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fairness. In particular, we show that they can be met in some natural setting where
existing notions of fairness are provably impossible to achieve.
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1. Introduction

Both Game Theory and the discipline of cryptographic protocols are dedicated to under-
standing the intricacies of collaborative interactions among parties with conflicting inter-
ests. Furthermore, the focal point of both disciplines is the same and is algorithmic at
nature: designing and analyzing algorithms for parties in such collaborative situations.
However, the two disciplines developed very different sets of goals and formalisms.
Cryptography focuses on designing algorithms that allow those who follow them to
interact in a way that guarantees some basic concrete properties, such as secrecy, cor-
rectness or fairness, in face of adversarial, malicious behavior. Game Theory is more
open-ended, concerning itself with understanding algorithmic behaviors of “rational”
parties with well-defined goals in a given situation, and on designing rules of interaction
that will “naturally” lead to behaviors with desirable properties.
Still, in spite of these differences, some very fruitful cross-fertilization between the

two disciplines has taken place (see, e.g., [9,25]). One very natural direction is to use
cryptographic techniques to solve traditional Game Theoretic problems. In particular,
the works of Dodis et al. [8], Ismalkov et al. [23,24], Abraham et al. [1] and Halpern and
Pass [22] take this path and demonstrate how a mutli-party protocol using cryptographic
techniques can be used to replace a trusted correlation device or amediator inmechanism
design. Another line of research is to extend the traditional Game Theoretic formalisms
to capture, within the context of Game Theory, cryptographic concerns and ideas that
take into account the fact that protocol participants are computationally bounded and
that computational resources are costly [8,19,22].
Yet another line of work is aimed at using Game Theoretic concepts and approach to

amend traditional cryptographic goals such as secure and fair computation. A focal point
in this direction has been the concept of rational fair exchange of secrets (also known
as rational secret sharing) [3,10,17,21,26–28,30]. Here the goal is to design a protocol
for exchanging secrets in a way that “rational players” will be “interested” in following
the protocol, where it is assumed that players are interested in learning the secret inputs
of the other players while preventing others from learning their own secrets. In fact, it
is assumed that the participants have specific preferences and some quantitative prior
knowledge on these preferences of the participants is known to the protocol designer.
Furthermore, such prior knowledge turns out to be essential in order to get around basic
impossibility results [3,6].

These ingenious works demonstrate the benefit in having a joint theory of protocols
for collaborative but competing parties, but at the same time they underline the basic
incompatibility in the two formalisms. For instance, the (primarily Game Theoretic)
formalisms used in the works on rational secret sharing do not seem to naturally capture
basic cryptographic concepts, such as semantic security of the secrets. Instead, these
works opt for more simplistic notions that are not always compatible with traditional
cryptographic formalisms. In particular, existing modeling (that is used both by con-
structions and by impossibility results) treats the secret as an atomic unit and considers
only the case where the parties either learnt or did not learn the secret entirely. Unlike tra-
ditional cryptographic modeling, the option where partial information about the secret
is leaked through the execution is disregarded.
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This Work We relate the two formalisms. In particular, we show how Game Theoretic
formalism and concepts can be used to capture traditional cryptographic security prop-
erties of protocols. We concentrate on the setting of two-party protocols and fail-stop
adversaries. While this setting is admittedly limited, it does incorporate the core aspects
of secrecy, correctness and fairness in face of malicious (i.e., not necessarily “rational")
aborts.
In this setting, we first show Game Theoretic notions of secrecy and correctness that

are equivalent, respectively, to the standard cryptographic notions of secret and correct
evaluation of deterministic functions in the fail-stop setting (see, e.g., [12]). We then
turn to capturing fairness. Here the situation turns out to be more intricate. We formulate
a natural Game Theoretic notion of fairness and observe that it is strictly weaker than
existing cryptographic notions of fair two-party function evaluation. We then formulate
new cryptographic notions of fairness that are equivalent to this Game Theoretic notion
and a simulation-based notion of fairness that implies the above three. Furthermore,
we show that these new notions can indeed be realized in some potentially meaningful
settings where traditional cryptographic notions are provably unrealizable.

Our Results in More Detail The basic idea proceeds as follows. We translate a given
protocol into a set of games, in such a way that the protocol satisfies the cryptographic
property in question if and only if a certain pair of strategies (derived from the protocol)
are in a (computational) Nash equilibrium in each one of the games. This allows the
cryptographic question to be posed (and answered) in Game Theoretic language. More
precisely, given a protocol,we consider the (extensive formwith incomplete information)
game where in each step the relevant party can decide to either continue running the
protocol as prescribed, or alteratively abort the execution. We then ask whether the
pair of strategies that instruct the players to continue the protocol to completion is in a
(computational) Nash equilibrium. Each cryptographic property is then captured by an
appropriate set of utilities and input distributions (namely distributions over the types).
In particular:

Secrecy A given protocol is secret (as in, e.g., [12]) if and only if the strategy that never
aborts the protocol is in a computational Nash equilibrium with respect to the following
set of utilities and distributions over the types. For each pair of values in the domain,
we define a distribution that chooses an input for one party at random from the pair.
The party gets low payoff if the two values lead to the same output value and yet the
other party managed to guess which of the two inputs was used. It is stressed that this
is the first time where a traditional cryptographic notion of secrecy (in the style of [14])
is captured in Game Theoretic terms. In particular, the works on rational secret sharing
do not provide this level of secrecy for the secret (indeed, the solution approaches taken
there need the secret to be taken from a large domain).

Correctness A protocol correctly computes a deterministic function if and only if the
strategy that never aborts the protocol is in a computational Nash equilibrium with
respect to the set of utilities where the parties get high payoff only if they output the
correct function value on the given inputs (types), or abort before the protocol starts; in
addition, the players get no payoff for incorrect output.
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Fairness Here we make the bulk of our contributions. We first recall the basic setting:
Two parties interact by exchanging messages in order to evaluate a function f on their
inputs. The only allowed deviation from the protocol is abortion, in which event both
parties learn that the protocol was aborted. Consequently, a protocol in this model should
specify, in addition to the next message to be sent, also a prediction of the output value
in case the execution is aborted (although the setting makes sense for any function, it
may be helpful to keep in mind the fair exchange function, where the output of each
party is the input of the other).
Current notions of fairness for two-party protocols in this model (e.g., [16,18]) require

there to be a point in the computation where both parties move from a state of no
knowledge of the output to a full knowledge of it. This is a strong notion, which is
impossible to realize in many scenarios. Instead, we would like to investigate more
relaxed notions of fairness, which allow parties to gradually learn partial information on
their desired outputs—but do so in a way that is “fair.” Indeed, such an approach seems
reasonable both from a Game Theoretic point of view (as a zero-sum game) and from a
cryptographic point of view via the paradigmof gradual release (see, e.g., [3,4,11,13,18]
and the references within).
A first thing to note about such a notion of fairness is that it is sensitive to the potential

prior knowledge that the parties may have on each other’s inputs. Indeed, a “gradual
release” protocol that is “fair” without prior knowledge may become “unfair” in a situ-
ation where one of the parties has far more knowledge about the possible values of the
inputs of the second party than vice versa.
We thus explicitly model in our security notions the knowledge that each party has on

the input of the other party. That is, we let each party has, in addition to its own input,
some additional information on the input of the other party. Furthermore, to simplify
matters and put the two parties on equal footing, we assume that the information that
the parties have on the input of the other consists of two possible values for that input.
That is, each party receives three values: its own input and two possible values for the
input of the other party. Indeed, such information naturally captures situations where
the domain of possible inputs is small (say, binary). The formalism can also be naturally
extended to deal with domains of small size which is larger than two.
We first sketch our Game Theoretic notion. We consider the following set of dis-

tributions over inputs (types): Say that a quadruple of elements (a0, a1, b0, b1) in
the domain of function f is valid if for all i ∈ {0, 1}, f (a0, bi ) �= f (a1, bi ) and
f (ai , b0) �= f (ai , b1). For each valid quadruple of values in the domain, we define a
distribution that chooses an input for one party at random from the first two values and
an input for other party at random from the other two values. The utility function for a
party is the following: When the party aborts the protocol, each party predicts its output.
If the party predicts correctly and the other one does not, then it gets payoff +1. If it
predicts incorrectly and the other party predicts correctly, then it gets payoff −1. Else, it
gets payoff 0. We say that a protocol isGame Theoretically fair if the strategy that never
aborts the protocol is in a computational Nash equilibrium with respect to the above
utility, applied to both parties, and any distribution from the above family.
This formalism is perhaps the most natural way to define fairness using Game Theo-

retic tools, yet it also provides a very different point of viewof fairness than the traditional
cryptographic one. Specifically, in cryptography fairness is usually captured by requir-
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New Ideal Model

Limited Gradual ReleaseGame–Theoretic

Fig. 1. Our four notions of fairness and their relationships.

ing that in almost each execution, either both parties learn the secret, or neither of them
does. In contrast, our new notion of fairness examines the protocol in a broader sense and
requires that no party obtains an advantage. In particular, even if the protocol enables
one of the parties to gain an advantage in some execution, it may still be considered
“fair” if it balances this advantage and gives an equivalent superiority to the other party
in subsequent executions. As a result, these cross advantages are eliminated and the par-
ties are in an equilibrium state. This interesting notion of fairness may give hope for a
much wider class of functions for which the standard cryptographic notion is impossible
to achieve. In this work, we explore the feasibility of this new notion of cryptographic
fairness, while proposing an appropriate equivalent definition that captures this Game
Theory fairness using the conventional cryptographic language. Specifically, we con-
sider three different cryptographic notions of fairness and study their relationships with
the above Game Theoretic notion, see Fig. 1 for an illustration.

• First, we formulate a simple “game-based” notion of fairness that limits the gain
of an arbitrary (i.e., not necessarily “rational”) fail-stop adversary in a game that
closely mimics the above Game Theoretic interaction. The main difference between
the notions is that in the cryptographic setting the adversary is arbitrary, rather than
rational. Still, we show that the two notions are equivalent. Specifically, we consider a
test for the protocol in a “fair” environment, where each party has two possible inputs
and its effective input is chosen uniformly at random from this set. Moreover, both
parties know the input tuple and the distribution over the inputs. This is due to the fact
that we, untraditionally, assume that the protocol instructs the honest party to guess
the output of the function based on its view and the information it recorded so far.
By doing so, we are able to capture scenarios for which both parties learn the same
incomplete information (in a computationally indistinguishable sense) regarding their
output. In particular, as long as both parties hold the same partial information, with
the same probability, then the protocol is fair. Below we further explore the feasibility
of our new notion and present a protocol that realizes it under some restrictions.

• Next, we show that this notion in fact corresponds to a natural new concept of limited
gradual release. That is, say that a protocol satisfies the limited gradual release prop-
erty if at any round the probability of any party to predict its output increases only
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by a negligible amount. We show that a protocol is fair (as in the above notions) if
and only if it satisfies the limited gradual release property. We note that the traditional
notion of gradual release (where the predictions are non-negligibly increased, unlike
our notion studied here) is in essence the basis of the classic protocols of Beaver and
Goldwasser and Levin [4,13].

• Then, we formulate an ideal-model-based notion of fairness that allows for limited
gradual release of secrets. In this notion, the ideal functionality accepts a “sampling
algorithm” M from the ideal-model adversary. The functionality then obtains the
inputs from the parties and runsM on these inputs, and obtains fromM the outputs that
should be given to the two parties. The functionality thenmakes the respective outputs
available to the two parties (i.e., once the outputs are available, the parties can access
them at any time). The correctness and fairness guarantees of this interaction clearly
depend on the properties of M . We thus require that M be both “fair” and “correct”
in the sense that both parties get correct output with roughly equal (and substantial)
probability. We then show that the new simulation-based definition implies the our
limited gradual release notion (we note that the converse does not necessarily hold
with respect to secure computation in the fail-stop model, even disregarding fairness).

On the Feasibility of Game-Based Fairness Finally, we consider the realizability of our
game-based notion. Notably, this notion is strictly weaker than the conservative crypto-
graphic notion of fairness, as any protocol that is fair with respect to the latter definition is
also fair with respect to our new notion. On the other hand, known impossibility results,
such as of Cleve [6] and Asharov-Lindell [3], hold even with respect to this weaker
notion, as long as both parties are required to receive an output. This demonstrates the
meaningfulness of our new concept, as well as the benefits of translating definitions
from one field to another. In particular, ruling out the feasibility of our Game Theoretic
notion is derived by minor adaptations of existing impossibility results in cryptography.

We demonstrate it by designing a protocol where only one of the parties learns the
correct output (even when both parties are honest), while guaranteeing that the expected
number of times that the honest party learns its correct output is negligibly far from the
number of times an arbitrary fail-stop adversary learns its output. This restricted setting
is useful, for instance, for realizing the sampling problem where the goal is to toss
two correlated coins. Interestingly, in a recent work [2] it was proven that sampling is
impossible to achieve in the standard cryptographic setting in the presence of a fail-stop
adversary. On the other hand, our protocol can be easily used to realize this task. We
note that [2] is an independent work, yet it provides a good demonstration of the main
motivation for our work. That is, by considering reasonable game theoretic notions of
cryptographic primitives and objects (that are relaxations of the standard cryptographic
notions), it is feasible to achieve meaningful realizations of tasks that are impossible
according to the standard definition.
Consider a concrete application for our protocol of a repeated game where two parties

have two shares of a long term secret that are used to jointly compute a session key, such
that the first party that presents the session key gets a treasure. Then, the question is how
can the parties collaborate fairly in order to get the treasure. This is exactly the type of
scenarios captured by our protocol. Specifically, the condition under which our protocol
guarantees correlation is that the parties become aware of their gain or loss only after the
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protocol execution is done. Therefore, any strategizing done during the protocol must
be done without knowing the outcome of the execution.
To conclude, we view this result as a fruitful cross-fertilization between the two

disciplines, where the Game Theoretic point of view provides different and new insights
in cryptography. We stress that these feasibility results are indeed somewhat restricted
and hard to be generalized. Nevertheless, they do point to a surprising feasibility result.
It is an interesting open problem to extend this protocol to more general settings and
functions.

Related Work We stress that our Game Theoretic approach of fairness implies an
entirely different notion than the cryptographic notions of fairness and is in particu-
lar different than “complete fairness” [16] where we do not allow any advantage of
one party over the other. To overcome the impossibility of complete fairness, relaxed
notions of “partial fairness” have been suggested in the cryptographic literature such as
gradual release [4,5,7,13] and optimistic exchange [29]. A notable recent example is
the work of [18] that addresses the question of partial fairness using a new approach of
the standard real-/ideal-world paradigm. Namely, this definition ensures fairness with
probability at least 1− 1/p for some polynomial p(·). Nevertheless, a drawback of this
approach is that it allows a total break of security with probability 1/p. In this work,
we demonstrate how can our approach capture some notion of partial fairness as well
(where according to our approach, one party may have some limited advantage over the
other party in a collection of executions and not necessarily in a single one). We further
discuss these differences below in the main body.

