
J. Cryptol. (2010) 23: 402–421
DOI: 10.1007/s00145-010-9061-2

Parallel and Concurrent Security of the HB and HB+
Protocols∗

Jonathan Katz† and Ji Sun Shin
Dept. of Computer Science, University of Maryland, College Park, USA

jkatz@cs.umd.edu; sunny@cs.umd.edu

Adam Smith‡

Dept. of Computer Science and Engineering, The Pennsylvania State University, University Park, USA
asmith@cse.psu.edu

Communicated by Rafail Ostrovsky

Received 30 April 2008 and revised 20 January 2010
Online publication 17 February 2010

Abstract. Hopper and Blum (Asiacrypt 2001) and Juels and Weis (Crypto 2005) re-
cently proposed two shared-key authentication protocols—HB and HB+, respectively—
whose extremely low computational cost makes them attractive for low-cost devices
such as radio-frequency identification (RFID) tags. The security of these protocols is
based on the conjectured hardness of the “learning parity with noise” (LPN) problem,
which is equivalent to the problem of decoding random binary linear codes. The HB
protocol is proven secure against a passive (eavesdropping) adversary, while the HB+
protocol is proven secure against active attacks.

Key words. Authentication protocols, RFID, Learning parity with noise.

1. Introduction

Low-cost, resource-constrained devices such as radio-frequency identification (RFID)
tags or sensor nodes demand extremely efficient algorithms and protocols. Securing
such devices is a challenge since, in many cases, “traditional” cryptographic protocols
are simply too computationally intensive to be utilized. With this motivation in mind,
Juels and Weis [25]—building upon work of Hopper and Blum [21,22]—investigate
two highly efficient, shared-key (unidirectional) authentication protocols suitable for
an RFID tag identifying itself to a tag reader. (We will sometimes refer to the tag as
a prover and the tag reader as a verifier.) These protocols are extremely lightweight,

∗ The results of this work appeared in preliminary form in [26] and [27]. Some of this research was
performed while J.K. and A.S. were visiting the Institute for Pure and Applied Mathematics (IPAM) at UCLA.

† Research of J. Katz supported by NSF CyberTrust grant #0627306 and NSF CAREER award #0447075.
‡ Research of A. Smith supported in part by NSF CCF grant #0729171.

© International Association for Cryptologic Research 2010

mailto:jkatz@cs.umd.edu
mailto:sunny@cs.umd.edu
mailto:asmith@cse.psu.edu

Parallel and Concurrent Security of the HB and HB+ Protocols 403

requiring both parties to perform only a relatively small number of primitive bit-wise
operations such as “XOR” and “AND,” and can thus be implemented using fewer than
the 3–5 K gates required to implement a block cipher such as DES or AES [25].

The two authentication protocols studied by Juels and Weis are both proven secure
based on the “learning parity with noise” (LPN) problem [2–4,8,20–22,28,37], which is
related to the hardness of decoding a random linear code; a formal definition of the LPN
problem as well as evidence for its difficulty are reviewed in Sect. 2.1. The first protocol
(the HB protocol [21,22]) is proven secure against a passive (eavesdropping) adversary,
while the second (called HB+) is proven secure against the stronger class of active
adversaries. In each case, Juels and Weis focus on a single, “basic authentication step”
of the protocol, and prove that a computationally bounded adversary cannot succeed in
impersonating a tag in this case with probability noticeably better than 1/2; that is, a
single iteration of the protocol has soundness error 1/2. The implicit assumption is that
repeating these “basic authentication steps” sufficiently many times yields a protocol
with negligible soundness error.

1.1. Difficulties and Limitations

There are, however, some subtle limitations of the security proofs given by Juels and
Weis. Most serious, perhaps, is a difficulty explicitly highlighted by Juels and Weis and
regarded by them as a potential barrier to usage of the HB+ protocol in practice [25,
Sect. 6]: the proof of security for HB+ requires that the adversary’s interactions with
the tag (i.e., when the adversary is impersonating a tag reader) be sequential. Besides
leaving in question the security of HB+ under concurrent executions, this also means
that the HB+ protocol itself (which, recall, consists of sufficiently many repetitions
of an underlying basic authentication step) requires very high round complexity since
the multiple iterations of the basic authentication step cannot be parallelized but must
instead be performed sequentially. The difficulty and importance of proving security
of various identification protocols under concurrent or parallel composition is well-
understood, and many results are known: for example, the (black-box) zero-knowledge
property of an identification protocol is not preserved under parallel [16] or concurrent
[6] composition (though it is preserved under sequential composition [17]), whereas
witness indistinguishability is preserved in these cases [10]. Unfortunately, the HB+
protocol is not known to satisfy either zero knowledge or witness indistinguishability
and so such results are of no help here.

An additional difficulty, not explicitly mentioned in [25], is that it is unclear what is
the exact relationship between the soundness error and the number of repetitions of the
basic authentication step; this is true for both the HB and HB+ protocols, regardless
of whether the repetitions are carried out in parallel or sequentially.1 This is related
to the more general question of hardness amplification (i.e., analyzing the difficulty of
solving multiple instances of a problem compared to the difficulty of solving a single
such instance) which has been studied in many different contexts [1,7,15,18,36,38] and
is surprisingly non-trivial to answer. Unfortunately, there does not seem to be any prior
work that applies in our setting. Specifically:

1 Indeed, as we have noted, Juels and Weis [25] only prove soundness 1/2 for a basic authentication step
and never make any claims regarding the security of multiple iterations (for either HB or HB+).

404 J. Katz, J.S. Shin, and A. Smith

• For the HB and HB+ protocols it is not possible to efficiently verify whether a
given transcript is “successful” without possession of the secret key; thus, Yao’s
“XOR-lemma” [18,38] and related techniques that require efficient verifiability do
not apply.

• Work on hardness amplification for “weakly verifiable puzzles” [7] does not ap-
ply either. Although the HB/HB+ protocols can be viewed as efficiently verifiable
puzzles, existing results [7] only apply to completely independent instances of the
“puzzle.” In particular, existing results imply that running the basic authentication
step of the HB protocol n times using n independent keys yields soundness roughly
(1/2)n, but say nothing about running n iterations using the same key (which is the
case we are interested in).

