A and B to be efficient
algorithms relative to O .

Security of Key Agreement Protocols. It can be easily seen that no key agreement
protocol with completeness ρ > 0.9 could be statistically secure and that there is
always a computationally unbounded eavesdropper Eve who can guess the shared secret
key sA = sB with probability at least 1/2 + neg(n). In this work, we are interested
in statistical security of key agreement protocols in the random oracle model. Namely,
we would like to know how many oracle queries are required to break a key agreement
protocol relative to a random oracle.

3. Proving the Main Theorem

In this section, we prove the next theorem which implies our Theorem 1.2 as special
case.

Theorem 3.1. Let � be a two-party interactive protocol between Alice and Bob using
a random oracle H (accessible by everyone) such that:

• Alice uses local randomness rA, makes at most n A queries to H, and at the end
outputs sA.

• Bob uses local randomness rB, makes at most nB queries to H, and at the end
outputs sB.

• Pr[sA = sB] ≥ ρ where the probability is over the choice of (rA, rB, H) ←
(rA, rB, H).

Then, for every 0 < δ < ρ, there is a deterministic eavesdropping adversary Eve
who only gets access to the public sequence of messages M sent between Alice and
Bob, makes at most 400 · n A · nB/δ2 queries to the oracle H and outputs sE such that
Pr[sE = sB] ≥ ρ − δ.

3.1. Notation and Definitions

In this subsection, we give some definitions and notations to be used in the proof of
Theorem 3.1. W.l.o.g we assume that Alice, Bob, and Eve will never ask an oracle query
twice. Recall that Alice (resp. Bob) asks at most n A (resp. nB) oracle queries.

Rounds. Alice sends her messages in odd rounds and Bob sends his messages in even
rounds. Suppose i = 2 j − 1 and it is Alice’s turn to send the message mi . This round
starts by Alice asking her oracle queries and computing mi , then Alice sends mi to Bob,
and this round ends by Eve asking her (new) oracle queries based on the messages sent
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so far Mi = [m1, . . . , mi ]. Same holds for i = 2 j by changing the role of Alice and
Bob.

Queries and Views. By Qi
A we denote the set of oracle queries asked by Alice by the

end of round i . By Pi
A we denote the set of oracle query–answer pairs known to Alice by

the end of round i (i.e., Pi
A = {

(q, H(q)) | q ∈ Qi
A

}

). ByV i
A wedenote the viewofAlice

by the end of round i . This view consists of: Alice’s randomness rA, exchangedmessages
Mi as well as oracle query–answer pairs Pi

A known toAlice so far. By Qi
B, Pi

B, V i
B (resp.

Qi
E , Pi

E , V i
E ) we denote the same variables defined for Bob (resp. Eve). Note that V i

E
only consists of (Mi , Pi

E ) since Eve does not use any randomness.We also useQ(·) as an
operator that extracts the set of queries from set of query-answer pairs or views; namely,
Q(P) = {q | ∃ a, (q, a) ∈ P} and Q(V ) = {q | the query q is asked in the view V }.

Definition 3.2. (Heavy queries) For a random variable V whose samples V ← V are
sets of queries, sets of query-answer pairs, or views, we say a query q is ε-heavy for V
if and only if Pr[q ∈ Q(V)] ≥ ε.

Executions and Distributions A (full) execution of Alice, Bob, and Eve can be de-
scribed by a tuple (rA, rB, H) where rA denotes Alice’s random tape, rB denotes Bob’s
random tape, and H is the random oracle (note that Eve is deterministic). We denote
by E the distribution over (full) executions that is obtained by running the algorithms
for Alice, Bob, and Eve with uniformly chosen random tapes rA, rB and a uniformly
sampled random oracle H . By PrE [Pi

A] we denote the probability that a full execution
of the system leads to Pi

A = Pi
A for a given Pi

A. We use the same notation also for other
components of the system (by treating their occupance as events) as well.
For a sequence of i messages Mi = [m1, . . . , mi ] exchanged between the two parties

and a set of query-answer pairs (i.e., a partial function) P , by V(Mi , P) we denote
the joint distribution over the views (V i

A, V i
B) of Alice and Bob in their own (partial)

executions up to the point in the system in which the i th message is sent (by Alice
or Bob) conditioned on: the transcript of messages in the first i rounds being equal to
Mi and H(q) = a for all (q, a) ∈ P . Looking ahead in the proof, the distribution
V(Mi , P) would be the conditional distribution of Alice’s and Bob’s views in eyes of
the attacker Eve who knows the public messages and has learned oracle query–answer
pairs described in P . For (Mi , P) such that PrE [Mi , P] > 0, the distribution V(Mi , P)

can be sampled by first sampling (rA, rB, H) uniformly at random conditioned on being
consistent with (Mi , P) and then deriving Alice’s and Bob’s views V i

A, V i
B from the

sampled (rA, rB, H).
For (Mi , P) such that PrE [Mi , P] > 0, the event Good(Mi , P) is defined over the

distribution V(Mi , P) and holds if and only if Qi
A ∩ Qi

B ⊆ Q(P) for Qi
A, Qi

B,Q(P)

determined by the sampled views (V i
A, V i

B) ← V(Mi , P) and P . For PrE [Mi , P] > 0
we define the distribution GV(Mi , P) to be the distribution V(Mi , P) conditioned on
Good(Mi , P). Looking ahead to the proof the event Good(Mi , P) indicates that the
attacker Eve has not “missed” any query that is asked by both of Alice and Bob (i.e., an
intersection query) so far, and thusGV(Mi , P) refer to the same distribution ofV(Mi , P)

with the extra condition that so far no intersection query is missed by Eve.
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3.2. Attacker’s Algorithm

In this subsection, we describe an attacker Eve who might ask ω(n AnB/δ2) queries, but
she finds the key in the two-party key agreement protocol between Alice and Bob with
probability 1 − O(δ). Then we show how to make Eve “efficient” without decreasing
the success probability too much.

Protocols in Seminormal Form We say a protocol is in seminormal form13 if (1) the
number of oracle queries asked by Alice or Bob in each round is at most one, and (2)
when the last message is sent (by Alice or Bob) the other party does not ask any oracle
queries and computes its output without using the last message. The second property
could be obtained by simply adding an extra message LAST at the end of the protocol.
(Note that our results do not depend on the number of rounds.) One can also always
achieve the first property without compromising the security as follows. If the protocol
has 2 · � rounds, we will increase the number of rounds to 2� · (n A + nB − 1) as follows.
Suppose it is Alice’s turn to send mi and before doing so she needs to ask the queries
q1, . . . , qk (perhaps adaptively) from the oracle. Instead of asking these queries from
H(·) and sending mi in one round, Alice and Bob will run 2n A − 1 sub-rounds of
interaction so that Alice will have enough number of (fake) rounds to ask her queries
from H(·) one by one. More formally:

1. The messages of the first 2n A −1 sub-rounds for an odd round i will all be equal to
⊥. Alice sends the first ⊥ message, and the last message will be mi sent by Alice.

2. For j ≤ k, before sending the message of the 2 j − 1th sub-round Alice asks q j

from the oracle. The number of these queries, namely k, might not be known to
Alice at the beginning of round i , but since k ≤ n A, the number of sub-rounds are
enough to let Alice ask all of her queries q1, . . . , qk without asking more than one
query in each sub-round.

If a protocol is in semi-normal form, then in each round there is at most one query
asked by the party who sends the message of that round, and we will use this condition
in our analysis. Moreover, Eve can simply pretend that any protocol is in seminormal
form by imagining in her head that the extra ⊥ messages are being sent between every
two real message. Therefore, w.l.o.g in the following we will assume that the two-party
protocol� has � rounds and is in seminormal form.14 Finally note that we cannot simply
“expand” a round i in which Alice asks ki queries into 2k messages between Alice and
Bob, because then Bob would know how many queries were asked by Alice, but if we
do the transformation as described above, then the actual number of queries asked for
that round could potentially remain secret.