The Work of [20] Following the proceedings version of our work, Groce and Katz [20]
showed the following result that demonstrates the feasibility of rational fair computation
in the two-party setting in the presence of fail-stop and malicious adversaries. Specifi-
cally, they showed that anymediated gamewhere (1) the mediator is guaranteed to either
give the full function output to both parties or give nothing to both, and (2) both parties
have positive expected utility from participating in the game at a Nash equilibrium, can
be transformed into a protocol without a mediator, while preserving the same incentive
structure and Nash equilibria.
Our work and [20] complement each other in the sense that the latter work shows

that whenever the parties have a strict incentive to compute the function in the ideal
world, there exists a real-world protocol for computing the function fairly. On the other
hand, our result shows an example where the parties do not have a strict incentive to
compute the function in the ideal world, and there does not exist a real-world protocol
for computing the function fairly. Moreover, our paper shows that a feasibility result can
be recovered in that specific case by relaxing correctness.

On the Definitional Choices One question that comes to mind when considering our
modeling is why use plain Nash equilibria to exhibit correspondence between crypto-
graphic notions and Game Theoretic ones. Why not use, for instance, stronger notions
such as Dominant Strategy, Survival Under Iterated Deletions or Subgame Perfect equi-
libria. It turns out that in our setting of two party computation with fail-stop faults, Nash
equilibria do seem to naturally correspond to cryptographic secure protocols. In partic-
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ular, in the fail-stop case any Nash equilibrium is sub-game perfect, or in other words
empty threats do not hold (see more discussion on this point in the next section).

Future Work Although considered in [20], it is still an interesting challenge to extend
the modeling of this work to the Byzantine case. For one, in the Byzantine case there
are multiple cryptographic notions of security, including various variants of simulation-
based notions. Capturing these notions using Game Theoretic tools might shed light on
the differences between these cryptographic notions. In particular, it seems that here the
GameTheoretic formalismwill have to be extended to capture arbitrary polynomial-time
strategies at each decision point. In particular, it seems likely that more sophisticated
GameTheoretic solution concepts such as sub-gameperfect equilibria and computational
relaxations thereof [19,31] will be needed.
Another challenge is to extend the notions of fairness presented here to address also

situations where the parties have more general, asymmetric a priori knowledge on each
other’s inputs, and to find solutions that use minimal trust assumptions on the system.
Dealing with the multi-party case is another interesting challenge.

Organization Section 2 presents the basic model, as well as both the cryptographic and
the Game Theoretic “solution concepts.” In the cryptographic setting, we present both
ideal-model-based definitions and indistinguishability-based ones. Section 3 presents
our results for secrecy and correctness for deterministic functions. Section 4 presents
the results regarding fairness, i.e., (i) the Game Theoretic notion, (ii) the equivalent
cryptographic definition, (iii) a new simulation-based definition, (iv) the limited gradual
release property and its relation to fairness and (v) the study of the fairness definition.

2. The Model and Solution Concepts

We review some basic definitions that capture the way we model protocols as well as
the solution concepts from Game Theory.

2.1. Cryptographic Definitions

We review some standard cryptographic definitions of security for protocols. The defi-
nitions address secrecy and correctness using the indistinguishability approach.

Negligible Functions and Indistinguishability A functionμ(·) is negligible if for every
polynomial p(·) there exists a value N such that for all n > N it holds that μ(n) <
1

p(n)
. Let X = {X (a, n)}n∈N ,a∈{0,1}∗ and Y = {Y (a, n)}n∈N ,a∈{0,1}∗ be distribution

ensembles. Then, we say that X and Y are computationally indistinguishable, denoted
X

c≡ Y , if for every non-uniform probabilistic polynomial-time (ppt) distinguisher D
there exists a negligible function μ(·) such that for all sufficiently long a ∈ {0, 1}∗,

|Pr[D(X (a, n)) = 1] − Pr[D(Y (a, n)) = 1]| < μ(n).

Protocols Our basic object of study is a two-party protocol,modeled as a pair of inter-
acting Turing machines as in [15]. We formulate both the cryptographic and the Game
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Theoretic concepts in terms of two-party protocols.We restrict attention to pptmachines
(to simplify the analysis, we consider machines that are polynomial in a globally known
security parameter, rather than in the length of their inputs).

Two-Party Functions In general, a two-party function is a probability distribution over
functions f : {0, 1}∗ × {0, 1}∗ × N → {0, 1}∗ × {0, 1}∗. Here the first (second) input
and output represent the input and output of the first (second) party, and the third input
is taken to be the security parameter. In this work, we consider the restricted model of
deterministic functions. We say that a function is efficiently invertible if, for i = 0, 1,
given 1n , an input value xi and an output value y, it is possible to compute in ppt a value
x1−i such that f (x0, x1) = y.

The Fail-Stop Setting The setting that we consider in this paper is that of two-party
interaction in the presence of fail-stop faults. In this setting, both parties follow the
protocol specification exactly, with the exception that any one of the parties may, at any
time during the computation, decide to stop, or abort the computation. Specifically, it
means that fail-stop adversaries do not change their initial input for the execution, yet
they may arbitrarily decide on their output.
As seen momentarily, the Game Theoretic and the cryptographic approaches differ in

the specifics of the abortion step. However, in both cases we assume that the abortion
operation is explicit and public: as soon as one party decides to abort, the other party
receives an explicit notification of this fact and can act accordingly (this is in contrast to
the setting where one party decides to abort while the other party keeps waiting indefi-
nitely to the next incoming message). This modeling of abortion as a public operation is
easily justified in a communication setting with reasonable timeouts on the communica-
tion delays. Protocols in this model should specify the output of a party in case of early
abortion of the protocol. We assume that this output has a format that distinguishes this
output from output that does not result from early abortion. To this end, we denote the
identity of the corrupted party by i∗.

2.1.1. Cryptographic Security

We present game-based definitions that capture the notions of privacy and correctness.
We restrict attention to deterministic functions. By definition [12], the View of the i th
party (i ∈ {0, 1}) during an execution of π on (x0, x1) is denoted Viewπ,i (x0, x1, n)

and equals (xi , r i ,mi
1, . . . ,m

i
t ), where r

i equals the contents of the i th party’s internal
random tape, and mi

j represents the j th message that it received.

Privacy We begin by introducing a definition of private computation [12]. Intuitively,
it means that no party (that follows the protocol) should be able to distinguish any two
executions when using the same inputs and seeing the same outputs. This holds even for
the case that the other party uses different inputs. More formally:

Definition 2.1. (privacy) Let f and π be as above. We say that π privately computes
f if the following holds:

1. For every non-uniform ppt adversary A that controls party P0
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{
Viewπ,A(z),0(x0, x1, n)

}
x0,x1,x ′

1,y,z∈{0,1}∗,n∈N
c≡ {

Viewπ,A(z),0(x0, x
′
1, n)

}
x0,x1,x ′

1,z∈{0,1}∗,n∈N

where |x0| = |x1| = |x ′
1| and f (x0, x1) = f (x0, x ′

1).
2. For every non-uniform ppt adversary A that controls party P1

{
Viewπ,A(z),1(x0, x1, n)

}
x0,x ′

0,x1,z∈{0,1}∗,n∈N
c≡ {

Viewπ,A(z),1(x
′
0, x1, n)

}
x0,x ′

0,x1,z∈{0,1}∗,n∈N

where |x0| = |x ′
0| = |x1| and f (x0, x1) = f (x ′

0, x1).

Correctness Recall that we distinguish between output that corresponds to successful
termination of the protocol and output generated as a result of an abort message.
We assume that the two types have distinct formats (e.g., the second output starts with
a ⊥ sign). The correctness requirement only applies to the first type of output. More
precisely:

Definition 2.2. (correctness) Let f and π be as above. We say that π correctly com-
putes f if for all sufficiently large inputs x0 and x1 such that |x0| = |x1| = n, we
have:

Pr
[
Outputπ,i ∈ {⊥ ◦ {0, 1}∗, f (x0, x1)}

] ≥ 1 − μ(n)

where Outputπ,i �= ⊥ denotes the output returned by Pi upon the completion of π

whenever the strategy of the parties is continue, and μ is a negligible function.

Note that, for the fail-stop setting, it holds that privacy and correctness imply
simulation-based security with abort. This follows by a simple extension of the proof
from [12] that states the same for semi-honest adversaries.

2.2. Game Theoretic Definitions

We review the relevant concepts from Game Theory, and the extensions needed to
put these concepts on equal footing as the cryptographic concepts (specifically, these
extensions include introducing asymptotic, computationally bounded players and neg-
ligible error probabilities). For simplicity, we restrict attention to the case of two-
player games. Traditionally, a two-player (normal form, full information) game � =
({A0, A1}, {u0, u1}) is determined by specifying, for each player Pi , a set Ai of possible

actions and a utility function ui : A0 × A1 �→ R. Letting A
def= A0 × A1, we refer to

a tuple of actions a = (a0, a1) ∈ A as an outcome. The utility function ui of party Pi
expresses this player’s preferences over outcomes: Pi prefers outcome a to outcome a′
if and only if ui (a) > ui (a′). A strategy σi for Pi is a distribution on actions in Ai .
Given a strategy vector σ = σ0, σ1, we let ui (σ ) be the expected utility of Pi given that
all the parties play according to σ . We continue with a definition of Nash equilibria:
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Definition 2.3. (Nash equilibria for normal form, complete information games) Let
� = ({A0, A1}, {u0, u1}) be as above, and let σ = σ0, σ1 be a pair of strategies as above.
Then σ is in a Nash equilibrium if for all i and any strategy σ ′

i it holds that ui (σ
′′
0 , σ ′′

1 ) ≤
ui (σ ), where σ ′′

i = σ ′
i and σ ′′

1−i = σ1−i .

The above formalism is also naturally extended to the case of extensive form games,
where the parties take turns when taking actions. Here the strategy is a probabilistic
function of a sequence of actions taken so far by the players. The execution of a game is
thus represented naturally via the history which contains the sequence of actions taken.
Similarly, the utility function of each player is applied to the history. Another natural
extension is games with incomplete information. Here each player has an additional
piece of information, called type, that is known only to itself. That is, the strategy σi
now takes as input an additional value xi . We also let the utility function depend on the
types, in addition to the history. In fact, we let the utility of each player depend on the
types of both players. This choice seems natural and standard and greatly increases the
expressibility of the model. We note, however, that as a result, a party cannot necessarily
compute its own utility. To extend the notion of Nash equilibria to deal with this case,
it is assumed that an a priori distribution on the inputs (types) is known and fixed. The
expected utility of players is computed with respect to this distribution.

Definition 2.4. (Nash equilibria for extensive form, incomplete informationgames) Let
� = ({A0, A1}, {u0, u1}) be as above, and let D be a distribution over ({0, 1}∗)2.Also, let
σ = σ0, σ1 be a pair of extensive form strategies as described above. Then σ is in a Nash

equilibrium for D if for all i and any strategy σ ′
i it holds that ui (x0, x1, σ

′′
0 (x0), σ ′′

1 (x1)) ≤
ui (x0, x1, σ0(x0), σ1(x1)), where (x0, x1) is taken fromdistribution D, andσi (x) denotes
the strategy of Pi with type x , σ ′′

i = σ ′
i and σ ′′

1−i = σ1−i .

Extensions for the Cryptographic Model We review the (by now standard) extensions
of the above notions to the case of computationally bounded players. See e.g., [8,25] for
more details. The first step is to model a strategy as an (interactive) probabilistic Turing
machine that algorithmically generates the next move given the type and a sequence
of moves so far. Next, in order to capture computationally bounded behavior (both by
the acting party and, more importantly, by the other party), we move to an asymptotic
treatment and consider an infinite sequence of games. That is, instead of considering a
single game, we consider an infinite sequence of games, one for each value of a security
parameter n ∈ N (formally, we give the security parameter as an additional input to each
set of possible actions, to each utility function, and to the distribution over types). The
only strategies we consider are those whose runtime is polynomial in n.1 The third and
last step is to relax the notion of “greater or equal to” to “not significantly less than.”
This is intended to compensate for the small inevitable imperfections of cryptographic
constructs. That is, we have:

1An alternative and more general formalism might measure the runtime of a strategy as a function of the
length of its inputs. However, the present formalism is considerably simpler.
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Definition 2.5. (computational Nash equilibria for extensive form, incomplete inf.
games) Let � = ({A0, A1}, {u0, u1}) be as above, and let D = {Dn}n∈N be a family
of distributions over ({0, 1}∗)2. Let σ = σ0, σ1 be a pair of ppt extensive form strate-
gies as described above. Then σ is in a Nash equilibrium for D if for all sufficiently
large n’s, all i and any ppt strategy σ ′

i it holds that ui (n, x0, x1, σ ′′
0 (n, x0), σ ′′

1 (n, x1)) ≤
ui (n, x0, x1, σ0(n, x0), σ1(n, x1))+μ(n), where (x0, x1) is taken from distribution Dn ,
σi (x, n) denotes the strategy of Pi with type x , σ ′′

i = σ ′
i and σ ′′

1−i = σ1−i , and μ is a
negligible function.

We remark that an alternative and viable definitional approachwould use a parametric,
non-asymptotic definition of cryptographic security. Another viable alternative is to use
the [22] notion of costly computation. We do not take these paths since our goal is to
relate to standard cryptographic notions, as much as possible.

Our Setting We consider the following setting: Underlying the interaction there is a
two-party protocol π = (π0, π1). At each step, the relevant party can make a binary
decision: either abort the computation, in which case the other party is notified that an
abort action has been taken, or else continue running the protocol π scrupulously. That
is, follow all instructions of the protocol leading to the generation of the next message,
includingmaking all randomchoices as instructed.Namely, the strategic part of the action
is very simple (a mere binary choice), in spite of the fact that complex computational
operations may be involved. One may envision a situation in which a human has access
to a physical device that runs the protocol, and can only decide whether or not to put the
device into action in each round.
The traditional Game Theoretic modeling of games involving such “exogenous” ran-

dom choices that are not controllable by the players involved introduces additional
players (e.g., “Nature”) to the game. In our case, however, the situation is somewhat
different, since the random choices may be secret, and in addition, each player also
has access to local state that is preserved throughout the interaction and may affect the
choices.We thus opt to capture these choices in a direct way:We first let each player have
local history (initially, this local history consists only of the type of the player and its
internal randomness). The notion of an “action” is then extended to include also poten-
tially complex algorithmic operations. Specifically, an action may specify a (potentially
randomized) algorithm and a configuration. The outcome of taking this action is that
an output of running the said algorithm from the said configuration, is appended to the
history of the execution, and the new configuration of the algorithm is added to the local
history of the player. Formally:

Definition 2.6. Let π = (P0, P1) be a two-party protocol (i.e., a pair of interactive
Turing machines). Then, the local history of Pi (for i ∈ {0, 1}), during an execution of π

on input (x0, x1) and internal random tape r i , is denoted by Historyπ,i (x0, x1, n) and
equals (xi , r i ,mi

1, . . . ,m
i
t ), wherem

i
j represents its j th message. The history of π during

this execution is captured by (m0
1,m

1
1), . . . , (m

0
t ,m

1
t ) and is denoted by Historyπ . The

configuration ofπ at somepoint during the interaction consists of the local configurations
of P0, P1.
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Fail-Stop Games We consider games of the form �π,u = ({A0, A1}, {u0, u1}), where
A0 = A1 = {continue,abort}. The decision is taken before the sending of each
message. That is, first the program πi is run from its current configuration, generating
an outgoing message. Next, the party makes a strategic decision whether to continue or
to abort. A continue action by player i means that the outgoing message generated
by πi is added to the history, and the new configuration is added to the local history.
An abort action means that a special abort symbol is added to the configurations
of both parties and then both π0 and π1 are run to completion, generating local outputs,
and the game ends. We call such games fail-stop games.
The utility functions in fail-stop games may depend on all the histories: the joint

one, as well as the local histories of both players. In the following sections, it will be
convenient to define utility functions that consider a special field of the local history,
called the local output of a player Pi . We denote this field by Outputπ,i . Also, denote
by σcontinue the strategy that always returns continue. The basic Game Theoretic
property of protocols that we will be investigating is whether the pair of strategies
(σcontinue, σcontinue) is in a (computational) Nash equilibrium in fail-stop games,
with respect to a given set of utilities and input distributions. That is:

Definition 2.7. (Nash protocols) LetD be a set of distribution ensembles over pairs of
strings, and letU be a set of extensive form binary utility functions. A two-party protocol
π is called Nash Protocol with respect to U ,D if, for any u ∈ U and D ∈ D, the pair of
strategies σ = (σcontinue, σcontinue) is in a computational Nash equilibrium for the
fail-stop game �π,u and distribution ensemble D.