• The HB/HB+ protocols are computationally sound only, and thus known results
[15, Appendix C], [36] on soundness reduction for interactive proof systems
(which apply only when soundness holds even against an all-powerful cheating
prover) do not apply either.

• Limited positive results regarding soundness reduction for computationally sound
protocols exist [1,34], but these results apply only when the verifier does not hold a
secret key (or, more generally, when the verifier does not share state across different
iterations). These results are therefore of no help when the same secret key is used
across all iterations.

An additional difficulty in our setting is that HB and HB+ protocols do not have
perfect completeness; indeed, crucial to both the HB and HB+ protocols is that the
honest prover injects “noise” into its answers and so even the honest prover does not
succeed with probability 1. This was not explicitly addressed in the security proofs of
[25], either, and introduces additional complications.

1.2. Our Contributions

In this work, we address the difficulties and open questions mentioned above, and show
the following results: (1) the HB+ protocol remains secure under arbitrary concurrent
interactions of the adversary with the honest prover/tag, and so in particular the itera-
tions of the HB+ protocol can be parallelized; furthermore, (2) our security proofs ex-
plicitly incorporate the dependence of the soundness error on the number of iterations
as well as on the error introduced by the honest prover.

Besides the results themselves, we believe the techniques and proofs given here are of
independent interest for future work on cryptographic applications of the LPN problem.
The main technical tool we use is the fact [3,37] that hardness of the LPN problem im-
plies the pseudorandomness of a certain distribution. Using this, we give proofs which
we believe are substantially simpler than those given in [25], and also more complete
in that, in contrast to [25], they explicitly deal with the dependence of soundness on the
number of iterations and also the issues arising due to non-perfect completeness. Our
proofs also use bounds from coding theory [19,23,24] in a novel way.

1.3. Additional Discussion

The problem of secure authentication using a shared, secret key is well understood,
and many widely known solutions based on, e.g., block ciphers are available. The aim

Parallel and Concurrent Security of the HB and HB+ Protocols 405

of the line of research considered here, as in [25], is to develop protocols which are
exceptionally efficient (i.e., potentially more efficient than hardware implementations
of block ciphers such as DES or AES) while still guaranteeing some useful level of
provable security. Of course, the protocols described here are far from solving the prob-
lem completely. For example, Gilbert, Robshaw, and Silbert [12] have recently shown
a man-in-the-middle attack on the HB+ protocol. Although their attack would be dev-
astating if carried out successfully, the possibility of such an attack does not mean that
it is useless to explore the security of the HB/HB+ protocols in weaker attack models.
For one, man-in-the-middle attacks can be difficult to carry out. Especially in the case
of RFID, where communication is inherently short range, it appears much more diffi-
cult to mount a man-in-the-middle attack than an active attack.2 (The reader is referred
to the work of Wool et al. [29,30], for an illuminating discussion on the feasibility of
various attacks in RFID systems.) Juels and Weis further note [25, Appendix A] that
the man-in-the-middle attack of [12] does not apply in a detection-based system where
numerous failed authentication attempts immediately raise an alarm. Our work can thus
be viewed as quantifying more precisely the tradeoff between efficiency and privacy
provided by the HB/HB+ protocols.

Beyond our concrete results, we also hope that the techniques introduced in this paper
will prove useful in analyzing future variants of the HB/HB+ protocols, as well as other
protocols based on the LPN problem.

2. Definitions and Preliminaries

We formally define the LPN problem and state and prove the main technical lemma on
which we rely. We also describe the HB and HB+ protocols as well as the notions of
security considered here.

2.1. The LPN Problem

A function ε : N
+ → R

+ ∪ {0} is negligible if it is asymptotically smaller than any
inverse polynomial, i.e., if for every polynomial p there exists a K such that k > K im-
plies ε(k) ≤ 1/p(k). We use k for the security parameter, and let PPT stand for “proba-
bilistic polynomial time”. Let wt(Z) denote the Hamming weight of a boolean vector Z;
i.e., wt(Z) is the number of entries of Z equal to 1. The Hamming distance between two
vectors Z1,Z2 is exactly wt(Z1 ⊕ Z2).

If s,a1, . . . ,a� are binary vectors of the same length, 〈s,ai〉 denotes the dot product
of s and ai (modulo 2). For s of length k, given the values a1, 〈s,a1〉, . . . ,a�, 〈s,a�〉 for
random {ai} and � = Θ(k), it is possible to efficiently solve for s (with all but negligible
probability) using standard linear algebra. However, in the presence of noise where each
zi is flipped (independently) with probability ε, finding s becomes much more difficult.
We refer to the problem of learning s in this latter case as the LPN problem.

2 Though there have been claims of being able to read some RFID tags over as much as 69 feet, the
maximum distance from which many commonly used cards can be read appears to be almost two orders of
magnitude lower [29]. Note further that a man-in-the-middle attack requires the ability to send data to the tag
(and reader).

406 J. Katz, J.S. Shin, and A. Smith

For the formal definition, let Berε be the Bernoulli distribution with parameter ε ∈
(0, 1

2) (so if ν ∼ Berε then Pr[ν = 1] = ε and Pr[ν = 0] = 1 − ε), and let As,ε be the
distribution defined by:

{
a ← {0,1}k;ν ← Berε : (a, 〈s,a〉 ⊕ ν

)}
.

Also let As,ε denote an oracle which outputs (independent) samples according to this
distribution. For some fixed value of k, algorithm M is said to (t, q, δ)-solve the LPNε

problem if

Pr
[
s ← {0,1}k : MAs,ε

(
1k

) = s
] ≥ δ,

and furthermore M runs in time at most t and makes at most q queries to its oracle.3 In
asymptotic terms, in the standard way, the LPNε problem is “hard” if every probabilistic
polynomial-time algorithm M solves the LPNε problem with only negligible probability
(where the algorithm’s running time and success probability are functions of k).

