
DOI: 10.1007/s00145-015-9216-2
J Cryptol (2017) 30:22–57

Dynamic Proofs of Retrievability Via Oblivious RAM

David Cash∗
Rutgers University, New Brunswick, NJ, USA

david.cash@cs.rutgers.edu

Alptekin Küpçü
Koç University, İstanbul, Turkey

akupcu@ku.edu.tr

Daniel Wichs†

Northeastern University, Boston, MA, USA
wichs@ccs.neu.edu

Communicated by Eike Kiltz.

Received 7 June 2013
Online publication 22 September 2015

Abstract. Proofs of retrievability allow a client to store her data on a remote server
(e.g., “in the cloud”) and periodically execute an efficient audit protocol to check that
all of the data are being maintained correctly and can be recovered from the server.
For efficiency, the computation and communication of the server and client during an
audit protocol should be significantly smaller than reading/transmitting the data in its
entirety. Although the server is only asked to access a few locations of its storage during
an audit, it must maintain full knowledge of all client data to be able to pass. Starting
with thework of Juels andKaliski (CCS ’07), all prior solutions to this problem crucially
assume that the client data are static and do not allow it to be efficiently updated. Indeed,
they all store a redundant encoding of the data on the server, so that the server must
delete a large fraction of its storage to “lose” any actual content. Unfortunately, this
means that even a single bit modification to the original data will need to modify a large
fraction of the server storage, which makes updates highly inefficient. Overcoming
this limitation was left as the main open problem by all prior works. In this work, we
give the first solution providing proofs of retrievability for dynamic storage, where the
client can perform arbitrary reads/writes on any location within her data by running
an efficient protocol with the server. At any point in time, the client can execute an
efficient audit protocol to ensure that the server maintains the latest version of the client
data. The computation and communication complexity of the server and client in our
protocols are only polylogarithmic in the size of the client’s data. The starting point of
our solution is to split up the data into small blocks and redundantly encode each block
of data individually, so that an update inside any data block only affects a few codeword

∗ Work done while at IBM Research, T. J. Watson.
† Work done while at IBM Research, T. J. Watson.

© International Association for Cryptologic Research 2015

http://crossmark.crossref.org/dialog/?doi=10.1007/s00145-015-9216-2&domain=pdf

Dynamic Proofs of Retrievability Via Oblivious RAM 23

symbols. The main difficulty is to prevent the server from identifying and deleting too
many codeword symbols belonging to any single data block. We do so by hiding where
the various codeword symbols for any individual data block are stored on the server
and when they are being accessed by the client, using the algorithmic techniques of
oblivious RAM.

Keywords. Cloud storage, Oblivious ram, Outsourced data integrity, Proof of
retrievability, Provable data possession.

1. Introduction

Cloud storage systems (Amazon S3, Dropbox, Google Drive etc.) are becoming increas-
ingly popular as a means of storing data reliably and making it easily accessible from
any location. Unfortunately, even though the remote storage provider may not be trusted,
current systems provide few security or integrity guarantees.
Guaranteeing the privacy and authenticity of remotely stored data while allowing

efficient access and updates is non-trivial and relates to the study of oblivious RAMs and
memory checking, which we will return to later. The main focus of this work, however,
is an orthogonal question: How can we efficiently verify that the entire client data are
being stored on the remote server in the first place? In other words, what prevents the
server from deleting some portion of the data (say, an infrequently accessed sector) to
save on storage?

Provable Storage Motivated by the questions above, there has beenmuch cryptography
and security research in creating a provable storage mechanism, where an untrusted
server can prove to a client that her data are kept intact. More precisely, the client can
run an efficient audit protocol with the untrusted server, guaranteeing that the server
can only pass the audit if it maintains full knowledge of the entire client data. This is
formalized by requiring that the data can be efficiently extracted from the server given
its state at the beginning of any successful audit. One may think of this as analogous to
the notion of extractors in the definition of zero-knowledge proofs of knowledge [4,17].

One trivial audit mechanism, which accomplishes the above, is for the client to simply
download all of her data from the server and check its authenticity (e.g., using a MAC).
However, for the sake of efficiency, we insist that the computation and communication of
the server and client during an audit protocol are much smaller than the potentially huge
size of the client’s data. In particular, the server should not even have to read all of the
client’s data to run the audit protocol, let alone transmit it. A scheme that accomplishes
the above is called a Proof of Retrievability (PoR).

Prior Techniques The first PoR schemes were defined and constructed by Juels and
Kaliski [22] andhave since receivedmuch attention.We review the priorwork and closely
related primitives (e.g., sublinear authenticators [26] and provable data possession [1])
in Sect. 1.2.
On a very high level, all PoR constructions share essentially the same common struc-

ture. The client stores some redundant encoding of her data under an erasure code on the
server, ensuring that the server must delete a significant fraction of the encoding before
losing any actual data. During an audit, the client then checks a few random locations
of the encoding, so that a server who deleted a significant fraction will get caught with
overwhelming probability.

24 D. Cash et al.

More precisely, let us model the client’s input data as a string M ∈ �� consisting of
� symbols from some small alphabet �, and let Enc : �� → ��′

denote an erasure
code that can correct the erasure of up to 1

2 of its output symbols. The client stores
Enc(M) on the server. During an audit, the client selects a small random subset of t
out of the �′ locations in the encoding and challenges the server to respond with the
corresponding values, which it then checks for authenticity (e.g., using MAC tags).
Intuitively, if the server deletes more than half of the values in the encoding, it will
get caught with overwhelming probability > 1 − 2−t during the audit, and otherwise it
retains knowledge of the original data because of the redundancy of the encoding. The
complexity of the audit protocol is only proportional to t which can be set to the security
parameter and is independent of the size of the client data.1

Difficulty of Updates One of the main limitations of all prior PoR schemes is that they
do not support efficient updates to the client data. Under the above template for PoR, if
the client wants to modify even a single location ofM, it will end up needing to change
the values of at least half of the locations in Enc(M) on the server, requiring a large
amount of work (linear in the size of the client data). Constructing a PoR scheme that
allows for efficient updates was stated as the main open problem by Juels and Kaliski
[22]. We emphasize that, in the setting of updates, the audit protocol must ensure that
the server correctly maintains knowledge of the latest version of the client data, which
includes all of the changes incurred over time. Before we describe our solution to this
problem, let us build some intuition about the challenges involved by examining two
natural but flawed proposals.

First Proposal A natural attempt to overcome the inefficiency of updating a huge
redundant encoding is to encode the data “locally” so that a change to one position of the
data only affects a small number of codeword symbols. More precisely, instead of using
an erasure code that takes all � data symbols as input, we can use a codeEnc : �k → �n

that works on small blocks of only k � � symbols encoded into n symbols. The client
divides the data M into L = �/k message blocks (m1, . . . ,mL), where each block
mi ∈ �k consists of k symbols. The client redundantly encodes each message block
mi individually into a corresponding codeword block ci = Enc(mi) ∈ �n using the
above code with small inputs. Finally the client concatenates these codeword blocks to
form the value C = (c1, . . . , cL) ∈ �Ln , which it stores on the server. Auditing works
as before: The client randomly chooses t of the L · n locations in C and challenges the
server to respond with the corresponding codeword symbols in these locations, which
it then tests for authenticity.2 The client can now read/write to any location within her
data by simply reading/writing to the n relevant codeword symbols on the server.
The above proposal can be made secure when the block size k (which determines the

complexity of reads/updates) and the number of challenged locations t (which deter-

1Some of the more advanced PoR schemes (e.g., [12,30]) optimize the communication complexity of the
audit even further by cleverly compressing the t codeword symbols and their authentication tags in the server’s
response.

2This requires that we can efficiently check the authenticity of the remotely stored dataC, while supporting
efficient updates on it. This problem is solved bymemory checking (see our survey of related work in Sect. 1.2).

Dynamic Proofs of Retrievability Via Oblivious RAM 25

mines the complexity of the audit) are both set to �(
√

�) where � is the size of the data
(see “Appendix 1” for details). This way, the audit is likely to check sufficiently many
values in each codeword block ci . Unfortunately, if we want a truly efficient scheme
and set n, t = o(

√
�) to be small, then this solution becomes completely insecure. The

server can delete a single codeword block ci from C entirely, losing the corresponding
message blockmi , but still maintain a good chance of passing the above audit as long as
none of the t random challenge locations coincides with the n deleted symbols, which
happens with good probability.

Second Proposal The first proposal (with small n, t) was insecure because a cheating
server could easily identify the locations within C that correspond to a single message
block and delete exactly the codeword symbols in these locations. We can prevent such
attacks by pseudorandomly permuting the locations of all of the different codeword
symbols of different codeword blocks together. That is, the client starts with the value
C = (C[1], . . . ,C[Ln]) = (c1, . . . , cL) ∈ �Ln computed as in the first proposal. It
chooses a pseudorandom permutation π : [Ln] → [Ln] and computes the permuted
valueC′ := (C[π(1)], . . . ,C[π(Ln)])which it then stores on the server in an encrypted
form (each codeword symbol is encrypted separately). The audit still checks t out of Ln
random locations of the server storage and verifies authenticity.
It may seem that the server now cannot immediately identify and selectively delete

codeword symbols belonging to a single codeword block, thwarting the attack on the
first proposal. Unfortunately, this modification only re-gains security in the static setting,
when the client never performs any operations on the data.3 Once the client wants to
update some location ofM that falls inside some message blockmi , she has to reveal to
the server where all of the n codeword symbols corresponding to ci = Enc(mi) reside
in its storage since she needs to update exactly these values. Therefore, the server can
later selectively delete exactly these n codeword symbols, leading to the same attack as
in the first proposal.

Impossibility? Given the above failed attempts, it may even seem that truly efficient
updates could be inherently incompatible with efficient audits in PoR. If an update is
efficient and only changes a small subset of the server’s storage, then the server can
always just ignore the update, thereby failing to maintain knowledge of the latest ver-
sion of the client data. All of the prior techniques appear ineffective against such attack.
More generally, any audit protocol which just checks a small subset of random locations
of the server’s storage is unlikely to hit any of the locations involved in the update and
hence will not detect such cheating, meaning that it cannot be secure.4 However, this
does not rule out the possibility of a very efficient solution that relies on a more clever
audit protocol, which is likelier to check recently updated areas of the server’s storage
and therefore detect such an attack. Indeed, this property will be an important component
in our actual solution.

3A variant of this idea was actually used by Juels and Kaliski [22] for extra efficiency in the static setting.
4The above only holds when the complexity of the updates and the audit are both o(

√
�), where � is the

size of the data. See “Appendix 1” for a simple protocol of this form that archives square root complexity.

26 D. Cash et al.

1.1. Our Results and Techniques

Overview of Result In this work, we give the first solution to dynamic PoR that allows
for efficient updates to client data. The client only keeps some short local state and can
execute arbitrary read/write operations on any location within the data by running a
corresponding protocol with the server. At any point in time, the client can also initiate
an audit protocol, which ensures that a passing server must have complete knowledge of
the latest version of the client data. The cost of any read/write/audit execution in terms
of server/client work and communication is only polylogarithmic in the size of the client
data. The server’s storage remains linear in the size of the client data. Therefore, our
scheme is optimal in an asymptotic sense, up to polylogarithmic factors. See Sect. 7 for
a detailed efficiency analysis.

PoR Via Oblivious RAM Our dynamic PoR solution starts with the same idea as the
first proposal above, where the client redundantly encodes small blocks of her data
individually to form the value C = (c1, . . . , cL) ∈ �Ln , consisting of L codeword
blocks and �′ = Ln codeword symbols, as defined previously. The goal is to then store
C on the server in some “clever way” so that the server cannot selectively delete toomany
symbols within any single codeword block ci , even after observing the client’s read and
write executions (which access exactly these symbols). As highlighted by the second
proposal, simply permuting the locations of the codeword symbols of C is insufficient.
Instead, our main idea is to store all of the individual codeword symbols of C on the
server using an oblivious RAM scheme.

Overview of ORAM Oblivious RAM (ORAM), initially defined by Goldreich and
Ostrovsky [16], allows a client to outsource hermemory to a remote serverwhile allowing
the client to perform random-access reads and writes in a private way. More precisely,
the client has some data D ∈ �d , which she stores on the server in some carefully
designed privacy-preserving form, while only keeping a short local state. She can later
run efficient protocols with the server to read or write to the individual entries of D.
The read/write protocols of the ORAM scheme should be efficient, and the client/server
work and communication during each such protocol should be small compared to the
size of D (e.g., polylogarithmic). A secure ORAM scheme not only hides the content
of D from the server, but also the access pattern of which locations in D the client is
reading or writing in each protocol execution. Thus, the server cannot discern any corre-
lation between the physical locations of its storage that it is asked to access during each
read/write protocol execution and the logical location inside D that the client wants to
access via this protocol.
We review the literature and efficiency of ORAM schemes in Sect. 6. In our work,

we will also always use ORAM schemes that are authenticated, which means that the
client can detect if the server ever sends an incorrect value. In particular, authenticated
ORAM schemes ensure that the most recent version of the data is being retrieved in any
accepting read execution, preventing the server from “rolling back” updates.