On Subgame Perfect Equilibria and Related Solution Concepts An attractive solution
concept for extensive form games (namely interactive protocols) is subgame perfect
equilibria, which allow for analytical treatment which is not encumbered by “empty
threats.” Furthermore, some variants of this notion that are better suited to our com-
putational setting have been recently proposed (see [19,31]). However, we note that in
our limited case of fail-stop games any Nash equilibrium is subgame perfect. Indeed,
once one of the parties aborts the computation, there is no chance for the other party
to “retaliate”; hence, empty threats are meaningless (recall that the output generation
algorithms are not strategic, only the decision whether to abort is).

3. Privacy and Correctness in Game Theoretic View

In this section, we capture the traditional cryptographic privacy and correctness prop-
erties of protocols using Game Theoretic notions. We restrict attention to the fail-stop
setting and deterministic functions with a single output (fairness aside, private compu-
tation of functions with two distinct outputs can be reduced to this simpler case, see [12]
for more details).

3.1. Privacy in Game Theoretic View

Our starting point is the notion of private computation. A protocol is private if no (fail-
stop) PPT adversary is able to distinguish any two executions where the adversary’s
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inputs and outputs are the same, even when the honest party uses different inputs in the
two executions. Our goal, then, is to define a set of utility functions that preserve this
property for Nash protocols. We therefore restrict ourselves to input distributions over
triples of inputs, where the input given to one of the parties is fixed, whereas the input
of the other party is uniformly chosen from the remaining pair. This restriction captures
the strength of cryptographic (semantic) security: Even if a party knows that the input
of the other party can only be one out of two possible values, the game does not give it
the ability to tell which is the case. We then have a distribution for each such triple.
We turn to defining the utility functions. At first glance, it may seem that one should

define privacy by having each party gain whenever it learns something meaningful on
the other party’s private input. Nevertheless, it seems that it is better to make a partylose
if the other party learns anything about its secret information. Intuitively, the reason is
that it must be worthwhile for the party who holds the data to maintain it a secret. In other
words, having the other party gain any profit when breaking secrecy is irrelevant, since
it does not introduce any incentive for the former party to prevent this leakage (note,
however, that here the utility of a party depends on events that are not visible to it during
the execution). Formally, for each n we consider a sequence of input distributions for
generating inputs of this length. Each distribution is denoted by D and indexed by triples
(a0, a1, b), and is defined by picking x ← (a0, a1) and returning (x, b).More concretely,

Definition 3.1. (distribution ensembles for privacy) The distribution ensemble for
privacy for P0 for a two-party function f is the ensemble Dp

f = {Dp
f,n}n∈N where

Dp
f,n = {Da0,a1,b}a0,a1,b∈{0,1}n , f (a0,b)= f (a1,b), and Da0,a1,b outputs (x, b), where x

R←
(a0, a1).

Distribution ensembles for privacy for P1 are defined analogously.
Letπ be a two-party protocol computing a function f . Then, for every (n, a0, a1, b) as

above and for every ppt algorithm B, let the augmented protocol for privacy for π , with
guess algorithm B, be the protocol that first runs π and then runs B on the local state of
π and two additional auxiliary values. We assume that B outputs a binary value, denoted
by guess

π
p
Aug,B,i where Pi is the identity of the attacker. This value is interpreted as a

guess for which one of the two auxiliary values is the input value of the other party.

Definition 3.2. (utility function for privacy) Let π be a two-party protocol and f be a
two-party function. Then, for everya0, a1, b such that f (a0, b) = f (a1, b), and for every
guessing algorithmB, the utility function for privacy for party P0, on input x ∈ {a0, a1},
is defined by:

up0(History
π
p
Aug,B,1(x, b, n), a0, a1, b) �→

{−1 if guess
π
p
Aug,B,1 = g and x = ag

0 otherwise

The utility function for party P1 is defined analogously. Note that if the history of the
execution is empty, i.e., no message has been exchanged between the parties, and the
inputs of the parties are taken from a distribution ensemble for privacy, then up0 equals
at least −1/2. This is due to the fact that P1 can only guess x with probability at most
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1/2. Therefore, intuitively, it will be rational for P0 to participate in the protocol (rather
than to abort at the beginning) only if (and only if) the other party cannot guess the input
of P0 with probability significantly greater than 1/2. The definition of Game Theoretic
privately is as follows:

Definition 3.3. (game theoretic private protocols) Let f and π be as above. Then, we
say that π is Game Theoretic private for party P0 if π

p
Aug,B is a Nash protocol with

respect to up0, u
p
1 and Dp

f and all valid ppt B.

Game Theoretic private protocol for P1 is defined analogously. A protocol is Game
Theoretic private if it is Game Theoretic private both for P0 and for P1.

Theorem 3.4. Let f be a deterministic two-party function, and let π be a two-party
protocol that computes f correctly (cf. Definition 2.2). Then,π isGameTheoretic private
if and only if π privately computes f in the presence of fail-stop adversaries.

Proof. We begin with the proof that a Game Theoretic private protocol implies privacy
by indistinguishability. Assume by contradiction that π does not compute f privately
(in the sense of Definition 3.1) with respect to party P0 (w.l.o.g.). This implies that there
exist a ppt adversary A that corrupts party P0, a ppt distinguisher D, a non-negligible
function ε and infinitely many tuples (x0, x01 , x

1
1 , n) where |x0| = |x01 | = |x11 | = n and

f (x0, x01 ) = f (x0, x11) such that,

Pr[D(Viewπ,A(z),0(x0, x
0
1 , n)) = 1] − Pr[D(Viewπ,A(z),0(x0, x

1
1 , n)) = 1] ≥ ε(n).

We assume, without loss of generality, that A never aborts prematurely, or in fact, it
plays honestly. This is because we can construct an equivalent distinguisher that ignores
all the messages sent after the round in whichAwould have originally aborted, and then
applies D on the remaining view.
We prove that there exists a valid ppt B in which (σcontinue

0 , σcontinue
1 ) is not a

computational Nash equilibrium in the game�
π
p
Aug,B,up . That is, there exist an alternative

strategy σ ′
1 for P1, a non-negligible function ε′(·) and infinitely many distributions

Dx0,x01 ,x11
∈ Dp

f such that

u1(σ
continue
0 , σ ′

1) > u1(σ
continue
0 , σcontinue

1 ) + ε′(n)

contradicting the assumption that (σcontinue
0 , σcontinue

1 ) is Nash equilibrium in the
game �

π
p
Aug,B,up .

Let σabort
1 be the strategy where P1 aborts the protocol before it starts (the initial

abort strategy). Then, for any Dx0,x01 ,x11
∈ Dp

f , and any ppt valid algorithm B it holds
that:

u1(σ
continue
0 , σabort

1 ) = −1/2
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Consider the followingB algorithm: On inputHistoryπ,1(x, c, n), x0, x01 , x
1
1 , B invokes

the distinguisher D and outputs x01 if D outputs 1, and outputs x11 otherwise.
We now consider the expected utility of P1 in the game �

π
p
Aug,B,up , when both parties

run according to the prescribed strategy:

u1(σ
continue
0 , σcontinue

1 )

= −1 · Pr
[
guessπ

p
Aug,B,0 = xb1

]

= −
(
Pr

[
D(Viewπ,A(z),0(x0, x

b
1 , n)) = 1 ∧ b = 0

]

−Pr
[
D(Viewπ,A(z),0(x0, x

b
1 , n)) = 0 ∧ b = 1

])

= −1/2 ·
(
Pr

[
D(Viewπ,A(z),0(x0, x

b
1 , n)) = 1| b = 0

]

+ (
1 − Pr

[
D(Viewπ,A(z),0(x0, x

b
1 , n)) = 1| b = 1

] ))

≤ −1/2 − 1/2 · ε(n)

Then it holds that,

u1(σ
continue
0 , σabort

1 ) − u1(σ
continue
0 , σcontinue

1 )

≥ −1/2 + 1/2 + 1/2 · ε(n) ≥ 1/2 · ε(n)

contradicting the assumption that (σcontinue
0 , σcontinue

1 ) is in Nash equilibrium. The
above implies that π is not a Nash protocol.

We now turn to the proof in which privacy implies Nash with respect to up0, u
p
1 and

Dp
f and all valid B. Assume by contradiction that there exists a ppt B, such that the

augmented protocol πp
Aug,B is not a Nash protocol with respect to these parameters and

party P1 (w.l.o.g.). This means that there exist an alternative strategy σ ′
1, infinitely many

distributions Dx0,x01 ,x11 ,n ∈ Dp
f and a non-negligible function ε such that

u1(σ
continue
0 , σ ′

1) ≥ u1(σ
continue
0 , σcontinue

1 ) + ε(n)

without loss of generality, we can assume that σ ′
1 is the initial abort strategy; this is

because in any other strategy, some information regarding P1’s input may be leaked
(since it participates in the protocol), and lowers the utility. Moreover, for any valid ppt
algorithm B it holds that

u1(σ
continue
0 , σabort

1 ) = −1/2

From the contradiction assumption, it holds that

u1(σ
continue
0 , σabort

1 ) ≥ u1(σ
continue
0 , σcontinue

1 ) + ε(n)

−1/2 ≥ −Pr
[
guessπ

p
Aug,B,0 = xb1

]
+ ε(n)
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Pr
[
guessπ

p
Aug,B,0 = xb1

]
≥ 1/2 + ε(n)

Next we show that this implies that there exists a ppt adversary A, a ppt distin-
guisher D, a non-negligible function ε′ and infinitely many tuples of equal length inputs
(x0, x01 , x

1
1) with f (x0, x01 ) = f (x0, x11) such that,

∣
∣
∣ Pr[D(Viewπ,A(z),0(x0, x

0
1 , n)) = 1] − Pr[D(Viewπ,A(z),0(x0, x

1
1 , n)) = 1]

∣
∣
∣ ≥ ε′(n)

Fix (x0, x01 , x
1
1 , n) and consider an adversary A that simply runs as an honest party.

Then, define a distinguisher D that invokes the algorithm B and outputs 1 if and only if
B outputs x01 . Then formally,

∣
∣
∣Pr

[
D(Viewπ,A(z),0(x0, x

0
1 , n)) = 1

]
− Pr

[
D(Viewπ,A(z),0(x0, x

1
1 , n)) = 1

] ∣
∣
∣

=
∣
∣
∣Pr

[
guessπ

p
Aug,B,0 = x01 | b = 0

]
− Pr

[
guessπ

p
Aug,B,0 = x01 | b = 1

] ∣
∣
∣

=
∣
∣
∣Pr

[
guessπ

p
Aug,B,0 = x01 ∧ b = 0

]
/Pr[b = 0]

−
(
1 − Pr

[
guessπ

p
Aug,B,0 = x11 ∧ b = 1

]
/Pr[b = 1]

)∣
∣
∣

=
∣
∣
∣2 Pr

[
guessπ

p
Aug,B,0 = x01 ∧ b = 0

]
+ 2 Pr

[
guessπ

p
Aug,B,0 = x11 ∧ b = 1

]
− 1

∣
∣
∣

=
∣
∣
∣2 Pr

[
guessπ

p
Aug,B,0 = xb1

]
− 1

∣
∣
∣ ≥ 2 · (1/2 + ε(n)) − 1 = 2ε(n)

which is a non-negligible probability. This concludes the proof. �

3.2. Correctness in Game Theoretic View

Wecontinuewith a formulation of a utility function that captures the notion of correctness
as formalized in Definition 3.5. That is, we show that a protocol correctly computes a
deterministic function if and only if the strategy that never aborts the protocol is in a
computational Nash equilibrium with respect to the set of utilities specified as follows.
The parties get high payoff only if they output the correct function value on the given
inputs (types), or abort before the protocol starts; in addition, the players get no payoff
for incorrect output. More formally, we introduce the set of distributions for which we
will prove the Nash theorem. The distribution ensemble for correctness is simply the
collection of all point distributions on pairs of inputs:

Definition 3.5. (distribution ensemble for correctness) Let f be a deterministic two-
party function. Then, the distribution ensemble for correctness is the ensembleDc

f =
{Dc

n}n∈N where Dc
n = {Da,b}a,b∈{0,1}n , and Da,b outputs (a, b) w.p. 1.

Note that a fail-stop adversary cannot affect the correctness of the protocol as it plays
honestly with the exception that it may abort. Then, upon receiving an abort message we
have the following: (i) either the honest party already learnt its output and so, correctness
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should be guaranteed, or (ii) the honest party did not learn the output yet, for which it
outputs ⊥ together with its guess for the output (which corresponds to a legal output by
Definition 2.2). Note that this guess is different than the guess appended in Definition 3.2
of utility definition for privacy, as here, we assume that the protocol instructs the honest
party how to behave in case of an abort. Furthermore, an incorrect protocol in the
presence of fail-stop adversary implies that the protocol is incorrect regardless of the
parties’ actions (where the actions are continue or abort).
This suggests the following natural way of modeling a utility function for correct-

ness: The parties gain a higher utility if they output the correct output, and lose if they
output an incorrect output. Therefore, the continue strategy would not induce a Nash
equilibrium in case of an incorrect protocol, as the parties gain a higher utility by not
participating in the execution. More formally:

Definition 3.6. (utility function for correctness) Let π be a two-party fail-stop game
as above. Then, for every a, b as above the utility function for correctness for party
P0, denoted uc0, is defined by:

• uc0(Historyφ
π,0) = 1.

• uc0(Outputπ,0, a, b) �→
{
1 if Outputπ,0 = f (a, b)
0 otherwise

whereHistoryφ
π,0 denotes the case that the local history of P0 is empty (namely, P0 does

not participate in the protocol).

Intuitively, this implies that the protocol is a fail-stop game if it is correct and vice versa.
A formal statement follows below. uc1 is defined analogously, with respect to P1.