Construction 3.3. Let ε < 1/10 be an input parameter. The adversary Eve attacks the
�-round two-party protocol � between Alice and Bob (which is in seminormal form)
as follows. During the attack Eve updates a set PE of oracle query-answer pairs as
follows. Suppose in round i Alice or Bob sends the message mi . After mi is sent, if

13We use the term seminormal to distinguish it from the normal-form protocols defined in [17].
14Impagliazzo and Rudich [17] use the term normal form for protocols in which each party asks exactly

one query before sending their messages in every round.
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PrE [Good(Mi , PE )] = 0 holds at any moment, then Eve aborts. Otherwise, as long as
there is any query q 
∈ Q(PE ) such that

Pr
(V i

A,V i
B )←GV(Mi ,PE )

[

q ∈ Q(V i
A)

]

≥ ε

nB
or Pr

(

V i
A,V i

B

)←GV(Mi ,PE )

[

q ∈ Q(V i
B)

]

≥ ε

n A

(i.e., q is (ε/nB)-heavy forAlice or (ε/n A)-heavy for Bobwith respect to the distribution
GV(Mi , PE )) Eve asks the lexicographically first such q from H(·), and adds (q, H(q))

to PE . At the end of round � (when Eve is also done with asking her oracle queries), Eve
samples (V ′

A, V ′
B) ← GV(M�, P�

E ) and outputs Alice’s output s′
A determined by V ′

A as
its own output sE .

Theorem 3.1 directly follows from the next two lemmas.

Lemma 3.4. (Eve finds the key) The output sE of Eve of Construction 3.3 agrees with
sB with probability at least ρ − 10ε over the choice of (rA, rB, H).

Lemma 3.5. (Efficiency of Eve) The probability that Eve of Construction 3.3 asks
more than n A · nB/ε2 oracle queries is at most 10ε.

Before proving Lemmas 3.4 and 3.5, we first derive Theorem 3.1 from them.

Proof of Theorem 3.1. Suppose we modify the adversary Eve and abort it as soon as it
asks more than n A · nB/ε2 queries and call the new adversary EffEve. By Lemmas 3.4
and 3.5, the output sE of EffEve still agrees with Bob’s output sB with probability at
least ρ − 10ε − 10ε = ρ − 20ε. Theorem 3.1 follows by using ε = δ/20 < 1/10 and
noting that n A · nB/(δ/20)2 = 400 · n A · nB/δ2. �

3.3. Analysis of Attack

In this subsection, we will prove Lemmas 3.4 and 3.5, but before doing so we need some
definitions.

Events over E . Event Good holds if and only if Q�
A ∩ Q�

B ⊆ Q�
E in which case we

say that Eve has found all the intersection queries. Event Fail holds if and only if at
some point during the execution of the system, Alice or Bob asks a query q, which was
asked by the other party, but not already asked by Eve. If the first query q that makes
Fail happen is Bob’s j th query, we say the event BFail j has happened, and if it is Alice’s
j th query, we say that the event AFail j has happened. Therefore, BFail1, . . . ,BFailnB

and AFail1, . . . ,AFailnB are disjoint events whose union is equal to Fail. Also note that
¬Good ⇒ Fail, because if Alice and Bob share a query that Eve never made, this
must have happened for the first time at some point during the execution of the protocol
(making Fail happen), but also note thatGood and Fail are not necessarily complement
events in general. Finally let the event BGood j (resp. AGood j ) be the event that when
Bob (resp. Alice) asks his (resp. her) j th oracle query, and this happens in round i + 1,
it holds that Qi

A ∩ Qi
B ⊆ Qi

E . Note that the event BFaili implies BGoodi because if
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BGoodi does not hold, it means that Alice and Bob have already had an intersection
query out of Eve’s queries, and so BFaili could not be the first time that Eve is missing
an intersection query.
The following lemma plays a central role in proving both of Lemmas 3.5 and 3.4.

Lemma 3.6. (Eve finds the intersection queries) For all i ∈ [nB], PrE [BFaili ] ≤
3ε
2nB

. Similarly, for all i ∈ [n A], PrE [AFaili ] ≤ 3ε
2n A

. Therefore, by a union bound,
PrE [¬Good] ≤ PrE [Fail] ≤ 3ε.

We will first prove Lemma 3.6 and then will use this lemma to prove Lemmas 3.5
and 3.4. In order to prove Lemma 3.6 itself, we will reduce it to stronger statements
in two steps i.e., Lemmas 3.7 and 3.8. Lemma 3.8 (called the graph characterization
lemma) is indeed at the heart of our proof and characterizes the conditional distribution
of the views of Alice and Bob conditioned on Eve’s view.

3.3.1. Eve Finds Intersection Queries: Proving Lemma 3.6

As we will show shortly, Lemma 3.6 follows from the following stronger lemma.

Lemma 3.7. Let Bi , Mi , and Pi denote, in order, Bob’s view, the sequence of messages
sent between Alice and Bob, and the oracle query-answer pairs known to Eve, all before
the moment that Bob is going to ask his i th oracle query that might happen be in a round
j that is different from ≥ i .15 Then, for every (Bi , Mi , Pi ) ← (Bi , Mi , Pi ) sampled by
executing the system it holds that

Pr
GV(Mi ,Pi )

[BFaili | Bi ] ≤ 3ε

2nB
.

A symmetric statement holds for Alice.

We first see why Lemma 3.7 implies Lemma 3.6.

Proof of Lemma 3.6 using Lemma 3.7. It holds that

Pr[BFaili ] =
∑

(Bi ,Mi ,Pi )∈Supp(Bi ,Mi ,Pi )

Pr
E

[Bi , Mi , Pi ] · Pr
E

[BFaili | Bi , Mi , Pi ].

Recall that as we said the event BFaili implies BGoodi . Therefore, it holds that

Pr
E

[BFaili | Bi , Mi , Pi ]
≤ Pr

E
[BFaili | Bi , Mi , Pi ,BGoodi ]

15Also note that Mi is not necessarily the same as Mi . The latter refers to the transcript till the i th message
of the protocol is sent, while the former refers to the messages till Bob is going to ask his i th messages (and
might ask zero or more than one queries in some rounds).
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and by definition we have PrE [BFaili | Bi , Mi , Pi ,BGoodi ] = PrGV(Mi ,Pi )[BFaili |
Bi ]. By Lemma 3.7 it holds that PrGV(Mi ,Pi )[BFaili | Bi ] ≤ 3ε

2nB
, and so:

Pr
E

[BFaili ] ≤
∑

(Bi ,Mi ,Pi )∈Supp(Bi ,Mi ,Pi )

Pr
E

[Bi , Mi , Pi ] ·

3ε

2nB
= Pr[ Bob asks ≥ i queries ] · 3ε

2nB
≤ 3ε

2nB
.

In the following, we will prove Lemma 3.7. In fact, we will not use the fact that Bob
is about to ask his i th query and will prove a more general statement. For simplicity,
we will use a simplified notation M = Mi , P = Pi . Suppose M = M j (namely the
number of messages in M is j). The following graph characterization of the distribution
V(M, P) is at the heart of our analysis of the attacker Eve of Construction 3.3. We first
describe the intuition and purpose behind the lemma.

Intuition. Lemma 3.8 below, intuitively, asserts that at any time during the execution
of the protocol, while Eve is running her attack, the following holds. Let (M, P) be
the view of Eve at any moment. Then the distribution V(M, P) of Alice’s and Bob’s
views conditioned on (M, P) could be sampled using a “labeled” bipartite graph G
by sampling a uniform edge e = (u, v) and taking the two labels of these two nodes
(denoted by Au, Bv). This graph G has the extra property of being “dense” and close to
being a complete bipartite graph.

Lemma 3.8. (Graph characterization of V(M, P)) Let M be the sequence of messages
sent between Alice and Bob, let P be the set of oracle query–answer pairs known to Eve
by the end of the round in which the last message in M is sent and Eve is also done with
her learning queries. Let PrV(M,P)[Good(M, P)] > 0. For every such (M, P), there
is a bipartite graph G (depending on M, P) with vertices (UA,UB) and edges E such
that:

1. Every vertex u in UA has a corresponding view Au for Alice (which is consistent
with (M, P)) and a set Qu = Q(Au) \ Q(P), and the same holds for vertices in
UB by changing the role of Alice and Bob. (Note that every view can have multiple
vertices assigned to it.)

