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Abstract. If factoring is hard, this paper shows that straight line programs cannot
efficiently solve the low public exponent RSA problem. More precisely, no efficient
algorithm can take an RSA public key as input and then output a straight line program
that efficiently solves the low public exponent RSA problem for the given public key—
unless factoring is easy.
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1. Introduction

A long-standing open question in cryptology is whether the RSA problem is as difficult
as factoring. This paper provides a partial answer to this question: Solving the RSA
problem with a straight line program is almost as difficult as factoring, provided that the
public exponent has a small factor.
A straight line program is an algorithm limited to a fixed sequence of addition, sub-

traction or multiplication steps. No branching or looping is allowed, so such a program
computes a fixed integer polynomial function of its input. This paper shows that any
efficient algorithm that takes an RSA modulus as input and outputs an efficient straight
line program that solves the corresponding low exponent RSA problem can be used to
factor the RSA modulus. Therefore, if factoring is hard, then the RSA problem cannot
be solved by a straight line program.
Note, however, that straight line programs also appear unable to solve certain problems

that are known to be tractable, such as computing multiplicative inverses modulo an
RSA number of unknown factorization. The difficulty of solving the RSA problem with
algorithms that are not straight line programs is not addressed in this paper. Therefore, the
existence of the efficient unlimited algorithms for solving the RSA problem, analogous
to the Euclidean algorithm for finding inverses, has not been excluded.
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1.1. Related Work

An RSA private exponent is known to reveal the factorization of the RSAmodulus. This
classical result about the difficulty of the RSA problem has been attributed in [13] to
de Laurentis [6] and Miller [9], while in [8], it is attributed to [14]. The result in this
paper extends the class of information that reveals the factorization. Let an RSA private
exponent d corresponds to the straight line program that takes input x and computes xd .
This straight line program solves the RSA problem. The extension here is that any other
straight line program for solving the RSA problem also reveals the factorization.
Rabin [12], in another classic result, showed that finding eth roots where the RSA

(Rabin) public exponent e has a very small factor, namely two, is equivalent to factoring.
In some sense, this paper generalizes Rabin’s result to larger factors of e, albeit adding
the severe limitation to straight line programs.
Coron and May [4] improve on the results of [6,9,14], by providing a deterministic

algorithm which takes an RSA exponent d and computes the factorization of the public
modulus, whereas the previous algorithms were all probabilistic. The algorithm in this
paper is probabilistic.
Okamoto and Uchiyama [11] proved that the order of an elliptic curve group over

the RSA ring reveals the factorization of the RSA modulus. Although their result does
not concern the RSA problem of computing eth roots, their technique of working over
a twist of an elliptic curve, led, in part, to the results in this paper. See “Appendix 3” for
more discussion.
Leander and Rupp [7] extend the results in this paper to generic ring algorithms, which

unlike straight line programs, can make essentially choices based on some arbitrary
representations of the ring elements. In the case of groups rather than rings, the baby-
step-giant-step algorithm for the computing discrete logarithms can be implemented
with a straight line program, whereas as Pollard’s rho algorithm cannot be implemented
as a straight line program. The significance here is that Pollard’s rho algorithm, while
not much faster than baby-step-giant-step, is vastly more memory efficient. Pollard’s
rho algorithm can be implemented as a generic group algorithm. Therefore, considering
generic group algorithms as opposed to merely straight line programs, one can gain
some significant benefit. It is reasonable to infer that a potential analogous significant
benefit in the case of rings. So Leander and Rupp show that a wider class of root-finding
algorithms imply factoring algorithms. Previously, Damgård and Koprowski [5] showed
that computing roots using generic algorithms limited to the multiplicative RSA group
operations is difficult. Therefore, [7] also extends [5].

Aggarwal and Maurer [1] extend Leander and Rupp’s result further: The public expo-
nent e can be arbitrary, not just restricted to having a very small prime factor. Their
extension has tremendous importance because of the preponderance of RSA public keys
used with public exponent e = 216 + 1, for which this paper gives negligible results.
Table 1 illustrates the relationship between the results of this paper and other reduc-

tions [1,4–7,9,12,14]. The vertical axis has increasing generality in terms of the public
exponent in an upwards direction. The horizontal axis has increasing generality in terms
of the class of root-finding algorithms in a rightwards direction. Table shows the inter-
mediacy of this result, indicated as [0], between [4,6,9,14] and [12] and shows its
supersession by [1,7]. Note that [5] is not included in this table, but could be placed in
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the same position as this paper [0] if the SLP column were replaced by “SLP or generic
group algorithm”. Note the only results not superseded in this table are [1] and [12].

1.2. Organization of the Remainder of the Paper

Section 2 provides some definitions and lemmas for straight line programs and inverse
pairs of polynomials. Section 3 gives reductions between factoring and solving the
RSA problem with a straight line program when the public exponent has a small factor.
Section 4 discusses why this paper does not contradict Boneh and Venkatesan’s paper.
“Appendix 1” discusses how the implications of the paper are limited. “Appendix 2” dis-
cusses the difficulty of computing inverses using a straight line program. “Appendix 3”
discusses some generalizations of the RSA problem. “Appendix 4” discusses applicabil-
ity of this result to variants of theRSAproblem such as the strongRSAproblem. “Appen-
dix 5” discusses a non-trivial straight line program for computing cube roots, to illustrate
the wider applicability of the reduction in this paper compared to previous results.

2. Straight Line Programs and Inverse Integer Polynomials

Straight line programs are a class of algorithms that do not branch, and whose steps are
just addition, subtraction or multiplication.

Definition 1. A straight line program of length L is a sequence

P = ((i1, j1, ◦i ), . . . , (iL , jL , ◦L)) (1)

of triples, such that −1 � ik, jk < k and ◦k ∈ {+,−, ·}. On input x , program P
computes an output P(x) as follows.

1. Let x−1 = 1 and x0 = x .
2. For 1 � k � L , compute xk = xik ◦k x jk .
3. Output P(x) = xL .

Let R be a ring with a unit (and all rings in this paper will be assumed to have
units). If x ∈ R, then P(x) ∈ R. An important ring for this paper is the ring Z/〈n〉 of
integers modulo n, where n is the product of two large primes. This is the type of ring
over which the RSA problem is defined. The ring Z[X ] of integer polynomials over the
indeterminate X is useful for classifying straight line programs. The ring Z has a natural
embedding in any ring R (there is a unique homomorphism), and similarly the ringZ[X ]

Table 1. Relation of this reduction [0] to other reductions between finding roots and factoring.

Any e [4,6,9,14] [1]
Small f |e [0] [7]
Even e [12]
Root-finding Given private Straight Generic ring Any
Algorithm Exponent d Line program Algorithm (Black box)
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has a natural embedding in R[X ] such that X maps to X . Thus, f (r) makes sense for
any f (X) ∈ Z[X ] and any r ∈ R. Apply the straight line program P to the polynomial
X ∈ Z[X ], and let P̂(X) ∈ Z[X ] be the resulting output. This makes obvious that the
polynomial P̂(X) characterizes the action of P in any ring, which we state and prove
again for formality.