Theorem 3.7. Let f be a deterministic two-party function, and let π a two-party
protocol. Then, π is a Nash protocol with respect to uc0, u

c
1 and Dc

f if and only if π

correctly computes f in the presence of fail-stop adversaries.

Proof. We begin with the proof that a Nash protocol with respect to uc0, u
c
1 and Dc

f
implies correctness. Assume by contradiction that π does not compute f correctly.
Meaning, there exist infinitely many pairs of inputs (x0, x1), i ∈ {0, 1} and a non-
negligible function ε such that

Pr
[
Outputπ,i /∈ {⊥ ◦ {0, 1}∗, f (x0, x1)}

] ≥ ε(n)

We assume that the output of the protocol in case of prematurely abort starts with ⊥.
Thus, our contradiction assumption holds only for the case where the protocol terminates
successfully; however, Pi outputs a value different than f (x0, x1). Without loss of gen-
erality, assume that i = 0. We now show that (σcontinue

0 , σcontinue
1 ) does not induce

a computational Nash equilibrium in the game �π,uc . Namely, the expected utility for
P0 when both parties play according to the prescribed strategy is,

u0(σ
continue
0 , σcontinue

1 ) = Pr
[
Outputπ,0 /∈ {

f (x0, x1),⊥ ◦ {0, 1}∗}]

= 1−Pr
[
Outputπ,0∈{

f (x0, x1),⊥ ◦ {0, 1}∗}]≤1−ε(n)
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Let σabort
0 be the strategy for which P0 initially aborts (i.e., does not participate in the

protocol). Then, we have that

u0(σ
abort
0 , σcontinue

1 ) = 1

Thus, it holds that

u0(σ
abort
0 , σcontinue

1 ) ≥ u0(σ
continue
0 , σcontinue

1 ) + ε(n)

contradicting the assumption that (σcontinue
0 , σcontinue

1 ) induces a computational
Nash equilibrium in game �π,uc .
We now turn to the proof in which correctness implies Nash with respect to uc0, u

c
1 and

Dc
f . Assume by contradiction that π is not a Nash protocol with respect to uc0 (w.l.o.g.)

and Dc
f . This means that there exist an alternative strategy for P0 (w.l.o.g), infinitely

many distributions Dx0,x1,n ∈ Dc
f and a non-negligible function ε in which

u0(σ
′
0, σ

continue
1 ) ≥ u0(σ

continue
0 , σcontinue

1 ) + ε(n)

When both parties follow the prescribed strategy, the format of the output does not start
with ⊥, and thus we have

u0(σ
continue
0 , σcontinue

1 ) = Pr
[
Outputπ,i ∈ {⊥ ◦ {0, 1}∗, f (x0, x1)

}]
.

Under the assumption that P1 plays according to σcontinue
1 , once P0 starts the

protocol—its utility can only reduces unless it outputs f (x0, x1) exactly. This can hap-
pen onlywhen the protocol terminates successfully, i.e., it plays according to σcontinue

0 .
Therefore, the only alternative strategy that yields a higher utility is σabort

0 (i.e., the
initial abort). The expected utility for P0 when it plays according to σabort

0 and σ1 plays
according to σcontinue

1 is 1. Thus, we have that

u0(σ
abort
0 , σcontinue

1 ) ≥ u0(σ
continue
0 , σcontinue

1 ) + ε(n)

1 ≥ Pr
[
Outputπ,i ∈

{⊥ ◦ {0, 1}∗, f (x0, x1)
}]

+ ε(n)

Pr
[
Outputπ,i �∈ {⊥ ◦ {0, 1}∗, f (x0, x1)

}] ≥ ε(n)

Yielding that π does not compute f correctly on these inputs. �

4. Exploring Fairness in the Two-Party Setting

Having established the notions of privacy and correctness using Game Theoretic for-
malism, our next goal is to capture fairness in this view. However, this turns out to be
tricky, mainly due to the highly “reciprocal” and thus delicate nature of this notion.
To illustrate, consider the simplistic definition for fairness that requires that one party
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learns its output if and only if the second party does. However, as natural as it seems,
this definition is lacking since it captures each party’s output as an atomic unit. As a
result, it only considers the cases where the parties either learnt or did not learn their
output entirely, and disregards the option in which partial information about the output
may be gathered through the execution. So, instead, we would like to have a definition
that calls a protocol fair if at any point in the execution both parties gather, essentially,
the same partial information about their respective outputs.
Motivated by this discussion, we turn to the Game Theoretic setting with the aim

to design a meaningful definition for fairness, as we did for privacy and correctness.
This would, for instance, allow investigating known impossibility results under a new
light. Our starting point is a definition that examines the information the parties gain
about their outputs during the game, where each party loses nominatively to the success
probability of the other party guessing its output (this is motivated by the same reasoning
as in privacy). In order to obtain this, we first define a new set of utility functions for
fairness for whichwe require that the gamewould beNash, see Sect. 4.1 for the complete
details.
Having defined fairness for rational parties, we wish to examine its strength against

cryptographic attacks. We therefore introduce a new game-based definition formalizes
fairness for two-party protocols and is, in fact, equivalent to the Game Theoretic defini-
tion. We then provide a new definition of the gradual release property, that is equivalent
to the Game Theoretic and game-based definitions. Finally, we present a simulation-
based definition and explore the realizability of our notions. Specifically, we include
a new definition of the gradual release property (cf. Sect. 4.3) and demonstrate a cor-
relation between protocols with this property and protocols that are fair according to
our notion of fairness. In particular, it shows that at any given round, the parties cannot
improve their chances for guessing correctly “too much.” Otherwise, the protocol would
not be fair.We then introduce in Sect. 4.4 a new notion of simulation-based definition for
capturing security of protocols that follow our game-based notion of fairness, specified
above. This new notion is necessary as (gamed-based) fair protocols most likely cannot
be simulatable according to the traditional simulation-based definition [12].We consider
the notion of “partial information” in the ideal world alongside preserving some notion
of privacy. We then prove that protocols that satisfy this new definition are also fair with
respect to game-based definition.
Finally, we consider the realizability of our notion of fairness. We then observe that

our notion is meaningful even in the case where parties are not guaranteed to always
learn the output when both parties never abort. Somewhat surprisingly, in cases where
the parties learn the output with probability one half or smaller, our notion of fairness
is in fact achievable with no set-up or trusted third parties. We demonstrate two-party
protocols that realize the new notion in this settings. We also show that whenever this
probability raises above one half, our notion of fairness cannot be realized at all.

4.1. Fairness in Game Theoretic View

In this section, we present our first definition for fairness that captures this notion from a
Game Theoretic view. As for privacy and correctness, this involves definitions for utility
functions, input distributions and a concrete fail-stop game (or the sequence of games).
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We begin with the description of the input distributions. As specified above, the input
of each party is picked from a domain of size two, where all the outputs are made up of
distinct outputs. More formally,

Definition 4.1. (collection of distribution ensembles for fairness) Let f be a two-party
function. Let (x00 , x

1
0 , x

0
1 , x

1
1 , n) be an input tuple such that: |x00 | = |x10 | = |x01 | = |x11 | =

n, and for every b ∈ {0, 1} it holds that:
• f0(x00 , x

b
1 ) �= f0(x10 , x

b
1 ) (in each run there are two possible outputs for P0).

• f1(xb0 , x
0
1 ) �= f1(xb0 , x

1
1), (in each run there are two possible outputs for P1).

Then, a collection of distribution ensembles for fairness Df
f is a collection of dis-

tributions Df
f = {Dx00 ,x10 ,x01 ,x11 ,n}x00 ,x10 ,x01 ,x11 ,n such that for every (x00 , x

1
0 , x

0
1 , x

1
1 , n) as

above, Dx00 ,x10 ,x01 ,x11 ,n is defined by

(x0, x1) ← Dx00 ,x10 ,x01 ,x11 ,n(1
n), where x0

R← (x00 , x
1
0) and x1

R← (x01 , x
1
1).

Next, let πB be the protocol, where B = (B0,B1). By this notation, we artificially
separate between the protocol and the predicting algorithms in case of prematurely abort.
More precisely, in the case that P0 prematurely aborts, P1 invokes algorithm B1 on its
input, its auxiliary information and the history of the execution, and outputs whatever
B1 does. B0 is defined in a similar manner. In fact, we can refer to these two algorithms
by the instructions of the parties regarding the values they need to output after each
round, capturing the event of an early abort. We stress these algorithms are embedded
within the protocol. However, this presentation enables us to capture scenarios where
one of the parties follow the guessing algorithm as specified by the protocol, whereas the
other party follows an arbitrary algorithm. That is, we can consider protocols πB′ (with
B′ = (B̃0,B1)) that are equivalent to the original protocol πB except for the fact that
P0 guesses its output according to B̃0 instead of B0. We now describe the fairness game
�πB,uf for some B = (B0,B1). The inputs of the parties, x0, x1, are selected according
to some distribution ensemble Dx00 ,x10 ,x01 ,x11

as defined in Definition 4.1. Then, the parties
run the fail-stop game,where their strategies instruct them in each stepwhether toabort
or continue. In case that a party Pi aborts, the outputs of both parties are determined
by the algorithms (B0,B1). Let OutputπB′ ,i denote the output of Pi in game πB′ , and
then a utility function for fairness is defined by:

Definition 4.2. (utility function for fairness) Let f be a deterministic two-party func-
tion, and let π be a two-party protocol. Then, for every x00 , x

1
0 , x

0
1 , x

1
1 , n as above (cf.

Definition 4.1), for every pair of strategies (σ0, σ1) and for every ppt B̃0, the utility
function for fairness for party P0, denoted by uf0, is defined by:

uf0(σ0, σ1) �→

⎧
⎪⎨

⎪⎩

1 if Output
π f
B′ ,0= f0(x0, x1) ∧ Output

π f
B′ ,1 �= f1(x0, x1)

−1 if Output
π f
B′ ,0 �= f0(x0, x1) ∧ Output

π f
B′ ,1 = f1(x0, x1)

0 otherwise
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where x0, x1 are as in Definition 4.1 and B′ = (B̃0,B1). Moreover, the utility for P1,
uf1 = 0.

Since the utility function of P1 is fixed, P1 has no incentive to change its strategy.
Moreover, we consider here the sequence of games where P1 always guesses its output
according to B1, the “original” protocol. This actually means that P1 always plays
honestly, from the cryptographic point of view. We are now ready to define a protocol
that is Game Theoretic fair for P1 as:

Definition 4.3. (game theoretic fairness for P1) Let f and πB be as above. Then, we
say that πB is Game Theoretic fair for party P1 if �

πB′ ,(uf0,uf1)
is a Nash protocol with

respect to (uf0, u
f
1) and Df

f and all ppt B̃0, where B′ = (B̃0,B1).2

Namely, if πB is not Game Theoretic fair for P1, then P0 (and only P0) can come
up with a better strategy, and some other guessing algorithm B̃0 (where both define an
adversary in the cryptographic world). This is due to the fact that the utility for P1 is
fixed, and so it cannot find an alternative strategy that yields a higher utility. In other
words, P1 has no reason to invoke a different guess algorithm, and so this definition
formalizes the case where P1 is honest in the protocol πB. This, in particular, implies
that a somewhat natural zero-sum game, where the total balance of utilities is zero, does
not work here.
Similarly, we define Game Theoretic fair for party P0, where we consider all the

protocols πB′ , for all ppt B̃1 and B′ = (B0, B̃1), and the utilities functions are opposite
(i.e., the utility for P0 is fixed into zero, whereas the utility of P1 is modified according
to its guess). We conclude with the definition for Game Theoretic protocol:

Definition 4.4. (game theoretic fair protocol) Let f and π be as above. Then, we say
that π is Game Theoretic fair protocol if it is Game Theoretic fair for both P0 and P1.

4.2. A New Indistinguishability-Based Definition of Fairness

Toward introducing our cryptographic notion for fairness, we first consider a basic, one-
sided definition that guarantees fairness only for one of the two parties. A protocol is
considered fair if the one-sided definition is satisfied with respect to both parties. We
refer to this game as a test for the protocol in a “fair” environment, where each party has
two possible inputs and its effective input is chosen uniformly at random from this set.
Moreover, both parties know the input tuple and the distribution over the inputs. This
is due to the fact that we, untraditionally, assume that the protocol instructs the honest
party to guess the output of the function based on its view and the information it recorded
so far. We note that these scenarios are not fair under the traditional simulation-based
definition [12], since they do not follow the all or nothing method, in which the parties
can only learn the entire output at once. In order to illustrate this, consider a protocol

2At first glance, it might look as if the utilities from Definition 4.2 do not incentivize the parties to
participate in the interaction to begin with. However, this concern can be dealt with by giving each party some
fixed high payoff in case it participates.
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that enables both parties to learn the correct output with probability about 3/4. Then,
this protocol is fair according to our definition below although it is not simulatable
by the [18] definition. Before introducing the game-based definition, we first introduce
non-trivial functionalities, to avoid functionalities that one of the parties may know the
correct output without participating.

Definition 4.5. (non-trivial functionalities) Let f be a two-party function. Then, f is
non-trivial if for all sufficiently large n’s, there exists an input tuple (x00 , x

1
0 , x

0
1 , x

1
1 , n)

such that |x00 | = |x10 | = |x01 | = |x11 | = n and { f0(x0, xb1 ), f0(x0, xb1 )}b∈{0,1},
{ f1(xb0 , x01 ), f1(xb0 , x

1
1)}b∈{0,1} are distinct values.

We are now ready to introduce our formal definition for fairness:

Definition 4.6. (game-based definition for fairness) Let f be a non-trivial two-party
function, and letπ be a two-party protocol. Then, for every input tuple (cf. Definition 4.5)
and any ppt fail-stop adversary A, we define the following game:

Game Fairπ,A(x00 , x
1
0 , x

0
1 , x

1
1 , n):

1. Two bits b0, b1 are picked at random.
2. Protocol π is run on inputs xb00 for P0 and xb11 for P1, where A sees the view of Pi∗ .
3. Whenever A outputs a value y, P1−i∗ is given an abort message (At this point,

P1−i∗ would write its guess for f1−i∗(x
b0
0 , xb11 , n) on its output tape).

4. The output of the game is:

• 1 if (i) y = f0(x
b0
0 , xb11 , n) and (ii) P1−i∗ does not output f1(x

b0
0 , xb11 , n).

• −1 if (i) y �= f0(x
b0
0 , xb11 , n) and (ii) P1−i∗ outputs f1(x

b0
0 , xb11 , n).

• 0 otherwise (i.e., either both parties output correct outputs or both output
incorrect outputs).

We say that π fairly computes f if for every ppt adversaryA, there exists a negligible
function μ(·) such that for all sufficiently large inputs it holds that,

E(Fairπ,A(x00 , x
1
0 , x

0
1 , x

1
1 , n)) ≤ μ(n)

At first sight, it may seem that Definition 4.6 is tailored for the fair exchange function,
i.e., when the parties trade their inputs. This is due to the fact that the parties’ output
completely reveal their inputs. Nevertheless, we note that the definition does not put any
restriction on f in this sense and is aimed to capture fairness with respect any nontrivial
function. We continue with the following theorem:

Theorem 4.7. Let f be a two-party function and let π be a protocol that computes f
correctly. Then, π is Game Theoretic fair (in the sense of Definition 4.4), if and only if π
fairly computes f in the presence of fail-stop adversaries (in the sense of Definition 4.6).