2. There is an edge between u ∈ UA and v ∈ UB if and only if Qu ∩ Qv = ∅.
3. Every vertex is connected to at least a (1− 2ε) fraction of the vertices in the other

side.
4. The distribution (VA, VB) ← GV(M, P) is identical to: sampling a random edge

(u, v) ← E and taking (Au, Bv) (i.e., the views corresponding to u and v).
5. The distributions GV(M, P) and V(M, P) have the same support set.

Lemma 3.8 at the heart of the proof of our main theorem, and so we will first see
how to use this lemma before proving it. In particular, we first use Lemma 3.8 to prove
Lemma 3.7, and then we will prove Lemma 3.8.



Merkle’s Key Agreement Protocol is Optimal: An O(n2) Attack on... 717

Proof of Lemma 3.7 using Lemma 3.8. Let B = Bi , M = Mi , P = Pi be as in
Lemma 3.7 and q be Bob’s i th query which is going to be asked after the last mes-
sage m j in M = Mi = M j is sent to Bob. By Lemma 3.8, the distribution GV(M, P)

conditioned on getting B as Bob’s view is the same as uniformly sampling a random edge
(u, v) ← E in the graph G of Lemma 3.8 conditioned on Bv = B. We prove Lemma 3.7
even conditioned on choosing any vertex v such that Bv = B. For such fixed v, the distri-
bution of Alice’s view Au , when we choose a random edge (u, v′) conditioned on v = v′
is the same as choosing a random neighbor u ← N (v) of the node v and then selecting
Alice’s view Au corresponding to the node u. Let S = {u ∈ UA such that q ∈ Au}.
Assuming d(u) denotes the degree of w for any node w, we have

Pr
u←N (v)

[q ∈ Au] ≤ |S|
d(v)

≤ |S|
(1 − 2ε) · |UA| ≤ |S| · |UB |

(1 − 2ε) · |E |
≤

∑

u∈S d(u)

(1 − 2ε)2 · |E | ≤ ε

(1 − 2ε)2 · nB
<

3ε

2nB
.

First note that proving the above inequality is sufficient for the proof of Lemma 3.7,
because BFaili is equivalent to q ∈ Au . Now, we prove the above inequalities.
The second and fourth inequalities are due to the degree lower bounds of Item 3 in

Lemma 3.8. The third inequality is because |E | ≤ |UA| · |UB |. The fifth inequality is
because of the definition of the attacker Eve who asks ε/nB heavy queries for Alice’s
view when sampled from GV(M, P), as long as such queries exist. Namely, when we
choose a random edge (u, v) ← E (which by Item 4 of Lemma 3.8 is the same as
sampling (VA, VB) ← GV(M, P)), it holds that u ∈ S with probability

∑

u∈S d(u)/|E |.
But for all u ∈ S it holds that q ∈ Qu , and so if

∑

u∈S d(u)/|E | > ε/nB the query q
should have been learned by Eve already and so q could not be in any set Qu . The sixth
inequality is because we are assuming ε < 1/10. �

3.3.2. The Graph Characterization: Proving Lemma 3.8

We prove Lemma 3.8 by first presenting a “product characterization” of the distribution
GV(M, P).16

Lemma 3.9. (Product characterization) For any (M, P) as described in Lemma 3.8
there exists a distribution A (resp. B) over Alice’s (resp. Bob’s) views such that the
distribution GV(M, P) is identical to the product distribution (A × B) conditioned on
the event Good(M, P). Namely,

GV(M, P) ≡ ((A × B) | Q(A) ∩ Q(B) ⊆ Q(P)).

Proof. Suppose (VA, VB) ← V(M, P) is such that Q A ∩ Q B ⊆ Q where Q A =
Q(VA), Q B = Q(VB), and Q = Q(P). For such (VA, VB) we will show that
PrGV(M,P)[(VA, VB)] = α(M, P) · αA · αB where: α(M, P) only depends on (M, P),
αA only depends on VA, and αB only depends only on VB . This means that if we let A

16A similar observation was made by [17], see Lemma 6.5 there.
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be the distribution over Supp(VA) such that PrA[VA] is proportional to αA and let B be
the distribution over Supp(VB) such that PrB[VB] is proportional to αB , then GV(M, P)

is proportional (and hence equal to) the distribution ((A × B) | Q A ∩ Q B ⊆ Q).
In the following, we will show that PrGV(M,P)[(VA, VB)] = α(M, P) ·αA ·αB . Since

we are assuming Q A ∩ Q B ⊆ Q (i.e., that the eventGood(M, P) holds over (VA, VB))
we have:

Pr
V(M,P)

[(VA, VB)] = Pr
V(M,P)

[(VA, VB) ∧ Good(M, P)]
= Pr

V(M,P)
[Good(M, P)] Pr

GV(M,P)
[(VA, VB)]. (1)

On the other hand, by definition of conditional probability we have17

Pr
V(M,P)

[(VA, VB)] = PrE [(VA, VB , M, P)]
PrE [(M, P)] . (2)

Therefore, by Equations (1) and (2) we have

Pr
GV(M,P)

[(VA, VB)] = PrE [(VA, VB , M, P)]
PrE [(M, P)] · PrV(M,P)[Good(M, P)] . (3)

The denominator of the right-hand side of Equation (3) only depends on (M, P) and
so we can take β(M, P) = PrE [(M, P)] · PrV(M,P)[Good(M, P)]. In the following,
we analyze the numerator.
Recall that for a partial function F , by PrE [F] we denote the probability that H from

the sampled execution (rA, rB, H) ← E is consistent with F ; namely, PrE [F] = PrH[F]
(see Definition 2.2).
Let PA (resp. PB) be the set of oracle query–answer pairs in VA (resp. VB). We claim

that:

Pr
E

[(VA, VB , M, P)] = Pr[rA = rA] · Pr[rB = rB] · Pr
E

[PA ∪ PB ∪ P].

The reason is that the necessary and sufficient condition that (VA, VB, M, P) happens
in the execution of the system is that when we sample a uniform (rA, rB, H), rA equals
Alice’s randomness, rB equals Bob’s randomness, and H is consistent with PA ∪ PB ∪ P .
These conditions implicitly imply that Alice and Bob will indeed produce the transcript
M as well.
Now by Lemma 2.5 and (PA ∩ PB) \ P = ∅ we have PrE [PA ∪ PB ∪ P] equals to:

Pr
E

[P] · Pr
E

[(PA ∪ PB) \ P] = PrE [P] · PrE [PA \ P] · PrE [PB \ P]
PrE [(PA ∩ PB) \ P]

= Pr
E

[P] · Pr
E

[PA \ P] · Pr
E

[PB \ P].

17Note that VA, VB uniquely determine M, P so Pr[VA, VB , M, P] = Pr[VA, VB ] holds for consistent
VA, VB , M, P , but we choose to write the full event’s description for clarity.
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Therefore, we get:

Pr
GV(M,P)

[(VA, VB)] = Pr[rA = rA] · Pr[rB = rB] · PrE [P] · PrE [PA \ P] · PrE [PB \ P]
β(M, P)

.

and so we can take αA = Pr[rA = rA] · PrE [PA \ P], αB = Pr[rB = rB] · PrE [PB \ P],
and α(M, P) = PrE [P]/β(M, P). �

Graph Characterization. The product characterization of Lemma 3.9 implies that we
can think of GV(M, P) as a distribution over random edges of some bipartite graph
G = (UA,UB, E) defined based on (M, P) as follows.