Construction of Dynamic PoR A detailed technical description of our construction
appears in Sect. 5, and below we give a simplified overview. In our PoR construction,

Dynamic Proofs of Retrievability Via Oblivious RAM 27

the client starts with data M ∈ �� which she splits into small message blocks M =
(m1, . . . ,mL) with mi ∈ �k where the block size k � � = Lk is only dependent on
the security parameter. She then applies an error-correcting code Enc : �k → �n that
can efficiently recover n

2 erasures to each message block individually, resulting in the
value C = (c1, . . . , cL) ∈ �Ln where ci = Enc(mi). Note that any constant fraction
erasure-correcting code will work (i.e., n

2 can be replaced with n
s for any constant s).

Finally, she initializes an ORAM scheme with the initial data D = C, which the ORAM
stores on the server in some clever privacy-preserving form, while keeping only a short
local state at the client.
Whenever the client wants to read or write to some location within her data, she

uses the ORAM scheme to perform the necessary reads/writes on each of the n relevant
codeword symbols of C (see details in Sect. 5). To run an audit, the client chooses t (≈
security parameter) random locations in {1, . . . , Ln} and runs the ORAM read protocol
t times to read the corresponding symbols of C that reside in these locations, checking
them for authenticity.

CatchingDisregardedUpdates First, let us start with a sanity check, to explain how the
above construction can thwart a specific attack in which the server simply disregards the
latest update. In particular, such attack should be caught by a subsequent audit. During
the audit, the client runs the ORAM protocol to read t random codeword symbols and
these are unlikely to coincide with any of the n codeword symbols modified by the latest
update (recall that t and n are both small and independent of the data size �). However,
the ORAM scheme stores data on the server in a highly organized data structure and
ensures that the most recently updated data are accessed during any subsequent “read”
execution, even for an unrelated logical location. This is implied by ORAM security
since we need to hide whether or not the location of a read was recently updated or not.
Therefore, although the audit executes the “ORAM read” protocols on random logical
locations inside C, the ORAM scheme will end up scanning recently updated areas of
the server’s actual storage and check them for authenticity, ensuring that recent updates
have not been disregarded.

Security and “Next-ReadPatternHiding” The high-level security intuition for our PoR
scheme is quite simple. The ORAM hides from the server where the various locations of
C reside in its storage, even after observing the access pattern of read/write executions.
Therefore it is difficult for the server to reach a state where it will fail on read executions
for most locations within some single codeword block (lose data) without also failing
on too many read executions altogether (lose the ability to pass an audit).
Making the above intuition formal is quite subtle, and it turns out that standard notion

of ORAM security does not suffice. The main issue is that the server may be able to
somehow delete all (or most) of the n codeword symbols that fall within some codeword
block ci = (C[j+1], . . . ,C[j+n])without knowingwhich block it deleted. Therefore,
although the server will fail on any subsequent read if and only if its location falls within
the range { j + 1, . . . , j + n}, it will not learn anything about the location of the read
itself since it does not know the index j . Indeed, we will give an example of a contrived
ORAM scheme where such an attack is possible and our resulting construction of PoR
using this ORAM is insecure.

28 D. Cash et al.

We show, however, that the intuitive reasoning above can be salvaged if the ORAM
scheme achieves a new notion of security that we call next-read pattern hiding (NRPH),
which may be of independent interest. NRPH security considers an adversarial server
that first gets to observe many read/write protocol executions performed sequentially
with the client, resulting in some final client configuration Cfin. The adversarial server
then gets to see various possibilities for how the “next-read” operation would be exe-
cuted by the client for various distinct locations, where each such execution starts from
the same fixed client configuration Cfin.5 The server should not be able to discern any
relationship between these executions and the locations they are reading. For example,
two such “next-read” executions where the client reads two consecutive locations should
be indistinguishable from two executions that read two random and unrelated locations.
This notion of NRPH security will be used to show that server cannot reach a state
where it can selectively fail to respond on read queries whose location falls within some
small range of a single codeword block (lose data), but still respond correctly to most
completely random reads (pass an audit).

Proving Security Via an Extractor As mentioned earlier, the security of PoR is formal-
ized via an extractor and we now give a high-level overview of how such an extractor
works. In particular, we claim that we can take any adversarial server that has a “good”
chance of passing an audit and use the extractor to efficiently recover the latest version
of the client data from it. The extractor initializes an “empty array” C. It then executes
random audit protocols with the server by acting as the honest client. In particular, it
chooses t random locations within the array and runs the corresponding ORAM read
protocols. If the execution of the audit is successful, the extractor fills in the correspond-
ing values of C that it learned during the audit execution. In either case, it then rewinds
the server and runs a fresh execution of the audit, repeating this step for several iterations.
Since the server has a good chance of passing a random audit, it is easy to show that

the extractor can eventually recover a large fraction, say > 3
4 , of the entries inside C

by repeating this process sufficiently many times. Because of the authenticity of the
ORAM, the recovered values are the correct ones, corresponding to the latest version
of the client data. Now we need to argue that there is no codeword block ci within C
for which the extractor recovered fewer than 1

2 of its codeword symbols, as this would
prevent us from applying erasure decoding and recovering the underlyingmessage block.
Let FAILURE denote the above bad event. If all the recovered locations (comprising> 3

4
fraction of the total) were distributed uniformly within C, then FAILURE would occur
with negligible probability, as long as the codeword size n is sufficiently large in the
security parameter. Thus, intuitively, if the server does not perform a targeted attack, but
randomly corrupt codeword blocks, FAILURE would not happen. We can now rely on
the NRPH security of the ORAM to ensure that FAILURE also happens with negligible
probability, even if the server tries to selectively corrupt codeword blocks. We can think
of the FAILURE event as a function of the locations queried by the extractor in each
audit execution and the set of executions on which the server fails. If the malicious server
can cause FAILURE to occur, it means that it can distinguish the pattern of locations

5This is in contrast to the standard sequential operations where the client state is updated after each
execution.

Dynamic Proofs of Retrievability Via Oblivious RAM 29

actually queried by the extractor during the audit executions (for which the FAILURE
event occurs) from a randomly permuted pattern of locations (for which the FAILURE
event does not occur with overwhelming probability). Therefore, a targeted attack by the
server causing FAILURE with more than negligible probability means that the server
can be used in a reduction to break the NRPH security. Note that the use of rewinding
between the audit executions of the extractor requires us to rely on NRPH security rather
than just standard ORAM security.
The above presents the high-level intuition and is somewhat oversimplified. See Sect. 4

for the formal definition of NRPH security and Sect. 5 for the formal description of our
dynamic PoR scheme and a rigorous proof of security.

Achieving Next-Read Pattern Hiding We show that standard ORAM security does not
generically imply NRPH security by giving a contrived scheme that satisfies the former
but not the latter. Nevertheless, many natural ORAM constructions in the literature do
seem to satisfy NRPH security. In particular, we examine the efficient ORAM construc-
tion of Goodrich and Mitzenmacher [18] and prove that (with minor modifications) it is
NRPH secure.

Contributions We call our final scheme PORAM since it combines the techniques
and security of PoR and ORAM. In particular, other than providing provable dynamic
cloud storage as our main goal, our scheme also satisfies the strong privacy guarantees
of ORAM, meaning that it hides all contents of the remotely stored data as well as the
access pattern of which locations are accessed when. It also provides strong authenticity
guarantees (same asmemory checking; see Sect. 1.2), ensuring that any “read” execution
with a malicious remote server is guaranteed to return the latest version of the data (or
detect cheating).
In brief, our contributions can be summarized as follows:

• We give the first asymptotically efficient solution to PoR for outsourced dynamic
data, where a successful audit ensures that the server knows the latest version of
the client data. In particular:

– Client storage is small and independent of the data size.
– Server storage is linear in the data size, expanding it by only a small constant
factor.
– Communication and computation of client and server during read, write, and
audit executions are polylogarithmic in the size of the client data.

• Our scheme also achieves strong privacy and authenticity guarantees, matching
those of oblivious RAM and memory checking.

• We present a new security notion called “next-read pattern hiding (NRPH)” for
ORAM and a construction achieving this new notion, which may be of independent
interest.

We mention that the PORAM scheme is simple to implement and has low concrete
efficiency overhead on top of an underlying ORAM scheme with NRPH security. There
ismuch recent andongoing research activity in instantiating/implementing truly practical
ORAM schemes, which are likely to yield correspondingly practical instantiations of
our PORAM protocol.

30 D. Cash et al.

1.2. Related Work

Proofs of retrievability for static data were initially defined and constructed by Juels and
Kaliski [22], building on a closely related notion called sublinear authenticators of Naor
and Rothblum [26]. Concurrently, Ateniese et al. [1] defined another related primitive
calledprovable data possession (PDP). Since then, there has beenmuchongoing research
activity on PoR and PDP schemes.

PoR Versus PDP The main difference between PoR and PDP is the notion of security
that they achieve. A PoR audit guarantees that the server maintains knowledge of all
of the client data, while a PDP audit only ensures that the server is storing most of the
client data. For example, in a PDP scheme, the server may lose a small portion of client
data (say 1 MB out of a 10 GB file) and may maintain an high chance of passing a future
audit.6 On a technical level, the main difference in most prior PDP/PoR constructions
is that PoR schemes store a redundant encoding of the client data on the server. For a
detailed comparison, see Küpçü [24,25].

StaticData PoR andPDP schemes for static data (without updates) have receivedmuch
research attention [2,7,12,30], with works improving on communication efficiency and
exact security, yielding essentially optimal solutions. Another interesting direction has
been to extend these works to the multi-server setting [6,10,11] where the client can use
the audit mechanism to identify faulty machines and recover the data from the others.

Dynamic Data The works of Ateniese et al. [3], Erway et al. [14] and Wang et al.
[35] show how to achieve PDP security for dynamic data, supporting efficient updates.
This is closely related to work on memory checking [5,13,26], which studies how to
authenticate remotely stored dynamic data so as to allow efficient reads/writes, while
being able to verify the authenticity of the latest version of the data (preventing the server
from “rolling back” updates and using an old version). Unfortunately, these techniques
alone cannot be used to achieve the stronger notion of PoR security. Indeed, the main
difficulty that we resolve in this work, how to efficiently update redundantly encoded
data, does not come up in the context of PDP.Multi-server extensions of dynamic storage
schemes exist as well [15].
A recent work of Stefanov et al. [33] considers PoR for dynamic data, but in a

more complex setting where an additional trusted “portal” performs some operations on
behalf of the client and can cache updates for an extended period of time. It is not clear
whether these techniques can be translated to the basic client/server setting, which we
consider here. However, even in this modified setting, the complexity of the updates and
the audit in that work is proportional to square root of the data size, whereas ours is
polylogarithmic.

6An alternative way to use static PDP can also achieve full security, at the cost of requiring the server to
read the entire client data during an audit, but still minimizing the communication complexity. If the data are
large, say 10 GB, this is vastly impractical.

Dynamic Proofs of Retrievability Via Oblivious RAM 31

2. Preliminaries

Notation Throughout, we use λ to denote the security parameter. We identify efficient
algorithms as those running in (probabilistic) polynomial time inλ and their input lengths
and identify negligible quantities (e.g., acceptable error probabilities) as negl(λ) =
1/λω(1), meaning that they are asymptotically smaller than 1/λc for every constant

c > 0. For n ∈ N, we define the set [n] def= {1, . . . , n}. We use the notation (k mod n)

to denote the unique integer i ∈ {0, . . . , n − 1} such that i = k (mod n).

Erasure Codes We say that (Enc,Dec) is an (n, k, d)�-code with efficient erasure
decoding over an alphabet � if the original message can always be recovered from
a corrupted codeword with at most d − 1 erasures. That is, for every message m =
(m1, . . . ,mk)∈ �k giving a codeword c = (c1, . . . , cn) = Enc(m), and every corrupted
codeword c̃ = (c̃1, . . . , c̃n) such that c̃i ∈ {ci ,⊥} and the number of erasures is |{i ∈
[n] : c̃i = ⊥}| ≤ d − 1, we have Dec(c̃) = m. We say that a code is systematic if,
for every message m, the codeword c = Enc(m) contains m in the first k positions
c1 = m1, . . . , ck = mk . A systematic variant of the Reed–Solomon code achieves the
above for any integers n > k and any field � of size |�| ≥ n with d = n − k + 1.