Proof. We first write explicitly the guessing algorithm B = (B0,B1) and denote the
protocol π as πB. Assume that πB is Game Theoretic fair for P0 and P1; we thus prove
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that πB is fair in the sense of Definition 4.6. Assume by contradiction that πB is not
fair with respect to this latter definition. Thus, there exist infinitely many input tuples
x00 , x

1
0 , x

0
1 , x

1
1 , n which yield distinct outputs, a ppt adversaryA controlling P0 (w.l.o.g.)

and a non-negligible function ε for which

E(Fairπ,A,0(x
0
0 , x

1
0 , x

0
1 , x

1
1 , n)) ≥ ε(n)

This implies that,

∣
∣
∣ Pr

[
Fairπ,A(x00 , x

1
0 , x

0
1 , x

1
1 , n) = 1

]
− Pr

[
Fairπ,A(x00 , x

1
0 , x

0
1 , x

1
1 , n) = −1

] ∣
∣
∣ ≥ ε(n)

Namely, when P1 runs according to the protocol specifications and P0 runs according
to A′s strategy, the expected advantage of P0 over P1 in guessing successfully is non-
negligibly higher.
We now show that there exists B′ = (BA

0 ,B1) for which the game �πB′ ,uf is not a

Nash game. That is, consider an alternative strategy σA
0 for P0: This strategy invokes

the adversary A, such that for each message that the strategy receives from the other
party, it forwards this message toA. Furthermore, whenever it receives the message and
guess for the following round from the game (together with the random coins that were
used to generate these values), the strategy invokes the adversaryAwith the appropriate
random coins. If the adversary chooses to output this message, σA

0 outputs the action
continue. If the adversary A chooses to abort, σA

0 outputs abort.

Moreover, letBA
0 be the followingguess algorithm:On input

(
Historyπ,0(x

b0
0 , xb11 , n),

x00 , x
1
0 , x

0
1 , x

1
1

)
, BA

0 invokes the adversary A on the above history. Upon completion,

BA
0 outputs whatever A does. Let �x = (xb00 , xb11 ). Then, in a run of (σA

0 , σcontinue
1 )

within game �πB′ ,uf where B′ = (BA
0 ,B1), we have that:

Pr
[
OutputπB′ ,0 = f0(�x) ∧ OutputπB′ ,1 �= f1(�x)

]

−Pr
[
OutputπB′ ,0 �= f1(�x) ∧ OutputπB′ ,1 = f1(�x)

]
≥ ε(n)

yielding that the expected utility of P0 when it follows σA
0 (and assuming that P1 runs

according to the prescribed strategy), is non-negligible. That is,

u0(σ
A
0 , σcontinue

1 ) ≥ ε(n)

When both parties play according to the prescribed strategy σcontinue
i , both parties

learn the correct output at the end of the protocol except to some negligible function
μ(·), and thus:

u0(σ
continue
0 , σcontinue

1 ) ≤ μ(n)
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which is implied by the correctness of the protocol, and thus:

u0(σ
A
0 , σcontinue

1 ) − u0(σ
continue
0 , σcontinue

1 ) ≥ ε(n) − μ(n) ≥ ε(n)/2

for infinitely many n’s, implying that there exists a non-negligible difference between
the alternative strategy and the prescribed strategy, and thus, πB is not Game Theoretic
fair for P0.
Next, assume that πB meets Definition 4.6 and prove that πB is Game Theoretic

fair for P0 and P1. Assume by contradiction that πB is not Game Theoretic fair for P1
(w.l.o.g.), implying that there exists an alternative strategy σ ′

0, infinitely many distribu-
tions Dx00 ,x10 ,x01 ,x11 ,n ∈ Df

f , a ppt B̃0 and a non-negligible function ε such that πB′ is not

a Nash protocol, where B′ = (B̃0,B1). Namely,

u0(σ
′
0, σ

continue
1 ) ≥ u0(σ

continue
0 , σcontinue

1 ) + ε(n)

Based on the same assumption as above, when both parties follow σcontinue, both learn
the correct output except to some negligible function μ(·), and thus:

u0(σ
continue
0 , σcontinue

1 ) ≥ −μ(n)

implying that,

u0(σ
′
0, σ

continue
1 ) ≥ u0(σ

continue
0 , σcontinue

1 ) + ε(n) ≥ ε(n) − μ(n) ≥ ε(n)/2

Now, consider the following adversary A which controls the party P0: A invokes the
strategy σ ′

0 with the random coins of A. Then, whenever σ ′
0 outputs continue, A

computes the next message (using the same random coins) and outputs it. Whenever
A receives a message from P1, it passes the message to σ ′

0. When σ ′
0 outputs abort,

A aborts, invokes the guess algorithm B̃0 and outputs the corresponding output to B̃0’s
guess. We have that an execution of the protocol πB with an honest party P1 and the
adversaryA is equivalent to an execution of the game �πB′ ,uf with B′ = (B̃0, B1)where

the parties follow the (σ ′
0, σ

continue
1 ) strategies. Therefore, we have that

Pr
[
OutputπB,0 = f0(�x) ∧ OutputπB,1 �= f1(�x)

]

−Pr
[
OutputπB,0 �= f1(�x) ∧ OutputπB,1 = f1(�x)

]

= u0(σ
′
0, σ

continue
1 ) ≥ ε(n)/2

and so,

E(Fairπ,A(x00 , x
1
0 , x

0
1 , x

1
1 , n)) ≥ ε(n)/2

contradicting the assumption that πB is fair. �
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4.3. The Limited Gradual Release Property

In this section, we show that the guesses of the parties at any given round, and that every
two consecutive guesses of each party, must be statistically close. Namely, we show
that once there is a non-negligible difference between these, the protocol cannot be fair.
Intuitively, this follows from the fact that any such difference is immediately translated
into an attack where the corresponding party aborts before completing this round, while
gaining an advantage over the other party in learning the output.
The significance of limited gradual release is in providing a new tool to study fairness

in the two-party setting. Specifically, by proving that it implies fairness (in the sense
of Definition 4.6; see Theorem 4.11), it enables to gain more insights regarding the
characterization of fairness. On the other hand, the fact that limited gradual release is
implied by fairness (cf. Theorem 4.10) may shed light on the reason it is impossible to
achieve limited gradual release under certain constraints. Notably, our notion of limited
gradual release is in contrast to the typical meaning of gradual release specified in
prior work (e.g., [7]), which refers to partially fair protocols in which the parties learn
their output gradually such that the amount of information that is released regarding the
output is limited, but non-negligible, and there always exists a partywith a non-negligible
advantage over the others.
We show a tight correlation betweenDefinition 4.6 for fairness and the limited gradual

release property by showing that each notion is implied by the other. Without loss of
generality, assume that P0 sends the first message of the protocol and denote by a round
a pair of messages sent from P0 to P1 and back from P1 to P0. We recall first that in
Definition 4.6, we assume that the protocol instructs the parties how to guess the output
in the case of an abort message. In a broader sense, the protocol can instruct each party
to maintain a tape where it updates its guess after each round. This corresponds to having
each party computing its guess, conditioned on the event that the other party aborts in the
following round. More formally, denote by ai+1 the guess of party P0 when P1 aborts
after sending its message in round i ; likewise, bi+1 denotes the guess of P1 when P0
quits after sending its message at round i . We call these values the “default outputs,” see
Fig. 2 for an illustration. Furthermore, if the execution is terminated in some round i
(either due to an early abort or to a successful completion), the parties define by a j = ai
and b j = bi for all j > i .
We generalize the default output notations to deal with an arbitrary guess algorithm.

Namely, a fail-stop adversary A may prematurely abort and guess its output according
to a guess algorithm, different than the one specified by the protocol. Formally, for every
adversary A denote by guessA,i the adversary’s guess in round i . We note that an
adversary may not write its guess in every round; however, without loss of generality,
we can assume that it does so. Note that guessA,i is a random variable that is well
defined even if the protocol has been terminated before round i . Then, we define limited
gradual release to deal with every adversary. Formally:

Definition 4.8. (m-limited gradual release) Let f be a non-trivial two-party function,
and let π be a protocol. We say that π maintains m-limited gradual release, if for
every ppt fail-stop adversary A, there exists a negligible function μ(·), such that for
every i < m and every x00 , x

1
0 , x

0
1 , x

1
1 , n as above (cf. Definition 4.5) it holds that:
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P1 P2
a1 b0

b1
a2

b2
...

ai
bi

ai+1

Fig. 2. Default output notations (non-simultaneous).

1. In case A controls party P0:

Pr
[
guessA,i+1 = f0(x0, x1)

] ≤ Pr [bi = f1(x0, x1)] + μ(n)

2. In case A controls party P1:

Pr
[
guessA,i = f1(x0, x1)

] ≤ Pr [ai = f0(x0, x1)] + μ(n),

where x0
R← {x00 , x10 } and, x1

R← {x01 , x11 }.

Having defined m-limited gradual release, we say that a protocol maintains limited
gradual release if it is poly-limited gradual release for some polynomial poly which
indicates an upper bound its number of rounds. This captures the fact that the protocol
must be terminated within a strict polynomial number of rounds. Formally,

Definition 4.9. (gradual release) Let f and π be as above. Then, we say that π main-
tains limited gradual release if it is m-limited gradual release for m = poly(n) for some
polynomial poly that bounds the number of rounds of π .

Fairness Implies Limited Gradual Release We complete this section by establishing a
correlation between the two notions of fairness and limited gradual release. In particular,
we prove that each is implied by the other, beginning with the proof that fairness implies
gradual release:

Theorem 4.10. Let f and π be as above. Let poly be a polynomial that bounds the
number of rounds of the protocol π and assume that π is fair (in the sense of Defini-
tion 4.6). Then, π maintains limited gradual release (cf. Definition 4.9).

Proof. Theproof followsby contradiction.Namely, assume thatπ does notmaintain the
limited gradual release property. Then, there exists an adversaryA that controls (w.l.o.g)
party P0, a non-negligible function ε(·), a round poly(n) ≥ i > 0 and infinitely many
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tuples x00 , x
1
0 , x

0
1 , x

1
1 , n, such that,

Pr
[
guessA,i+1 = f0(x0, x1)

] ≥ Pr [bi = f1(x0, x1)] + ε(n)

Then observe that,

Pr
[
guessA,i+1 = f0(x0, x1)

] = Pr
[
guessA,i+1 = f0(x0, x1) ∧ bi = f1(x0, x1)

]

+Pr
[
guessA,i+1 = f0(x0, x1) ∧ bi �= f1(x0, x1)

]

and that,

Pr [bi = f1(x0, x1)] = Pr
[
bi = f1(x0, x1) ∧ guessA,i+1 = f0(x0, x1)

]

+Pr
[
bi = f1(x0, x1) ∧ guessA,i+1 �= f0(x0, x1)

]
.

Combing these and based on the contradiction assumption, we conclude that,

Pr
[
guessA,i+1 = f0(x0, x1) ∧ bi �= f1(x0, x1)

]

> Pr
[
bi = f1(x0, x1) ∧ guessA,i+1 = f0(x0, x1)

] + ε(n). (1)

Next, we describe a ppt adversary Ai for which the expected output game
Fairπ,Ai (x

0
0 , x

1
0 , x

0
1 , x

1
1 , n) is non-negligibly greater than zero. Consider the adversary

Ai that controls P0 and does the following: It invokes the adversaryA, plays according
to its strategy until round i , aborts in round i + 1 (right before sending its message
in this round) and outputs A’s default output in this round. Note first that Ai runs in
polynomial time since i < poly(n), and the honest party’s instructions can be followed
in polynomial time as well. Moreover, it holds that,

Pr
[
Fairπ,Ai (x

0
0 , x

1
0 , x

0
1 , x

1
1 , n)=1

]
=Pr

[
guessA,i+1= f0(x0, x1) ∧ bi �= f1(x0, x1)

]

(2)

where x0, x1 are chosen according to gameFairπ,Ai (x
0
0 , x

1
0 , x

0
1 , x

1
1 , n), (which is exactly

as they were chosen according to Definition 4.9). Then, Eq. (2) holds since the output
of game Fairπ,Ai is 1 only when Ai outputs the correct output f0(x0, x1), whereas P1
outputs an incorrect output, i.e., different than f1(x0, x1). We stress that the probability
above already embeds the event that the parties do not reach round i + 1 (namely, when
π is terminated before round i + 1). This is due to the fact that in case π is terminated
in round j , it holds that guessA,i+1 = guessA, j , and bi = b j for all j < i .
Similarly, we have that,

Pr
[
Fairπ,Ai (x

0
0 , x

1
0 , x

0
1 , x

1
1 , n)=−1

]=Pr
[
guessA,i+1 �= f0(x0, x1) ∧ bi = f1(x0, x1)

]
.
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Finally, combining the above we get that,

E(Fairπ,Ai (x
0
0 , x

1
0 , x

0
1 , x

1
1 , n))

= Pr
[
Fairπ,Ai (x

0
0 , x

1
0 , x

0
1 , x

1
1 , n) = 1

]
− Pr

[
Fairπ,Ai (x

0
0 , x

1
0 , x

0
1 , x

1
1 , n) = −1

]

= Pr
[
guessA,i+1 = f0(x0, x1) ∧ bi �= f1(x0, x1)

]

−Pr
[
guessA,i+1 �= f0(x0, x1) ∧ bi = f1(x0, x1)

]

> ε(n).

In contradiction to the assumption that π is fair with respect to Definition 4.6. �

Gradual Release Implies Fairness Next, we prove that fairness is implied by limited
gradual release:

Theorem 4.11. Let f and π be as above and assume that π maintains the limited
gradual release property (cf. Definition 4.9). Then, π is a fair protocol (in the sense of
Definition 4.6).