Construction 3.10. (Labeled graph G = (UA,UB, E)) Every node u ∈ UA will have
a corresponding view Au of Alice that is in the support of the distribution A from
Lemma 3.9.We also let the number of nodes corresponding to a view VA be proportional
to PrA[A = VA], meaning that A corresponds to the uniform distribution over the left-
side vertices UA. Similarly, every node v ∈ UB will have a corresponding view Bv of
Bob such that B corresponds to the uniform distribution over UB . Doing this is possible
because the probabilities PrA[A = VA] and PrB[B = VB] are all rational numbers. More
formally, since in Definition 2.2 of random oracles we assumed H(x) = y to be rational
for all (x, y), the probability space GV(M, P) only includes rational probabilities. Thus,
if W1, . . . , WN is the list of all possible views for Alice when sampling (VA, VB) ←
GV(M, P), and if Pr(VA,VB )←GV(M,P)[W j = VA] = c j/d j where c1, d1, . . . , cN , dN

are all integers, we can put (c j/d j ) · ∏i∈[N ] di many nodes in UA representing the view
W j . Now if we sample a node u ← UA uniformly and take Au as Alice’s view, it would
be the same as sampling (VA, VB) ← GV(M, P) and taking VA. Finally, we define
Qu = Q(Au) \ Q(P) for u ∈ UA to be the set of queries outside of Q(P) that were
asked by Alice in the view Au . We define Qv = Q(Bu) \ Q(P) similarly. We put an
edge between the nodes u and v (denoted by u ∼ v) in G if and only if Qu ∩ Qv = ∅.

It turns out that the graph G is dense as formalized in the next lemma.

Lemma 3.11. Let G = (UA,UB, E) be the graph of Construction 3.10. Then for every
u ∈ UA, d(u) ≥ |UB | · (1 − 2ε) and for every v ∈ UB, d(v) ≥ |UA| · (1 − 2ε) where
d(w) is the degree of the vertex w.

Proof. First note that Lemma 3.9 and the description of Construction 3.10 imply that
the distribution GV(M, P) is equal to the distribution obtained by letting (u, v) be a
random edge of the graph G and choosing (Au, Bv). We will make use of this property.
We first show that for every w ∈ UA,

∑

v∈UB ,w 
∼v d(v) ≤ ε · |E |. The reason is

that the probability of vertex v being chosen when we choose a random edge is d(v)
|E |

and if
∑

v∈UB ,w 
∼v
d(v)
|E | > ε, it means that Pr(u,v)←E [Qw ∩ Qv 
= ∅] ≥ ε. Hence,

because |Qw| ≤ n A, by the pigeonhole principle there would exist q ∈ Qw such that
Pr(u,v)←E [q ∈ Qv] ≥ ε/n A. But this is a contradiction, because if that holds, then
q should have been in P by the definition of the attacker Eve of Construction 3.3,
and hence it could not be in Qw. The same argument shows that for every w ∈ UB ,
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∑

u∈UA,u 
∼w d(u) ≤ ε |E |. Thus, for every vertex w ∈ UA ∪ UB ,
∣

∣E 
∼(w)
∣

∣ ≤ ε |E |
where E 
∼(w) denotes the set of edges that do not contain any neighbor of w (i.e.,
E 
∼(w) = {(u, v) ∈ E | u 
∼ w ∧w 
∼ v}). The following claim proves Lemma 3.11. �

Claim 3.12. For ε ≤ 1/2, let G = (UA,UB, E) be a non-empty bipartite graph where
∣

∣E 
∼(w)
∣

∣ ≤ ε |E | for all vertices w ∈ UA ∪ UB. Then d(u) ≥ |UB | · (1 − 2ε) for all
u ∈ UA and d(v) ≥ |UA| · (1 − 2ε) for all v ∈ UB.

Proof. Let dA = min{d(u) | u ∈ UA} and dB = min{d(v) | v ∈ UB}. By switching
the left and right sides if necessary, we may assume without loss of generality that

dA

|UB | ≤ dB

|UA| . (4)

So it suffices to prove that 1 − 2ε ≤ dA|UB | . Suppose 1 − 2ε > dA|UB | , and let u ∈ UA

be the vertex that d(u) = dA < (1 − 2ε) |UB |. Because for all v ∈ UB we have
d(v) ≤ |UA|, thus, using Inequality (4) we get that |E∼(u)| ≤ dA |UA| ≤ dB |UB |where
E∼(u) = E \ E 
∼(u). On the other hand, since we assumed that d(u) < (1 − 2ε)|UB |,
there are more than 2ε|UB |dB edges in E 
∼(u), meaning that |E∼(u)| <

∣

∣E 
∼(u)
∣

∣ /(2ε).
But this implies

|E 
∼(u)| ≤ ε|E | = ε
(

|E 
∼(u)| + |E∼(u)|
)

< ε|E 
∼(u)| + |E 
∼(u)|/2,

which is a contradiction for ε < 1/2. �

Finally, we prove Item5.Namely, for every (A, B) ← V(VA, VB), there is some B ′ such
that (A, B ′) is in the support set of GV(VA, VB). The latter is equivalent to finding B ′
that is consistent with M, P and thatQ(A) ∩ Q(B) ⊆ Q(P). For sake of contradiction
suppose this is not the case. Therefore, if we sample B ′ from the distribution of VB

conditioned on P, M , then there is always an element in Q(A) ∩ Q(B ′) that is outside
of cQ(P). By the pigeonhole principle, one of the queries inQ(A) \Q(P) would be at
least 1/n A-heavy for the distribution GV(VA, VB) (in particular the VB part). But this
contradicts how the algorithm of Eve operates.

Remark 3.13. (Sufficient condition for graph characterization) It can be verified that
the proof of the graph characterization of Lemma 3.8 only requires the following: At
the end of the rounds, Eve has learned all the (ε/nB)-heavy queries for Alice and all the
(ε/n A)-heavy queries for Bobwith respect to the distributionGV(M, P).More formally,
all we need is that when Eve stops asking more queries, if there is any query q such that

Pr
(VA,VB )←GV(M,P)

[q ∈ Q(VA)] ≥ ε

nB
or Pr

(VA,VB )←GV(M,P)

[q ∈ Q(VB)] ≥ ε

n A

then q ∈ Q(P). In particular, Lemma 3.8 holds even if Eve arbitrarily asks queries that
are not necessarily heavy at the time being asked or chooses to ask the heavy queries in
an arbitrary (different than lexicographic) order.
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3.3.3. Eve Finds the Key: Proving Lemma 3.4

Now, we turn to the question of finding the secret. Theorem 6.2 in [17] shows that once
one finds all the intersection queries, with O(n2) more queries they can also find the
actual secret. Here we use the properties of our attack to show that we can do so even
without asking more queries.
First we need to specify and prove the following corollary of Lemma 3.8.

Corollary 3.14. (Corollary of Lemma 3.8) Let Eve be the eavesdropping adversary
of Construction 3.3 using parameter ε, and PrV(Mi ,Pi

E )[Good(Mi , Pi
E )] > 0 where

(Mi , Pi
E ) is the view of Eve by the end of round i (when she is also done with learning

queries). For the fixed i, Mi , Pi
E , let (VA, VB) be the joint view of Alice and Bob as

sampled from GV(Mi , Pi
E ). Then for some product distribution (UA × UB) (where

UA × UB could also depend on i, Mi , Pi
E ) we have:

1. 
((VA, VB), (UA × UB)) ≤ 2ε.
2. For every possible (A, B) ← V(VA, VB) (which by Item 5 is the same as the set

of all (A, B) ← GV(VA, VB)) we have:


((VA | VB = B), UA) ≤ 2ε,


((VB | VA = A), UB) ≤ 2ε.

Proof. In the graph characterization G = (UA,UB, E) of GV(M, P) as described in
Lemma3.8, every vertex is connected to 1−2ε fraction of the vertices of the other section,
and consequently the graph G has 1− 2ε fraction of the edges of the complete bipartite
graph with the same nodes (UA,UB). Thus, if we take UA the uniform distribution over
UA and UB the uniform distribution over UB , they satisfy all the three inequalities. �

The process of sampling the components of the system can also be done in a “reversed”
order where we first decide about whether some events are going to hold or not and then
sample the other components conditioned on that.

Notation. In the following, let s(V ) be the output determined by any view V (of Alice
or Bob)

Construction 3.15. Sample Alice, Bob, and Eve’s views as follows.