The error parameter ε is usually taken to be a fixed constant independent of k, as
will be the case here. The value of ε to use depends on a number of tradeoffs and design
decisions: although, roughly speaking, the LPNε problem appears to become “harder” as
ε increases, a larger value of ε also implies that the honest prover is rejected more often
(as will become clear when we describe the HB/HB+ protocols, below). Our results are
meaningful for all ε ∈ (0, 1

2).
The above description corresponds to the average-case LPN problem. The worst-

case version of the LPN problem can be phrased as the following optimization problem:
given arbitrary A, b over Z2, find s over Z2 minimizing the Hamming weight of A ·s−b.
The hardness of the LPN problem, both in the average case and the worst case, has been
studied in many previous works. The LPN problem can be formulated as the problem
of decoding a random linear code [2,37], and the worst-case version of this problem
is N P -complete [2] as well as hard to approximate within a factor of 2 [20]. These
worst-case hardness results are complemented by numerous studies of the average-case
hardness of the problem [3,4,8,21,22,28]. (Extensions of the LPN problem to fields
other than Z2 have also been considered [35,37].) Most relevant for our purposes is
that the best known algorithms for solving the LPNε problem [4,11,31] for any constant
ε require t, q = 2Θ(k/ log k). (An algorithm due to Lyubashevsky [32] uses q = k1+δ

queries but has running time t = 2Θ(k/δ log log k).) We refer the reader to [25, Appendix D]
and [11,31] for more exact estimates, as well as suggested practical values for k.

2.2. A Technical Lemma

In this section, we prove a key technical lemma: hardness of the LPNε problem implies
“pseudorandomness” of As,ε . Specifically, let Uk+1 denote the uniform distribution on
(k + 1)-bit strings. The following lemma shows that oracle access to As,ε (for randomly
chosen s) is indistinguishable from oracle access to Uk+1. A proof of the following is
essentially in [3,37], although we have fleshed out some of the details and worked out
the concrete parameters of the reduction.

3 Our formulation of the LPN problem follows, e.g., [37]; the formulation in, e.g., [25] allows M to output
any s satisfying at least a (1 − ε) fraction of the equations returned by As,ε . It is easy to see that for q large
enough these formulations are equivalent as with overwhelming probability there will be a unique such s.

Parallel and Concurrent Security of the HB and HB+ Protocols 407

Lemma 1. Say there exists an algorithm D making q oracle queries, running in time t ,
and with

∣∣Pr
[
s ← {0,1}k : DAs,ε

(
1k

) = 1
] − Pr

[
DUk+1

(
1k

) = 1
]∣∣ ≥ δ.

Then there exists an algorithm M making q ′ = O(q · δ−2 logk) oracle queries, running
in time t ′ = O(t · kδ−2 logk), and such that

Pr
[
s ← {0,1}k : MAs,ε

(
1k

) = s
] ≥ δ/4.

(We remark that various tradeoffs are possible between the number of queries/running
time of M and its success probability in solving LPNε; see [37, Sect. 4]. We aimed for
simplicity in the proof rather than trying to optimize parameters.)

Proof. Set N = Θ(δ−2 logk). Algorithm MAs,ε (1k) proceeds as follows:

1. M chooses random coins ω for D and uses these for the remainder of its execution.
2. M runs DUk+1(1k;ω) a total of N times to compute an empirical estimate p for

the probability (over responses of the oracle) that D outputs 1 in this case.
3. M obtains q · N samples {(a1,j , z1,j)}qj=1, . . . , {(aN,j , zN,j)}qj=1 from As,ε .
4. For i = 1 to k:

(a) Run D(1k;ω) for a total of N iterations, answering the oracle queries of D

as follows: In iteration � (for � ∈ {1, . . . ,N}), the j th oracle query of D is
answered by choosing a random bit cj and returning (a�,j ⊕ (cj · ei), z�,j),
where ei is the vector with 1 at position i and 0s elsewhere.4

Averaging over all N iterations, compute an empirical estimate pi for the
probability that D outputs 1 in this case.

(b) If |pi − p| ≥ δ/4 set s′
i = 0; else set s′

i = 1.
4. Output s′ = (s′

1, . . . , s
′
k).

Let us analyze the behavior of M . First note that, by a standard averaging argument,
with probability at least δ/2 over choice of s and random coins ω it holds that

∣∣Pr
[
DAs,ε

(
1k;ω) = 1

] − Pr
[
DUk+1

(
1k;ω) = 1

]∣∣ ≥ δ/2, (1)

where the probabilities are taken over the answers D receives from its oracle. We restrict
our attention to s,ω for which (1) holds and show that in this case M outputs s′ = s with
probability at least 1/2. The theorem follows.

Setting N = Θ(δ−2 log(k)), we can ensure that
∣∣Pr

[
DUk+1

(
1k;ω) = 1

] − p
∣∣ ≤ δ/16 (2)

except with probability at most 1/k. Next focus on a particular iteration i of steps 4(a)
and 4(b). Letting hybi denote the distribution of the answers returned to D in this itera-
tion, we again have

∣∣Pr
[
Dhybi

(
1k;ω) = 1

] − pi

∣∣ ≤ δ/16 (3)

4 Note that the samples that M obtained in step 3 are re-used for different values of i.

408 J. Katz, J.S. Shin, and A. Smith

Fig. 1. The basic authentication step of the HB protocol.

except with probability at most 1/3k. Applying a union bound, we see that (2) and (3)
hold (the latter for all i ∈ [k]) with probability at least 1/2. We assume this to be the
case for the rest of the proof, and show that when this occurs then M always outputs
s′ = s.

Let s = (s1, . . . , sk). We claim that if si = 0 then hybi = As,ε , while if si = 1 then
hybi = Uk+1. To see this note that when si = 0 the answer (aj ⊕ (cj · ei), zj) returned
to D is distributed exactly according to As,ε since 〈s,aj 〉 = 〈s,aj ⊕ (cj · ei)〉 regard-
less of cj . On the other hand, if si = 1 then 〈s,aj 〉 (and hence zj) is a random bit,
independent of aj ⊕ (cj · ei).