Lemma 1. If P : X �→ P̂(X) ∈ Z[X ], then P : r �→ P̂(r) for any r ∈ R and any
ring R.

Proof. In the natural embedding of Z[X ] into R[X ], we have X �→ X and P̂(X) �→
P̂(X). Therefore, in the ring R[X ], we have P : X �→ P̂(X). Now apply the natural
homomorphism R[X ] → R, such that X �→ r , to get in the ring R that P : r �→ P̂(r).

�

A straight line program P is essentially a particular algorithm to compute the poly-
nomial P̂ in any ring. The length of P is a simple measure of its efficiency and an upper
bound on the complexity of computing the polynomial P̂ . A secondary measure of effi-
ciency, memory usage, will not be considered in this paper. Note that the degree of the
polynomial f (X) that P computes is at most 2L , and similarly the largest coefficient is
at most 2L .
The main results of this paper use an observation about the actions of inverse pairs of

integer polynomials in rings. If integer polynomial functions invert each other in finite
ring R, then they invert each other in any image of R:

Lemma 2. Let R and S be finite rings (with units) such that S is a homomorphic
image of R. (That is, some surjective ring homomorphism σ : R → S exists.) Let
p(X), q(X) ∈ Z[X ]. If p(q(r)) = r with probability μ for uniformly random r ∈ R,
then p(q(s)) = s with probability at least μ for uniformly random s ∈ S.

Proof. For each s ∈ S, define r ∈ R to have a uniformly random distribution such that
s = σ(r), that is, r can be chosen uniformly at random from the preimage set σ−1(s).
(Note that in this proof about probabilities, it is not necessary to be able to efficiently
generate such r : existence of the distribution for r suffices.) Each such preimage set has
the same size, namely the size of the kernel of σ , so therefore, over uniformly random
s, the resulting r is uniformly random over the whole of R. With probability μ, we
therefore have, by assumption, that p(q(r)) = r . Calculating,

p(q(s)) = p(q(σ (r)))

= p(σ (q(r)))

= σ(p(q(r)))

= σ(r)

= s, (2)

using the fact that the ring homomorphism σ , by definition, commutes, with ring oper-
ations, and consequently with application of integer polynomials. �
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If p(q(r)) �= r , which happens with probability 1− μ, it may be still be the case that
p(q(s)) = s, so we can only get a lower bound ofμ on the probability that p(q(s)) = s.
For the sake of greater generality, one can also consider straight line programs that

include division steps, not just addition, subtraction and multiplication steps. Such
straight line programs have already been considered in [3], but are also reviewed briefly
in Sect. 2.1 of this paper for completeness. For even greater generality, one can also
consider steps that branch based on whether two previous values are equal, which is
consider in Sect. 2.2.

2.1. Straight Line Programs with Division

In the rings of interest in this paper, Z/〈n〉, division is almost always defined, and fur-
thermore, it can be computed via an efficient algorithm, namely the Euclidean algorithm
for inversion. More precisely, failure of division of two random elements occurs with
negligible probability in Z/〈n〉 if n is an RSA modulus. More importantly, if a division
does fail, then the factorization of n will generally be revealed, because the denominator
will have a non-trivial gcd with n.
Rings like Z/〈n〉 with the property that division is almost always defined (and can

be computed effectively) will be called near-fields. Straight line programs with division
allowed make sense for near-fields. To extend the main results of this paper to straight
line programs with division, the following helps:

Lemma 3. Let R be a near-field and let g(X) ∈ Z[X ]. Then S = R[X ]/〈g(X)〉 is
a near-field. Any straight line program (with division) over S can implemented as a
(multi-input) straight line program (with division) over R.

Proof. By definition, S is a ring, so it suffices to define inverses on S for almost all
elements of S. Let d be the degree of g(X). Elements of S may be represented as
polynomials in R[X ] of degree at most d − 1. For almost any element s(X) ∈ S with
this representation, we can compute s(X)−1 using the extended Euclidean algorithm
applied to g(X) and s(X). The extended Euclidean algorithm will generally involve d
applications of the polynomial division algorithm. Each polynomial division will require
a certain number of divisions in the near-field R. The total number of near-field division
in R is generally about

(d
2

)
, when computed as above. However, upon simplification all

these divisions in R can be consolidated into a single division, if desired.
Addition, subtraction, multiplication and division in S can each be implemented as

multi-input straight line programs acting on the coefficients of elements of S when
represented as polynomials in R[X ]. �

To illustrate, suppose that g(X) = X3 + aX2 + bX + c, and that we want to compute
the inverse of f (X) = r X2 + sX + t . We will apply the polynomial division algorithm
twice to get:

g(X) = q(X) f (X) + h(X) (3)

f (X) = u(X)h(X) + k(X) (4)
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where q(X), h(X) and u(X) have degree one, while k(X) = k has degree zero, so is a
constant scalar. Combining these equations, we get k = f − uh = f − u(g − q f ) =
(qu+1) f −ug. Therefore, f (qu+1)

k ≡ 1mod g. The results of the polynomial divisions
give:

q(X) = 1

r
X + a

r
− s

r2
, (5)

h(X) =
(
b − t

r
− as

r
+ s2

r2

)
X + c − at

r
+ st

r2
, (6)

u(X) = r3

br2 − r t − rsa + s2
X + r3(s(br2 − r t − rsa + s2) − (cr2 − art + st))

(br2 − r t − rsa + s2)2
,

(7)

k(X) = t − r(s(br2 − r t − rsa + s2) − (cr2 − art + st))(cr2 − art + st)

(br2 − r t − rsa + s2)2
. (8)

Upon simplification to a single division we get:

1

r X2 + sX + t
= (

(br2 − r t − rsa + s2)X2 + (s2a − rsa2 − r2c − st + r2bc)X

+ t2 + r2b2 − ast − acr2 − 2brt − rsab + rsc + a2r t + bs2
)

r3c2 − bcr2s − 2acr2t + b2r2t − abrst + acrs2 + 3crst + a2r t2 − 2brt2 + t3 − ast2 + bs2t − cs3
.

(9)

A straight line program with division computes a rational function Q[X ]. Lemmas 1
and 2 can be extended accordingly, with polynomials in Z[X ] replaced by polynomials
inQ[X ], rings replacedwith near-fields, straight line programswithout division replaced
by those allowing division. Unless specifically stated otherwise, however, straight line
programs in this paper will not include division. Most of the results in this paper extend
to straight line programs with division. The proofs of these extensions and the impact on
tightness of the reductions depend on the lemma above and are not discussed in detail.