1. Toss a coin b such that b = 1 with probability PrE [Good].
2. If b = 1:

(a) Sample Eve’s final view (M, P) conditioned on Good.
(b) (i) Sample views of Alice and Bob (VA, VB) from GV(M, P).

(ii) Eve samples (V ′
A, V ′

B) ← GV(M, P), and outputs sE = s(V ′
A).

3. If b = 0:

(a) Sample Eve’s final view (M, P) conditioned on ¬Good.
(b) (i) Sample views (VA, VB) ← (V(M, P) | ¬Good).

(ii) Eve does the same as case b = 1 above.
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In other words, b = 1 if and only ifGood holds over the real views of Alice and Bob.
Wemight use b = 1 andGood interchangeably (depending onwhich one is conceptually
more convenient).
The attacker Eve of Construction 3.3 samples views (V ′

A, V ′
B) fromGV(M, P) in both

cases of b = 0 and b = 1, and that is exactly what the Eve of Construction 3.15 does
as well, and the pair (sE , s(VB)) in Constructions 3.3 vs. 3.15 is identically distributed.
Therefore, our goal is to lower bound the probability of getting sE = s(VB) where
sE = s(V ′

A) is the output of V ′
A and s(VB) is the output of VB (in Construction 3.15).

We would show that this event happens in Step 2b with sufficiently large probability.
(Note that it is also possible that sE = s(VB) happens in Step 3b as well, but we ignore
this case.)
In the following, let ρ(M, P) and win(M, P) be defined as follows.

ρ(M, P) = Pr
(VA,VB )←GV(M,P)

[s(VA) = s(VB)]
win(M, P) = Pr

(VA,VB )←GV(M,P),(V ′
A,V ′

B )←GV(M,P)
[s(V ′

A) = s(VB)]

where (VA, VB) and (V ′
A, V ′

B) are independent samples.
We will prove Lemma 3.4 using the following two claims.

Claim 3.16. Suppose P denotes Eve’s set of oracle query–answer pairs after all of the
messages in M are sent. Assuming the probability ofGood(M, P) is nonzero conditioned
on (M, P), for every ε < 1/10 used by Eve’s algorithm of Construction 3.3 it holds
that

win(M, P) ≥ ρ(M, P) − 4ε.

Now we prove Claim 3.16.

Proof of Claim 3.16. Let (UA × UB) be the product distribution of Corollary 3.14 for
the view of (M, P). We would like to lower bound the probability of s(V ′

A) = s(VB)

where (VA, VB) and (V ′
A, V ′

B) are independent samples from the same distribution
(VA, VB) ≡ GV(M, P). Since M, P are fixed, for simplicity of notation, in the fol-
lowing we let (VA, VB) ≡ GV(M, P) without explicitly mentioning M, P . Also, in
what follows, VA (resp. VB) will denote the marginal distribution of the first (resp. sec-
ond) component of (VA, VB). We will also preserve VA, VB to denote the real and Bob
views sampled from (VA, VB), and we will use V ′

A, V ′
B to denote Eve’s samples from

the same distribution (VA, VB).
For every possible view A0 ← VA, let ρ(A0) = Pr(A,B)←(VA,VB ))[s(A) = s(B) |

A = A0]. By averagingoverAlice’s view, it holds thatρ(M, P) = E(A,B)←(VA,VB )[ρ(A)].
Similarly, for every possible view A0 ← VA, let win(A0) = Pr(A,B)←(VA,VB ))[s(A) =
s(B)]. By averaging over Alice’s view, it holds that ρ(M, P) = E(A,B)←(VA,VB )[ρ(A)]
and win(M, P) = E(A,B)←(VA,VB )[win(A)]
In the following, we will prove something stronger than Claim 3.16 and will show

that win(V ′
A) ≥ ρ(V ′

A) − 4ε for every V ′
A ← VA, and the claim follows by averaging
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over V ′
A ← VA. Thus, in the following V ′

A will be the fixed sample V ′
A ← VA. By

Corollary 3.14, for every possible Alice’s view A ← VA, the distribution of Bob’s
view sampled from (VB | VA = A) is 2ε-close to UB . Therefore, the distribution of
VB (without conditioning on VA = A) is also 2ε-close to UB . By two applications of
Lemma 2.9, we get

win(V ′
A) = Pr

VB←VB
[s(V ′

A) = s(VB)]
≥ Pr

B←UB
[s(V ′

A) = s(B)] − 2ε

≥ Pr
V ′

B←(VB |VA=V ′
A)

[s(V ′
A) = s(V ′

B)] − 4ε

= ρ(V ′
A) − 4ε. �

The following claim lower bounds the completeness of the key agreement protocol
when conjuncted with reaching Step 2b in Construction 3.15.

Claim 3.17. It holds that PrE [s(VA) = s(VB) ∧ Good] ≥ ρ − 3ε.

Proof. By Lemma 3.6, it holds that 1 − 3ε ≤ PrE [Good]. Therefore,

ρ − 3ε ≤ Pr
E

[s(VA) = s(VB)] − Pr
E

[¬Good] = Pr
E

[s(VA) = s(VB) ∧ Good].
�

Proof of Lemma 3.4. Wewill show a stronger claim that Pr[s(V ′
A) = s(VB)∧Good] ≥

ρ − 7ε which implies Pr[s(V ′
A) = s(VB)] ≥ ρ − 7ε as well. By definition of Construc-

tion 3.15 and using Claims 3.16 and 3.17, we have:

Pr[s(V ′
A) = s(VB) ∧ Good] = Pr

E
[Good] · E

(M,P)←((M,P)|Good)
[win(M, P)]

≥ Pr
E

[Good] · E
(M,P)←((M,P)|Good)

[ρ(M, P) − 4ε]
= (

Pr
E

[Good] · E
(M,P)←((M,P)|Good)

[ρ(M, P)])

− (4 Pr
E

[Good] · ε)

= (

Pr
E

[Good] · Pr[s(VA) = s(VB) | Good])

− (4 Pr
E

[Good] · ε)

≥ (ρ − 3ε) − (4ε) = ρ − 7ε. �

3.3.4. Efficiency of Eve: Proving Lemma 3.5

Recall that Eve’s criteria for “heaviness” is based on the distribution GV(M, PE ) where
M is the current sequence of messages sent so far and PE is the current set of oracle
query-answer pairs known to Eve. This distribution is conditioned on Eve not missing
any queries up to this point. However, because we have proven that the event Fail has
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small probability, queries that are heavy under GV(M, PE ) are also (typically) almost
as heavy under the real distribution V(M, PE ). Intuitively this means that, on average,
Eve will not make too many queries.

Definition 3.18. (Coloring of Eve’s queries) Suppose (Mi , PE ) is the viewofEve at the
momentEve asks queryq.We callq a red query, denotedq ∈ R, if Pr[Good(Mi , PE )] ≤
1/2. We call q a green query of Alice’s type, denoted q ∈ GA, if q is not red and
Pr(V i

A,V i
B )←V(Mi ,PE )[q ∈ Q(V i

A)] ≥ ε
2nB

. (Note that here we are sampling the views

from V(Mi , PE ) and not from GV(Mi , PE ) and the threshold of “heaviness” is ε
2nB

rather than ε
nB

.) Similarly, we call q a green query of Bob’s type, denoted q ∈ GB, if q

is not red and Pr(V i
A,V i

B )←V(Mi ,PE )[q ∈ Q(V i
B)] ≥ ε

2n A
. We also let the set of all green

queries to be G = GA ∪ GB.

The following claim shows that each of Eve’s queries is either red or green.

Claim 3.19. Every query q asked by Eve is either in R or in G.

Proof. If q is a query of Eve which is not red, then PrV(Mi ,PE )[Good(Mi , PE )] ≥ 1/2
where (Mi , PE ) is the view of Eve when asking q. Since Eve is asking q, either of the
following holds:

1. Pr(V i
A,V i

B )←GV(Mi ,PE )[q ∈ Q(V i
A)] ≥ ε

nB
, or

2. Pr(V i
A,V i

B )←GV(Mi ,PE )[q ∈ Q(V i
B)] ≥ ε

n A
.