Virtual Memory We think of virtual memory M, with word size w and length �, as

an array M ∈ �� where �
def= {0, 1}w. We assume that, initially, each location M[i]

contains the special uninitialized symbol 0 = 0w. Throughout, we will think of � as
some large polynomial in the security parameter, which upper bounds the amount of
memory that can be used.

Outsourcing Virtual Memory In the next two sections, we look at two primitives:
dynamic PoR and ORAM. These primitives allow a client to outsource some virtual
memory M of length � to a remote server, while providing useful security guarantees.
Reading andwriting to some location ofM now takes on the form of a protocol execution
with the server. The goal is to provide security while preserving efficiency in terms of
client/server computation, communication and the number of server memory accesses
per operation, which should all be polylogarithmic in �. We also want to optimize the
size of the client storage (independent of �) and server storage (not much larger than �).

We find this abstract view of outsourcing memory to be the simplest and most
general to work with. Any higher-level data structures and operations (e.g., allowing
appends/inserts to data or implementing an entire file system) can be easily done on
top of this abstract notion of memory and therefore securely outsourced to the remote
server. Essentially, a file system employs a hard disk (which can be thought as the virtual
memory M) and then implements appropriate data structures to deal with directories,
indexing and other operations. Just as the file system data structures reside on the hard
disk itself, they all can be outsourced as part of our virtual memory abstraction, as if one
is outsourcing the complete hard disk. Another alternative may be employing our system
to outsource the actual files residing on the hard disk, but keeping the metadata or data
structures at the local machine, since they generally require much lighter resources.

32 D. Cash et al.

3. Dynamic PoR

ADynamicPoR scheme consists of protocolsPInit,PRead,PWrite,Audit between two
stateful parties: a client C and a server S. The server acts as the curator for some virtual
memory M, which the client can read, write and audit by initiating the corresponding
interactive protocols:

• PInit(1λ, 1w, �): This protocol corresponds to the client initializing an (empty)
virtual memory M with word size w and length �, which it supplies as inputs.

• PRead(i): This protocol corresponds to the client reading v = M[i], where it
supplies the input i and outputs some value v at the end.

• PWrite(i, v): This protocol corresponds to setting M[i] := v, where the client
supplies the inputs i, v.

• Audit: This protocol is used by the client to verify that the server is maintaining
the memory contents correctly so that they remain retrievable. The client outputs a
decision b ∈ {accept,reject}.

The client C in the protocols may be randomized, but we assume (w.l.o.g.) that the
honest server S is deterministic. At the conclusion of the PInit protocol, both the client
and the server create some long-term local state, which each party will update during
the execution of each of the subsequent protocols. The client may also output reject
during the execution of the PInit,PRead,PWrite protocols, to denote that it detected
some misbehavior of the server. Note that we assume that the virtual memory is initially
empty, but if the client has some initial data, she can write it onto the server block by
block immediately after initialization. For ease of presentation, we may assume that the
state of the client and the server always contains the security parameter and the memory
parameters (1λ, 1w, �).
We now define the three properties of a dynamic PoR scheme: correctness, authen-

ticity and retrievability. For these definitions, we say that P = (op0, op1, . . . , opq)
is a dynamic PoR protocol sequence if op0 = PInit(1λ, 1w, �) and, for j > 0,
op j ∈ {PRead(i), PWrite(i, v), Audit} for some index i ∈ [�] and value v ∈ {0, 1}w.

Correctness If the client and the server are both honest and P = (op0, . . . , opq) is
some protocol sequence, then we require the following to occur with probability 1 over
the randomness of the client:

• Each execution of a protocol op j = PRead(i) results in the client outputting
the correct value v = M[i], matching what would happen if the corresponding
operations were performed directly on a memory M. More formally, if op j ′ =
PWrite(i, v) was the last PWrite operation on location i with j ′ < j , then op j =
PRead(i) returns v. If no prior PWrite operation on location i exists, then op j =
PRead(i) returns 0 (the initial value).

• Each execution of the Audit protocol results in the decision b = accept.

Authenticity We require that the client can always detect if any protocol message sent
by the server deviates fromhonest behavior.More precisely, consider the following game
AuthGameS̃(λ) between a malicious server S̃ and a challenger:

Dynamic Proofs of Retrievability Via Oblivious RAM 33

• Themalicious server S̃(1λ) specifies avalid protocol sequence P = (op0, . . . , opq).
• The challenger initializes a copy of the honest client C and the (deterministic) honest
server S. It sequentially executes op0, . . . , opq between C and the malicious server
S̃ while, in parallel, also passing a copy of every message from C to the honest
server S.

• If, at any point during the execution of some op j , any protocol message given by
S̃ differs from that of S, and the client C does not output reject, the adversary
wins and the game outputs 1. Else 0.

For any efficient adversarial server S̃, we require Pr[AuthGameS̃(λ) = 1] ≤ negl(λ).

Note that authenticity and correctness together imply that the client will always either
read the correct value corresponding to the latest contents of the virtual memory or reject
whenever interacting with a malicious server.

Retrievability Finally we define the main purpose of a dynamic PoR scheme, which is
to ensure that the client data remain retrievable. We wish to guarantee that whenever the
malicious server is in a state with a reasonable probability δ of successfully passing an
audit, he must know the entire content of the client’s virtual memoryM. As in “proofs of
knowledge,” we formalize knowledge via the existence of an efficient extractor E which
can recover the value M given (black-box) access to the malicious server.

More precisely, we define the game ExtGameS̃,E (λ, p) between a malicious server

S̃ , extractor E and challenger:

• The malicious server S̃(1λ) specifies a protocol sequence P = (op0, . . . , opq).
Let M ∈ �� be the correct value of the memory contents at the end of honestly
executing P .

• The challenger initializes a copy of the honest client C and sequentially executes
op0, . . . , opq between C and S̃. Let Cfin and S̃fin be the final configurations (states)
of the client and malicious server at the end of this interaction, including all of the
random coins of the malicious server. Define the success probability

Succ(S̃fin)
def= Pr

[
S̃fin

Audit←→ Cfin = accept

]

as the probability that an execution of a subsequent Audit protocol between S̃fin
and Cfin results in the latter outputting accept. The probability is only over the
random coins of Cfin during this execution.

• Run M′ ← E S̃fin(Cfin, 1�, 1p), where the extractor E gets black-box rewinding
access to the malicious server in its final configuration S̃fin and attempts to extract
out the memory contents as M′.7

• If Succ(S̃fin) ≥ 1/p and M′
= M then output 1, else 0.

We require that there exists a probabilistic-poly-time extractor E such that, for
every efficient malicious server S̃ and every polynomial p = p(λ), we have
Pr[ExtGameS̃,E (λ, p) = 1] ≤ negl(λ).

7This is similar to the extractor in zero-knowledge proofs of knowledge. In particular, E can execute
protocols with the malicious server in its state S̃fin and rewind it back to this state at the end of the execution.

34 D. Cash et al.

The above says that whenever the malicious server reaches some state S̃fin in which
it maintains a δ ≥ 1/p probability of passing the next audit, the extractor E will be able
to extract out the correct memory contents M from S̃fin, meaning that the server must
retain full knowledge of M in this state. The extractor is efficient, but can run in time
polynomial in p and the size of the memory �.

A Note on Adaptivity We defined the above authenticity and retrievability properties
assuming that the sequence of read/write operations is adversarial, but is chosen non-
adaptively, before the adversarial server sees any protocol executions. Even though an
adaptive security definition is preferable (and matches previous work in dynamic prov-
able data possession setting [14]), standard ORAM security definitions in prior works
have been non-adaptive. Thus, to be consistent with the ORAM literature, we have
presented non-adaptive versions of the definitions above. Nevertheless, we note that our
final results also achieve adaptive security, where the attacker can choose the sequence of
operations opi adaptively after seeing the execution of previous operations, if the under-
lying ORAM satisfies adaptive security (the proof remains exactly the same). Indeed,
most prior ORAM solutions seem to achieve adaptive security, but it was never included
in their analysis. Belowwewill sketch why oneORAMconstruction is adaptively secure
(using its original proof) and also why our construction works without modification.

4. Oblivious RAM with Next-Read Pattern Hiding

An ORAM consists of protocols (OInit,ORead,OWrite) between a client C and a
server S, with the same syntax as the corresponding protocols in PoR. We will also
extend the syntax of ORead and OWrite to allow for reading/writing from/to multiple
distinct locations simultaneously. That is, for arbitrary t ∈ N, we define the protocol
ORead(i1, . . . , it) for distinct indices i1, . . . , it ∈ [�], in which the client outputs
(v1, . . . , vt) corresponding to reading v1 = M[i1], . . . , vt = M[it]. Similarly, we define
the protocol OWrite(it , . . . , it ; v1, . . . , vt) for distinct indices i1, . . . , it ∈ [�], which
corresponds to settingM[i1] := v1, . . . , M[it] := vt .
We say that P = (op0, . . . , opq) is an ORAM protocol sequence if op0 =

OInit(1λ, 1w, �) and, for j > 0, op j is a valid (multi-location) read/write operation.
We require that an ORAM construction needs to satisfy correctness and authenticity,

which are defined the same way as in PoR.8 For privacy, we define a new property
called next-read pattern hiding. For completeness, we also define the standard notion of
ORAM pattern hiding in Appendix “2.”

Next-Read Pattern Hiding Consider an honest-but-curious serverA who observes the
execution of someprotocol sequence P with a clientC resulting in the final client configu-
ration Cfin. At the end of this execution,A gets to observe how Cfin would execute the next
read operationORead(i1, . . . , it) for various different t-tuples (i1, . . . , it) of locations,
but always starting in the same client state Cfin. We require that A cannot observe any
correlation between these next-read executions and their locations up to equality. That

8Traditionally, authenticity is not always defined/required for ORAM. However, it is crucial for our use.
As noted in several prior works, it can often be added at almost no cost to efficiency. It can also be added
generically by running a memory checking scheme on top of ORAM. See Sect. 6.4 for details.

Dynamic Proofs of Retrievability Via Oblivious RAM 35

is, A should not be able to distinguish if Cfin instead executes the next-read operations
on permuted locations ORead(π(i1), . . . , π(it)) for a permutation π : [�] → [�].

More formally,wedefineNextReadGameb
A(λ), forb ∈ {0, 1}, between an adversary

A and a challenger:

• The attacker A(1λ) chooses an ORAM protocol sequence P1 = (op0, . . . , opq1).
It also chooses a sequence P2 = (rop1, . . . , ropq2) of valid multi-location read
operations, where each operation is of the form rop j = ORead(i j,1, . . . , i j,t j)
with t j distinct locations. Lastly, it chooses a permutation π : [�] → [�]. For each
rop j in P2, define a permuted version rop′

j := ORead(π(i j,1), . . . , π(i j,t j)). The
game now proceeds in two stages.

• Stage I. The challenger initializes the honest client C and the (deterministic) honest
server S. It sequentially executes the protocols P1 = (op0, . . . , opq1) between C
and S. Let Cfin,Sfin be the final configuration of the client and server at the end.

• Stage II. For each j ∈ [q2]: Challenger either executes the original operation rop j

if b = 0, or the permuted operation rop′
j if b = 1, between C and S. At the end of

each operation execution, it resets the configuration of the client and server back to
Cfin,Sfin, respectively, before the next execution.

• The adversaryA is given the transcript of all the protocol executions in stages I and
II and outputs a bit b̃ which we define as the output of the game. Note that since
the honest server S is deterministic, seeing the protocol transcripts between S and
C is the same as seeing the entire internal state of S at any point of time.

We require that, for every efficient A, we have

∣∣∣Pr[NextReadGame0
A(λ) = 1] − Pr[NextReadGame1

A(λ) = 1]
∣∣∣ ≤ negl(λ).

Adaptive Security Asmentioned at the end of Sect. 2, the definition of ORAM security
used here and the standard definition in “Appendix 2” are non-adaptive, meaning the
protocol sequence is declared at the beginning of the experiment. A stronger adaptive
definition would allow the adversary to choose the sequence one operation at a time,
potentially depending on its view up to that point.
Specifically, the adaptive version of next-read pattern hiding allows the adversary to

select the protocol sequence P1 one operation at a time, where the next operation is
selected after the completion of the prior one. At some point, the adversary declares
that it is moving to the next stage and selects all of P2. The rest of the definition is left
unchanged.