2.2. Straight Line, Equality-Excepted Programs

Straight line programs are called so partly because they do not involve branching steps,
that is, conditional statements. As such, they represent quite a narrow class of algorithms.
The results of this paper would be strengthened if the affected class of algorithms were
broadened. In this section, we consider a limited form of branching where equality
testing is allowed, which we call a straight line, equality-branching-excepted program
(SLEEP). The significance of this extension will remain debatable, however, until an
convincing example is provided that a SLEEP can do more powerful things than an SLP.
To formally model a SLEEP, we allow another kind of step in the form (ik, jk, lk,mk),
where i j , jk, lk,mk < k, which is taken to mean that xk = xik if xlk = xmk and xk = x jk
otherwise.
Neither Lemmas 1 nor 2 apply when an SLP or integer polynomial is replaced by

a SLEEP. Indeed, a SLEEP is capable of computing non-polynomial functions, unlike
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an SLP. We therefore consider some modified lemmas and argue that these lemmas
can be used in to make the proofs of the theorems apply to a SLEEP. The first lemma
corresponds to something that was used as an implicit consequence of Lemma 1: that
the action of a program on the product ring was the product of the actions on each ring.

Lemma 4. Let R and S be rings. Let F be a SLEEP. Let (r, s) ∈ R×S. Then F(r, s) =
(F(r), F(s)), or in the course of running F on (r, s), one can find (u, v) ∈ R × S with
u = 0 or v = 0.

Proof. Run F on (r, s) and r and s. Let Fk indicate the SLEEP up to and including the
kth step in the SLEEP. Compare Fk(r, s) and (Fk(r), Fk(s)). At the first k where these
two values diverge, the divergence must be due to an equality testing step (ik, jk, lk,mk),
because arithmetic steps will not cause divergence. Letting rk and sk indicating Fk(r)
and Fk(s), one can see this divergence arises if and only if rlk = rmk and slk �= smk , or
vice versa. Let (u, v) = (rlk − rmk , slk − smk ). �

Similarly, we have a modified version of Lemma 2.

Lemma 5. Let R and S be rings. Let σ : R → S be a surjective homomorphism.
Let P and Q be SLEEPs. Let r ∈ R and s ∈ S be selected at uniformly random. If
P(Q(r)) = r with probability at least π , then, with probability at least π, P(Q(s)) = s
or during the course of computing P(Q(s)) one can find u ∈ R such that u �= 0 and
σ(u) = 0.

Proof. For the given s, we may select r as a random preimage of s under σ . This r
is uniformly randomly distributed in R, so therefore r = P(Q(r)) with probability at
least π . Apply σ to both sides to get s = σ(r) = σ(P(Q(r))). Unlike in Lemma 2,
homomorphism σ may not commute with P and Q, because they are SLEEPs, not
integer polynomials. However, it is true that σ Pσ = Pσ , where Pσ is a modified
SLEEP in which equality testing is done modulo the kernel of σ . Therefore, P(Q(s)) =
σ(Pσ (Qσ (r))). If P(Q(r)) = Pσ (Qσ (r)), then we have established that s = P(Q(s)).
Otherwise P(Q(r)) �= Pσ (Qσ (r)) which can only happen if the divergence is due

to the difference in equality testing. In the first step where divergences happens, we will
be able to find nonzero u in the kernel of σ , by subtracting the two quantities being
compared for equality, which is similar in principal to what was done in the proof of
Lemma 4. �

When applying these modified lemmas in the proofs of the theorems, if they fail to
work just as the original lemmas, then they reveal a factor of n = pq.

3. Factoring, the RSA Problem and Straight Line Programs

When the RSA public exponent e is sufficiently small, one can use an efficient straight
line program for the RSA private key operation to efficiently factor the RSA modulus.
The special case of e = 3 is especially simple, so is described specifically for illustration.
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The general case of larger e is described with a more detailed analysis, but follows the
same principles as the e = 3 case. More generally, it suffices for e to have a small factor.

3.1. Cube Roots: Public Exponent e = 3

A straight line program that finds cube roots modulo n can be used to construct another
straight line program that finds a factor of n:

Theorem 6. Let f (X) ∈ Z[X ], let p and q be primes, let n = pq and let R = Z/〈n〉.
Suppose that f (X) is efficiently computable with a straight line program F of length L,
and that for random r ∈ R, the probability that f (r3) = r is μ. Then n can be factored
with a probability of success at least 2

3μ, using a straight line program running over
R of length 7L + K, for some constant K , together with a small amount of additional
work.

Proof. Pick a random u ∈ R, until one is found with
( u
n

) = −1. Without loss of
generality, assume that (

u

p

)
= 1 and

(
u

q

)
= −1. (10)

LetU = R[X ]/〈X2 −u〉, which is a quadratic extension of R. The ringU has structure:

U ∼= Fp × Fp × Fq2 . (11)

To see this, suppose that v2 = u inFp. Letψ be the isomorphism that maps a+bX ∈ U ,
to (a + bv, a − bv, a + bX) ∈ Fp × Fp × Fq2 , where the integers a and b are reduced
modulo the appropriate modulus and Fq2 is represented as Fq [X ]/〈X2−u〉. Elements of
U thatmap to (s, 0, 0) form a subring S ∼= Fp, and elementsmapping to the form (0, s̄, 0)
form a subring S̄ ∼= Fp. Elements ofU that map to (0, 0, t) form a subring T (Elements
of S can also be characterized as elements a + bX of U such that a ≡ bvmod p and
a ≡ 0mod q, while elements of S̄ can be characterized as those with a ≡ −bvmod p
and a ≡ 0mod q. Elements of T can also be characterized as those elements a + bX ,
with a, b ≡ 0mod p.)

Because R ∼= Fp × Fq , there are surjective homomorphisms σ : R → S and σ̄ :
R → S̄. Lemma 2 then implies that f (s3) = s with probability at least μ for a random
s ∈ S.
Now pick a random r ∈ U and compute f (r3) using straight line program F ; this can

be done by Lemma 1. Suppose that ψ(r) = (s, s̄, t). Because ψ is an isomorphism, we
have

ψ( f (r3)) =
(
f (s3), f (s̄3), f (t3)

)
. (12)

Again, with probability at least μ, we have f (s3) = s. In this event, we have:

ψ( f (r3) − r) = (0, y, z). (13)

for some y ∈ Fp and z = f (t3) − t ∈ Fq2 .
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Wenow show that the event f (t3) = t can happenwith probability atmost 13 . Note that
q2 ≡ 1mod 3, so that 3 | q2 − 1. Hence, T ∼= Fq2 has an element ω of multiplicative
order 3. It follows that only one third of elements in T are perfect cubes, and each
perfect cube has three cube roots. These cube roots are called conjugates. A set of such
conjugates always takes the form {z, ωz, ω2z}, which is called a conjugacy class. For
a random t ∈ T with a given value of t3, each element of the conjugacy class has
probability 1

3 of occurring. Given only t3, there is at most 1
3 chance of determining t ,

no matter what algorithm is used. Therefore, the event f (t3) �= t , which is equivalent
to z �= 0, has probability at least 2

3 .
Let c = f (r3) − r . Write c = a + bX , and let c̄ = a − bX . Then ψ(c̄) = (y, 0, z̄)

for some z̄ ∈ Fq2 . The norm of c is cc̄ = a2 − b2u, and

ψ(a2 − b2u) = ψ(cc̄) = (0, y, z)(y, 0, z̄) = (0, 0, zz̄). (14)