It follows that if si = 0 then
∣∣Pr

[
Dhybi

(
1k;ω) = 1

] − Pr
[
DUk+1

(
1k;ω) = 1

]∣∣ ≥ δ/2

(by (1)), and so |pi − p| ≥ δ
2 − 2 · δ

16 = 3δ
8 (using (2) and (3)) and s′

i = 0 = si . When
si = 1 then

Pr
[
Dhybi

(
1k;ω) = 1

] = Pr
[
DUk+1

(
1k;ω) = 1

]
,

and so |pi − p| ≤ 2 · δ
16 = δ

8 (again using (2) and (3)) and s′
i = 1 = si . Since this holds

for all i ∈ {1, . . . , k}, we conclude that s′ = s. �

2.3. The HB/HB+ Protocols, and Security Definitions

Recall that we let k denote our security parameter. The HB and HB+ protocols as ana-
lyzed here consist of n = n(k) parallel iterations of a “basic authentication step”. In the
HB protocol, a tag T and a reader R share a random secret key s ∈ {0,1}k ; the basic
authentication step consists of the reader sending a random challenge a ∈ {0,1}k to the
tag, which replies with z = 〈s,a〉 ⊕ ν for ν ∼ Berε . The reader can then verify whether

the response z of the tag satisfies z
?= 〈s,a〉; we say the iteration is successful if this is

the case. See Fig. 1.
Even for an honest tag, a basic iteration is unsuccessful with probability ε. For this

reason, a reader accepts upon completion of all n iterations of the basic authentication
step as long as the number of unsuccessful iterations is not “too high”. More precisely,
let u = u(k) be such that ε · n ≤ u; then the reader accepts as long as the number of
unsuccessful iterations is at most5 u. (Overall, then, the entire HB protocol is parame-

5 Note in particular that if u is set to exactly ε · n then the completeness error will be rather high. One
can imagine changing the protocol so that the tag introduces at most ε · n errors (and iterations are no longer
independent); see Sect. 5 for discussion of this point.

Parallel and Concurrent Security of the HB and HB+ Protocols 409

terized by ε,n, and u.) For an honest tag, each iteration is independent of the others
and so the completeness error εc (i.e., the probability that an honest tag is rejected) can
be calculated using a Chernoff bound. In particular, for any positive constant δ, setting
u = (1 + δ)εn suffices to achieve εc exponentially small in n.

By sending random responses in each of the n iterations, an adversary trying to im-
personate a valid tag succeeds with probability

δ∗
ε,u,n

def= 2−n ·
u∑

i=0

(
n

i

)
;

that is, δ∗
ε,u,n is the best possible soundness error we can hope to achieve for the given

setting of the parameters. Asymptotically, as long as u ≤ (1 − δ) · n/2 for some positive
constant δ, the success of this trivial attack will be negligible in n. (This can again be
analyzed using a Chernoff bound.)

Let T HB
s,ε,n denote the tag algorithm in the HB protocol when the tag holds secret key

s (note that the tag algorithm is independent of u), and let RHB
s,ε,u,n similarly denote the

algorithm run by the tag reader. We denote a complete execution of the HB protocol
between a party T̂ and the reader R by 〈T̂ , RHB

s,ε,u,n〉 and say this equals 1 iff the reader
accepts.

For the case of a passive attack on the HB protocol, we imagine a stateful adversary
A running in two stages: in the first stage, the adversary obtains polynomially many
transcripts6 of (honest) executions of the protocol by interacting with an oracle transHB

s,ε,n
(this models eavesdropping); in the second stage, the adversary interacts with the reader
and tries to impersonate the tag. We define the adversary’s advantage as

Adv
passive
A,HB (ε,u, n)

def= Pr
[
s ← {0,1}k; AtransHB

s,ε,n
(
1k

) : 〈A, RHB
s,ε,u,n

〉 = 1
]
.

The HB protocol is secure against passive attacks (for a particular setting of ε and u =
u(k), n = n(k)) if for all PPT adversaries A we have that Adv

passive
A,HB (ε,u, n) is negligible

in k.
It is easy to see that the HB protocol is insecure against an active adversary. (For

example, an active adversary impersonating R can send the same challenge vector a
repeatedly and then, taking majority, learn the correct value of 〈s,a〉 with all but neg-
ligible probability; doing this for k linearly independent challenge vectors yields the
entire secret s.) To achieve security against active attacks, Juels and Weis propose a
modified protocol called HB+ in which the tag and reader share two (independent) keys
s1 ∈ {0,1}k and s2 ∈ {0,1}τ . (In practice, k must chosen such that the LPN problem
is hard for secrets of length k, and τ < k is a statistical security parameter.) A basic
authentication step now consists of three rounds: first the tag sends a random “blinding
factor” b ∈ {0,1}k ; the reader replies with a random challenge a ∈ {0,1}τ ; and finally,
the tag replies with z = 〈s1,b〉 ⊕ 〈s2,a〉 ⊕ ν for ν ← Berε . As in the HB protocol, the

reader can verify whether the response z satisfies z
?= 〈s1,b〉⊕ 〈s2,a〉, and we again say

the iteration is successful if this is the case. See Fig. 2.

6 Note in particular that the adversary is assumed not to learn whether or not the reader accepts. Since, as
discussed earlier, the parameters can be set such that the reader accepts an honest tag with all but negligible
probability, this makes no difference as far as asymptotic security is concerned.

410 J. Katz, J.S. Shin, and A. Smith

Fig. 2. The basic authentication step of the HB+ protocol.

The actual HB+ protocol consists of n parallel iterations of the basic authentication
step (and so the entire protocol requires only three rounds). The protocol also depends
upon a parameter u as in the case of the HB protocol, and this will again affect the
completeness error as well as the best achievable soundness.

Let T HB+
s1,s2,ε,n

denote the tag algorithm in the HB+ protocol when the tag holds keys

s1, s2, and let RHB+
s1,s2,ε,u,n denote the algorithm run by the tag reader. For the case of an

active attack on the HB+ protocol, we again imagine an adversary running in two stages:
in the first stage the adversary interacts polynomially many times with the honest tag
algorithm (with concurrent executions allowed), while in the second stage the adversary
interacts only with the reader. The adversary’s advantage in this case is

Advactive
A,HB+(ε, τ,u, n)

def= Pr
[
s1 ← {0,1}k; s2 ← {0,1}τ ; A T HB+

s1,s2,ε,n
(
1k

) : 〈A, RHB+
s1,s2,ε,u,n

〉 = 1
]
.

We say the HB+ protocol is secure against active attacks (for a particular setting
of ε and τ = τ(k), u = u(k), n = n(k)) if for all PPT adversaries A we have that
Advactive

A,HB+(ε, τ,u, n) is negligible in k.
We remark that allowing the adversary to interact with the reader multiple times

(even concurrently), in either the passive or active setting, does not give the adversary
any additional advantage other than the fact that, as usual, the probability that the ad-
versary succeeds in at least one impersonation attempt scales linearly with the number
of attempts.