Proof. LetA be any adversary.We show that for there exists a negligible functionμ(·),
such that for all sufficiently large inputs (x00 , x

1
0 , x

0
1 , x

1
1 , n) it holds that:

E(Fairπ,A(x00 , x
1
0 , x

0
1 , x

1
1 , n)) ≤ μ(n)

Fix (x00 , x
1
0 , x

0
1 , x

1
1 , n) to be the input tuple and assume that i∗ = 0 (i.e., party P0 is

corrupted). Moreover, denote by abortAi the event thatA aborts in round i . We compute
the expected value of the game Fairπ,A, conditioned on the event thatA aborts in round
i . Recall that whenever A aborts in round i it outputs guessA,i , whereas P1 outputs
bi−1. Then, for every r(n) > i > 0 (where r(n) denotes a polynomial bound on the
number of rounds of π ), we have that,

E(Fairπ,A(x00 , x
1
0 , x

0
1 , x

1
1 , n) | abortAi )

= Pr
[
Fairπ,A(x00 , x

1
0 , x

0
1 , x

1
1 , n) = 1 | abortAi

]
− Pr[Fairπ,A(x00 , x

1
0 , x

0
1 , x

1
1 , n)

= −1 | abortAi ]
= Pr[guessA,i = f0(x0, x1) ∧ bi−1 �= f1(x0, x1)]

−Pr
[
guessA,i �= f0(x0, x1) ∧ bi−1 = f1(x0, x1)

]

= Pr
[
guessA,i = f0(x0, x1) ∧ bi−1 �= f1(x0, x1)

]

+Pr
[
guessA,i = f0(x0, x1) ∧ bi−1 = f1(x0, x1)

]

−Pr
[
guessA,i = f0(x0, x1) ∧ bi−1 = f1(x0, x1)

]

−Pr
[
guessA,i �= f0(x0, x1) ∧ bi−1 = f1(x0, x1)

]

= Pr
[
guessA,i = f0(x0, x1)

] − Pr [bi = f1(x0, x1)] ≤ μ(n)
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for some negligible function μ(·), where the last inequality holds due to the fact that
π maintains the limited gradual release property. Moreover, when i = 0, there is no
communication and thus both parties guess the correct output with probability 1/2. We
therefore conclude that,

E(Fairπ,A | abortA0 ) = 0 ≤ μ(n)

This implies that,

E(Fairπ,A(x00 , x10 , x01 , x11 , n)) =
r(n)∑

i=0

Pr
[
abortAi

]
· E(Fairπ,A(x00 , x10 , x01 , x11 , n) | abortAi )

≤ μ(n) ·
r(n)∑

i=0

Pr
[
abortAi

]
≤ μ(n)

where the above is true for any adversary, and thus the protocol is fair. �

For conclusion, we note that the above theorems also hold for the setting of simul-
taneous channel, where the parties send their messages at the same time. We further
stress that our notion of fairness is also meaningful in settings where the parties are not
guaranteed to always learn the correct output, even when playing honestly. As hinted
above, we consider a setting where a single protocol execution is completed such that
only one of the parties is guaranteed to learn its correct output instead of both. Yet, it is
guaranteed that overall, after multiple executions, both parties learn their correct output
with roughly the same probability. This can be viewed as a way of capturing the parties’
expected utilities. Surprisingly, our notion of fairness can be achieved in such limited
and restricted settings as demonstrated next.

4.4. A New Notion of Simulation-Based Security

In this section,wemodify the classical definition of secure computationwith fairness [12]
following the ideal/real model paradigm. Our goal is to present an alternative definition
that captures the idea of “limited gradual release.” Loosely speaking, a protocol meets
security with fairness in the classic sense if both parties learn their output concurrently.
Although very desirable, this notion of fairness cannot be realized in general in the
two-party setting (not even when malicious behavior is restricted to early abortion). A
potential reason for this failure may be due to the fact that realizing this notion requires
a point in the computation where both parties move from a state of no knowledge of the
output to a full knowledge of it. Instead, our definition allows the parties to gradually
learn partial information on their desired outputs—but do so in a way that is “fair.” More
specifically, our definition for fairness captures the scenario where both parties gain an
equivalent partial information in each step of the protocol.
Two challenges with formulating such a definition are: (1) How to capture the notion

of guessing in the ideal setting (recall that the parties are instructed to guess their output
in case of a prematurely abort). Due to this guessing, the parties may return incorrect
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values, implying that the trusted party should output incorrect values with the same
probability as well. (2) How to define fairness with respect to partial information.

The New Definition Our new definition supports the following change with respect
to [12]. In the ideal model, in addition to having the parties send their inputs to the
trusted party, the ideal adversary (i.e., the simulator) sends a sampling ppt machine M
for which the trusted party invokes on the parties’ inputs, and sends back this outcome.
Namely, the trusted party uses M to determine the parties’ outputs. Finally, the honest
party returns the output received from the trusted party, whereas the simulator outputs
an arbitrary value (w.l.o.g., it outputs the adversary’s view). In order for our definition to
make sense in the fair setting, we require that M should be “fair” in the sense that both
parties learn the same amount of information about their outputs, so that the guessing
algorithms of both parties could be simulated. Note that the notion of fairness that M
keeps may differ and depends on the fairness notion obtained by the overall definition.
Below, we introduce an instantiation for M that matches our specific needs.
We assume that the simulator in the ideal setting always sends the trusted party

machines that support the specified properties. Alternatively, we could have asked the
trusted party to run M super polynomially many times in order to verify that these prop-
erties indeed hold. In case they are not, the trusted party could have output a special
symbol indicating that and thus, forcing the simulator to always send such a machine.
The disadvantage with this approach is that the trusted party runs in super polynomial
time implying that composition theorems fail to apply. We therefore choose to parame-
terize our definition with simulators that always send machines as specified. Therefore,
proving that a given protocol satisfies this definition should be followed by a proof
that the simulator indeed outputs machines as required. See Sect. 4.5.2 for a proof of a
protocol that meets this definition.

The Input Distribution In the traditional setting, the input is taken to be arbitrary, and
security is expected to hold with respect to any input. In contrast, here we only require
security to hold with respect to some collection of distribution ensembles, denoted by
Df

f = {Dz}z (see Definition 4.1 for one example). Therefore, we parameterize the
random variable for the adversary’s view with such a collection as well. This is done
in order to make the intuitive concept of “comparable information gain” rigorously
meaningful.

The Auxiliary Information In the traditional setting, only the adversary is allowed to
hold auxiliary information. In contrast, in our setting we consider the case where both
parties may hold such information. It is stressed that the function value does not depend
on the auxiliary input. Still, the protocol may depend on the auxiliary information the
parties hold (see, e.g., a protocol in Sect. 4.5.2). This approach allows capturing the
auxiliary information that the parties hold on each other’s input. The security of the
protocol is measured with respect to the certain type of the auxiliary information. More
formally, let Dz be as above and let z = (X0, X1) where the input xi of the i th party
is chosen from the set Xi for all i ∈ {0, 1}. Then, additionally, we consider families of
auxiliary functions auxzf = { fz(x0, x1)}z∈{0,1}n where fz(x0, x1) = (z0, z1) and P0 is
given z0, whereas P1 is given z1 for auxiliary inputs.



910 G. Asharov et al.

Execution in the Ideal Model An ideal execution for the computation of f , involving
parties P0 and P1 and ideal adversary S, proceeds as follows:
Inputs P0, P1 are given x0, x1, sampled according to input distribution Dz . Moreover,
each party holds auxiliary information zi , computed according to some auxiliary input
function fz(x0, x1) = (z0, z1).
Send inputs to the trusted party Both parties send their inputs and auxiliary inputs
to the trusted party.
The simulator sends a sampling machine In addition to the adversary’s input, the
simulator S sends the trusted party a description of a pptmachine M that takes for input
(x ′

0, x
′
1, z

′
0, z

′
1, r

′), for x ′
0, x

′
1 the inputs of the parties that were sent to the trusted party,

z′0, z′1 the auxiliary information of the parties that were sent to the trusted party, and r ′
the random string chosen by the trusted party. Denote by (y′

0, y
′
1) the machine’s outputs.

Trusted parties send outputs The trusted party picks r ∈ {0, 1}n uniformly at
random, computes M(x0, x1, z0, z1, r) and gets back two values (y0, y1). It then sends
the simulator S the value yi∗ and the value y1−i∗ to P1−i∗ .
Outputs The honest party outputs whatever the trusted party sent it, whereas S outputs
the view of the corrupted party. We note that the simulator may output any value and it
is not restricted to generate an execution that yields yi∗ .
Let NIdeal f,S,Df

f ,aux
z
f
(�x) denote the random variable consisting of the output of the

simulator and the honest party following an execution in the ideal model as described
above, where the inputs were chosen according to some input distribution fromDf

f , and
the auxiliary inputs were chosen according to the appropriate auxiliary input function
from auxzf .

Execution in the Real Model We next consider the real model in which a two-party
protocol π is executed by parties P0, P1 (and there is no trusted party). The inputs and
auxiliary inputs of the parties in the real execution are determined exactly the same as
the inputs and auxiliary inputs in the ideal model. In the real execution, the adversaryA
controls party Pi∗ and thus sees the input and the auxiliary information of that party. The
adversary sends all messages on behalf of this party, following an arbitrary polynomial-
time strategy. The honest party follows the instructions of π . Let f be as above and let π
be a two-party protocol computing f . LetA be a non-uniform probabilistic polynomial-
time machine. We let RealA,π,Df

f ,aux
z
f
(�x) denote the random variable consisting of the

view of the adversary (corrupted party) and the honest partywhen following an execution
of π .

Comparing Executions of BothModels As usual for the ideal/real paradigm [12], secu-
rity is obtained by comparing the execution in the ideal world to the execution in the
real world.

Definition 4.12. Protocol π is said to securely compute f if for every ppt adversary
A in the real model, there exists a ppt simulator S in the ideal model, such that:

{
NIdeal f,S,Df

f ,aux
z
f
(�x)

}

�x,z∈{0,1}∗
c≡

{
Real

π,A,Df
f ,aux

z
f
(�x)

}

�x,z∈{0,1}∗
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where the ideal execution uses any (adversatively chosen) sampling machine M that
satisfies Definitions 4.13, 4.14.

Partial Fairness Finally, we note that Definition 4.12 can be generalized to capture the
notion of “partial fairness.” In this case, both parties learn some partial information about
the correct output, such that the adversary is allowed to learn some limited additional
information. In this case, there is a (restricted) imbalance between the parties. One way
to extend Definition 4.12 to capture this scenario is by relaxing the fairness requirement
from the sampling algorithmM . This definition has an advantage over the [18] definition,
in that the other security aspects of the computation (such as correctness or secrecy) are
guaranteed with only negligible error. Nevertheless, it is tailored to this specific setting.
More precisely, we say that M is ε-partial fair if there exists a negligible function μ(·)
such that for all sufficiently large n’s it holds that:

∣
∣
∣
∣Pr [yi∗ = fi∗(x0, x1)] − 1

2

∣
∣
∣
∣ ≤ Pr

[
y1−i∗ = f1−i∗(x0, x1)

] − 1

2
+ ε(n) + μ(n).

Then, we say that a protocol is secure and ε-fair if it satisfies Definition 4.12, when S is
restricted to send machines that are ε-partial fair. Note that all our other fairness notions
discussed in this section can be extended to handle partial fairness, respectively. For
instance, our game-based definition (cf. Definition 4.6) can be extended by requiring
that E(Fairπ,A(x00 , x

1
0 , x

0
1 , x

1
1 , n)) ≤ μ(n) + ε(n).

Even though partial fairness has been extensively studied in the literature [4,7,11,13,
18] (just to state a few), only two works [11,18] formalized this notion in the ideal/real
paradigm. We note that the later work is more general than our work, since it captures
a large class of functionalities over various domains and ranges and does not assume
a particular input or auxiliary information distributions. Specifically, as noted earlier
this definition compares a real execution of the protocol with a fair ideal execution and
requires that no efficient distinguisher can distinguish between the two executions with
probability non-negligibly better than 1/p. Nevertheless, a drawback of this approach
is that it allows a total break of security with probability 1/p. In contrast, our definition
below is much less general and very limited (in the sense that it considers concrete input
distributions and auxiliary information), yet it captures the exact notion of fairness. An
interesting open question is whether the two definitions can be incorporated in order to
obtain a general definition that only allows a limited breach of fairness.

4.4.1. Simulation-Based Security with Fairness

By itself, Definition 4.12 does not ensure any level of security, unless the restrictions on
M are explicitly specified. In this section, we restrict attention to the input distribution
described in Definition 4.1 and auxiliary input that contains the set of two possible inputs
of the other party, and specify the propertiesM shouldmaintain for this case. In particular,
given z = (x00 , x

1
0 , x

0
1 , x

1
1), the input of P0 is uniformly chosen from x00 , x

1
0 , whereas

the input of P1 is uniformly chosen out of x01 , x
1
1 . Therefore, the auxiliary information

is the function fx00 ,x10 ,x01 ,x11
(x0, x1) = ((x01 , x

1
1), (x

0
0 , x

1
0)). We note that it is possible to

write the conditions on M in terms of general auxiliary input, but we prefer not to do that
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since we wish to avoid the additional complexity (and since our solution below works
only with respect to this specific auxiliary input anyhow). Moreover, for the specific
case discussed here, we obtain simulation-based security with fairness, where security
is derived by the properties we require below from M . We begin with a definition for
correct sampling machine, followed with a definition of fair sampling machine.

Definition 4.13. (correct sampling machine) Let Pi∗ be the corrupted party, let
x00 , x

1
0 , x

0
1 , x

1
1 be the input tuple, let x1−i∗ be the input of P1−i∗ , and let (y0, y1)

be the outputs of M . We say that M is a correct sampling machine if y1−i∗ ∈
{ f1−i∗(x1−i∗ , x0i∗), f1−i∗(x1−i∗ , x1i∗)}.

This property is required to ensure the correctness of the examined protocol.

Definition 4.14. (fair samplingmachine) Let x00 , x
1
0 , x

0
1 , x

1
1 be the input tuple, let x0, x1

be the inputs of the parties, and let (y0, y1) be the outputs of M . We say that M is fair
sampling machine if there exists a negligible functionμ(·) such that for all sufficiently
large n’s it holds that:

∣
∣
∣
∣Pr [yi∗ = fi∗(x0, x1)] − 1

2

∣
∣
∣
∣ ≤ Pr

[
y1−i∗ = f1−i∗(x0, x1)

] − 1

2
+ μ(n) (3)

where (y0, y1) = M(x0, x1, z0, z1, r), the adversary controls party i∗ and the probability
is taken over the random coins of M .

Naturally, fairness can be defined by restricting M to give the adversary the correct
output with the same probability as giving it to the honest party. However, since the
adversary may output an arbitrary value after receiving the output of the corrupted party,
this requirement is insufficient. In fact, the sampling machine M may be designed such
that it would always return an incorrect output for both parties, enabling the adversary
to view this value as an “advice” and modify it into the correct outcome (based on its
auxiliary information). In this case, the honest party always outputs an incorrect output,
whereas the adversary always outputs the correct output, and so, the fairness property is
breached.
We avoid these scenarios by always letting the honest party learn the correct output

with probability greater than 1/2. In particular, if M gives the adversary the correct
output with probability p > 1/2, then the honest party receives the correct output
with the same probability. In contrast, if the adversary learns the correct output with
probability p < 1/2, then the honest party learns the correct value with probability
1− p. That is, the absolute value applied on the left term is only meaningful in case the
adversary M returns the correct output of the adversary with probability p that is smaller
than 1/2. In this case, it holds that the probability in which the honest party learns its
correct output is at least 1− p. Therefore, any manipulation on M’s output will not gain
the adversary any advantage.
In Claim 4.15, we formalize this intuition and show that for any strategy that the

adversary may follow, the probability that it outputs the correct value is bounded by
the probability that the honest party outputs the correct value, implying that fairness is



Toward a Game Theoretic View of Secure Computation 913

guaranteed. More formally, we show that any (computationally unbounded) machine
G cannot guess the adversary’s correct output with probability, that is greater than the
probability the honest party learns its correct output. Namely, letG denote amachine that
gets the input of the corrupted party; xbi∗i∗ , the tuple (x00 , x

1
0 , x

0
1 , x

1
1) and the output of the

corrupted party yi∗ , as received from M , and outputs a guess for the output fi∗(x
b0
0 , xb11 ),

denoted by OutputG , then

Claim 4.15. For any ppt machine M satisfying Eq. (3) and any machine G, it holds
that

Pr
[
OutputG = fi∗(x

b0
0 , xb11 )

]
≤ Pr

[
y1−i∗ = f1−i∗(x

b0
0 , xb11 )

]
+ μ(n)

where b0, b1 are chosen uniformly at random from {0, 1}, and (y0, y1) are the output of
M.