If case 1 holds, then

Pr
(V i

A,V i
B )←V(Mi ,PE )

[q ∈ Q(V i
A)] ≥ Pr

(V i
A,V i

B )←V(Mi ,PE )

[Good(Mi , PE ) ∧ q ∈ Q(V i
A)]

= Pr
V(Mi ,PE )

[Good(Mi , PE )] · Pr
(V i

A,V i
B )←GV(Mi ,PE )

[q ∈ Q(V i
A)]

≥ (
1

2
) · ε

nB
= ε

2nB

which implies that q ∈ GA. Case 2 similarly shows that q ∈ GB. �

We will bound the size of the queries of each color separately.

Claim 3.20. (Bounding red queries) PrE [R 
= ∅] ≤ 6ε.

Claim 3.21. (Bounding green queries) EE [|G|] ≤ 4n A · nB/ε. Therefore, by Markov
inequality, PrE [|G| ≥ n A · nB/ε2] ≤ 4ε.

Proving Lemma 3.5. Lemma 3.5 follows by a union bound and Claims 3.19, 3.20,
and 3.21.
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Proof of Claim 3.20. Claim 3.20 follows directly from Lemma 2.7 and Lemma 3.6
as follows. Let x (in Lemma 2.7) be E , the event E be Fail, the sequence x1, . . . , be
the sequence of pieces of information that Eve receives (i.e., the messages and oracle
answers), λ = 3ε, λ1 = 1/2 and λ2 = 6ε. Lemma 3.6 shows that Pr[Fail] ≤ λ.
Therefore, if we let D be the event that at some point conditioned on Eve’s view the
probability of Fail is more than λ1, Lemma 2.7 shows that the probability of D is at
most λ2. Also note that for every sampled (M, PE ), Pr[¬Good | (M, PE )] ≤ Pr[Fail |
(M, PE )]. Therefore, with probability at least 1− λ2 = 1− 6ε, during the execution of
the system, the probability of Good(M, PE ) conditioned on Eve’s view will never go
below 1/2. �

Proof of laim 3.21. Wewill prove thatEE [|GA|] ≤ 2n A ·nB/ε, andEE [|GB|] ≤ 2n A ·
nB/ε follows symmetrically. Using these two upper bounds, we can derive Claim 3.21
easily.
For a fixed query q ∈ {0, 1}�, let Iq be the event, defined over E , that Eve asks q as

a green query of Alice’s type (i.e., q ∈ GA). Let Fq be the event that Alice actually
asks q (i.e., q ∈ Q A). By linearity of expectation we have EE [|GA|] = ∑

q Pr[Iq ] and
∑

q Pr[Fq ] ≤ |Q A| ≤ n A. Let γ = ε
2nB

. We claim that for all q it holds that:

Pr[Iq ] · γ ≤ Pr[Fq ]. (5)

First note that Inequality (5) implies Claim 3.21 as follows:

E
E
[|GA|] =

∑

q

Pr[Iq ] ≤ 1

γ

∑

q

Pr[Fq ] ≤ n A

γ
= 2n AnB

ε
.

To prove Inequality (5), we use Lemma 2.7 as follows. The underlying random variable
x (of Lemma 2.7) will be E , the event E will be Fq , the sequence of random variables
x1, x, . . . will be the sequence of pieces of information that Eve observes, λ will be
Pr[Fq ], and λ1 will be γ . If Iq holds, it means that based on Eve’s view the query q
has at least γ probability of being asked by Alice (at some point before), which implies
that the event D (of Lemma 2.7) holds, and so Iq ⊆ D. Therefore, by Lemma 2.7
Pr[Iq ] ≤ Pr[D] ≤ λ/λ1 = Pr[Fq ]/γ proving Inequality (5). �

Remark 3.22. (Sufficient Condition for Efficiency of Eve) The proof of Claims 3.19
and 3.21 only depends on the fact that all the queries asked by Eve are either (ε/nB)-
heavy for Alice or (ε/n A)-heavy for Bob with respect to the distribution GV(M, P).
More formally, all we need is that whenever Eve asks a query q it holds that

Pr
(VA,VB )←GV(M,P)

[q ∈ Q(VA)] ≥ ε

nB
or Pr

(VA,VB )←GV(M,P)

[q ∈ Q(VB)] ≥ ε

n A
.

In particular, the conclusions of Claims 3.19 and 3.21 hold regardless of which heavy
queries Eve chooses to ask at any moment, and the only important thing is that all the
queries asked by Eve were heavy at the time of being asked.
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4. Extensions

In this section, we prove several extensions to our main result that can all be directly
obtained from the results proved in Sect. 3. The main goal of this section is to generalize
our main result to a broader setting so that it could be applied in subsequent work more
easily. We assume the reader is familiar with the definitions given in Sects. 2 and 3.

4.1. Making the Views Almost Independent

In this section, we will prove Theorem 1.3 along with several other extensions. These
extensions were used in [11] to prove black-box separations for certain optimally fair
coin-tossing protocols. We first mention these extensions informally and then will prove
them formally.

Average Number of Queries:Wewill show how to decrease the number of queries asked
by Eve by a factor of �(ε) if we settle for bounding the average number of queries
asked by Eve. This can always be turned into a an attack of worst-case complexity
by putting the 
(ε) multiplicative factor back and applying the Markov inequality.

Changing the Heaviness Threshold: We will show that the attacker Eve of Construc-
tion 3.3 is “robust” with respect to choosing its “heaviness” parameter ε. Namely,
if she changes the parameter ε arbitrarily during her attack, as long as ε ∈ [ε1, ε2]
for some ε1 < ε2, we can still show that Eve is both “successful” and “efficient”
with high probability.

Learning the Dependencies: We will show that our adversary Eve can, with high proba-
bility, learn the “dependency” between the views of Alice and Bob in any two-party
computation. Dachman et al. [11] were the first to point out that such results can
be obtained from results proved in original publication of this work [5]. Haitner et
al. [16], relying some of the results proved in [5], proved a variant of the first part
of our Theorem 1.3 in which n bounds both of n A and nB .

Lightness of Queries: We observe that with high probability the following holds at the
end of every round conditioned on Eve’s view: For every query q not learned by
Eve, the probability of q being asked by Alice or Bob remains “small.” Note that
here we are not conditioning on the event Good(M, P).

Now we formally prove the above extensions.
The following definition defines a class of attacks that share a specific set of properties.

Definition 4.1. For ε1 ≤ ε2, we call Eve an (ε1, ε2)-attacker, if Eve performs her attack
in the framework of Construction 3.3, but instead of using a single parameter ε it uses
ε1 ≤ ε2 as follows.

1. All queries asked are heavy according to parameter ε1. Every query q asked
by Eve, at the time of being asked, should be either (ε1/nB)-heavy for Alice or
(ε1/n A)-heavy for Bob with respect to the distribution GV(M, P) where (M, P)

is the view of Eve when asking q.
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2. No heavy query, as parameterized by ε2, remains unlearned. At the end of
every round i , if (M, P) is the view of Eve at that moment, and if q is any query
that is either (ε2/nB)-heavy for Alice or (ε2/n A)-heavy for Bob with respect to
the distribution GV(M, P), then Eave has to have learned that query already to
make sure q ∈ Q(P).

Comparison with Eve of Construction 3.3. The Eve of Construction 3.3 is an (ε, ε)-
attacker, but for ε1 < ε2 the class of (ε1, ε2)-attackers includes algorithms that could
not necessarily be described by Construction 3.3. For example, an (ε1, ε2)-attackers can
chose any ε ∈ [ε1, ε2] and run the attacker of Construction 3.3 using parameter ε, or
it can even keep changing its parameter ε ∈ [ε1, ε2] along the execution of the attack.
In addition, the attacker of Construction 3.3 needs to choose the lexicographically first
heavy query, while an (ε1, ε2)-attacker has the freedom of choosing any query so long
as it is (ε1/nB)-heavy for Alice or (ε1/n A)-heavy for Bob. Finally, an (ε1, ε2)-attacker
could use its own randomness rE that affects its choice of queries, as long as it respects
the two conditions of Definition 4.1.