3. Security of the HB Protocol Against Passive Attacks

Recall from the previous section that the HB protocol is parameterized by ε (a measure
of the noise introduced by the tag), u (which determines the completeness error εc as
well as the best achievable soundness), and n (the number of iterations of the basic
authentication step given in Fig. 1). We stress that the n iterations are run in parallel, so
the entire protocol requires only two rounds.

Theorem 2. Assume the LPNε problem is hard, where 0 < ε < 1
2 . Let n = Θ(k) and

u = ε+ · n, where ε+ is any constant satisfying ε < ε+ < 1
2 . Then the HB protocol

Parallel and Concurrent Security of the HB and HB+ Protocols 411

with these settings of the parameters has exponentially small completeness error, and is
secure against passive attacks.

A standard Chernoff bound shows that the completeness error is exponentially small
for the given setting of the parameters. Therefore, we focus only on the security of the
protocol against passive attacks. We deal first with the case ε < ε+ < 1/4 since this
case admits a significantly simpler analysis. We then show how to extend the proof to
the case ε < 1/2.

Claim 3. Say there exists an adversary A eavesdropping on at most q executions of
the HB protocol, running in time t , and achieving Adv

passive
A,HB (ε,u, n) = δ. Then there

exists an algorithm D making (q +1) ·n oracle queries, running in time O(t), and such
that

∣∣Pr
[
s ← {0,1}k : DAs,ε

(
1k

) = 1
] − Pr

[
DUk+1

(
1k

) = 1
]∣∣ ≥ δ − εc − 2−n ·

2u∑

i=0

(
n

i

)
.

Asymptotically, for any ε < ε+ < 1
4 and n,u as in Theorem 2, the final two terms

of the above expression are negligible. Thus, the claim together with Lemma 1 proves
Theorem 2 for this case.

Proof. D, given access to an oracle returning (k + 1)-bit strings (a, z), proceeds as
follows:

1. D runs the first phase of A. Each time A requests to view a transcript of the
protocol, D obtains n samples {(ai , zi)}ni=1 from its oracle and returns these to A.

2. When A is ready for the second phase, D again obtains n samples {(āi , z̄i)}ni=1
from its oracle. D sends the challenge (ā1, . . . , ān) to A and receives in return a
response Z′ = (z′

1, . . . , z
′
n).

3. D outputs 1 iff Z̄
def= (z̄1, . . . , z̄n) and Z′ differ in at most 2u entries.

When D’s oracle is Uk+1, it is clear that D outputs 1 with probability exactly
2−n · ∑2u

i=0

(
n
i

)
since Z̄ is in this case uniformly distributed and independent of every-

thing else. On the other hand, when D’s oracle is As,ε then the transcripts D provides to
A during the first phase of A’s execution are distributed identically to real transcripts in

an execution of the HB protocol. Let Z∗ def= (〈s, ā1〉, . . . , 〈s, ān〉) be the vector of correct
answers to the challenge (ā1, . . . , ān) sent by D in the second phase. Then with proba-
bility at least δ it holds that Z′ and Z∗ differ in at most u entries (since A successfully
impersonates the tag with this probability). Also, since Z̄ is distributed exactly as the
answers of an honest tag, Z̄ and Z∗ differ in at most u positions except with probability
at most εc. It follows that with probability at least δ − εc the vectors Z′ and Z̄ differ in
at most 2u entries, and so D outputs 1 with at least this probability. �

We next consider the general case of ε < 1/2. The main difference in the proofs is
as follows. Let d(Z1,Z2) denote the Hamming distance between Z1,Z2. In the case
of ε < 1/4, we use the fact that d(Z̄,Z∗) ≤ u and d(Z′,Z∗) ≤ u imply d(Z̄,Z′) ≤

412 J. Katz, J.S. Shin, and A. Smith

2u in order to argue that with high probability D outputs 1 when its oracle is As,ε .
While this remains true for any choice of ε, the problem is that when ε ≥ 1/4 we have
Pr[d(Z̄,Z′) ≤ 2u] ≈ 1 even when D’s oracle is Uk+1. To prove the theorem when ε ≥
1/4, we exploit the fact that Z̄ is not chosen adversarially within the ball of radius u
around Z∗, but is instead chosen by flipping each bit of Z∗ with probability ε. This
allows us to show that, conditioned on d(Z′,Z∗) ≤ u and choosing Z̄ as described,
d(Z̄,Z′) < n/2 with high probability.

Proof of Theorem 2. Fix some PPT adversary A attacking the HB protocol, and

let δ
def= Adv

passive
A,HB (ε,u, n). We construct a PPT adversary D attempting to distinguish

whether it is given oracle access to As,ε or to Uk+1 (as in Lemma 1). Relating the ad-
vantage of D to the advantage of A gives the stated result.

The first two steps of our algorithm D are identical to those in the previous proof, and
only the third step differs. For convenience we repeat the first two steps here. D, given
access to an oracle returning (k + 1)-bit strings (a, z), proceeds as follows:

1. D runs the first phase of A. Each time A requests to view a transcript of the
protocol, D obtains n samples {(ai , zi)}ni=1 from its oracle and returns these to A.

2. When A is ready for the second phase, D again obtains n samples {(āi , z̄i)}ni=1
from its oracle. D sends the challenge (ā1, . . . , ān) to A and receives in return a
response Z′ = (z′

1, . . . , z
′
n).

3. D outputs 1 iff Z̄
def= (z̄1, . . . , z̄n) and Z′ differ in at most u′ def= ε++ · n entries,

where ε++ is a constant satisfying ε+ − 2ε+ε + ε < ε++ < 1
2 . (Note that for

ε < 1/2, ε+ < 1/2, we have

ε+ − 2ε+ε + ε = ε+ · (1 − 2ε) + ε

<
1

2
· (1 − 2ε) + ε = 1

2
,

and so ε++ in the desired range exists.)

When D’s oracle is Uk+1, it is clear that D outputs 1 with probability 2−n · ∑u′
i=0

(
n
i

)

since Z̄ is in this case uniformly distributed and independent of everything else. Since
u′ < n/2, this quantity is negligible in k for the given settings of the other parameters.