Proof. Without loss of generality, assume that i∗ = 0 and fix the adversary’s input to
xb00 . Moreover, recall that yi∗ is the value that G receives from M . Then, define by:

• α
def= Pr

[
OutputG = f0(x

b0
0 , x01 ) | y0 = f0(x

b0
0 , x01 )

]
,

• β
def= Pr

[
OutputG = f0(x

b0
0 , x11) | y0 = f0(x

b0
0 , x11)

]
.

That is, in case that the machine G always outputs the value that was given as an output
from M (y0). Recall that f0(x

b0
0 , x01 ) �= f0(x

b0
0 , x11) due to the non-triviality of f . This

implies that,

• 1 − α = Pr
[
OutputG = f0(x

b0
0 , x11) | y0 = f0(x

b0
0 , x01 )

]
,

• 1 − β = Pr
[
OutputG = f0(x

b0
0 , x01 ) | y0 = f0(x

b0
0 , x11)

]
.

Finally, let p
def= Pr[y0 = f0(x

b0
0 , xb11 )] denote the probability that the machine M gave

G the correct output. Then, we compute the probability that the adversary outputs the
correct output. We have that

Pr
[
OutputG = f0(x

b0
0 , xb11 )

]
= Pr

[
OutputG = f0(x

b0
0 , xb11 ) | b1 = 0

]
· Pr[b1 = 0]

+Pr
[
OutputG = f0(x

b0
0 , xb11 ) | b1 = 1

]
· Pr[b1 = 1].

Consider the probability Pr
[
OutputG = f0(x

b0
0 , xb11 ) | b1 = 0

]
. In this case, the correct

output is f0(x
b0
0 , x01 ). Then,

Pr
[
OutputG = f0(x

b0
0 , x01 )

]

= Pr
[
OutputG = f0(x

b0
0 , x01 ) | y0 = f0(x

b0
0 , x01 )

]
· Pr

[
y0 = f0(x

b0
0 , x01 )

]

+Pr
[
OutputG = f0(x

b0
0 , x01 ) | y0 = f0(x

b0
0 , x11)

]
· Pr

[
y0 = f0(x

b0
0 , x11)

]



914 G. Asharov et al.

= α · p + (1 − β) · (1 − p).

On the other hand, when b1 = 1, the correct output is f0(x
b0
0 , x11), and so the probability

that the adversary succeeds in this case is

Pr
[
OutputG = f0(x

b0
0 , x11)

]

= Pr
[
OutputG = f0(x

b0
0 , x11) | y0 = f0(x

b0
0 , x11)

]
· Pr

[
y0 = f0(x

b0
0 , x11)

]

+Pr
[
OutputG = f0(x

b0
0 , x11) | y0 = f0(x

b0
0 , x01 )

]
· Pr

[
y0 = f0(x

b0
0 , x01 )

]

= β · p + (1 − α) · (1 − p).

Therefore, the probability that the adversary outputs the correct output is computed by

Pr
[
OutputG = f0(x

b0
0 , xb11 )

]

= 1

2
· (α · p + (1 − β) · (1 − p) + β · p + (1 − α) · (1 − p))

= 1

2
· (αp + 1 − β − p + pβ + βp + 1 − α − p + pα)

= 1

2
· (1 + 2αp + 2βp − 2p + 1 − α − β)

= 1

2
+ 1

2
· (2p · (α + β − 1) + (1 − α − β)) = 1

2
+ (p − 1

2
) · (α + β − 1) .

Relying on the fact that 0 ≤ α ≤ 1, 0 ≤ β ≤ 1 we get that −1 ≤ α + β − 1 ≤ 1 and
so, |α + β − 1| ≤ 1. Using the fact that |A · B| = |A| · |B|, we get that:

∣
∣
∣Pr

[
OutputG = f0(x

b0
0 , xb11 )

]
− 1/2

∣
∣
∣ = |(p − 1/2) · (α + β − 1)|
= |p − 1/2| · |α + β − 1|
≤ |p − 1/2| .

Using the fact that M satisfies Eq. (3), we have that:

∣
∣
∣Pr

[
OutputG = f0(x

b0
0 , xb11 )

]
− 1/2

∣
∣
∣ ≤ Pr

[
y1 = f1(x

b0
0 , xb11 )

]
− 1/2 + μ(n)

and so, in case that Pr
[
OutputG = f0(x

b0
0 , xb11 )

]
≥ 1/2, it holds that:

Pr
[
OutputG = f0(x

b0
0 , xb11 )

]
− 1/2 ≤ Pr

[
y1 = f1(x

b0
0 , xb11 )

]
− 1/2 + μ(n)

Pr
[
OutputG = f0(x

b0
0 , xb11 )

]
≤ Pr

[
y1 = f1(x

b0
0 , xb11 )

]
+ μ(n).
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In case that Pr
[
OutputG = f0(x

b0
0 , xb11 )

]
≤ 1/2, we can use the fact that:

Pr
[
OutputG = f0(x

b0
0 , xb11 )

]
− 1/2 ≥ −Pr

[
y1 = f1(x

b0
0 , xb11 )

]
+ 1/2 − μ(n)

Pr
[
y1 = f1(x

b0
0 , xb11 )

]
+ μ(n) ≥ 1 − Pr

[
OutputG = f0(x

b0
0 , xb11 )

]

However, since Pr
[
OutputG = f0(x

b0
0 , xb11 )

]
≤ 1/2 we have that 1− Pr

[
OutputG =

f0(x
b0
0 , xb11 )

]
≥ Pr

[
OutputG = f0(x

b0
0 , xb11 )

]
, and so:

Pr
[
y1 = f1(x

b0
0 , xb11 )

]
+ μ(n) ≥ 1 − Pr

[
OutputG = f0(x

b0
0 , xb11 )

]

≥ Pr
[
OutputG = f0(x

b0
0 , xb11 )

]
.

�

4.4.2. Simulation-Based Definition Implies Game-Based Fairness

In this section, we show that Definition 4.12, when instantiated with Definitions 4.13-
4.14, implies Definition 4.6. Formally,

Theorem 4.16. Let f , π be as above. Then, if π is simulatable (in the sense of Def-
inition 4.12, instantiated with Definitions 4.13-4.14), then π is fair with respect to the
game based (in the sense of Definition 4.6).

Proof. Generally, we show that if there exists an adversary A that succeeds in the
game-based definition, then there does not exists a simulator for A. That is, assume by
contradiction that there exists an adversaryA, controlling party P0 (w.l.o.g.), for which
Definition 4.6 is not met. Namely, it holds that

Pr
[
Fairπ,A(x00 , x

1
0 , x

0
1 , x

1
1 , n) = 1

]
− Pr

[
Fairπ,A(x00 , x

1
0 , x

0
1 , x

1
1 , n) = −1

]
≥ ε(n).

Let �x = (x00 , x
1
0 , x

0
1 , x

1
1 , n, xb00 , xb11 ) and denote by Outputπ,i (�x) output of Pi in an

execution where P0 has input xb00 , and P1 is invoked with input xb11 . Then, by the
contradiction assumption, it holds that,

Pr
[
Outputπ,0(�x) = f0(�x) ∧ Outputπ,1 �= f1(�x)

]

− Pr
[
Outputπ,1(�x) = f1(�x) ∧ Outputπ,0(�x) �= f0(�x)

] ≥ ε(n)

Adding and subtracting Pr
[
Outputπ,0(�x) = f0(�x) ∧ Outputπ,1(�x) = f1(�x)

]
to the

left, we get that

Pr
[
Outputπ,0(�x) = f0(�x)

] − Pr
[
Outputπ,1(�x) = f1(�x)

] ≥ ε(n) (4)
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In other words, P0 (when controlled byA) learns the correct output with a non-negligible
advantage over party P1. In order to conclude the proof, we present two distinguishers,
DC and DH . Namely, DC checks whether the output of party P0 is correct (i.e., checks
the corrupted party’s output),whereas DH checkswhether the output of P1 is correct (i.e.,
checks the honest party’s output). Now, since there is a non-negligible difference between
the probabilities that the parties return the correct output in the real world, whereas for
any simulator in the ideal model, both parties learn the correct output with almost the
same probability, it must hold that one of the following distinguishers distinguishes the
executions with a non-negligible difference. More formally:

The distinguisher DC The distinguisher DH

Input: The index for the ensemble:

x
b0
0 , x

b1
1 , the view of the corrupted

party r;m1, . . . ,m	, the output of the
corrupted party y0, the output of the
honest party y1

Input: The index for the ensemble:

x
b0
0 , x

b1
1 , the view of the corrupted

party r;m1, . . . ,m	, the output of the
corrupted party y0, the output of the
honest party y1

The distinguisher: The distinguisher:

If y0 = f0(x
b0
0 , x

b1
1 ), output 1.

Otherwise, output 0
If y1 = f1(x

b0
0 , x

b1
1 ), output 1.

Otherwise, output 0

The RealWorld We compute the probability that DC and DH output 1 in the real world.
That is,

Pr
[
DC (Realπ,A(�x)) = 1

] = Pr
[
y0 = f0(�x)

] = Pr
[
Outputπ,0 = f0(�x)

]

Similarly,

Pr
[
DH (Realπ,A(�x)) = 1

] = Pr
[
y1 = f1(�x)

] = Pr
[
Outputπ,1 = f1(�x)

]

Using Eq. (4), we conclude that:

Pr
[
DC (Realπ,A(�x)) = 1

]
> Pr

[
DH (Realπ,A(�x)) = 1

] + ε(n) (5)

The Ideal World By Definition 4.12, S always sends the trusted party a fair sampling
machine M . Therefore, using Claim 4.15 there exists a negligible function μ(·) such
that for all sufficiently large n’s it holds that:

Pr [y0 = f0(x0, x1)] ≤ Pr [y1 = f1(x0, x1)] + μ(n)

(note that here (y0, y1) denote the outputs of the parties in the ideal executions and not
the output of the sampling machine M). Using the descriptions of DC , DH , we have
that

Pr
[
DC (NIdeal f,S(�x)) = 1

] ≤ Pr
[
DH (NIdeal f,S(�x)) = 1

] + μ(n)
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Concluding the Proof We showed above the following statements:

• There exists a negligible function μ(·) for which:

Pr
[
DC (NIdeal f,S(�x)) = 1

] ≤ Pr
[
DH (NIdeal f,S(�x)) = 1

] + μ(n) (6)

• From Eq. (5), there exists a non-negligible function ε(·) such that:

Pr
[
DC (Realπ,A(�x)) = 1

]
> Pr

[
DH (Realπ,A(�x)) = 1

] + ε(n) (7)

We therefore have two cases:

1. The distinguisher DH distinguishes successfully. That is, there exists a non-
negligible function ε′(·) such that for infinitely many n’s it holds that:

∣
∣Pr

[
DH (Realπ,A(�x)) = 1

] − Pr
[
DH (NIdealπ,A(�x)) = 1

]∣∣ > ε′(n)

2. The distinguisher DH does not distinguish successfully, implying that there exists
a negligible function μ′(·) such that for all sufficiently large n’s it holds that:

∣
∣Pr

[
DH (Realπ,A(�x)) = 1

] − Pr
[
DH (NIdealπ,A(�x)) = 1

]∣∣ < μ′(n).

Thus, we have that:

Pr
[
DH (Realπ,A(�x)) = 1

]
> Pr

[
DH (NIdeal f,A(�x)) = 1

] − μ′(n).

Combining it with Eq. (7), we have that:

Pr
[
DC (Realπ,A(�x)) = 1

]
> Pr

[
DH (NIdealπ,A(�x)) = 1

] + ε(n) − μ′(n).

Finally, using Eq. (6), we have:

Pr
[
DC (Realπ,A(�x)) = 1

]
> Pr

[
DC (NIdealπ,A(�x)) = 1

] + ε(n)

−μ(n) − μ′(n) > ε(n)/2

for all sufficiently large n’s, implying that DC distinguishes successfully.

We showed that for any simulator, there exists a distinguisher that distinguishes suc-
cessfully between the real and the ideal executions with a non-negligible probability,
contradicting the assumption that the protocol is simulatable. �

4.5. The Feasibility of Our Definition

In this section, we study our new game-based cryptographic definition of fairness in a
cryptographic context. Our starting point is any correct protocol, where both parties learn
their output if playing honestly. We then show that by relaxing the (negligibly close to)
perfect completeness requirement, which implies that the parties should (almost) always
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learn their output if playing honestly, we can fully characterize the set of two-party
protocols according partial correctness. Informally,

1. In case correctness holds with probability that is non-negligibly greater than 1/2,
we present an impossibility result, saying that there does not exist a fair protocol
with this probability of correctness. This implies that the difficulties in designing
fair protocols are already embedded within the fail-stop setting. Stating differently,
these difficulties already emerge whenever early abort is permitted.

2. On the positive side, in case correctness holds with probability that is smaller
equals to 1/2, we show how to design a fair protocol that meets our notion of
fairness. Specifically, we present a family of such protocols, parameterized by this
probability of correctness. The implications of this is that there may be still hope
for the fail-stop setting with respect to designing fair protocols.

4.5.1. An Impossibility Result

In this section, we demonstrate that our game-based definition for fairness cannot be
achieved for protocols that guarantee correctness with probability greater than 1/2.
Before turning to our main theorem, we present a definition of an α-correct protocol.

Definition 4.17. Let f be a non-trivial two-party function, and let π be a two-party
protocol. We say that the protocol π is a α-correct for f if there exists a negligible
function μ(·) such that for all sufficiently large x0, x1, n such that |x0| = |x1| = n,

∣
∣Pr

[
Outputπ,0(x0, x1) = f0(x0, x1) ∧ Outputπ,1(x0, x1) = f1(x0, x1)

] − α
∣
∣ ≤ μ(n)

whereOutputπ,i (x0, x1) denote the output of party Pi when invoked on input xi , while
P1−i is invoked on x1−i , and both parties are honest.

Note that, for the impossibility result below, it is sufficient to restrict ourselves to
fail-stop adversaries that guess their output according to the instructions of the protocol.
That is, their default outputs are the same default outputs as the honest parties, and thus
we use the notation of ai , bi . Our theorem of impossibility:

Theorem 4.18. Let f be a non-trivial two-party function. Then, for every non-
negligible function ε(·) and every α > 1/2 + ε(n), there does not exist an α-correct
protocol which is also fair (in the sense of Definition 4.6), with a polynomial round
complexity.