5. PORAM: Dynamic PoR via ORAM

We now give our construction of dynamic PoR, using ORAM. Since the ORAM security
properties are preserved by the construction as well, we happen to achieve ORAM and
dynamic PoR simultaneously. Therefore, we call our construction PORAM.

OverviewofConstruction Let (Enc,Dec) be an (n, k, d = n−k+1)� systematic code
with efficient erasure decoding over the alphabet� = {0, 1}w (e.g., the systematicReed–

36 D. Cash et al.

Solomon code over F2w). Our construction of dynamic PoR will interpret the memory
M ∈ �� as consisting of L = �/k consecutive message blocks, each having k alphabet
symbols (assume k is small and divides �). The construction implicitly maps operations
onM to operations on encoded memoryC ∈ (�)�code=Ln , which consists of L codeword
blocks with n alphabet symbols each. The L codeword blocks C = (c1, . . . , cL) are
simply the encoded versions of the correspondingmessage blocks inM = (m1, . . . ,mL)

with cq = Enc(mq) for q ∈ [L]. This means that, for each i ∈ [�], the value of the
memory location M[i] can only affect the values of the encoded memory locations
C[j + 1], . . . ,C[j + n] where j = n · �i/k�. Furthermore, since the encoding is
systematic, we haveM[i] = C[j + u] where u = (i mod k)+ 1. To read the memory
locationM[i], the client will useORAM to read the codeword locationC[j+u]. Towrite
to the memory location M[i] := v, the client needs to update the entire corresponding
codeword block. She does so by first using ORAM to read the corresponding codeword
block c = (C[j+1], . . . ,C[j+n]) anddecodes to obtain the originalmemoryblockm =
Dec(c).9 She then locally updates the memory block by setting m[u] := v, re-encodes
the updated memory block to get c′ = (c1, . . . , cn) := Enc(m) and uses the ORAM to
write c′ back into the encoded memory, setting C[j + 1] := c′

1, . . . ,C[j + n] := c′
n .

The Construction Our PORAM construction is defined for some parameters n >

k, t ∈ N. Let O = (OInit,ORead,OWrite) be an ORAM. Let (Enc, Dec) be an
(n, k, d = n−k+1)� systematic code with efficient erasure decoding over the alphabet
� = {0, 1}w (e.g., the systematic Reed–Solomon code over F2w).

• PInit(1λ, 1w, �): Assume k divides � and let �code := n · (�/k). Run the
OInit(1λ, 1w, �code) protocol.

• PRead(i): Let i ′ := n · �i/k� + (i mod k) + 1 and run the ORead(i ′) protocol.
• PWrite(i, v): Set j := n · �i/k� and u := (i mod k) + 1.

- Run ORead(j + 1, . . . , j + n) and get output c = (c1, . . . , cn).
- Decode m = (m1, . . . ,mk) = Dec(c).
- Modify position u of m by locally setting mu := v. Re-encode the modified
message block m by setting c′ = (c′

1, . . . , c
′
n) := Enc(m).

- Run OWrite(j + 1, . . . , j + n; c′
1, . . . , c

′
n).

• Audit: Pick t distinct indices j1, . . . , jt ∈ [�code] at random.RunORead(j1, . . . , jt)
and return accept iff the protocol finished without outputting reject.

If any ORAMprotocol execution in the above scheme outputs reject, the client enters
a special rejection state in which it stops responding and automatically outputs reject
for any subsequent protocol execution.
It is easy to see that if the underlying ORAM scheme used in the above PORAM

construction is secure in the standard sense of ORAM (see “Appendix 2”), then the
above construction preserves this ORAM security, hiding which locations are being
accessed in each operation. As our main result, we now prove that if the ORAM scheme
satisfies next-read pattern hiding (NRPH) security, then thePORAM construction above
is also a secure dynamic PoR scheme.

9We can skip this step if the client already has the valuem stored locally, e.g., from prior read executions.

Dynamic Proofs of Retrievability Via Oblivious RAM 37

Theorem 1. Assume that O = (OInit,ORead,OWrite) is an ORAM with next-read
pattern hiding (NRPH) security, and we choose parameters k = �(λ), k/n = (1 −
�(1)), t = �(λ). Then the above scheme PORAM = (PInit,PRead,PWrite,Audit)
is a dynamic PoR scheme.

5.1. Proof of Theorem 1

The correctness and authenticity properties of PORAM follow immediately from those
of the underlying ORAM schemeO. Themain challenge is to show that the retrievability
property holds. As a first step, let us describe the extractor.

The Extractor The extractor E S̃fin(Cfin, 1�, 1p) works as follows:

(1) Initialize C := (⊥)�code where �code = n(�/k) to be an empty vector.
(2) Keep rewinding and auditing the server by repeating the following step for s =

max(2�code, λ) · p times:
Pick t distinct indices j1, . . . , jt ∈ [�code] at random and run the protocol
ORead(j1, . . . , jt) with S̃fin, acting as Cfin as in the audit protocol. If the pro-
tocol is accepting and Cfin outputs (v1, . . . , vt), set C[j1] := v1, . . . ,C[jt] := vt .
Rewind S̃fin, Cfin to their state prior to this execution for the next iteration.

(3) Let δ
def= (1 + k

n)/2. If the number of “filled-in” values in C is |{ j ∈
[�code] : C[j]
= ⊥}| < δ · �code, then output fail1. Else interpret C as con-
sisting of L = �/k consecutive codeword blocks C = (c1, . . . , cL) with each
block c j ∈ �n . If there exists some index j ∈ [L] such that the number of
“filled-in” values in codeword block c j is |{i ∈ [n] : c j [i]
= ⊥}| < k then output
fail2. Otherwise, apply erasure decoding to each codeword block c j , to recover
m j = Dec(c j), and output M = (m1, . . . ,mL) ∈ ��.10

Sequence of Hybrids Let S̃ be a PPT adversarial server and p = p(λ) be some poly-
nomial. Our goal is to prove the following:

Pr[ExtGameS̃,E (λ, p(λ)) = 1] ≤ negl(λ) (1)

where ExtGameS̃,E (λ, p(λ)) defined in Sect. 3.
We will prove this via a sequence of hybrid games called Hybrid i for i = 0, . . . , 5

where Hybrid 0 is defined as ExtGameS̃,E (λ, p(λ)). We will show that for all i < 5:

Pr[Hybrid i outputs 1] ≤ Pr[Hybrid i + 1 outputs 1] + negl(λ)

and Pr[Hybrid 5 outputs 1] ≤ negl(λ). This suffices to prove the theorem. Intu-
itively, in each hybrid we will make that changes that appear to make it less likely
that the game outputs 1, but then we will show that we did not make it signifi-
cantly less likely then previously. The hybrids all have the same high-level structure
as ExtGameS̃,E (λ, p(λ)) except that we will make modifications to the definition of

10The failure event fail1 and the choice of δ is only intended to simplify the analysis of the extractor. The
only real bad event from which the extractor cannot recover is fail2.

38 D. Cash et al.

the winning condition that causes the game to output 1, the code of the extractor E ,
and the adversary S̃ . Starting with the original game, we first show that the failures
are rare events. Then we show that we can use an estimated success probability and
replace the active attacker with a passive one, without noticeable differences. Lastly,
we define a “permuted extractor” and conclude our proof with an information theoretic
argument.

Hybrid 0 (the original game): This is the ExtGameS̃,E (λ, p(λ)). Using the same nota-

tion as in the definition of ExtGame, let S̃fin, Cfin be the final configurations of the
malicious server S̃ and client C, respectively, after executing the protocol sequence P
chosen by the server at the beginning of the game, and letM be the correct value of the
memory contents resulting from P . The output of the game is 1 iff

Succ(S̃fin) >
1

p(λ)
∧ E S̃fin(Cfin, 1�, 1p)
= M

Hybrid 1 (extractor fails with fail1, fail2): This game is the same as Hybrid 0 except
that we define its output to be 1 iff

Succ(S̃fin) >
1

p(λ)
∧ E S̃fin(Cfin, 1�, 1p) ∈ {fail1, fail2}.

In other words, we do not count the event that the extractor outputs some non-fail
incorrect value M′
= M in the winning probability.

Note that the hybrids 0 and 1 only differ in their output if E S̃fin(Cfin, 1�, 1p)
∈
{M, fail1, fail2}. Therefore, to show that Pr[Hybrid 0 outputs 1] ≤ Pr[Hybrid 1 outputs
1] + negl(λ), it suffices to show the following.

Lemma 1. Within the execution of ExtGameS̃,E (λ, p), we have:

Pr[E S̃fin(Cfin, 1�, 1p)
∈ {M, fail1, fail2}] ≤ negl(λ).

Proof of Lemma. The only way that the above bad event can occur is if the extrac-
tor puts an incorrect value into its array C which does not match encoded ver-
sion of the correct memory contents M. In particular, this means that one of the
audit protocol executions (consisting of an ORead with t random locations) initi-
ated by the extractor E between the malicious server S̃fin and the client Cfin causes
the client to output some incorrect value which does not match correct memory
contents M and not reject. By the correctness of the ORAM scheme, this means
that the the malicious server must have deviated from honest behavior during that
protocol execution, without the client rejecting. Assume the probability of this bad
event happening is ρ. Since the extractor runs s = max(2�code, λ) · p = poly(λ)

such protocol executions with rewinding, there is at least ρ/s = ρ/poly(λ) prob-
ability that the above bad event occurs on a single random execution of the audit
with S̃fin. But this means that S̃ can be used to break the authenticity of ORAM
with advantage ρ/poly(λ), by first running the requested protocol sequence P and

Dynamic Proofs of Retrievability Via Oblivious RAM 39

then deviating from honest behavior during a subsequent ORead protocol with-
out being detected. Therefore, by the authenticity of ORAM, we must have ρ =
negl(λ). �

Hybrid 2 (extractor fails with fail2): This game is the same as Hybrid 1 except that we
define its output to be 1 iff

Succ(S̃fin) >
1

p(λ)
∧ E S̃fin(Cfin, 1�, 1p) = fail2.

In other words, we do not count the event that the extractor fails with fail1 in the winning
probability.
Note that the hybrids 1 and 2 only differ in their output if Succ(S̃fin) >
1

p(λ)
∧ E S̃fin(Cfin, 1�, 1p) = fail1. Therefore, to show that Pr[Hybrid 1 outputs 1] ≤

Pr[Hybrid 2 outputs 1] + negl(λ), it suffices to show the following lemma which intu-
itively says that if S̃fin has a good chance of passing an audit, then the extractor must be
able to extract sufficiently many values inside C and hence cannot output fail1. Remem-
ber that fail1 occurs if the extractor does not have enough values to recover the whole
memory, and fail2 occurs if the extractor does not have enough values to recover some
message block.

Lemma 2. For any (even inefficient) machine S̃fin and any polynomial p = p(λ) such
that Succ(S̃fin) ≥ 1/p, we have

Pr[E S̃fin(Cfin, 1�, 1p) = fail1] ≤ negl(λ).

Proof of Lemma. Let E be the bad event that fail1 occurs. For each iteration i ∈ [s]
within step (2) of the execution of E , let us define:

• Xi to be an indicator random variable that takes on the value Xi = 1 iff theORead
protocol execution in iteration i does not reject.

• Gi to be a random variable that denotes the subset { j ∈ [�code] : C[j]
= ⊥} of
filled-in positions in the current version of C at the beginning of iteration i .

• Yi to be an indicator random variable that takes on the value Yi = 1 iff |Gi | <

δ · �code and all of the locations that E chooses to read in iteration i happen to
satisfy j1, . . . , jt ∈ Gi .

If Xi = 1 and Yi = 0 in iteration i , then at least one position of C gets filled in so
|Gi+1| ≥ |Gi | + 1. Therefore the bad event E only occurs if fewer than δ�code of the
Xi takes on a 1 or at least one Yi takes on a 1, giving us:

Pr[E] ≤ Pr

[
s∑

i=1

Xi < δ�code

]
+

s∑
i=1

Pr[Yi = 1]

40 D. Cash et al.

For each i , we can bound Pr[Yi = 1] ≤ (�δ�code�
t

)
/
(
�code
t

) ≤ δt . If we define X =
1
s

∑s
i=1 Xi , we also get:

Pr

[
s∑

i=1

Xi < δ�code

]
≤ Pr

[
X < 1/p −

(
1/p − δ�code

s

)]

≤ exp(−2s(1/p − δ�code/s)
2)

≤ exp(−s/p) ≤ 2−λ

where the second inequality follows by the Chernoff–Hoeffding bound. Therefore
Pr[E] ≤ 2−λ + sδt = negl(λ) which proves the lemma. �

Hybrid 3 (uses estimated success probability): This game is the same asHybrid 2 except
thatwe redefinewhen thegameoutputs 1once again. Insteadof looking at the true success
probability Succ(S̃fin), which we cannot efficiently compute, we instead consider an

estimated probability S̃ucc(S̃fin) which is computed in the context of ExtGame by
sampling 2λ(p(λ))2 different “audit protocol executions” between S̃fin and Cfin and
seeing on which fraction of them does S̃ succeed (while rewinding S̃fin and Cfin after
each one). We define Hybrid 3 to output 1 iff:

S̃ucc(S̃fin) >
1

2p(λ)
∧ E S̃fin(Cfin, 1�, 1p) = fail2.