When D’s oracle is As,ε then the transcripts D provides to A during the first phase
of A’s execution are distributed identically to real transcripts in an execution of the

HB protocol. Letting Z∗ def= (〈s, ā1〉, . . . , 〈s, ān〉) be the vector of correct answers to the
challenge (ā1, . . . , ān) sent by D in the second phase, it follows that with probability δ

(i.e., the impersonation probability of A) the vector of responses Z′ given by A differs
from Z∗ in at most u entries. We show below that conditioned on this event, Z′ and Z̄

differ in at most u′ entries with all but negligible probability. Thus, D outputs 1 in this
case with probability negligibly close to δ. We conclude from Lemma 1 that δ must be
negligible.

Recall that the distance between two vectors Z1,Z2 is exactly wt(Z1 ⊕Z2). We show
that, conditioned on wt(Z′ ⊕ Z∗) ≤ u, we have wt(Z′ ⊕ Z̄) ≤ u′ with all but negligible
probability.

Parallel and Concurrent Security of the HB and HB+ Protocols 413

Write Z′ = Z∗ ⊕ w for some vector w of weight at most u = ε+n. The vector Z̄ is
generated by the following process: choose an error vector e by setting each position
of e (independently) to 1 with probability ε, and then set Z̄ = Z∗ ⊕ e. We see that the
probability that Z̄ differs from Z′ in at most u′ entries is precisely the probability that

wt(Z′ ⊕ Z̄) = wt(w ⊕ e) ≤ u′.

The random variable wt(w ⊕ e), where w is fixed, is the sum of n independent indi-
cator random variables, one for each position of the vector w ⊕ e. The expectation of
wt(w ⊕ e) is

wt(w) · (1 − ε) + (
n − wt(w)

) · ε ≤ ε+n · (1 − ε) + (
n − ε+n

) · ε
= (

ε+ − 2ε+ε + ε
) · n.

Since ε++ is a constant strictly larger than (ε+ −2ε+ε+ε), the Chernoff bound implies
that wt(w ⊕ e) ≤ ε++n with all but negligible probability. �

4. Security of the HB+ Protocol Against Active Attacks

We now prove security of the HB+ protocol against active attacks.

Theorem 4. Assume the LPNε problem is hard, where 0 < ε < 1
2 . Let τ,n = Θ(k),

and let u = ε+ · n, where ε+ is any constant satisfying ε < ε+ < 1
2 . Then the HB+

protocol with these settings of the parameters has negligible completeness error, and is
secure against active attacks.

A standard Chernoff bound shows that the completeness error is exponentially small
for the given setting of the parameters. Therefore, we focus only on the security of the
protocol against active attacks. As in the previous section, we deal first with the case of
ε < ε+ < 1/4; in that case, we also assume for simplicity that τ − n = Θ(k). We then
extend the proof to handle any ε < 1/2.

4.1. The Case ε < 1/4

Claim 5. Say there exists an adversary A interacting with the tag in at most q exe-
cutions of the HB+ protocol (possibly concurrently), running in time t , and achieving
Advactive

A,HB+(ε, τ,u, n) = δ. Then there exists an algorithm D making q ·n oracle queries,
running in time O(t), and such that

∣∣Pr
[
s ← {0,1}k : DAs,ε

(
1k

) = 1
] − Pr

[
DUk+1

(
1k

) = 1
]∣∣ ≥ δ2 − 2n

2τ
− 2−n ·

2u∑

i=0

(
n

i

)
.

Asymptotically, when ε < ε+ < 1
4 , and τ − n = Θ(k), and u = ε+n as in Theorem 4,

the final two terms of the above expression are negligible. Thus, the claim together with
Lemma 1 proves Theorem 4 in this case.

414 J. Katz, J.S. Shin, and A. Smith

Proof. D, given access to an oracle returning (k + 1)-bit strings (b, z̄), proceeds as
follows:

1. D chooses s2 ∈ {0,1}τ uniformly at random.
2. D runs the first phase of A. To simulate a basic authentication step, D obtains a

sample (b, z̄) from its oracle and sends b as the initial message. A replies with
a challenge a, and then D responds with z = z̄ ⊕ 〈s2,a〉. Note that since D does
not rewind A here, there is no difficulty in simulating the n parallel executions of
the basic authentication step (nor in simulating concurrent executions of the entire
protocol).

3. When A begins the second phase of its attack, it first sends an initial message
b1, . . . ,bn (we now explicitly consider all n parallel iterations of the protocol
rather than focusing on a single basic authentication step). In response, D chooses
random a1

1, . . . ,a1
n ∈ {0,1}τ , sends these challenges to A, and records A’s re-

sponse z1
1, . . . , z

1
n. Then D rewinds A, chooses random a2

1, . . . ,a2
n ∈ {0,1}τ , sends

these to A, and records A’s response z2
1, . . . , z

2
n.

4. Let z⊕
i

def= z1
i ⊕ z2

i and set Z⊕ def= (z⊕
1 , . . . , z⊕

n). Let âi = a1
i ⊕ a2

i and ẑi = 〈s2, âi〉,
and set Ẑ

def= (ẑ1, . . . , ẑn). D outputs 1 iff Z⊕ and Ẑ differ in at most 2u entries.

Let us analyze the behavior of D:

Case 1: Say D’s oracle is Uk+1. In Step 2, above, since z̄ is uniformly distributed and
independent of everything else, the answers z that D returns to A are uniformly distrib-
uted and independent of everything else. It follows that A’s view throughout the entire
experiment is independent of the secret s2 chosen by D.

The {âi}ni=1 are uniformly and independently distributed, and so except with proba-

bility at most 2n

2τ they are linearly independent (this is a standard combinatorial result

that is easy to prove). Assuming this to be the case, Ẑ is uniformly distributed over
{0,1}n from the point of view of A. But then the probability that Z⊕ and Ẑ differ in
at most 2u entries is exactly 2−n · ∑2u

i=0

(
n
i

)
. We conclude that D outputs 1 in this case

with probability at most 2n

2τ + 2−n · ∑2u
i=0

(
n
i

)
.

Case 2: Say D’s oracle is As1,ε for randomly chosen s1. In this case, D provides a
perfect simulation for the first phase of A. Let ω denote all the randomness used to
simulate the first phase of A (namely, the keys s1, s2, the randomness of A, and the
randomness used to respond to A’s queries). For a fixed such ω, let δω denote the prob-
ability, over random choice of a1, . . . ,an, that A successfully impersonates the honest
tag in the second phase. The probability that A successfully responds to both sets of
queries a1

1, . . . ,a1
n and a2

1, . . . ,a2
n sent by D is thus δ2

ω. The overall probability that A
successfully responds to both sets of queries is then given by

Eω

(
δ2
ω

) ≥ (
Eω(δω)

)2 = δ2,

using Jensen’s inequality (here Eω denotes the expectation over the choice of ω).