Therefore, p | a2 − b2u and q � a2 − b2u, because z �= 0 implies z̄ �= 0 and a2 − b2u =
zz̄ ∈ T . Therefore, p = gcd(n, a2 − b2u).
With one run of F on the ringU , we have a probability of 2

3μ of obtaining a factor of
n. Running F on the ring U can be implemented as a straight line program G running
on the ring R. The resulting program has length at most 7L + K , because multiplication
in U can be implemented as seven ring operations in R, since (a + bX)(c + dX) =
(ac + bdu) + (cb + ad)X . �

A small example may help illustrate. Any straight line program F for polynomial
X7 finds cube roots in R = Z/〈55〉. The ring U = Z[X ]/〈55, X2 − 6〉 is isomorphic
to F5 × F5 × F121. For a random element of U , we can pick r = 4 + 7X . Then, we
compute y = r3 = 17 − 26X and submit y to the straight line program F , which gives
z = F(y) = y7 = 9 + 17X . Now c = F(r3) − r = z − r = 5 + 10X . As predicted,
z − r is 0 + 0X mod 5 and also happens to be nonzero in U (which should happen
with probability at least 2

3 ). In the proof, we computed a norm, which in this case is
cc̄ = 52 − 1026 ≡ 30mod 55. Computing gcd(55, 30) = 5 recovers a desired prime
factor.
Given that the classical result [6,9,14] of a private exponent revealing the factorization,

and that 7 is a private exponent for 3 modulo 55, one could have also used the classical
results instead of Theorem 6. The example above does not illustrate the greater generality
of Theorem 6. A class of polynomials outside the range of the classical result is those
of the form Xd where d = 1

3 modm, and m is some proper factor of lcm(p − 1, q − 1).
These have success rate μ < 1. Technically, such a d is not a private exponent, even
though it can be used to find cube roots for a fraction of elements in Z/〈pq〉. We would
expect, however, that the proofs in [6,9,14], or some minor extensions thereof, apply
to such d. The polynomial 11X3 + 45X17 will also compute cube roots modulo in
Z/〈55〉, being derived via the Chinese remainder theorem. This polynomial is not of the
form Xd , but on the other hand, the factorization of 55 is readily ascertained from its
coefficients. Another class of polynomials can be derived from Cipolla’s algorithm (see
“Appendix 5”). While any given small example may obviously reveal the factorization
by inspection, the power of Theorem 6 is that all examples will reveal the factorization.
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Theorem 7. Let A be a probabilistic algorithm that takes as input an RSA modulus n
of given size with public exponent of three and outputs an efficient straight line program
F that finds cube roots modulo n with probability at leastμ. Then A can be used to factor
RSA numbers of the given size with probability at least 2

3μ. The cost of the factoring
algorithm is roughly the cost of A plus seven times the cost of evaluating F.

Proof. To factor n, run algorithm A, then apply Theorem 6 to its output program. �

Provided that μ is not too small, that F is efficient and that A is efficient, then one
can factor efficiently. The success rate of the factoring algorithm can be increased by
repeating it, or by using random self-reducibility of the RSA problem to first increase
the success rate of A. Increase of the success rate in this manner costs extra computation
time in the usual trade-off.
The results above extend to straight line programs with division, although the effi-

ciencies may change slightly due to the cost of implementing in division in the extension
ring.

3.2. Higher Degree Roots: Public Exponent e > 3

The results for e = 3 generalize to higher public exponents. The following result requires
e to be sufficiently small to make certain approximations in the proof, but this upper
bound seems well above the threshold of values for which the result has cryptological
significance.

Theorem 8. Let f (X) ∈ Z[X ], let e > 3 be an integer, let p and q be primes with
gcd(e, (p− 1)(q − 1)) = 1 and p, q � e, let n = pq and let R = Z/〈n〉. Suppose that
f (X) is efficiently computable as a straight line program F of length L, and for random
r ∈ R, the probability that f (re) = r is μ. Then n can be factored with an approximate
probability of success at least (e−1)(E−1)

φ(e)eE μ, where E is the base of the natural logarithm,

using a straight line program of length at most about 3φ(e)2L + K running over R,
together with a small amount of other work, for some constant K depending on e and
R.

Proof. There are two phases to the factoring algorithm. In the first phase, a random
polynomial g(X) ∈ R[X ] of degree φ(e) is selected. The second phase uses the resulting
g(X), generalizes the previous proofs and is successful if g(X) has a root modulo p and
is irreduciblemodulo q (or vice versa). After presenting the second phase, we analyze the
probability that the first phase obtains this necessary condition on g(X) for the second
phase to succeed.
If g(X) meets the condition, then factoring proceeds almost exactly as in the proof of

Theorem 6. Let:
U = Z[X ]/〈n, g(X)〉 (15)

Because of the property of g(X) and a generalization of the Chinese Remainder theorem,
if g(X) is square-free, the ring U has structure:

U ∼= Fp × Fpd2 × · · · × Fpds × Fqφ(e) , (16)
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for some positive integers 1 = d1, d2, . . . , ds , whose sum is φ(e). [These integers are
the degrees of the irreducible factors of g(x) over the field Fp.] [If g(X) is not square-
free, then we can factor n by computing the discriminant of g(X). So, if the following
procedure fails, then we may attempt to compute the discriminant of g(X).]

Let S be a subring of U isomorphic to Fp, and let T be the subring isomorphic to
Fqφ(e) . Note that T ∗ has qφ(e) − 1 elements, and that e | qφ(e) − 1, so that a fraction 1

e
of elements of T are perfect eth powers, and that every such perfect power has exactly
e roots forming a conjugacy class.

Pick a random r ∈ U . Compute F(re). Let s and t be the homomorphic projections of r
in components S and T . Then F(se) = s with probability at leastμ, because S ∼= Fp and
Fp is the homomorphic image of R, where F computes eth roots, so Lemma 2 applies. In
this event, F(re)−r projects to 0 in S. Let F(re)−r = z0+z1X+· · ·+zφ(e)−1Xφ(e)−1 =
z(X). In the proof of Theorem 6, a norm was calculated. The generalization needed here
is the resultant:

Res(z(X), g(X)) (17)

The resultant is defined here as the determinant of the Sylvester matrix of the two
polynomials. For polynomials defined over a field, the resultant is the product of all
the differences between roots of the first and second polynomials, times the product of
the leading coefficients each raised to the degree of the other polynomial. The resultant
can be computed efficiently using a determinant or using an algorithm similar to the
Euclidean algorithm. This takes approximately O(φ(e)3), or O(φ(e)2) respectively,
Z/〈n〉 operations, including divisions. Henceforth, we absorb this as a relatively small
cost, but note that for large e, this costmay actually be significant compared to factoringn.
Let s be the root of g(X) in Fp that was assumed to exist. A polynomial u(X) ∈ Z[X ]

regarded as an element ofU projects to the subring S as u(s). Since z(X) projects to 0 in
S, we have z(s) = 0 in S. Therefore, z(X) and g(X) have a common root s in S. Thus,
the resultant projects to zero in S. But the resultant is a polynomial of degree zero and
is thus an element of Z/〈n〉. Being an integer and belonging to S implies being divisible
by p. Therefore:

p | gcd (n,Res(z(X), g(X))) (18)