Note that there are two changes here: (1) We use the estimated rather than true success
probability, and (2) we only require that the estimated success probability is at least

1
2p(λ)

whereas previously we wanted the true success probability to be at least 1
p(λ)

.
To show that Pr[Hybrid 2 outputs 1] ≤ Pr[Hybrid 3 outputs 1] + negl(λ), we rely

on the Chernoff–Hoeffding bound, which tells us that the estimated success probabil-
ity is close to the real. In particular, whenever Succ(S̃fin) > 1

p(λ)
holds, we have:

Pr
[
S̃ucc(S̃fin) ≤ 1

2p(λ)

]
≤ e−λ = negl(λ).

Hybrid 4 (passive attacker): In this hybrid, we replace the active attacker S̃ with a
passive attacker Ŝ who always acts as the honest server S, but can selectively fail by
outputting ⊥ at any point. In particular Ŝ just runs a copy of S̃ and the honest server S
concurrently, and if the outputs of S̃ ever deviates from the execution of S, it just outputs
⊥. As in Hybrid 3, the game outputs 1 iff

S̃ucc(Ŝfin) >
1

2p(λ)
∧ E Ŝ(Cfin, 1�, 1p) = fail2.

We argue that Pr[Hybrid 3 outputs 1] ≤ Pr[Hybrid 4 outputs 1] + negl(λ). The only
difference between Hybrid 3 and Hybrid 4 is if Hybrid 3 the adversary S̃ deviates
from the protocol execution without being detected by the client (resulting in the client
outputting⊥), either during the protocol execution of P or during oneof the polynomially

many executions of the next read used to compute S̃ucc(S̃) and E S̃ . The probability
that this occurs is negligible by authenticity of ORAM.

Dynamic Proofs of Retrievability Via Oblivious RAM 41

Hybrid 5 (permuted extractor): In this hybrid, we replace the extractor E with a “per-
muted extractor” Eperm who works just like E with the exception that it permutes the
locations used in the ORead executions during the extraction process. In particular,
Eperm makes the following modifications to E :

• At the beginning, Eperm chooses a random permutation π : [�code] → [�code].
• During each of the s iterations of the audit protocol, Eperm chooses t indices

j1, . . . , jt ∈ [�code] at randomas before, but it then runsORead(π(j1), . . . , π(jt))
on the permuted values. If the protocol is accepting, the extractor Eperm still “fills
in” the original locations:C[j1], . . . ,C[jt]. (Since we are only analyzing the event
fail2, we do not care about the values in these locations but only if they are filled in
or not).

As in Hybrid 4, the game outputs 1 iff

S̃ucc(Ŝfin) >
1

2p(λ)
∧ E Ŝperm(Cfin, 1�, 1p) = fail2.

We argue that the two hybrids are indistinguishable in the “next-read pattern hiding”
of the ORAM. In particular, this guarantees that permuting the locations inside of the
ORead executions (with rewinding) is indistinguishable.

Lemma 3. Pr[Hybrid 4 outputs 1] ≤ Pr[Hybrid 5 outputs 1] + negl(λ).

Proof of Lemma. We construct a reduction which converts an adversarial server Ŝ
against the PORAM scheme into an adversaryA in the “next-read pattern hiding game”
NextReadGameb

A(λ) against the ORAM.

The adversaryA runs Ŝ who chooses a PoR protocol sequence P1 = (op0, . . . , opq2),
and A translates this to the appropriate ORAM protocol sequence, as defined by the
PORAM scheme. Then A chooses its own sequence P2 = (rop1, . . . , ropq2) of suffi-
ciently many read operationsORead(i1, . . . , it) where i1, . . . , it ∈ [�code] are random
distinct indices. It then passes P1, P2 to its challenger and gets back the transcripts of
the protocol executions for stages (I) and (II) of the game.
The adversary A then uses the client communication from the stage (I) transcript to

run Ŝ, getting it into some state Ŝfin. It then uses the stage (II) transcripts, to compute

E Ŝfin(Cfin, 1�, 1p)
?= fail2 and to estimate S̃ucc(Ŝfin), without knowing the client state

Cfin. It does so just by checking on which executions does Ŝfin abort with ⊥ and on
which it runs to completion (here we use that Ŝ is semi-honest and never deviates beyond

outputting ⊥). Lastly A outputs 1 iff the emulated extraction E Ŝfin(Cfin, 1�, 1p) = fail2
and S̃ucc(Ŝfin) ≥ 1

2p(λ)
.

Let b be the challenger’s bit in the “next-read pattern hiding game.” If b = 0 (not

permuted), then A perfectly emulates the distribution of E Ŝfin(Cfin, 1�, 1p)
?= fail2 and

the estimation of S̃ucc(Ŝfin) so:

Pr[NextReadGame0
A(λ) = 1] = Pr[Hybrid 4 outputs 1].

42 D. Cash et al.

If b = 1 (permuted) thenA perfectly emulates the distribution of the permuted extractor

E Ŝfin
perm(Cfin, 1�, 1p)

?= fail2 and the estimation of S̃ucc(Ŝfin) since, for the latter, it does
not matter whether random reads are permuted or not. Therefore:

Pr[NextReadGame1
A(λ) = 1] = Pr[Hybrid 5 outputs 1].

The lemma follows since, by the next-read pattern hiding security, we know that
|Pr[NextReadGame0

A(λ) = 1] − Pr[NextReadGame1
A(λ) = 1] ≤ negl(λ). �

ProbabilityHybrid 5Outputs 1 isNegligible.Finally,we present an information theoretic
argument that the probability that Hybrid 5 outputs 1 is negligible.

Lemma 4. We have

Pr[Hybrid 5 outputs 1] = Pr

[
Succ(

˜̃Sfin) >
1

2p(λ)
∧ E S̃fin

perm(Cfin, 1�, 1p) = fail2

]

≤ negl(λ).

Proof of Lemma. Firstly, note that an equivalent way of thinking about Eperm is to
have it issue random (unpermuted) read queries just like E to recover C, but then
permute the locations of C via some permutation π : [�code] → [�code] before test-
ing for the event fail2. This is simply because we have the distributional equivalence
(π(random),random) ≡ (random, π(random)), where random represents the
randomly chosen locations for the audit and π is a random permutation. Now, with this
interpretation of Eperm, the event fail2 occurs only if (I) the unpermutedC contains more
than δ fraction of locations with filled-in (non ⊥) values so that fail1 does not occur,
and (II) the permuted version (c1, . . . , cL) = C[π(1)], . . . ,C[π(�code)] contains some
codeword block c j with fewer than k/n fraction of filled-in (non ⊥) values.

We now show that conditioned on (I) the probability of (II) is negligible over the
random choice of π . Fix some index j ∈ [L] and let us bound the probability that c j
is the “bad” codeword block with fewer than k filled-in values. Let X1, X2, . . . , Xn be

random variables where Xi is 1 if c j [i]
= ⊥ and 0 otherwise. Let X
def= 1

n

∑n
i=1 Xi .

Then, over the randomness of π , the random variables X1, . . . , Xn are sampled without
replacement from a population of �code values (location in C) at least δ�code of which
are 1 (
= ⊥) and the rest are 0 (= ⊥). Therefore, by Hoeffding’s bound for sampling
from finite populations without replacement (See Sect. 6 of [21]), we have:

Pr[c j is bad] = Pr[X < k/n] = Pr[X < δ − (δ − k/n)]
≤ exp(−2n(δ − k/n)2) = negl(λ)

By taking a union bound over all codeword blocks c j , we can bound

Pr[∃ j : c j is bad] ≤
�/k∑
j=1

Pr[c j is bad] ≤ negl(λ).

Dynamic Proofs of Retrievability Via Oblivious RAM 43

This proves the lemma. �

Together with the sequence of hybrids and the above lemma, we get

Pr[ExtGameS̃,E (λ, p(λ)) = 1] = Pr[Hybrid 0 outputs 1] ≤ Pr[Hybrid 5 outputs 1]
+negl(λ) ≤ negl(λ)

which proves the theorem.

Adaptive Security Note that the above proof goes through with essentially no changes
for the adaptive definition of dynamic PoR security as long as the underlying ORAM
achieves adaptive security. To show Lemma 1, we now need to rely on the fact that
ORAM provides authenticity even in the adaptive setting. To prove Lemma 3, we now
need to rely on the fact that ORAM provides NRPH security even in the adaptive setting.
In particular, the only change is that in the proof of Lemma 3, the dynamic PoR adversary
Ŝ can choose the operations in the sequence P1 adaptively, and the NRPH adversary A
therefore needs to translate these operations one by one into the corresponding adaptive
sequence of ORAM operations.

6. ORAM Instantiation

The notion of ORAM was introduced by Goldreich and Ostrovsky [16], who also intro-
duced the so-called hierarchical scheme having the structure seen in Figs. 1 and 2.
Since then, several improvements to the hierarchical scheme have been given, including
improved rebuild phases and the use of advanced hashing techniques [18,29,36].

Memory M

Memory parsed into
message blocks (m1, ... , mL)

Locally encoded
memory C = (c1, ... , cL)

ORAM server
data structures ...

ORAM protocols

Fig. 1. Our Construction.

44 D. Cash et al.

...

A0

S(1)

S(2)

S(3)

S(L)

T (1)
1

T (1)
2

T (2)
1

T (2)
2

T (3)
1

T (3)
2

T (L)
1

T (L)
2

Fig. 2. Server data structures in the ORAM instantiation.

Weexamine aparticularORAMschemeofGoodrich andMitzenmacher [18] and show
that (with minor modifications) it satisfies next-read pattern hiding security. Therefore,
this scheme can be used to instantiate our PORAM construction. We note that most
other ORAM schemes from the literature that follow the hierarchical structure also
seemingly satisfy next-read pattern hiding, and we only focus on the above example for
concreteness.However, inAppendix “3,”we show that it is not the case that everyORAM
scheme satisfies next-read pattern hiding and in fact give an example of a contrived
scheme which does not satisfy this notion and makes our construction of PORAM
completely insecure. We also believe that there are natural schemes, such as the ORAM
of Shi et al. [31], which do not satisfy this notion. Therefore, next-read pattern hiding is a
meaningful property beyond standard ORAM security and must be examined carefully.

Overview We note that ORAM schemes are generally not described as protocols, but
simply as a data structure in which the client’s encrypted data are stored on the server.
Each time that a client wants to perform a read or write to some address i of her memory,
this operation is translated into a series of read/write operations on this data structure
inside the server’s storage. In other words, the (honest) server does not perform any com-
putation at all during these “protocols,” but simply allows the client to access arbitrary
locations inside this data structure.
Most ORAM schemes, including the one we will use below, follow a hierarchi-

cal structure. They maintain several levels of hash tables on the server, each holding
encrypted address–value pairs, with lower tables having higher capacity. The tables are
managed so that the most recently accessed data are kept in the top tables and the least
recently used data are kept in the bottom tables. Over time, infrequently accessed data
are moved into lower tables (obliviously).
To write a value to some address, just insert the encrypted address–value pair in the

top table. To read the value at some address, one hashes the address and checks the
appropriate position in the top table. If it is found in that table, then one hides this fact by
sequentially checking random positions in the remaining tables. If it is not found in the

Dynamic Proofs of Retrievability Via Oblivious RAM 45

top table, then one hashes the address again and checks the second-level table, continuing
down the list until it is found and then accessing randompositions in the remaining tables.
Once all of the tables have been accessed, the found data are written into the top table. To
prevent tables from overflowing (due to too many item insertions), there are additional
periodic rebuild phases which obliviously move data from the smaller tables to larger
tables further down.