Parallel and Concurrent Security of the HB and HB+ Protocols 415

Assuming A does respond successfully to both sets of D’s challenges, this means
that (z1

1, . . . , z
1
n) differs in at most u entries from the correct answer

ans1 def= (〈s1,b1〉 ⊕ 〈
s2,a1

1

〉
, . . . , 〈s1,bn〉 ⊕ 〈

s2,a1
n

〉)

and also (z2
1, . . . , z

2
n) differs in at most u entries from the correct answer

ans2 def= (〈s1,b1〉 ⊕ 〈
s2,a2

1

〉
, . . . , 〈s1,bn〉 ⊕ 〈

s2,a2
n

〉)
.

But then (z1
1, . . . , z

1
n) ⊕ (z2

1, . . . , z
2
n) = Z⊕ differs in at most 2u entries from

ans1 ⊕ ans2 = (〈
s2,a1

1

〉 ⊕ 〈
s2,a2

1

〉
, . . . ,

〈
s2,a1

n

〉 ⊕ 〈
s2,a2

n

〉)

= (〈
s2,

(
a1

1 ⊕ a2
1

)〉
, . . . ,

〈
s2,

(
a1
n ⊕ a2

n

)〉) = Ẑ.

We conclude that D outputs 1 in this case with probability at least δ2. This completes
the proof of the claim. �

4.2. Auxiliary Lemmas

Before turning to the case of ε < 1/2, we state and prove some coding-theoretic results
on which we will rely. Throughout, we let B(x, δ) denote the Hamming ball of radius δ

centered at x. We begin with the following version of the classical Johnson bound [23,
24], taken from [19, Theorem 3.1]:

Lemma 6. Let C ⊂ {0,1}n be a binary code with minimum distance d = 1
2 (1 − δ)n,

and let e = 1
2 (1 − γ)n for δ, γ ∈ (0,1) and γ 2 > δ. Then, for any x ∈ {0,1}n we have

∣
∣B(x, e) ∩ C

∣
∣ ≤ 1 − δ

γ 2 − δ
.

We now prove a “distributional” form of the Johnson bound, which says that for any
distribution over a Hamming ball B ⊂ {0,1}n of radius αn, two strings chosen indepen-
dently according to this distribution will be closer than their “worst-case” distance 2αn

with reasonably high probability.

Lemma 7. Let α,α+ be constants such that 0 < α < α+ < 1
2 and α+ > 1

2 · (1 −
(1 − 2α)2). Then there exists a constant C = C(α,α+) such that for any n, and any
distribution D over a Hamming ball of radius α · n in {0,1}n, we have:

Pr
Δ1,Δ2←D

[
wt

(
Δ1 ⊕ Δ2) < α+n

] ≥ C.

Proof. Without loss of generality, assume the Hamming ball is centered at the ori-
gin. Let δ = 1 − 2α+, and let γ = 1 − 2α. Note that γ 2 > δ by hypothesis. Set

c
def= � 1−δ

γ 2−δ
+ 1�.

416 J. Katz, J.S. Shin, and A. Smith

We show that for two vectors Δ1,Δ2 chosen independently according to distribu-
tion D, we have wt(Δ1 ⊕ Δ2) < α+n with (constant) probability at least 1

c2 . Assume
not, so that

Pr
[
Δ1,Δ2 ← D : wt

(
Δ1 ⊕ Δ2) < α+n

]
<

1

c2
.

Then, by a union bound, Pr[Δ1, . . . ,Δc ← D : ∃i �= j s.t. wt(Δi ⊕ Δj) < α+n] < 1
2 .

In particular, there exist c (distinct) vectors Δ1, . . . ,Δc in the support of D, and hence
in the Hamming ball of radius αn = 1

2 · (1 − γ) · n, whose pairwise distances are all at
least α+n = 1

2 · (1 − δ) · n. This contradicts Lemma 6. �

Finally, we show that for a random linear code there is no “small” Hamming ball
containing more than a negligible fraction of the codewords.

Lemma 8. Let α ∈ (0, 1
2) be a constant, let n = Θ(k), and let C be a random [n, k]-

code generated by the columns of an n × k binary matrix A with entries chosen uni-
formly at random. With probability 2−Ω(k) over choice of A, there does not exist a
Hamming ball of radius α · n that contains at least a 2−Ω(k) fraction of the codewords
in C .

Formally, let α < 1
2 and set n = ak for some constant a > 0. Then there are positive

constants C1 and C2 depending only on α,a such that, for k large enough,

PrA

[
∃x ∈ {0,1}n such that

|C ∩ B(x,α · n)|
|C| ≥ 2−C1k

]
≤ 2−C2k.

Proof. Suppose there is a ball B of radius αn that contains K codewords of C for
some arbitrary K . We first show that this implies the existence of a ball B+ of slightly
larger radius, centered at the origin, that contains at least γK points of C (for some
constant γ). We then show that, for a random linear code, B+ typically captures only
an exponentially small (in k) fraction of the codewords of C and so γK must be small.

Assume there is a ball B of radius αn that contains K codewords of C . Fix α+ < 1
2

such that α+ > 1
2 · (1 − (1 − 2α)2). Let γ = C(α,α+), as defined in Lemma 7. We

claim that there exists a codeword x∗ ∈ B such that the ball B(x∗, α+n) of radius α+n

centered at x∗ contains at least γ · K codewords. Assume toward a contradiction that
no such x∗ exists. Let D be the uniform distribution over codewords in B . Then for any
codeword x ∈ B we have

Pr
y←D

[
wt(x ⊕ y) < α+n

]
<

γK

K
= γ,

and so

Pr
x,y←D

[
wt(x ⊕ y) < α+n

]
< γ.