With probability at most 1
e , this gcd is n, which corresponds to F having guessed cor-

rectly which of the e conjugates t was. Note that g(X) is irreducible modulo q, so the
only chance of having common factors with z(X) is if g(X) | z(X), and thus F found
a root in Fqφ(e) . Therefore, with probability at least e−1

e , the gcd is p, which gives the
desired factor of n.
In the first phase, a random monic polynomial g(X) ∈ R[X ] of degree d = φ(e)

was selected. We now calculate the probability of the polynomial having a root or being
irreducible in the field Fp, to determine the success rate of the second phase. The total
number of monic polynomials of degree d is pd . The number of irreducible polynomials
of degree d is:

1

d

∑

f |d
μ

(
d

f

)
p f , (19)

whereμ(·) is theMöbius function. This can be seen by applying the inclusion–exclusion
principle to the degrees of elements in extension fields of Fp. For large p, the probabil-
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ity of being irreducible is thus approximately 1
d . For large p, this approximation is very

tight. The number of g(X) with at least one root is:
d∑

f =1

(−1) f−1
(
p

f

)
pd− f . (20)

This can be seen by the inclusion–exclusion principle on the set of roots. Therefore, for
large p, the probability of having a root in Fp is approximately E−1

E , where E is the
base of the natural log (not to be confused with the RSA public exponent), with a better
approximation for larger d. A more accurate estimate for the probability, especially for
smaller e, is

1

1! − 1

2! + · · · ± 1

φ(e)! , (21)

which approaches E−1
E quite quickly. Estimate (21) uses the approximation

(p
f

) ≈ p f

f ! ,
which is only accurate if p � f . Once e gets large enough, other estimates may take
over with the alternating sum in (20) being quite different from (21).
The straight line program F , as run over U , can be translated into a longer straight

line program G running over R. Each multiplication step in F involves at most about
2φ(e)2 multiplication steps in G and φ(e)2 addition steps. �

To increase the success rate of the factoring algorithm, one can repeat the process. A
better improvement may be possible, however, with a more judicious selection of g(X).
For example, increasing the chance that g(X) is irreducible may be possible by selecting
g(X) to be irreducible over the integers. It is not clear, however, when doing so, what
the probability of having a root is. Alternatively, one may select g(X) = Xd − u, with u
random. The factorization of such binomials is well understood: It depends on the field
size and the order of u in the field. Such polynomials are never irreducible overFp if 4 | t
and p ≡ 3mod 4, but otherwise, they can be irreducible for certain choices of u. This
approach has the potential to increase the probability of finding g(X) by preprocessing
u through computation of higher degree equivalents of the Jacobi symbol, resorting to
higher degree equivalents of quadratic reciprocity.
Instead of the resultant in the proof, a greatest common divisor of polynomials could

have been used.Modulo p, the polynomials z(X) and g(X) have a common root, namely
s, so (X − s) | gcd(z(X), g(X)), so the gcd has degree at least 1. Modulo q, they
do not have a root, so gcd(z(X), g(X)) has degree 0. Modulo n, we should therefore
have gcd(z(X), g(X)) as a polynomial of degree at least 1, all of whose non-constant
coefficients are zeromodulo q. Therefore, one of the nonzero non-constant coefficients c
is such that gcd(c, n) = p. The only problem with this approach is defining the greatest
common divisor over the ring Z[X ]/〈n〉. The resultant has the advantage of being easily
definable as the determinant of the Sylvester matrix, so it is not necessary to deal with
a generalized definition of greatest common denominators in the proof.
One may be able use smaller extension degrees than used in the proof of Theorem 8.

For example, if algorithm F fails to find eth roots in Fp2 or Fq2 , even though unique
eth roots exist in both these fields, it is sufficient to work in a quadratic extension.
In the proof, we cannot make such an assumption, so we use an extension of higher
degree. It is possible to devise a factoring strategy that tries a quadratic extensions first,
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then extensions of degree of successive higher factors d | φ(e), which may succeed in
factoring more often (or quickly, in iterated form), except in the worst case.
The analog of Theorem 7 about algorithms that take an RSA modulus and output a

straight line program for finding roots is:

Theorem 9. Let A be a probabilistic algorithm that, on input n of an RSA number of
given size with public exponent of a fixed e, outputs an efficient straight line program F
that finds eth roots modulo n with probability at least μ. Then A can be used to factor
RSA numbers of the given size, with probability at least (e−1)(E−1)

φ(e)eE μ where E is the base

of the natural logarithm, and with similar cost to the cost of A plus the 3φ(e)2 times
cost of the straight line program it outputs.

Proof. To factor n, run algorithm A, then apply Theorem 8 to its output program. �

If A is as slow as factoring, then the straight line program F can be very efficient, such
as exponentiating by the private exponent. The opposite extreme is with A very efficient,
almost negligible compared to the cost of factoring, which entails a method to solve the
RSA problem almost purely with a straight line program. We can consider how low the
cost of F can be in this case. Essentially, the cost of solving the RSA problem almost
purely with a straight line program is at least (E−1)(e−1)

3Eφ(e)3
times the cost of factoring. This

estimate uses Theorem 9 and incorporates a strategy of repeating F as often as necessary
until the factorization is obtained.
With the commonly used public exponent e = 216 + 1, key size n ≈ 21,024 and

standard estimate that factoring costs the equivalent of about 280 operations in Z/〈n〉 for
this key size, then the estimated lower bound on the difficulty of solving the associated
RSA problem purely with a straight line program is about 230 operations in Z/〈n〉. This
very loose estimate may be made more precise by more careful accounting in the proofs
(and perhaps it can be improved as well, with some optimization of the proof algorithms,
such as Karatsuba).
The results above extend to straight line programs with division, although the effi-

ciencies may change slightly due to the cost of implementing in division in the extension
ring.
It must be emphasized that the actual difficulty of the RSA problem may be higher

than the bounds proven here, or lower when not limited to straight line programs.