Definition 4.2. (Self-dependency) For every joint distribution (x, y), we call
SelfDep(x, y) = 
((x, y), (x × y)) the self (statistical) dependency of a (x, y) where
in (x × y) we sample x and y independently from their marginal distributions.

The following theorem formalizes Theorem 1.3. The last part of the theorem is used
by [11] to prove lower bounds on coin-tossing protocols from one-way functions. We
advise the reader to review the notations of Sect. 3.1 as we will use some of them here
for our modified variant of (ε1, ε2)-attackers.

Theorem 4.3. (Extensions to main theorem) Let, �, rA, n A, rB, nB, H, sA, sB, ρ be
as in Theorem 3.1 and suppose ε1 ≤ ε2 < 1/10. Let Eve be any (ε1, ε2)-attacker who
is modified to stop asking any queries as soon as she is about to ask a red query (as
defined in Definition 3.18). Then the following claims hold.

1. Finding outputs: Eve’s output agrees with Bob’s output with probability ρ−16ε2.
2. Average number of queries: The expected number of queries asked by Eve is at

most 4n AnB/ε1. More generally, if we let Qε to be the number of (green) queries
that are asked because of being ε-heavy for a fixed ε ∈ [ε1, ε2], it holds that
E[|Qε|] ≤ 4n AnB/ε.

3. Self-dependency at every fixed round. For any fixed round i , it holds that

E

(M,P)←(Mi ,Pi
E )

[SelfDep(V(M, P))] ≤ 21 · ε2.

4. Simultaneous self-dependencies at all rounds. For every α, β such that 0 < α <

1, 0 < β < 1, and α ·β ≥ ε2, with probability at least 1− 9α the following holds:
at the end of every round i , we have SelfDep(V(Mi , Pi

E )) ≤ 9β.
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5. Simultaneous lightness at all round. For every α, β such that 0 < α < 1,
0 < β < 1, and α · β ≥ ε2, with probability at least 1 − 9α the following holds:
at the end of every round, if q 
∈ Q(P) is any query not learned by Eve so far we
have

Pr
(VA,VB )←V(M,P)

[q ∈ Q(VA)] <
ε2

nB
+ β and

Pr
(VA,VB )←V(M,P)

[q ∈ Q(VB)] <
ε2

n A
+ β.

6. Dependency and lightness at every fixed round. For every round i and every
(M, P) ← (Mi , Pi

E ) there is a product distribution (WA × WB) such that the
following two hold:

(a) E(M,P)[
(V(M, P), (WA × WB))] ≤ 15ε2.
(b) With probability 1 − 6ε2 over the choice of (M, P) (which determines the

distributions WA, WB as well), we have Pr[q ∈ Q(WA)] < ε2
nB

and Pr[q ∈
Q(WB)] < ε2

n A
.

In the rest of this section, we prove Theorem 4.3. To prove all the properties, we first
assume that the adversary is an (ε1, ε2)-attacker, denoted by UnbEve (Unbounded Eve),
and then will analyze how stopping UnbEve upon reaching a red query (i.e., converting
it into Eve) will affect her execution.
Remarks 3.13 and 3.22 show that many of the results proved in the previous section

extend to the more general setting of (ε1, ε2)-attackers.

Claim 4.4. All the following lemmas, claims, and corollaries still hold when we use
an arbitrary (ε1, ε2)-attacker and ε1 < ε2 < 1/10:

1. Lemma 3.8 using ε = ε2.
2. Corollary 3.14 using ε = ε2.
3. Lemma 3.6 using ε = ε2.
4. Lemma 3.4 using ε = ε2.
5. Claim 3.20 using ε = ε2.
6. Claim 3.19 by using ε = ε1 in the definition of green queries.
7. Claim 3.21 by using ε = ε1 in the definition of green queries. More generally, the

proof of Claim 3.21 works directly (without any change) if we run a (ε1, ε2) attack,
but define the green queries using a parameter ε ∈ [ε1, ε2] (and only count such
queries, as green ones).

Proof. Item 1 follows from Remark 3.13 and the second property of (ε1, ε2)-attackers.
All Items 2–5 follow from Item 1 because the proofs of the corresponding statements in
previous section only rely (directly or indirectly) on Lemma 3.8.
Items 6 and 7 follow from Remark 3.22 and the first property of (ε1, ε2)-attackers. �

Finding Outputs. By Item 4 of Claim 4.4, UnbEve hits Bob’s output with probability at
least ρ −10ε2. By Item 5 of Claim 4.4, the probability that UnbEve asks any red queries
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is at most 6ε2. Therefore, Eve’s output will agree with Bob’s output with probability at
least ρ − 10ε − 6ε = ρ − 16ε.

Number of Queries. By Item 7, the expected number of green queries asked byUnbEve
is at most 4n AnB/ε1. As also specified in Item 7, the more general upper bound, for an
arbitrary parameter ε ∈ [ε1, ε2], holds as well.

Dependencies. We will use the following definition which relaxes the notion of self-
dependency by computing the statistical distance of (x, y) to the closest product distri-
bution (that might be different from (x × y)).

Definition 4.5. (Statistical dependency) For two jointly distributed random variables
(x, y), let the statistical dependency of (x, y), denoted by StatDep(x, y), be the mini-
mum statistical distance of (x, y) from all product distributions defined over Supp(x) ×
Supp(y). More formally:

StatDep(x, y) = inf
(a×b)


((x, y), (a × b))

in which a × b are distributed over Supp(x) × Supp(y).

By definition, we have StatDep(x, y) ≤ SelfDep(x, y). The following Lemma
by [21] shows that the two quantities cannot be too far.

Lemma 4.6. (Lemma A.6 in [21]) SelfDep(x, y) ≤ 3 · StatDep(x, y).

Remark 4.7. Wenote that,SelfDep(x, y) can, in general, be larger thanStatDep(x, y).
For instance, consider the following joint distribution over (x, y) where x and y are both
Boolean variables: Pr[x = 0, y = 0] = 1/3,Pr[x = 1, y = 0] = 1/3,Pr[x = 1, y =
1] = 1/3,Pr[x = 0, y = 1] = 0. It is easy to see that SelfDep(x, y) = 2/9, but

((x, y), (a × b)) = 1/6 < 2/9 for a product distribution (a × b) defined as follows:
a ≡ x and Pr[b = 0] = Pr[b = 1] = 1/2.

The following lemma follows from Lemma 2.13 and the definition of statistical de-
pendency.

Lemma 4.8. For jointly distributed (x, y) and event E defined over the support of
(x, y), it holds that StatDep(x, y) ≤ Pr(x,y)[E] + StatDep((x, y) | ¬E). We take the
notational convention that whenever Pr(x,y)[E] = 0 we let StatDep((x, y) | ¬E) = 1.

Proof. Let (a × b) be such that 
(((x, y) | ¬E), (a × b)) ≤ δ. For the same (a × b),
by Lemma 2.13 it holds that 
((x, y), (a × b)) ≤ Pr(x,y)[E] + δ. Therefore,

StatDep(x, y) = inf
(a×b)


((x, y), (a × b)) ≤ Pr
(x,y)

[E] + inf
(a×b)


(((x, y) | ¬E), (a × b))

≤ Pr
(x,y)

[E] + StatDep((x, y) | ¬E).

�



730 B. Barak, M. Mahmoody

Self-dependency at every fixed round. By Item 2 of Claim 4.4, we get that by running
UnbEve we obtain StatDep(GV(M, P)) ≤ 2ε2 where (M, P) is the view of UnbEve
at the end of the protocol. By also Lemma 4.8, we get:

StatDep(V(M, P)) ≤ Pr
E

[¬Good | (M, P)] + StatDep(GV(M, P))

≤ Pr
E

[¬Good | (M, P)] + 2ε2.