Proof. Let f be a function as above, let ε(·) be a non-negligible function and let π be a
fair α-correct protocol for some α > 1/2+ ε(n). Furthermore, let r(n) be a polynomial
upper bound on the number of rounds of the protocol. Then, there exists a negligible
function μ′(·) such that for all sufficiently large x0, x1, n it holds that,

Pr
[
Outputπ,0(x0, x1) = f0(x0, x1) ∧ Outputπ,1(x0, x1) = f1(x0, x1)

] ≥ α − μ′(n).
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We next show that π must have an exponential number of rounds on the average. We
consider an execution of π within game Fair(x00 , x

1
0 , x

0
1 , x

1
1 , n). Then, from the facts

that the function is non-trivial and the output values are distinct, it must hold that

Pr [a0 = f0(x0, x1)] = 1

2
and Pr [b0 = f1(x0, x1)] = 1

2
. (8)

FromTheorem 4.10, it is implied that π maintains the limited gradual release property
which means that there exists a negligible function μ(·), such that for all i < r(n) and
every x00 , x

1
0 , x

0
1 , x

1
1 , n as above, it holds that

• Pr [ai = f0(x0, x1)] ≤ Pr
[
bi−1 = f1(x0, x1)

] + μ(n), and
• Pr [bi = f1(x0, x1)] ≤ Pr [ai = f0(x0, x1)] + μ(n).

where x0, x1 are as in Definition 4.1.
In other words, for every i < r(n) it holds that,

Pr [ai = f0(x0, x1)] ≤ Pr
[
bi−1= f1(x0, x1)

]+μ(n) ≤ Pr
[
ai−1= f0(x0, x1)

] + 2μ(n)

Repeating inductively this argument, and relying Eq. (8), we have that,

Pr [ai = f0(x0, x1)] ≤ 1

2
+ 2i · μ(n) and Pr

[
bi−1 = f1(x0, x1)

] ≤ 1

2
+ 2i · μ(n)

Letboth denote the event that both parties learn their output (when both play honestly).
Then, based on the fact that π is α-correct protocol, we know that,

Pr[¬both] = 1 − Pr[both] ≤ 1 − (α − μ′(n)) <
1

2
− ε(n) + μ′(n) <

1

2
− ε(n)

2

where the latter is true since α > 1/2 + ε(n) and for all sufficiently large n’s, μ′(n) <

ε(n)/2.
Next, we consider the probability that the number of rounds is less than k · r(n) for

some k > 1, where r(n) is some polynomial that upper bounds the number of rounds in
the protocol. We have

Pr[Roundsπ (x0, x1) < k · r(n)]
= Pr

[
Roundsπ (x0, x1) < k · r(n) | both] · Pr[both]

+Pr[Roundsπ (x0, x1) < k · r(n) | ¬both]Pr[¬both]
≤ Pr

[
Roundsπ (x0, x1) < k · r(n) | both] + 1

2
− ε(n)

2

where Roundsπ (x0, x1) denote the number of rounds of π when invoked on (x0, x1).
In case that the number of rounds is less than k · r(n) and both occurs, then both akr(n)

and bkr(n)−1 equal to the correct output. Therefore, we have that

Pr
[
Roundsπ (x0, x1) < k · r(n) | both]

≤ Pr[akr(n) = f0(x0, x1) ∧ bkr(n)−1 = f1(x0, x1)] ≤ Pr[akr(n) = f0(x0, x1)]
≤ 1

2
+ 2k · r(n) · μ(n).
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We conclude that,

Pr[Roundsπ (x0, x1) < k · r(n)] ≤ 1

2
+ 2k · r(n) · μ(n) + 1

2
− ε(n) + μ′(n)

≤ 1 + 2k · r(n)μ(n) − ε(n)

2
. (9)

On the other hand, there exists a negligible function μ′′(n) such that for any k > 1

Pr[Roundsπ (x0, x1) < k · r(n)] > 1 − μ′′(n) > 1 − ε(n)

4

where the latter is true for all sufficiently large n’s. This is due to the fact that the protocol
is completed after r(n) rounds. Therefore,

1 − ε(n)

4
< Pr[Roundsπ (x0, x1) < k · r(n)] ≤ 1 + 2k · r(n)μ(n) − ε(n)

2

and thus,

1 + 2k · r(n)μ(n) − ε(n)

2
> 1 − ε(n)

4

r(n) >
ε(n)

8kμ(n)

in contradiction to the fact that r(n) is a polynomial. �

We note that the above can be generalized easily for the simultaneous setting, and for
expected polynomial-time protocols, see Appendix 5 for the specific modifications of
the proof for the later.

4.5.2. A Positive Result

Recall that the limited gradual release property implies that the probabilities of guessing
the correct output at any given round, for polynomial-time protocols, cannot be increased
“too much” during the execution when compared to the initial probability (that is com-
puted based on an empty view). This implies that the probability of guessing the correct
output at any given round is negligibly close to 1/2, for any fair protocol (in the sense
of Definition 4.6). Specifically, this protocol does not leak any information about the
correct output during its execution (or otherwise, it would not be fair). Therefore, it may
seem that this definition cannot be met by protocols that generate correct output, and
indeed, we followed this intuition when proved the impossibility result in Sect. 4.5.1.
Interestingly, we show that for relaxed correctness (i.e., lower equal than 1/2), there
exist non-trivial functionalities that can be computed fairly in this setting. In the fol-
lowing, we present a fair protocol in which either both parties learn the correct output
together, or alternatively neither party obtains a correct result. The case where in each
execution exactly one party learns its correct output can also be achieved with fairness.
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More generally, denote by α the probability in which both parties should learn their
outputs. Then, we show that for every α ≤ 1/2, there exists an α-correct protocol that
is also fair, even in the non-simultaneous channel model. This relaxation is necessary to
obtain fairness, as higher α values set a threshold for achieving this property (as shown
in Sect. 4.5.1). Intuitively, the fact that each party does not know whether it has the
correct output implies that a corrupted party would not have any incentive to abort after
learning its output, since it does not give the honest party any new information anyway.

The Protocol The protocol is invoked over tuples of inputs with the distribution of
choosing each input randomly out of a known pair. Let x00 , x

1
0 , x

0
1 , x

1
1 denote such an

input tuple and denote by x true0
def= f0(x

b0
0 , xb11 ), x false0

def= f0(x
b0
0 , x1−b1

1 ), x true1
def=

f1(x
b0
0 , xb11 ) and x false1

def= f1(x
1−b0
0 , xb11 ).

Then function f α , formally defined below, sets the output of the parties such that
both learn the correct output with probability α, as required from an α-correct protocol.
Moreover, the parties realize function f α via protocol πα

abort, which is secure-with-
abort.
For the special case where α = 0, we get that in each execution, either P0 or P1 learns

their correct output (but never both). This implies that correctness never holds since both
parties never learn their correct output together. As for the other extreme case where
α = 1/2, the functionality ensures that either both parties learn their correct output at
the same time (which occurs with probability 1/2), or both learn an incorrect output
(with the same probability). For the general case, see the figure below.

The Ideal Functionality f α

• Input: P0 inputs b0, x
0
0 , x10 , x01 , x11 . P1 inserts b1, x

0
0 , x10 , x01 , x11 .• The function:

– Toss a coin σ that equals 0 with probability 2α, and equals 1 with probability 1− 2α.
– If σ = 0 (parties learn same output) do:

* Toss another coin τ0 uniformly at random from {0, 1}.
* If τ0 = 0: set the output of P0, P1 to be (x true0 , x true1 ), respectively.

* If τ0 = 1: set the output of P0, P1 to be (x false0 , x false1 ), respectively.

– If σ = 1 (parties learn true and false outputs) do:

* Toss another coin τ1 uniformly at random from {0, 1}.
* Set the output of Pτ1 to be x trueτ1

.

* Set the output of P1−τ1 to be x false1−τ1
.

Protocol 1. πα: an α-correct and fair protocol for f in the f α
abort-hybrid model

• Inputs: P0 holds input x
b0
0 , P1 holds x

b1
1 .

• Auxiliary input: Both parties are given x00 , x
1
0 , x

0
1 , x

1
1 .• The protocol:
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– Engage in an execution of f α
abort on inputs b0, x00 , x

1
0 , x

0
1 , x

1
1 for P0, and

b1, x00 , x
1
0 , x

0
1 , x

1
1 for P1.

– If Pi receives⊥ from the f α
abort-ideal function, it chooses its output uniformly

at random from {x truei , x falsei } (note that Pi knows these values yet it still cannot
distinguish a true from a false output).

– Otherwise, it outputs the value returned by f α
abort and halts.

Theorem 4.19. Let f be a non-trivial two-party function. Then, for every0 ≤ α ≤ 1/2,
protocol πα is an α-correct protocol in the f α-hybrid model and is simulatable (in the
sense of Definition 4.12).

Proof. We first show that for every α in this range, πα is an α-correct protocol. Specif-
ically, in case both parties play honestly, then both receive an output from f α , which
implies that both parties learn the correct output with probability α.

We now show that πα satisfies definition 4.12. We first define the machine M that the
simulator sends to the trusted party. This machine is hardwired with the real adversary,
together with its random coins. This makes the adversary deterministic within M and,
moreover, enables the simulator to extract the randomness of the adversary after receiving
the output from the trusted party. We therefore describe M with an additional parameter
rA, which denotes the randomness of the adversary. Specifically, the simulator first
selects the random coins for A and only then creates the machine M to be sent to the
trusted party.

The Machine M(A, rA).

• Input: x ′
0, x

′
1 and the tuple (x00 , x

1
0 , x

0
1 , x

1
1).• The machine:

– M extracts from x ′
0, x

′
1 the bits (b0, b1) such that xb00 = x ′

0, x
b1
1 = x ′

1.
– M “invokes" the hardwired adversary A with random bits rA and input

(x
b∗
i

0 , x00 , x
1
0 , x

0
1 , x

1
1). The machine A outputs (bi∗ , x00 , x

1
0 , x

0
1 , x

1
1).

– M invokes function f α on input (b0, x00 , x
1
0 , x

0
1 , x

1
1) for P0 and (b1, x00 , x

1
0 , x

0
1 , x

1
1)

for P1. Let (y0, y1) be the outputs of this function.
– M gives to the hardwired adversary A the output yi∗ .

* If A does not abort, M outputs (y0, y1).
* If A aborts, M tosses a coin b uniformly at random, and gives the honest

party the evaluation of f on x
b1−i∗
1−i∗ and xbi∗ and yi∗ to the ideal adversary

(this step emulates the guess of the honest party when it does not receive
an output from f α).

We now proceed with the simulator S. Recall that S needs to create the view of the
corrupted party. In the real execution, the view of the corrupted party is the value that it
gets from f α . This is exactly the output ofM . Therefore, the simulator is straightforward.
More formally, let A be a ppt adversary and let r(n) be a polynomial that bounds the
number of random coins that A uses. Then, simulator S is defined as follows.

The Simulator S.
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• S chooses uniformly at random r ∈R {0, 1}r(n).
• S designs M(A, r) with adversaryA hardwired in it together with the random bits r .
• S receives from the trusted party a value y.
• S invokes A with input xbi∗i∗ , auxiliary input x00 , x

1
0 , x

0
1 , x

1
1 , and random coins r .

• The adversary outputs (bi∗ , x00 , x
1
0 , x

0
1 , x

1
1) as an input to the ideal function f α . S

returns to A the value y, emulating the output given by the trusted party for f α .
• A outputs continue or abort, and outputs a value y′.
• S outputs the view of the adversary: (r, y, y′).
Clearly, the simulator’s output is identically distributed to the distribution in the hybrid

model. All is left to show is that M is a valid sampling machine. Namely, that M is fair
and correct. The correctness requirement is trivially achieved. We show that M is also
fair, satisfying Eq. (3). Intuitively, the output of M for the corrupted party is always the
output of function f α . Recall that function f α hands the corrupted party the correct
output in the following cases:

• Case 1:When σ = 0, and τ0 = 0 (in this case, both parties receive the correct output).
• Case 2: When σ = 1 and τ1 = i∗ (in this case, only the corrupted party receives the
correct output).

Therefore, we have that:

Pr
[
yi∗ = fi∗(x

b0
0 , xb11 )

]
= Pr[σ = 0 ∧ τ0 = 0] + Pr[σ = 1 ∧ τ1 = i∗]
= Pr[σ = 0] · Pr[τ0 = 0] + Pr[σ = 1] · Pr[τ1 = i∗]
= 2α · 1

2
+ (1 − 2α) · 1

2
= 1

2
.

On the other hand, the honest party receives the correct output in the following cases:

• In case that the adversary does not abort, the output of the honest party is the output
that it receives from function f α . As the output of the corrupted party, the honest
party receives the correct output from the function f α with probability 1/2.

• In case that the adversary aborts, the machine M guesses the honest party’s correct
output with probability 1/2.

We note that the hardwired adversary is deterministic, and so the probability for the
output of the honest party is taken over the random coins of f α and the coins of M (for
guessing the correct output in case thatA aborts). In any case, let y1−i∗ be the output of
the machine M for the honest party. We have that:

Pr
[
y1−i∗ = f1−i∗(x

b0
0 , xb11 )

]
= 1/2

The above shows that M is fair. This completes the proof. �
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5. Appendix: Dealing with Expected Round Complexity

In Theorem 4.18, we required that the round complexity of the considered protocols to
be strict. In this section, we show how to extend these results for dealing with expected
(polynomial) round complexity. Namely, we assume that there exists a polynomial poly
such that for any input, the expected number of rounds of the protocol execution on this
input is bounded by poly(n). Moreover, we assume that both the honest party and the
adversary are allowed to run in expected polynomial time.
We restate and sketch the proof of the impossibility result of Theorem 4.18.

Theorem A 1. Let f be anon-trivial two-party function. Then, for every non-negligible
function ε(·) and every α > 1/2+ε(n), there does not exist an α-correct protocol which
is also fair (in the sense of Definition 4.4), with expected polynomial number of rounds.
Not even in the simultaneous channel model.

Proof sketch. In this proof, we denote by r(n) = E(Roundsπ (x0, x1)) the expected
number of rounds of π when invoked on (x0, x1). Recall that both denote the event that
both parties learn their output (when both play honestly), and that ai+1 denotes the guess
of party P0 when P1 aborts after sending its message in round i , whereas bi+1 denotes
the guess of P1 when P0 quits after sending its message at round i . Then, in case that
the number of rounds is less than k · r(n) and both occurs, both akr(n) and bkr(n) equal
to the correct output. However, there may be cases where akr(n) and bkr(n) equal to the
correct output, but the execution has not terminated yet. In particular, the probability
that the number of rounds is less than k · r(n) given that both occurs, is smaller than the
probability that both parties know the correct output by round k · r(n). Combining the
above with the analysis of Theorem 4.18, we have that,

Pr[Roundsπ (x0, x1) < k · r(n)] ≤ 1 + 2k · r(n)μ(n) − ε(n)

2
.

By the Markov inequality, we know that,

Pr[Roundsπ (x0, x1) ≥ kr(n)] ≤ E(Roundsπ (x0, x1))

kr(n)
= 1

k

and so,

Pr[Roundsπ (x0, x1) < kr(n)] ≥ 1 − 1

k
.

If we choose k such that k > 4/ε(n), we have that

Pr[Roundsπ (x0, x1) < kr(n)] ≥ 1 − 1

k
> 1 − ε(n)

4
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as in the original proof. From this point, we continue with the calculations as in the
original proof and conclude that

r(n) >
ε(n)

8kμ(n)
>

ε2(n)

32μ(n)

in contradiction to the fact that r(n) is a polynomial. �
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