3.3. Security of the Hybrid Public Exponent e = 3(216 + 1)

If the public exponent e has a small factor f , then any algorithm for finding eth roots
can be used to find f th roots, simply by calculating the eth root and then exponentiating
by e

f . Therefore, the theorems above extend to when the public exponent is any multiple
of stated public exponent.
The smaller the smallest factor of an RSA public exponent is, the tighter the bounds

between the RSA problem and factoring given in the theorems above are. Furthermore,
with a smallest factor of two, the classical reduction [12] between finding square roots
and factoring can applied. This is very a tight reduction, and moreover is not limited to
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straight line programs. With a smallest factor of three, the reduction described here is
quite tight, but limited to straight line programs.
Because there are various security concerns about low public exponent RSA, see [2]

for a survey of such attacks and the theoretical work of Boneh and Venkatesan [3], it has
been natural to doubt the general security of the low public exponent RSA problem, and
especially, the equivalence of its security to factoring. This paper may set aside some
doubts, but only in a limited way because of the restriction to straight line programs.
Therefore, it still remains prudent to use a moderately large public exponent, rather than,
say, e = 3. By the same token, it may also be prudent to use a public exponent that is
not product of small exponents. Otherwise, if the RSA problem is solvable for each of
the small exponents, then it is solvable for their product. In this light, the commonly
used prime public exponent e = 216 + 1 enjoys some security properties: It resists the
known attacks and yet is small enough to offer very competitive performance of public
key operations. The exponent e = 216 + 1, though, does not enjoy significantly the
benefits of this paper, especially when compared to e = 3. The results of this paper are
the strongest when e = 3, or a multiple thereof.

Fortunately, there are public exponents that enjoy some of the benefits of both e = 3
and e = 216 + 1. Consider the exponent e = 3(216 + 1). Computing eth roots is at
least as difficult as computing cube roots, and thereby the results described in this paper
provide some assurance, however limited it may be, of the hardness of the RSA problem
for public exponent e = 3(216 + 1). Conversely, computing eth roots are as difficult
as computing (216 + 1)th roots, so this choice of e is at least as secure as the exponent
216 + 1, which is in widespread use today. Public exponent 3(216 + 1) is only slightly
more expensive to implement than 216 + 1, so the cost of extra security benefit may be
low enough to warrant such a practice.

4. Why this Paper does not Contradict Boneh and Venkatesan’s

The results of this paper, not to mention the classical results [6,9,12,14], do not immedi-
ately contradict the results of Boneh andVenkatesan [3], despite being results in opposite
directions. Neither this paper nor [3] claim to resolve the open question of whether the
RSA problem is as difficult as factoring—both papers only provide evidence toward one
possible answer—so there is no contradiction between the opposite sounding claims, at
least without inspecting the details. Nevertheless, even though each piece of evidence
is inconclusive in its own right, one naturally wonders how such conflicting pieces of
evidence could coexist, so a few words of explanation are worthwhile to explain the lack
of contradiction.
Recall that Boneh and Venkatesan show that any factoring algorithm that is a straight

line program that also uses an oracle for solving the RSA problem can be made into
another factoring algorithm that is a straight line program that does not use an oracle for
solving the RSA problem. In other words, if the initial factoring algorithm is a straight
line reduction, then factoring is easy. The reduction is this paper is not such a straight line
reduction, because it does not treat the root-finder (RSA breaker) as an oracle. Rather,
the reduction assumes that the root-finder is a straight line program, and then, indeed
manipulates the inner workings of root-finding algorithm via this straight line program
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description of the root-finding algorithm. (Similarly, the results in [6,9,12,14] do not
assume an oracle for solving theRSAproblem, but rather an algorithmof a specific type.)
The straight line reductions defined in [3] are very powerful in that they do not look

inside the RSA problem solving oracle. Any proof about such powerful reductions does
not apply to reductions that violate this condition, such as ours. In other words, results
such as [3] about straight line reductions, or more generally reductions with oracle-only
access to the RSA problem solving algorithm, are weak in the sense that they are limited
to a very special kind of reduction. Our reduction is much less powerful, in that it needs
to look inside the RSA problem solver.
Normally, in direct reductions, having oracle-only access is the strongest possible

condition. In metareductions, reductions about reductions, however, oracle-only access
becomes a weaker condition on the results. At first, this appears counter intuitive, but
once one gets use to the idea of metareductions such as [3], it should become clearer.
Since our reductions are direct reductions, not metareductions, the fact that we use more
than oracle-only access means that our results are weaker than the strongest possible.
Oracle-only access strengthens direct reductions butweakensmetareductions.Therefore,
both the result of this paper and [3] are weaker than they could theoretically be.

5. Conclusions

Solving the low public exponent RSA problem with a straight line program (even one
that depends on the RSA public key) is as difficult as factoring. If factoring is hard, then
no efficient algorithm can output a straight line program that solves the RSA problem
efficiently, provided the public exponent has a small enough factor. The reduction is loose
for the common public exponent e = 216 + 1, but is quite tight for public exponents
divisible by three. It must be emphasized that this work in no way rules out algorithms
that solve the RSA problem other than by a straight line program.
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Appendix 1: Limited Implications

The implications of the results in this paper are limited in at least the four following
senses.

A.1 Small Factors Required in the Public Exponent

The results in this paper require the RSA public exponent to have a small factor. Other-
wise, the extension degree gets quite large, and factoring with this result becomes much
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slower than solving the RSA problem. The results in this paper do not apply, for example,
to large prime public exponents e, and thus do not provide any lower bounds on the RSA
problem in these instances. Somewhat surprisingly, past work (see [2,13] for surveys
and the theoretical results of Boneh and Venkatesan’s [3])has generally shown security
concerns with low public exponent RSA. The results of this paper in no way undo such
past work. Despite the results here in favor of low exponent RSA, low exponent RSA
should be avoided. At least, countermeasures to the known attacks are necessary, if low
exponent RSA must be used for some reason.

A.2 Algorithms Exist that Solve SLP-Hard Problems

Inverses in R = Z/〈n〉 can be found efficiently using the Euclidean algorithm. The
Euclidean algorithm neither requires the factorization of n nor is known to help sig-
nificantly in factoring n. Straight line programs for computing inverses in R, however,
typically compute a polynomial Xkφ(n)−1. If one can extract the exponent from the pro-
gram, then one can factor n as long as k is small enough. Moreover, it may be possible to
extend the results here to show that any straight line program for computing inverses in
Z/〈n〉 can be used to factor n. Preliminary attempts (see “Appendix 2”) to do this involve
using an extension whose degree grows with the length of the straight line program, and
if this works out, it is likely to be a far looser reduction than between the RSA problem
and factoring
Indeed, it can be seen that efficient straight line programs can only evaluate a very small

proportion of all integer polynomials. The number of straight line programs of length
L is 3L(L + 1)!2. Consider the field Fp with p ≈ 2512. The number of polynomial

functions is pp ≈ 22
521
. In the context of RSA factorization, we may consider a straight

line program to be efficient if L � 280. The number of such straight line programs is
quite a bit less than 22

88
. Certain integer polynomial may not be efficiently computable

with a straight line program, but may be computable by other algorithms (inverses may
be an example of such). If so, these polynomials with their efficient implementations,
could somehow be useful for solving the RSA problem, and this paper shows nothing
to the contrary.