Security Intuition The reason that we always write found data into the top table after
any read is to protect the privacy of repeatedly reading the same address, ensuring that
this looks the same as reading various different addresses. In particular, reading the same
address twice will not need to access the same locations on the server, since after the
first read, the data will already reside in the top table, and the random locations will be
read at lower tables.
At any point in time, after the server observes many read/write executions, any sub-

sequent read operation just accesses completely random locations in each table, from
the point of view of the server. This is the main observation needed to argue standard
pattern hiding. For next-read pattern hiding, we notice that we can extend the above to
any set of q distinct executions of a subsequent read operation with distinct addresses
(each execution starting in the same client/server state). In particular, each of the q oper-
ations just accesses completely random locations in each table, independently of the
other operations, from the point of view of the server.
One subtlety comes upwhen the addresses are not completely distinct from each other,

as is the case in our definition where each address can appear in multiple separate multi-
read operations. The issue is that doing a read operation on the same address twice with
rewinding will reveal the level at which the data for that address is stored, thus revealing
some information about which address is being accessed. One can simply observe at
which level do the accesses begin to differ in the two executions. We fix this issue by
modifying a scheme so that, instead of accessing freshly chosen random positions in
lower tables once the correct value is found, we instead access pseudorandom positions
that are determined by the address being read and the operation count. Thatway, any two
executions which read the same address starting from the same client state are exactly
the same and do not reveal anything beyond this. Note that, without state rewinds, this
still provides regular pattern hiding.

6.1. Technical Tools

Our construction uses the standard notion of a pseudorandom function (PRF) where
F(K , x) denote the evaluation of the PRF F on input x with key K . We also rely on a
symmetric-key encryption scheme secure against chosen-plaintext attacks.

Encrypted Cuckoo Table An encrypted cuckoo table [23,28] consists of three arrays
(T1, T2, S) that hold ciphertexts of some fixed length. The arrays T1 and T2 are both of
size m and serve as cuckoo hash tables, while S is an array of size s and serves as an
auxiliary stash. The data structure uses two hash functions h1, h2 : [�] → [m]. Initially,
all entries of the arrays are populated with independent encryptions of a special symbol
⊥. To retrieve a ciphertext associatedwith an address i , one decrypts all of the ciphertexts

46 D. Cash et al.

in S, as well as the ciphertexts at T1[h1[i]] and T2[h2[i]] (thus at most s + 2 decryptions
are performed). If any of these ciphertexts decrypts to a value of the form (i, v), then
v is the returned output. To insert an address–value pair (i, v), encrypt it and write the
ciphertext ct to position T1[h1(i)], retrieving whatever ciphertext ct1 was there before.
If the original ciphertext ct1 decrypts to⊥, then stop. Otherwise, if ct1 decrypts to a pair
(j, w), then re-encrypt the pair and write the resulting ciphertext to T2[h2(j)], again
retrieving whatever ciphertext ct2 was there before. If ct2 decrypts to ⊥, then stop and
otherwise continue this process iteratively with ciphertexts ct3, ct4, If this process
continues for t = c log n steps, then “give up” and just put the last evicted ciphertext ctt
into the first available spot in the stash S. If S is full, then the data structure fails.
We will use the following result sketched in [18]: If m = (1+ ε)n for some constant

ε > 0, and h1, h2 are random functions, then after n items are inserted, the probability
that S has k or more items written into it is O(1/nk+2). Thus, if S has at least λ slots,
then the probability of a failure after n insertions is negligible in λ.

Oblivious Table Rebuilds Wewill assume an oblivious protocol for the following task.
At the start of the protocol, the server holds encrypted cuckoo hash tables C1, . . . ,Cr .
The client has two hash functions h1, h2. After the oblivious interaction, the server holds
a new cuckoo hash table C ′

r that results from decrypting the data inC1, . . . ,Cr , deleting
data for duplicated locations with preference given to the copy of the data in the lowest
index table, encrypting each index–value pair again and then inserting the ciphertexts
into C ′

r using h1, h2.
Implementing this task efficiently and obliviously is an intricate task. See [18] and

[29] for different methods, which adapt the usage of oblivious sorting first introduced
in [16].

6.2. ORAM Scheme

We can now describe the scheme of Goodrich and Mitzenmacher [18], with our mod-
ifications for next-read pattern hiding. As ingredients, this scheme will use a PRF F
and an encryption scheme (Enc,Dec). A visualization of the server’s data structures is
given in Fig. 2.

OInit(1λ, 1w, �): Let L be the smallest integer such that 2L > �. The client chooses
2L random keys K1,1, K1,2, . . . , KL ,1, KL ,2 and 2L additional random keys R1,1,

R1,2, . . . , RL ,1, RL ,2 to be used for pseudorandom functions and initializes a
counter ctr to 0. It also selects an encryption key for the IND-CPA secure scheme.
It instructs the server to allocate the following data structures:

• An empty array A0 that will change size as it is used.
• L empty cuckoo hash tablesC1, . . . ,CL where the parameters inC j are adjusted
to hold 2 j data items with a negligible (in λ) probability of overflow when used
with random hash functions.

The client state consists of all of the keys
(
K j,0, K j,1

)
j∈[L],

(
R j,0, R j,1

)
j∈[L], the

encryption key and ctr.

Dynamic Proofs of Retrievability Via Oblivious RAM 47

ORead(i1, . . . , it): The client starts by initializing an array found of t flags to false. For
each index i j to be read, the client does the following. For each level k = 1, . . . , L ,
the client executes

• Let Ck = (T (k)
1 , T (k)

2 , S(k))

• If found[j] = false, read and decrypt all of S(k), T (k)
1 [F(Kk,1, i j)] and

T (k)
2 [F(Kk,2, i j)]. If the data are in any of these slots, set found[j] to true

and remember the value as v j .

• Else, if found[j] = true, then instead read all of S(k), T (k)
1 [F(Rk,1, i j‖ctr)] and

T (k)
2 [F(Rk,2, i j‖ctr)] and ignore the results. Note that the counter value is used

to create random reads when the state is not reset, while providing the same
random values if the state is reset.
Finally, it encrypts and appends (i j , v j) to the end of A0 and continues to the
next index i j+1. We note that above, when accessing a table using the output
of F , we are interpreting the bit string output by F as a random index from the
appropriate range.
After all the indices have been read andwritten to A0, the client initiates a rebuild
phase, the description of which we defer for now.

OWrite(i1, . . . , it ; v1, . . . , vt): The client encrypts and writes (i j , v j) into A0 for each
j and then initiates a rebuild phase described below.

Rebuild Phase We complete the scheme description by describing a rebuild phase,
which works as follows.
The client repeats the following process until A0 is empty:

• Increment ctr.
• Remove and decrypt an item from A0, calling the result (j, v).
• Let r ≥ 0 be the largest integer such that 2r divides (ctr mod 2L).
• Select new keys Kr,1, Kr,2 and use the functions F(Kr,1, ·) and F(Kr,2, ·) as h1
and h2 to obliviously build a new cuckoo table C ′

r holding the removed item (j, v)

and all of the data items in C1, . . . ,Cr−1, freshly re-encrypted and with duplicates
removed.

• Then, for j = 1 to r − 1, set K j,1, K j,2 to fresh random keys and set the cuckoo
tables C1, . . . ,Cr to be new, empty tables and Cr to be C ′

r .

Note that the remaining tables Cr+1, . . . ,CL are not touched.
We can implement the rebuild phase using the any of the protocols (with small varia-

tions) from [18,19]. The most efficient gives an amortized overhead of log � operations
for all rebuilds, assuming that the client can temporarily locally store �δ memory slots
during the protocol (but the client does need to store them between executions of the
protocol). If we only allow the client to store a constant number of slots at any one time,
then we incur an overhead of log2 �. In either case, the worst-case overhead is O(�).
Using the de-amortization techniques from [19,27], we can achieve worst-case com-
plexity of log2 �, at the cost of doubling the server storage. This technique was analyzed
in the original ORAM security setting, but it is not hard to extend our proof to show that
it preserves next-read pattern hiding as well. At a high level, the technique maintains two
copies of the server data (one “old” and one “current”) and performs the table rebuilds on

48 D. Cash et al.

the “old” copy in small chunks of operations after each read or write. But these chunks
of operations are determined by a fixed schedule (involving oblivious sorting and simple
reorganizations), so during the next-read pattern hiding security game these chunks will
be identical after each rewind, and thus, they do not help the adversary.

6.3. Next-Read Pattern Hiding

Theorem 2. Assuming that F is a secure PRF, and the underlying encryption scheme is
chosen-plaintext secure, then the schemeO described above is next-read pattern hiding.

Proof. We show that for any efficient adversary A, the probabilities that A outputs 1
when playing either NextReadGame0

A or NextReadGame1
A differ by only a neg-

ligible amount. In these games, the adversary A provides two tuples of operations
P1 = (op1, . . . , opq1) and P2 = (rop1, . . . , ropq2), the latter being all multi-reads,
and a permutation π on [�]. Then in NextReadGame0

A,A is given the transcript of an
honest client and server executing P1, as well as the transcript of executing the multi-
reads in P2 with rewinds after each operation, while in NextReadGame1

A it is given
the same transcript except that second part is generated by first permuting the addresses
in P2 according to π .
We need to argue that these inputs are computationally indistinguishable. For our

analysis below, we assume that a rebuild phase never fails, as this event happens with
negligible probability in λ, as discussed before. We start by modifying the execution
of the games in two ways that are shown to be undetectable by A. The first change
will show that all of the accesses into tables appear to the adversary to be generated by
random functions, and the second change will show that the ciphertexts do not reveal
any usable information for the adversary.
First, whenever keys K j,1, K j,2 are chosen and used with the pseudorandom function

F , we use random functions g j,1, g j,2 in place of F(K j,1, ·) and F(K j,2, ·).11 We do
the same for the R j,1, R j,2 keys, calling the random functions r j,1 and r j,2. This change
only changes the behavior of A by a negligible amount, as otherwise we could build a
distinguisher to contradict the PRF security of F via a standard hybrid argument over
all of the keys chosen during the game.
The second change we make is that all of the ciphertexts in the transcript are replaced

with independent encryptions of equal-length strings of zeros. We claim that this only
affects the output distribution ofA by a negligible amount, as otherwise we could build
an adversary to contradict the IND-CPA security of the underlying encryption scheme
via a standard reduction. Here it is crucial that, after each rewind, the client chooses new
randomness for the encryption scheme.
We now complete the proof by showing that the distribution of the transcripts given to

A is identical in the modified versions of NextReadGame0
A and NextReadGame1

A.
To see why this is true, let us examine what is in one of the game transcripts given to
A. The transcript for the execution of P1 consists of ORead and OWrite transcripts,

11As usual, instead of actually picking and using a random function, which is an exponential task, we
create random numbers whenever necessary and remember them. Since there will be only polynomially many
interactions, this only requires polynomial time and space.

Dynamic Proofs of Retrievability Via Oblivious RAM 49

which are accesses to indices in the cuckoo hash tables, ciphertext writes into A0 and
rebuild phases. Finally the execution of P2 (either permuted by π or not) with rewinds
generates a transcript that consists of several accesses to the cuckoo hash tables, each
followed by writes to A0 and a rebuild phase.

By construction of the protocol, in the modified game the only part of the transcript
that depends on the addresses in P2 is the reads into T (k)

1 and T (k)
2 for each k. All other

parts of the transcript are oblivious scans of the S(k) arrays and oblivious table rebuilds
which do not depend on the addresses (recall the ciphertexts in these transcripts are
encryptions of zeros). Thus we focus on the indices read in each T (k)

1 and T (k)
2 and need

to show that, in the modified games, the distribution of these indices does not depend
on the addresses in P2.
The key observation is that, after the execution of P1, the state of the client is such that

each address i will induce a uniformly random sequence of indices in the tables that is
independent of the indices read for any other address and independent of the transcript
for P1. If the data are in the cuckoo table at level k, then the indices will be

(
g j,1(i)

)k
j=1 and

(
r j,1(i‖ctr)

)L
j=k+1 .

Thus each i induces a random sequence, and each address will generate an independent
sequence. We claim moreover that the sequence for i is independent of the transcript for
P1. This follows from the construction: For the indices derived from r j,1 and r j,2, the
transcript for P1 would have always used a lower value for ctr. For the indices derived
from g j,1 and g j,2, we have that the execution of P1 would not have evaluated those
functions on input i : If i was read during P1, then i would have been written to A0 and
a rebuild phase would have chosen new random functions for g j,1 and g j,2 before the
address–value pair i was placed in the j-th level table again.
With this observation, we can complete the proof. When the modified games are

generating the transcript for the multi-read operations in P2, each individual read for an
index i induces an random sequence of table reads among its other oblivious operations.
But since each i induces a completely random sequence and permuting the addresses
will only permute the random sequences associated with the addresses, the distribution
of the transcript is unchanged. Thus no adversary can distinguish these games, which
means that no adversary could distinguish NextReadGame0

A and NextReadGame1
A,

as required. �

6.4. Authenticity, Extensions and Optimizations

Authenticity To achieve authenticity, we sketch how to employ the technique intro-
duced in [16]. A straightforward attempt is to tag every ciphertext stored on the server
along with its location on the server using a message authentication code (MAC). But
this fails because the sever can “roll back” changes to the data by replacing ciphertexts
with previously stored ones at the same location. We can generically fix this by using
the techniques of memory checking [5,13,26] at some additional logarithmic overhead.
However, it also turns out that authenticity can also be added at almost no cost to several
specific constructions, as we describe below.