Therefore, by Item 3 of Claim 4.4 and Lemma 4.6 we get

E
(M,P)←(M,P)

[StatDep(V(M, P))] ≤ 3 ·
(

E
(M,P)←(M,P)

[

StatDep(V(M, P))
]

)

≤ 3 ·
(

E
(M,P)←(M,P)

[

Pr
E

[¬Good | (M, P)]
]

+ 2ε2

)

≤ 3 ·
(

Pr
E

[¬Good] + 2ε2

)

≤ 3 · 5ε2 = 15ε2

Since the probability of UnbEve asking any red queries is at most 6ε2 (Item 5 of
Claim 4.4), thereforewhenwe run Eve, it holds thatE(M,P)←(M,P)[StatDep(V(M, P))]
increases at most by 6ε2 compared to when running UnvEve. This is because whenever
we halt the execution of Eve (which happens with probability at most 6ε2) this can lead
to statistical dependency of V(M, P) at most 1. Therefore, if we use Eve instead of
UnbEve, it holds that

E
(M,P)←(M,P)

[StatDep(V(M, P))] ≤ 15ε2 + 6ε2 = 21ε2.

Simultaneous self-dependencies at all rounds First note that 0 < α < 1, 0 < β < 1,
and α · β ≥ ε2 imply that α ≥ ε2 and β ≥ ε2. By Item 3 of Claim 4.4, when we
run UnbEve, it holds that PrE [Fail] ≤ 3ε2, so by Lemma 2.7 we conclude that with
probability at least 1−3α it holds that during the execution of the protocol, the probability
of Fail (and thus, the probability of ¬Good(M, P)) conditioned on Eve’s view always
remains at most β. Therefore, by Item 2 of Claim 4.4 and Lemma 4.8, with probability
at least 1 − 3α the following holds at the end of every round (where (M, P) is Eve’s
view at the end of that round)

StatDep(V(M, P)) ≤ Pr
E

[¬Good | (M, P)] + StatDep(GV(M, P))

≤ β + 2ε2 ≤ 3β.

Using Lemma 4.6, we obtain the bound SelfDep(V(M, P)) ≤ 9β. Since the proba-
bility ofUnbEve asking any red queries is atmost 6ε2, by a union boundwe conclude that
with probability at least 1− 3α − 6ε2 > 1− 9α, we still get SelfDep(V(M, P)) ≤ 9β
at the end of every round.
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Simultaneous lightness at all rounds. As shown in the previous item, for such α, β,
with probability at least 1 − 9α it holds that during the execution of the protocol, the
probability of Fail (and thus, the probability of ¬Good(M, P)) conditioned on Eve’s
view always remains at most β. Now suppose (M, P) be the view of Eve at the end of
some round where PrV(M,P [¬Good(M, P)] ≤ β. By the second property of (ε1, ε2)-
attackers, it holds that:

Pr
(VA,VB )←V(M,P)

[q ∈ Q(VA)] ≤ Pr
V(M,P)

[¬Good(M, P)]
+ Pr

(VA,VB )←GV(M,P)
[q ∈ Q(VA)] ≤ ε2/nB + β.

The same proof shows that a similar statement holds for Bob.

Dependency and lightness at every fixed round. Let (WA, WB) ≡ GV(M, P). The
product distribution we are looking for will be WA × WB . When we run UnbEve, by
Lemma 3.6 it holds that E(M,P)[
((WA, WB),V(M, P))] ≤ 3ε2, because otherwise
the probability of Fail will be more than 3ε2. Also, by Corollary 3.14 it holds that
StatDep(V(M, P)) ≤ 2ε2, and by Lemma 4.6, it holds that SelfDep(V(M, P)) =

(V(M, P), (WA×WB)) ≤ 6ε2. Thus,whenwe runUnbEve,we getE(M,P)[
((WA×
WB),V(M, P))] ≤ 9ε2. By Claim 3.20, the upper bound of 9ε2 when we modify
UnbEve to Eve (by not asking red queries) could increase only by 6ε2. This proves the
first part.
To prove the second part, again we use Claim 3.20 which bounds the probability of

asking a red query by 6ε2. Also, as long as we do not halt Eve (i.e., no red query is
asked), Eve and UnbEve remain the same, and the lightness claims hold for UnbEve by
definition of the attacker UnbEve.

4.2. Removing the Rationality Condition

In this subsection, we show that all the results of this paper, except the graph character-
ization of Lemma 3.8, hold even with respect to random oracles that are not necessarily
rational according to Definition 2.2. We will show that a variant of Lemma 3.8, which
is sufficient for all of our applications, still holds. In the following, by an irrational
random oracle we refer to a random oracle that satisfies Definition 2.2 except that its
probabilities might not be rational.

Lemma 4.9. (Characterization of V(M, P)) Let H be an irrational oracle, let M be
the sequence of messages sent between Alice and Bob so far, and let P be the set of oracle
query–answer pairs known to Eve (who uses parameter ε) by the end of the round in
which the last message in M is sent. Also suppose PrV(M,P)[Good(M, P)] > 0. Let
(VA, VB) be the joint view of Alice and Bob as sampled from GV(M, P), and let UA =
Supp(VA),UB = Supp(VB). Let G = (UA,UB, E) be a bipartite graph with vertex sets
UA,UB and connect u A ∈ UA to u B ∈ UB if and only if Q(u A)∩Q(u B) ⊆ Q(P). Then
there exists a distribution UA over UA and a distribution UB over UB such that:
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1. For every vertex u ∈ UA, it holds that Prv←UB [u 
∼ v] ≤ 2ε, and similarly for
every vertex u ∈ UB, it holds that Prv←UA [u 
∼ v] ≤ 2ε.

2. The distribution (VA, VB) ← GV(M, P) is identical to: sampling u ← UA and
v ← UB conditioned on u ∼ v, and outputting the views corresponding to u and v.

Proof. Proof Sketch. The distributions UA and UB are in fact the same as the distrib-
utions A and B of Lemma 3.9. The rest of the proof is identical to that of Lemma 3.8
without any vertex repetition. In fact, repetition of vertices (to make the distributions
uniform) cannot be necessarily done anymore because of the irrationality of the prob-
abilities. Here we explain the alternative parameter that takes the role of |E 
∼(u)|/|E |.
For u ∈ UA let q 
∼(u) be the probability that if we sample an edge e ← (VA, VB), it
does not contain u as Alice’s view, and define q 
∼(u) for u ∈ UB similarly. It can be
verified that by the very same argument as in Lemma 3.8, it holds that q 
∼(u) ≤ ε for
every vertex u in G. The other steps of the proof remain the same. �

The characterization of V(M, P) by Lemma 4.9 can be used to derive Corollary 3.14
directly (using the same distributions UA and UB). Remark 3.13 also holds with respect
to Lemma 4.9. Here we show how to derive Lemma 3.7 and the rest of the results will
follow immediately.

Proving Lemma 3.7. Again, we prove Lemma 3.7 even conditioned on choosing any
vertex v that describes Bob’s view. For such vertex v, the distribution of Alice’s view,
when we choose a random edge (u, v′) ← (VA, VB) conditioned on v = v′ is the
same as choosing u ← UA conditioned on u ∼ v. Let us call this distribution Uv

A.
Let S = {u ∈ UA | q ∈ Au} where q is the next query of Bob as specified by v.
Let p(S) = ∑

u∈S Pr[UA = u], q(S) = Pr(u,v)←(VA,VB )[u ∈ S], and let p(E) =
Pru←UA,v←UB [u ∼ v]. Also let p∼(v) = ∑

u∼v Pr[UA = u]. Then, we have:

Pr
u←Uv

A

[q ∈ Au] ≤ p(S)

p∼(v)
≤ p(S)

1 − 2ε
≤ p(S)

(1 − 2ε) · p(E)

≤ q(S)

(1 − 2ε)2 · p(E)
≤ ε

(1 − 2ε)2 · nB
<

3ε

2nB
.

The second and fourth inequalities are due to the degree lower bounds of Item 1 in
Lemma 4.9. The third inequality is because p(E) < 1. The fifth inequality is because of
the definition of the attacker Eve who asks ε/nB heavy queries for Alice’s view when
sampled from GV(M, P), as long as such queries exist. The sixth inequality is because
we are assuming ε < 1/10.
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