A.3 Most Functions Over Z/〈n〉 are not Polynomials
Not all functions in an RSA ring R = Z/〈n〉 can be computed with a polynomial. All
functions from a field to itself can be computed with a polynomial, but only a negligible
proportion of functions f : R → R can be expressed as polynomial functions. Ifn = pq,
then the number of polynomial functions is ppqq , which is considerably smaller than
the total number of functions, which is (pq)pq . The probability that a random function
on R is a polynomial is thus approximately n−√

n . Non-polynomial functions can be
very simple: The function f (x) = � 2x

n �, where 0 � x < n cannot be expressed as a
polynomial. Also, the Jacobi symbol cannot be expressed as an integer polynomial, since
it is not true that x ≡ ymod p implies

( x
n

) ≡ ( y
n

)
mod p. If it is the case that efficient

non-polynomial functions can be used solve the RSA problem, then this paper’s results
would not apply to give a factoring algorithm.
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Appendix 2: An Easy but SLP-Hard Problem: Finding Inverses

Finding inverses in Z/〈n〉 is easy with the Euclidean algorithm. Straight line programs
can also find inverses, just as they can be used to find cube roots. Typical straight line
programs for finding inverses reveal the factorization of n. In this section, we investigate
whether any such straight line program reveals the factorization. If so, then finding
inverses is an example of a problem that is (a) similar to the RSA problem, in that it
can be solved with a straight line program but only if the factorization is known, but
(b) dissimilar to the RSA problem in that we know how to solve it easily with another
kind of algorithm. If finding inverses is an easy but SLP-hard problem, then the RSA
problem might be too.
Suppose f (X) ∈ Z[X ] is such that x f (x) ≡ 1mod n for any x ∈ Z/〈n〉 and that

f (X) is efficiently computable as a straight line program (SLP) of length L . Note that
the degree of f (X) is at most 2L and that X f (X) − 1 has at most 2L + 1 roots in any
field.
Let g(X) ∈ Z[X ] be a polynomial that is irreducible over Fq with degree d such

that qd � 2L + 1. Suppose that g(X) has a root in Fp. The ring R = Z/〈n, g(X)〉 has
subrings isomorphic to the fields Fp and Fqd . In the field Fqd , the polynomial X f (X)−1
has a negligible proportion of zeros. For random r ∈ R, the probability that r f (r) = 1
in R is thus negligible. However, the image of r f (r) in the subring isomorphic to Fp

will be 1. Write r f (r) − 1 in R as z(X) for some z(X) ∈ Z[X ]. Then, as before,
gcd(n,Res(z(X), g(X))) = p gives the desired factorization.
The efficiency and success rate of the procedure above depends on the degree d of

g(X). Larger d reduces the efficiency, and larger L increases d.We can bound d above by
2L . The highest possible degree of f (X) is 2L , which is attained only by f (X) = X2L .
For this f (X) of thismaximumdegree, there is only one root. But the polynomial X2L −1
has length L + 1 and 2L distinct roots of over the algebraic closure Fq .
Therefore, finding inverses modulo an RSA modulus of unknown factorization using

a straight line program (without division) may be somewhat difficult, at least to do with
a very short straight line program.

Appendix 3: Generalized RSA

For some rings Z/〈n〉, the function E(x) = xe is a bijection. The bijectivity of this
function is the basis for the RSA public key cryptosystem. One may generalize this by
taking E(x) to be some other rational function, rather than amonomial. (More generally,
one need not confine oneself to rings Z/〈n〉.) This leads to a couple questions:
1. When is a rational function E(x) a bijection over Z/〈n〉, and how does one compute

its inverse?
2. When can such a bijective rational function E(x) overZ/〈n〉 serve securely as a public

key operation, thus generalizing theRSApublic key cryptosystem? In particular,when
do the results of this paper generalize to such an E(x)?

To address these questions, write E(x) = e1(x)
e0(x)

where e0 and e1 are polynomials. For E
to be a bijection the equation E(x) = E(y) must imply x = y for x, y ∈ R. Therefore,
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consider the expression E(x) − E(y) = 0. Multiply this by e0(x)e0(y) to a get a
polynomial in x and y. This polynomial is zero whenever x = y, so we may divide out
by the factor x − y, to get another polynomial e2(x, y) in two variables

e2(x, y) = (E(x) − E(y))(e0(x)e0(y))

x − y
= e1(x)e0(y) − e0(x)e1(y)

x − y
(22)

In fact, the factor x − y may actually divide e2(x, y) as defined above, once again.
So instead, we will define e2(x, y) by dividing the highest power of (x − y) possible.
Bijectivity of E(x) over the ring R is now essentially characterized by the condition that
the curve e2(x, y) = 0 has no points in R × R.

The results of this paper may apply if we can find extension rings S of ring R, such
that we can ensure that with a sufficiently larger probability for a given x there exists
a y with e2(x, y) = 0 in one field component of the ring S, but not for the other field
component. The problem is then to start with fields in which the curve defined by e2 has
no points, and extending the field until the curve has some points.
Some examples may illustrate the general applicability of the framework above.

• Let E(x) = xe. Then e2(x, y) = ∏e−1
j=1(u

j x − y), where u is a primitive eth root

of unity. The curve e2 = 0 has an R-rational point if and only if u j ∈ R for some
1 � j � e − 1. This example is just the classic RSA case. For R = Z/〈n〉, there are
no such u j , but in the reductions of this paper, we found extensions for which such
u j existed.

• Let E(x) = 1/x . Then e2(x, y) = −1. The curve e2 = 0 has no R-rational points
for any ring R. The inverse function is bijective, but since the curve e2 = 0 never
has any points for any ring, it is much harder to apply the results of this paper (but
see Sect. 2). Much more importantly, the function E(x) is completely insecure as a
public key operation, since it is its own inverse.

• Let

E(x) = (3x2 + a)2

4(x3 + ax + b)
− 2x, (23)

which is the formula for computing the x-coordinate of the double of point (x, y) on
an elliptic curve defined by y2 = x3 + ax + b. If p is an odd prime, and this curve
has an odd number of points modulo p, then E(x) is essentially invertible in Fp. In
this case, e2(x, y) has a rather complicated expression:

e2(x, y) = x3y3 + axy(x2 + xy + y2) + 2ax2y2 + b(x3 + x2y + xy2 + y3)

+ 8bxy(x + y)−2a2xy−a2(x2+xy+y2)−2ab(x + y) − 8b − a3,

(24)

from which not a lot is immediately obvious. However, knowing that E(x) represents
a point doubling formula, we realize that if we find an extension of Fp over which
y2 = x3 + ax + b has an even number of points, we can expect E(x) to be at least
two-to-one over this extension. In other words, we need a point of order two, which
must have form (x, 0), so that x3 + ax + b = 0. Note that because the curve order is
odd over Fp, the polynomial x3 + ax + b has no roots in Fp, and thus is irreducible.
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In a third degree extension of Fp, the polynomial x3 + ax + b always has at least one
root, so the curve order over Fp3 is always even. If the curve order is even, then ensure
E(x) = x ′ has at least two solutions x for every x ′ ∈ Fp3 . Suppose algorithm A takes
an RSAmodulus n for which E(x) is invertible over Z/〈n〉 and outputs a straight line
program F that inverts E(x). Take a random third degree polynomial g(X) ∈ Z[X ]
and form the ring R = Z[X ]/〈n, g(X)〉. As usual, with reasonable probability, wewill
have that g(X) is irreducible modulo q, but has a root modulo p. As in the reductions
between root-finding algorithms and factoring, compute F(E(r)) for random r ∈ R.
Note that F(E(r)) = r modulo p, or more precisely that this holds in a projection
to a subring isomorphic to Fp. Meanwhile, modulo q, we will have F(E(r)) �= r ,
with probability at least 1