50 D. Cash et al.

Goldreich and Ostrovsky showed that any ORAM protocol supporting time-labeled
simulation (TLS) can be modified to achieve authenticity without much additional com-
plexity.We say that anORAMprotocol supports TLS if there exists an efficient algorithm
Q such that, after the j-th message is sent to the server, for each index x on the server
memory, the number of times x has been written to is equal to Q(j, x).12 Overall, one
implements the above tagging strategy and also includes Q(j, x) with the data being
tagged, and when reading one recomputes Q(j, x) to verify the tag.
Our scheme can be shown to support TLS in a manner very similar to the original

hierarchical scheme [16]. The essential observation, also used there, is that the table
indices are only written to during a rebuild phase, so by tracking the number of executed
rebuild phases we can compute how many times each index of the table was written to.

Extensions and Optimizations The scheme above is presented in a simplified form that
can be made more efficient in several ways while maintaining security.

• The keys in the client state can be derived from a single key by appropriately using
the PRF. This shrinks the client state to a single key and counter.

• The initial table C1 can be made larger to reduce the number of rebuild phases
(although this does not affect the asymptotic complexity).

• We can collapse the individual oblivious table rebuilds into one larger rebuild.
• It was shown in [20] that all of the L cuckoo hash tables can share a single O(λ)-size
stash S while still maintaining a negligible chance of table failure.

• Instead of doing table rebuilds all at once, we can employ a technique that allows
for them to be done incrementally, allowing us to achieve worst-case rather than
amortized complexity guarantees [19,27]. These techniques come at the cost of
doubling the server storage.

• The accesses to cuckoo tables on each level during a multi-read can be done in
parallel, which reduces the round complexity of that part to be independent of t ,
the number of addresses being read.

• The ORAM can be initialized with data by the client by locally simulating the
protocol writes and then uploading the initial server state. The proof of security for
this version is via a trivial reduction, where the server does not see the initial batch
of operations.

Alternatively, one can modify the ORAM setup to initially store all data on the last
table (obliviously, of course, using a PRF) to avoid the local simulation (see e.g., [19]).
The proof of security for this approach is also a trivial reduction, where the reduction
repeats operations until a rebuild phase is triggered that moves all of the data to the last
level.
We can also extend this scheme to support a dynamically changing memory size. This is
done by simply allocating different sized tables during a rebuild that eliminates the lower
larger tables or adds new ones of the appropriate size. This modification will achieve
next-read pattern hiding security, but it will not be standard pattern hiding secure, as it
leaks some information about the number of memory slots in use. One can formalize

12Here we mean actual writes on the server and not OWrite executions.

Dynamic Proofs of Retrievability Via Oblivious RAM 51

Table 1. Efficiency of ORAM scheme above.

Client storage O(1)
Server storage O(� + λ)

Read complexity O(λ · log �) + RP
Write complexity O(1) + RP

“RP” denotes the aggregate cost of the rebuild phases, which is O(log �), or O(log2 �) in the worst case, per
our discussion above

this, however, in a pattern hiding model where any two sequences with equal memory
usage are required to be indistinguishable.

Adaptive Security We observe that it is easy prove this ORAM meets the adaptive
variant of next-read pattern hiding from the end of Sect. 4. Recall that in this version
P1 can be chosen adaptively, and then P2 is chosen all at once afterward. The argument
above still justifies substituting in the random functions g j,1, g j,2, r j,1, r j,2 and also the
substitution of real ciphertexts with encryptions of zeros. In this version of the adaptive
game, all of the accesses into the tables in the observed transcript will be for uniform
and independent indices. Moreover, in the adversary’s view, the accessed indices are
independent of the addresses it adaptively selects (formally, we can choose the random
indices before the adversary selects the addresses and then “program” them into the
random functions without changing the distribution of the experiment). This continues
to hold during the execution of P2, which is anyway fixed all at once.

Efficiency of the ORAM Instantiation In this scheme, the client stores the counter and
the keys, which can be derived from a single key using the PRF. The server stores log �

tables, where the j-th table requires 2 j+λ memory slots, which sums to O(�+λ·log �).
Using the optimization above, we only need a single stash, reducing the sum to
O(�+λ). When executing ORead, each index read requires accessing two slots plus
the λ stash slots in each of the log � tables, followed by a rebuild.OWrite is simply one
write followed by a rebuild phase. Table 1 summarizes the efficiency measures of the
scheme.

7. Efficiency

We now look at the efficiency of our PORAM construction, when instantiated with
the ORAM scheme from Sect. 6 (we assume the rebuild phases are implemented via
the Goodrich–Mitzenmacher algorithm [18] with the worst-case complexity optimiza-
tion [19,27].) Since our PORAM scheme preserves (standard) ORAM security, we ana-
lyze its efficiency in two ways. Firstly, we look at the overhead of PORAM scheme
on top of just storing the data inside of the ORAM without attempting to achieve any
PoR security (e.g., not using any error-correcting code). Secondly, we look at the overall
efficiency of PORAM. Third, we compare it with dynamic PDP [14,35], which does
not employ erasure codes and does not provide full retrievability guarantee, and hence

52 D. Cash et al.

show the overhead of providing full retrievability guarantee using a single audit with
our scheme. In the table below, � denotes the size of the client data and λ is the security
parameter. We assume that the ORAM scheme uses a PRF whose computation takes
O(λ) work.13

PORAM efficiency vs. ORAM Overall vs. Dynamic PDP [14,37]

Client storage Same O(λ) Same
Server storage × O(1) O(�) × O(1)
Read complexity × O(1) O(λ log2 �) × O(log �)

Write complexity × O(λ) O(λ2 log2 �) × O(λ log �)

Audit complexity Read × O(λ) O(λ2 log2 �) × O(log �)

Like previous work building and using ORAM, these asymptotic measures hide what
may be large constants. The server storage is roughly four times the plaintext size (not
counting stashes, which grow slowly compared to the plaintext size). Read operations
are exactly ORAM reads, and write operations require n invocations of each of the read
and write ORAM protocols, which themselves invoke an oblivious sorting subroutine
several times.
We can get a rough idea of the overhead using the experimental reports for this type

of ORAM due to Pinkas and Reinman [29] (this is the only implementation we are
aware of. Note that their construction was later shown to be insecure and required the
addition of stashes, which is why it is only a rough estimate). For a memory with 220

slots, their implementation showed the hidden constant in the O(λ · log2 �) to be 165.
With our suggested setting of n = 256, we estimate that writes in our protocol will have
an overhead of about 256 · 165 · λ2 log2 �. Given the large constants here, it is likely
worth exploring more recent ORAM constructions like Path ORAM [34] with good
implementations.
By modifying the underlying ORAM to dynamically resize tables during rebuilds, the

resulting PORAM instantiation will achieve the same efficiency measures as above, but
with � taken to be amount of memory currently used by the memory access sequence.
This is in contrast to the usual ORAM setting where � is taken to be a (perhaps large)
upper bound on the total amount of memory that will ever be used.
Lastly, we note that after our work [8], two recent works emerged [9,32]. Both of

them achieve better efficiency compared to our work, mainly cutting of the squares in
our complexity measures. Shi et al. [32] even provide an efficient implementation of
their scheme. They rely on similar observations to ours in the sense that the write and
audit operations need to be implemented obliviously (using similar techniques to those
of the hierarchical ORAM schemes), though they show that the read operations may be
performed on a separate data structure in a non-obliviousmanner. This is indeed themain
difference between a full ORAMscheme and aDPOR scheme. DPOR security definition
does not require hiding the full access pattern, whereas ORAM security definition does.

13We suggest setting k = t = λ = 128 and n = 2k = 256.

Dynamic Proofs of Retrievability Via Oblivious RAM 53

Since our PORAM is both an ORAM and a DPOR scheme, its advantage is that by
having some logarithmic overhead over [9,32], it also hides the access pattern of the
client.

Acknowledgements

Alptekin Küpçü would like to acknowledge the support of TÜBİTAK, the Scientific
and Technological Research Council of Turkey, under project number 112E115, and
European Union COST Action IC1306. David Cash and Daniel Wichs are sponsored by
DARPA under agreement number FA8750-11-C-0096. The US Government is autho-
rized to reproduce and distribute reprints for Governmental purposes notwithstanding
any copyright notation thereon. The views expressed are those of the author and do not
reflect the official policy or position of theDepartment ofDefense or theUSGovernment.
Distribution Statement “A” (Approved for Public Release, Distribution Unlimited).

Appendix 1: Simple Dynamic PoR with Square Root Complexity

Wesketch a very simple construction of dynamicPoR that achieves sublinear complexity
in its read, write and audit operations. Although the scheme is asymptotically signifi-
cantly worse than our PORAM solution as described in the main body, it is significantly
simpler and may be of interest for some practical parameter settings.
The construction starts with the first dynamic PoR proposal from the introduction. To

store a memory M ∈ �� on the server, the client divides it into L = √
� consecutive

message blocks (m1, . . . ,mL), each containing L = √
� symbols. The client then

encodes each of the message blocks mi using an (n = 2L , k = L , d = L + 1)-erasure
code (e.g., Reed–Solomon tolerating L erasures), to form a codeword block ci , and
concatenates the codeword blocks to form a string C = (c1, . . . , cL) ∈ �2� which it
then stores on the server.We can assume the code is systematic so that the message block
mi resides in the first L symbols of the corresponding codeword block ci . In addition,
the client initializes a memory checking scheme [5,13,26], which it uses to authenticate
each of the 2� codeword symbols within C.
To read a location j ∈ [�] of memory, the client computes the index i ∈ [L] of

the message block mi containing that location and downloads the appropriate symbol
of the codeword block ci which contains the value M[j] (here we use that the code
is systematic), which it checks for authenticity via the memory checking scheme. To
write to a location j ∈ [�], the client downloads the entire corresponding codeword
block ci (checking for authenticity) decodes mi , changes the appropriate location to
get an updated block m′

i and finally re-encodes it to get c′
i which it then writes to the

server, updating the appropriate authentication information within the memory checking
scheme. The audit protocol selects t = λ (security parameter) random positions within
every codeword block ci and checks them for authenticity via the memory checking
scheme.
The read and write protocols of this scheme each execute the memory checking read

protocol to read and write 1 and
√

� symbols, respectively. The audit protocol reads
and checks λ

√
� symbols. Assuming an efficient (polylogarithmic) memory checking

54 D. Cash et al.

protocol, this means actual complexity of these protocols incurs another O(log �) factor
and another constant factor increase in server storage. Therefore the complexity of
the reads, writes and audit is O(1), O(

√
�), O(

√
�) respectively, ignoring factors that

depend on the security parameter or are polylogarithmic in �.
Note that the above scheme actually gives us a natural trade-off between the complexity

of the writes and the audit protocol. In particular, for any δ > 0, we can set the message
block size to L1 = �δ symbols, so that the client memory M now consists of L2 =
�1−δ such blocks. In this case, the complexity of reads, writes and audits becomes
O(1), O(�δ), O(�1−δ) respectively.

Appendix 2: Standard Pattern Hiding for ORAM

We recall an equivalent definition to the one introduced byGoldreich andOstrovsky [16].
Informally, standard pattern hiding says that an (arbitrarily malicious and efficient)
adversary cannot detect which sequence of instructions a client is executing via the
ORAM protocols.
Formally, for a bit b and an adversaryA, we define the gameORAMGameb

A(λ) as follows:

• The attacker A(1λ) outputs two equal-length ORAM protocol sequences Q0 =
(op0, . . . , opq), Q1 = (op′

0, . . . , op
′
q). We require that for each index j , the oper-

ations op j and op′
j only differ in the location they access and the values they are

writing, but otherwise correspond to the same operation (read or write).
• The challenger initializes an honest client C and server S and sequentially executes
the operations in Qb between C and S.

• Finally, A is given the complete transcript of all the protocol executions, and he
outputs a bit b̃, which is the output of the game.

We say that an ORAM protocol is pattern hiding if for all efficient adversaries A we
have: ∣∣∣Pr[ORAMGame0

A(λ) = 1] − Pr[ORAMGame1
A(λ) = 1]

∣∣∣ ≤ negl(λ).

Sometimes we also want to achieve a stronger notion of security where we also wish to
hide whether each operation is a read or a write. This can be done generically by always
first executing a read for the desired location and then executing a write to either just
write back the read value (when we only wanted to do a read) or writing in a new value.

Appendix 3: Standard ORAM Security Does not Suffice for PORAM

In this section, we construct an ORAM that is secure in the usual sense but is not next-
read pattern hiding. In fact, we will show something stronger: If the ORAM below were
used to instantiate our PORAM scheme, then the resulting dynamic PoR scheme is not
secure. This shows that some notion of security beyond regular ORAM is necessary for
the security PORAM.

Dynamic Proofs of Retrievability Via Oblivious RAM 55

Counterexample Construction We can take any ORAM scheme (e.g., the one in Sect. 6
for concreteness) andmodify it by “packing” multiple consecutive logical addresses into
a single slot of the ORAM. In particular, if the client initializes the modified ORAM
(calledMORAMwithin this section)with alphabet� = {0, 1}w, it will translate this into
initializing the original ORAM with the alphabet �n = {0, 1}nw, where each symbol in
the modified alphabet “packs” together n symbols of the original alphabet. Assume this
is the same n as the codeword length in our PORAM protocol.
Whenever the client wants to read some address i usingMORAM, themodified scheme

looks up where it was packed by computing j = �i/n�, uses the original ORAM
scheme to execute ORead(j) and then parses the resulting output as (v0, . . . , vn−1) ∈
�n and returns vi mod n . To write v to address i , MORAM runs ORAM scheme’s
ORead(�i/n�) to get (v0, . . . , vn−1) as before, then sets vi mod n ← v and writes the
data back via ORAM scheme’s OWrite(�i/n�, (v0, . . . , vn−1)). It is not hard to show
that thismodified scheme retains standardORAMsecurity, since it hideswhich locations
are being read/written.
We next discuss why this modification causes the MORAM to not be NRPH secure.

Consider what happens if the client issues a read for an address, say i = 0, and then
is rewound and reads another address that was packed into the same ORAM slot, say
i +1. Both operations will cause the client to issueORead(0). And since our MORAM
was deterministic, the client will access exactly same table indices at every level on the
server on both runs. But, if these addresses were permuted to not be packed together
(e.g., blocks were packed using equivalence classes of their indices (mod �/n)), then
the client will issue ORead commands on different addresses, reading different table
positions (with high probability), thus allowing the server to distinguish which case it
was in and break NRPH security.
This establishes that the modified scheme is not NRPH secure. To see why PORAM is

not securewithMORAM, consider an adversary that, after a sequence ofmany read/write
operations, randomly deletes one block of its storage (say, from the lowest level cuckoo
table). If this block happens to contain a non-dummy ciphertext that contains actual
data (which occurs with reasonable probability), then this attack corresponds to deleting
some codeword block in full (because all codeword blocks corresponding to a message
block were packed in the same ORAM storage location), even though the server does
not necessarily know which one. Therefore, the underlying message block can never
be recovered from the attacker. But this adversary can still pass an audit with good
probability, because the audit would only catch the adversary if it happened to access
the deleted block during its reads either by (1) selecting exactly this location to check
during the audit and (2) reading this location in the cuckoo table slot as a dummy read.
This happens with relatively low probability, around 1/�, where � is the number of
addresses in the client memory.
To provide some more intuition, we can also examine why this same attack (deleting

a random location in the lowest level cuckoo table) does not break PORAM when
instantiated with the ORAM implementation from Sect. 6 that is NRPH secure. After
this attack, the adversary still maintains a good probability of passing a subsequent audit.
However, by deleting only a single ciphertext in one of the cuckoo tables, the attacker
now deleted only a single codeword symbol, not a full block of n of them. And now we
can show that our extractor can still recover enough of the other symbols of the codeword

56 D. Cash et al.

block so that the erasure code will enable recovery of the original data. Of course, the
server could start deleting more of the locations in the lowest level cuckoo table, but he
cannot selectively target codeword symbols belonging to a single codeword block, since
it has no idea where those reside. If he starts to delete too many of them just to make
sure a message block is not recoverable, then he will lose his ability to pass an audit.

References

[1] G. Ateniese, R.C. Burns, R. Curtmola, J. Herring, L. Kissner, Z.N.J. Peterson, D. Song. Provable data
possession at untrusted stores, in P. Ning, S.D.C. di Vimercati, P.F. Syverson, editors, ACM CCS 07
(ACM Press, 2007), pp. 598–609.

[2] G. Ateniese, S. Kamara, and J. Katz. Proofs of storage from homomorphic identification protocols, in
M. Matsui, editor, ASIACRYPT 2009, vol. 5912 of LNCS (Springer, 2009), pp. 319–333.

[3] G. Ateniese, R.D. Pietro, L.V. Mancini, G. Tsudik. Scalable and efficient provable data possession.
Cryptology ePrint Archive, Report 2008/114 (2008). http://eprint.iacr.org/.

[4] M. Bellare and O. Goldreich. On defining proofs of knowledge, in E.F. Brickell, editor, CRYPTO’92,
vol. 740 of LNCS (Springer, 1993), pp. 390–420.

[5] M. Blum, W.S. Evans, P. Gemmell, S. Kannan, M. Naor. Checking the correctness of memories. Algo-
rithmica, 12(2/3):225–244, (1994).

[6] K. D. Bowers, A. Juels, A. Oprea. HAIL: a high-availability and integrity layer for cloud storage. in
E. Al-Shaer, S. Jha, A.D. Keromytis, editors, ACM CCS 09 (ACM Press, 2009), pp. 187–198.

[7] K.D. Bowers, A. Juels, A. Oprea. Proofs of retrievability: theory and implementation, in R. Sion and
D. Song, editors, CCSW (ACM, 2009), pp. 43–54.

[8] D. Cash, A. Küpçü, D. Wichs. Dynamic proofs of retrievability via oblivious ram, in EUROCRYPT,
(2013).

[9] N. Chandran, B. Kanukurthi, R. Ostrovsky. Locally updatable and locally decodable codes, in TCC,
(2014).

[10] B. Chen, R. Curtmola, G. Ateniese, R.C. Burns. Remote data checking for network coding-based dis-
tributed storage systems, in A. Perrig and R. Sion, editors, CCSW (ACM, 2010), pp. 31–42.

[11] R. Curtmola, O. Khan, R. Burns, G. Ateniese. Mr-pdp: Multiple-replica provable data possession, in
ICDCS, (2008).

[12] Y. Dodis, S.P. Vadhan, D. Wichs. Proofs of retrievability via hardness amplification, in O. Reingold,
editor, TCC 2009, vol. 5444 of LNCS (Springer, 2009), pp. 109–127.

[13] C. Dwork, M. Naor, G.N. Rothblum, V. Vaikuntanathan. How efficient can memory checking be? in
O. Reingold, editor, TCC 2009, vol. 5444 of LNCS (Springer, 2009), pp. 503–520.

[14] C.C. Erway, A.Küpçü, C. Papamanthou, R. Tamassia. Dynamic provable data possession, in E. Al-Shaer,
S. Jha, A.D. Keromytis, editors, ACM CCS 09 (ACM Press, 2009), pp. 213–222.

[15] M. Etemad, A. Küpçü. Transparent, distributed, and replicated dynamic provable data possession, in
ACNS (2013).

[16] O. Goldreich and R. Ostrovsky. Software protection and simulation on oblivious RAMs. Journal of the
ACM, 43(3):431–473, 1996.

[17] S. Goldwasser, S. Micali, and C. Rackoff. The knowledge complexity of interactive proof systems. SIAM
Journal on Computing, 18(1):186–208, 1989.

[18] M.T. Goodrich, M. Mitzenmacher. Privacy-preserving access of outsourced data via oblivious RAM
simulation, in L. Aceto, M. Henzinger, and J. Sgall, editors, ICALP 2011, Part II, vol. 6756 of LNCS
(Springer, 2011), pp. 576–587.

[19] M.T.Goodrich,M.Mitzenmacher, O.Ohrimenko, R. Tamassia. ObliviousRAMsimulationwith efficient
worst-case access overhead, in CCSW (2011), pp. 95–100.

[20] M.T. Goodrich, M. Mitzenmacher, O. Ohrimenko, R. Tamassia. Privacy-preserving group data access
via stateless oblivious ram simulation, in SODA (2012), pp. 157–167.

[21] W. Hoeffding. Probability inequalities for sums of bounded random variables. Journal of the American
Statistical Association, 58(301):13–30, 1963.

http://eprint.iacr.org/

Dynamic Proofs of Retrievability Via Oblivious RAM 57

[22] A. Juels, B.S. Kaliski Jr. Pors: proofs of retrievability for large files, in P. Ning, S.D.C. di Vimercati, P.F.
Syverson, editors, ACM CCS 07 (ACM Press, 2007), pp. 584–597.

[23] A. Kirsch, M. Mitzenmacher, and U. Wieder. More robust hashing: Cuckoo hashing with a stash. SIAM
J. Comput., 39(4):1543–1561, 2009.

[24] A. Küpçü. Efficient Cryptography for the Next Generation Secure Cloud. Ph.D. thesis, Brown University
(2010).

[25] A. Küpçü. Efficient Cryptography for the Next Generation Secure Cloud: Protocols, Proofs, and Imple-
mentation. (Lambert Academic Publishing, 2010).

[26] M. Naor, G.N. Rothblum. The complexity of online memory checking, in 46th FOCS (IEEE Computer
Society Press, 2005), pp. 573–584.

[27] R. Ostrovsky, V. Shoup. Private information storage (extended abstract), in 29th ACM STOC (ACM
Press, 1997), pp. 294–303.

[28] R. Pagh and F. F. Rodler. Cuckoo hashing. J. Algorithms, 51(2):122–144, 2004.
[29] B. Pinkas, T. Reinman. Oblivious RAM revisited. In T. Rabin, editor, CRYPTO, vol. 6223 of LNCS

(Springer, 2010), pp. 502–519.
[30] H. Shacham, B. Waters. Compact proofs of retrievability, in J. Pieprzyk, editor, ASIACRYPT 2008, vol.

5350 of LNCS (Springer, 2008), pp. 90–107.
[31] E. Shi, T.-H.H. Chan, E. Stefanov, M. Li. Oblivious ram with o((logn)3) worst-case cost, in D.H. Lee,

X. Wang, editors, ASIACRYPT, vol. 7073 of Lecture Notes in Computer Science (Springer, 2011), pp.
197–214.

[32] E. Shi, E. Stefanov, C. Papamanthou. Practical dynamic proofs of retrievability, in ACM CCS (2013).
[33] E. Stefanov, M. van Dijk, A. Oprea, A. Juels. Iris: a scalable cloud file system with efficient integrity

checks. Cryptology ePrint Archive, Report 2011/585 (2011). http://eprint.iacr.org/.
[34] E. Stefanov, M. van Dijk, E. Shi, C. Fletcher, L. Ren, X. Yu, S. Devadas. Path oram: An extremely

simple oblivious ram protocol, in Proceedings of the 2013 ACM SIGSAC Conference on Computer &
Communications Security, CCS ’13 (2013), pp. 299–310.

[35] Q. Wang, C. Wang, J. Li, K. Ren, W. Lou. Enabling public verifiability and data dynamics for storage
security in cloud computing. InM.Backes, P.Ning, editors,ESORICS2009, vol. 5789 ofLNCS (Springer,
2009), pp. 355–370.

[36] P. Williams, R. Sion, B. Carbunar. Building castles out of mud: practical access pattern privacy and
correctness on untrusted storage, in P. Ning, P.F. Syverson, S. Jha, editors, ACM CCS 08 (ACM Press,
2008), pp. 139–148.

[37] C. C. Erway, A. Küpçü, C. Papamanthou, R. Tamassia. Dynamic provable data possession. ACM Trans.
Inf. Syst. Secur., 17(4):15, 2015.

http://eprint.iacr.org/

	Dynamic Proofs of Retrievability Via Oblivious RAM
	1. Introduction
	1.1. Our Results and Techniques
	1.2. Related Work

	2. Preliminaries
	3. Dynamic PoR
	4. Oblivious RAM with Next-Read Pattern Hiding
	5. PORAM: Dynamic PoR via ORAM
	5.1. Proof of Theorem 1

	6. ORAM Instantiation
	6.1. Technical Tools
	6.2. ORAM Scheme
	6.3. Next-Read Pattern Hiding
	6.4. Authenticity, Extensions and Optimizations

	7. Efficiency
	Acknowledgements
	Appendix 1: Simple Dynamic PoR with Square Root Complexity
	Appendix 2: Standard Pattern Hiding for ORAM
	Appendix 3: Standard ORAM Security Does not Suffice for PORAM
	References