2 . As before, in this event a resultant and a gcd can be used
to find p. This gives some evidence that E(x) could be used securely as a public key
encryption function.
Also, the author erroneously attempted to use this function as an example of an easily
invertible function not revealing the factorization. The author’s inversion algorithm
was a straight line program involving the order of the elliptic curve over the ringZ/〈n〉.
StevenGalbraith alerted the author to the general proof ofOkamoto andUchiyama [11,
Theorem 10] that order of an elliptic curve over Z/〈n〉 reveals the factorization of n.
Okamoto’s proof involves considering the twist of an elliptic curve. The twist of an
elliptic curve may be regarded as taking a quadratic extension of the underlying field.
This explains the use of Jacobi symbol in both Okamoto and Uchiyama’s result, and
our reduction in the special e = 3, because the latter also uses a quadratic extension.

Appendix 4: Variant RSA Problems

It is not uncommon in cryptology to consider easier variants of theRSAproblem, because
the security of certain RSA-based cryptographic schemes can be proven more easily and
more tightly related to the easier variant RSA problems than to the classic RSA problem.
For example:

• In the strong RSA problem, the exponent is part of the solution. The input is (n, y),
where n is the RSA modulus, and the output is (e, x) such that xe ≡ ymod n for
some e > 1. The strong RSA problem is easier than the classic RSA problem.

• The oracle RSA problem is m + 1 copies of the classic RSA problem except that the
solver gets m accesses to an oracle for solving the classic RSA problem. The input
is (n, e, y1, . . . , ym+1), and the output is (x1, . . . , xm+1), such that xei ≡ yi mod n.
Before generating its output, the solver may select any (w1, . . . , wm) and receive
(z1, . . . , zm) such that zei ≡ wi mod n.

It is natural to ask whether the results of this paper say anything about the difficulty of
such variants of the RSA problem. For the strong RSA problem, it appears that nothing
can be said because the results in this paper say nothing for large public exponent e.
For the oracle RSA problem, the public exponent would have to be small for our

results to apply, but a complication arises from answering the oracle queries. It appears
to be possible to simulate correct oracle responses by using extension rings, as follows.
Apply the reduction in this paper until the problem solver makes its first oracle query.
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Note what this element is and then start over with a larger extension ring in which the
oracle input has a root. This process must be repeated m times, with the extension ring
expanding m times. The field component of the final extension ring look like Fpem . In
order for the ring operations to be efficient, m has to be quite small.

Appendix 5: Cipolla’s Algorithm for Cube Roots Over Composite Rings

This appendix outlines an example of a straight line program for computing cube roots
that is not a trivial variation of exponentiation by the private exponent. This example
shows that thewidening of the class of root-finding algorithms that our reduction handles,
compared to [4,6,9,14], has non-trivial examples.

Choose two large primes p < q. Suppose that:

gcd
(
p2 − 1, q2 − 1

)
| q − p (25)

Let D be such that:

D ≡ p + 1mod p2 − 1

D ≡ q + 1mod q2 − 1 (26)

The Chinese remainder theorem, together with (25), ensures that D exists. If p ≡ q ≡
2mod 3, then D ≡ 0mod 3. Let d = D/3. Let c = lcm(

p2−1
3 ,

q2−1
3 ). Let n = pq and

let t ∈ Z/〈n〉. Define the ring:

Rt = Z[X,Y ]/〈n,Y 2 − tY + X〉 (27)

Every element in this ring can be represented in the form a(X) + b(X)Y , where
a(X), b(X) ∈ Z[X ]/〈n〉, by repeatedly substituting Y 2 = tY −X until no higher powers
of Y remain. Use this observation to define a polynomial f (X) with the property:

(r + sY )cY d = f (X) + g(X)Y, (28)

where r, s are some random elements of Z/〈n〉. For a fixed t and random x ∈ Z/〈n〉,
then f (x)3 = x with probability about 1

36 . To see this, we work in the ring Rt,x =
Rt/〈X − x〉 = Z[Y ]/〈n,Y 2 − tY + x〉. Suppose that Y 2 − tY + x is irreducible in Fp[Y ]
and Fq [Y ], which happens with probability about 1

4 . In this case:

Rt,x ∼= Fp2 × Fq2 . (29)

Consider the image of Y D in Fp2 :

Y D = Y p+1 = YY p. (30)



240 D. R. L. Brown

The roots of the polynomial Y 2 − tY + x in Fp2 are Y and Y p (with a slight abuse of
notation). The product of the roots is the constant coefficient, so Y D = x . The same
holds in Fq2 and thus in Rt,x . Therefore, Yd is a cube root of x , which is what we seek,
but is not yet in the correct form.
Again, working in Fp2 , note that Y

d is a cube root of x ∈ Fp, but it may not be the
case that Yd ∈ Fp. But since, p ≡ 2mod 3, there exists exactly one cube of x in Fp,
say y. Therefore, Yd is y or a conjugate of y. Let u be a primitive cube root of unity in
Fp2 , which exists since 3 | p2 − 1. Then we have y ∈ {Yd , uY d , u2Yd}. One approach
is to compute u, then try each conjugate of Yd in order to find y. A slightly different
approach is to take random v = r + sY ∈ Fp2 and compute v(p2−1)/3Yd , because

v(p2−1)/3 ∈ {1, u, u2}. The latter approach gives a 1
3 probability of obtaining y. This

holds in Fq2 and thus in Rt,x . The left-hand side of (28) equals y, the unique cube root

of x in the ring Z/〈n〉, with probability 1
4 × 1

3 × 1
3 . When this happens, the right hand

side is in Z/〈n〉, because y is, therefore, the second coefficient g(x) = 0. It thus suffices
to consider only the polynomial f (X).
To be a relevant example for this paper, the polynomial f (X) should be efficiently

computable via a straight line program. This can be done using a square-and-multiply
algorithm to compute the powers in (28), with reduction modulo Y 2 − tY + X done
at every step. Each intermediate value in the straight line program for f (X), will be
either Y 0 or the Y 1 coefficient of some intermediate value of the square-and-multiply
algorithm for (r + sY )cY d . Of course, the values c and d may be inspected from the
description of the straight line program, can could perhaps be used factor nmore directly
than by using our reduction.
This example used a quadratic extension to find cube roots. Other degree extensions

can be used to find other degree roots. The point is simply that a large variety of straight
line programs do indeed exist for solving the RSA problem. This paper shows that
finding any of these programs without knowing the factorization is almost as difficult as
factoring.
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