This contradicts Lemma 7.
Since we are working with a linear code, the number of codewords in B(x∗, α+n)

is equal to the number of codewords in B+ def= B(0, α+n). We conclude that if there is

Parallel and Concurrent Security of the HB and HB+ Protocols 417

a ball of radius αn that contains K codewords of C , then there is a ball of radius α+n

centered at the origin that contains at least γ · K codewords of C .
We now bound the probability that |B+ ∩ C| ≥ γK . Let X be a random variable

denoting the number of codewords in B+ when the generating matrix A is chosen at
random. Let δr , for r ∈ {0,1}k \{0k}, be the indicator random variable denoting whether
Ar ∈ B+, and note that Pr[δr = 1] = |B+|/2n = 2−Θ(n). Observe also that the {δr} are
pairwise independent. We have X = 1 + ∑

r∈{0,1}k\{0k} δr , and so (for k sufficiently

large) E[X] < 1 + 2k|B+|/2n ≤ 1 + 2ck for some constant c < 1 that depends only
on α+. Now, for any γK > 1 + 2ck ,

Pr
[
X ≥ γK

] = Pr
[
X − (

1 + 2ck
) ≥ γK − (

1 + 2ck
)]

≤ Pr
[∣∣X − (

1 + 2ck
)∣∣ ≥ γK − (

1 + 2ck
)]

= Pr

[∣∣∣∣
∑

r∈{0,1}k\{0k}
δr − 2ck

∣∣∣∣ ≥ γK − (
1 + 2ck

)]

≤ 2k|B+|/2n

(γK − (1 + 2ck))2
≤ 2ck

(γK − (1 + 2ck))2
,

using Chebyshev’s inequality. Taking K = 2c+k for c < c+ < 1, we see that Pr[X ≥
γK] is negligible in k. �

4.3. The Case ε < 1/2

We now prove security of the HB+ protocol against active attacks in the general case
of ε < 1/2 (and for arbitrary τ,n = Θ(k)). We do not provide concrete bounds in this
case, though such bounds may be derived from the proof that follows.

Proof of Theorem 4. Fix a PPT adversary A, and let δA
def= Advactive

A,HB+(ε, τ,u, n). We
construct a PPT adversary D attempting to distinguish whether it is given oracle access
to As,ε or to Uk+1 (as in Lemma 1). Relating the advantage of D to the advantage of A
gives the stated result.

The first three steps of our algorithm D are identical to those in the previous proof,
and only the last step differs. For convenience we repeat all the steps here. D, given
access to an oracle returning (k + 1)-bit strings (b, z̄), proceeds as follows:

1. D chooses s2 ∈ {0,1}τ uniformly at random.
2. D runs the first phase of A. To simulate a basic authentication step, D obtains a

sample (b, z̄) from its oracle and sends b as the initial message. A replies with a
challenge a, and then D responds with z = z̄ ⊕ 〈s2,a〉.

3. When A begins the second phase of its attack, it first sends an initial message
b1, . . . ,bn. In response, D chooses random a1

1, . . . ,a1
n ∈ {0,1}τ , sends these chal-

lenges to A, and records A’s response z1
1, . . . , z

1
n. Then D rewinds A, chooses ran-

dom a2
1, . . . ,a2

n ∈ {0,1}τ , sends these to A, and records A’s response z2
1, . . . , z

2
n.

418 J. Katz, J.S. Shin, and A. Smith

4. Let z⊕
i := z1

i ⊕ z2
i and set Z⊕ def= (z⊕

1 , . . . , z⊕
n). Let âi = a1

i ⊕ a2
i and ẑi = 〈s2, âi〉,

and set Ẑ
def= (ẑ1, . . . , ẑn). D outputs 1 iff Z⊕ and Ẑ differ in strictly fewer than

u′ = ε++n entries, for some constant ε++ < 1
2 to be fixed later.

Let us analyze the behavior of D:

Case 1: Say D’s oracle is Uk+1. Let A be the n × τ matrix whose rows are the âi .
Viewing s2 and Ẑ as column vectors, we see that Ẑ = A · s2. As in the proof of Claim 5,
when D’s oracle is Uk+1 the adversary A has no information about s2 and, therefore,
from the point of view of the adversary Ẑ is a random element in the column space
of A. Furthermore, D outputs 1 exactly when Z⊕ is within distance u′ of Ẑ. We want
to argue that this happens with low probability.

Translating the above to the language of coding theory, A defines a random, linear
code C of dimension τ and length n, and Ẑ is a random codeword in this code. Fixing
any Z⊕, the probability that Ẑ is within distance u′ of Ẑ is exactly |C ∩ B(Z⊕,u′)|/2τ .
Lemma 8 shows that with all but negligible probability over A, this probability is neg-
ligible in τ (and hence negligible in k).

Case 2: Say D’s oracle is As1,ε for randomly chosen s1. Exactly as in the proof of
Claim 5, we have that A responds correctly to both sets of queries a1

1, . . . ,a1
n and

a2
1, . . . ,a2

n with probability at least δ2
A. We show next that conditioned on both chal-

lenges being answered successfully (and for appropriate choice of ε++), Z⊕ differs
from Ẑ in fewer than u′ entries with constant probability. Putting everything together,
we conclude that D outputs 1 in this case with probability Ω(δ2

A). It follows from
Lemma 1 that δA must be negligible.

We now prove the above claim regarding the probability that Z⊕ differs from Ẑ

in fewer than u′ entries. Set ε++ so that 1
2 > ε++ > 1

2 · (1 − (1 − 2ε+)2). Fixing all
the randomness used in the simulation of the first phase of A defines a function fA
from queries a1, . . . ,an to vectors (z1, . . . , zn) given by the response function of A in
the second phase. Define the function fcorrect that returns the “correct” answers for a
particular query; i.e.,

fcorrect(a1, . . . ,an)
def= (〈s1,b1〉 ⊕ 〈s2,a1〉, . . . , 〈s1,bn〉 ⊕ 〈s2,an〉

)

(recall that b1, . . . ,bn are the vectors sent by A in the first round). Define

Δ(a1, . . . ,an)
def= fA(a1, . . . ,an) ⊕ fcorrect(a1, . . . ,an),

and say a query a1, . . . ,an is good if wt(Δ(a1, . . . ,an)) ≤ u. A query a1, . . . ,an is good
if A’s response is within distance u of the “correct” response, that is, A successfully
impersonates the tag in response to such a query.

Let D denote the distribution over Δ(a1, . . . ,an) induced by a uniform choice of a
good query a1, . . . ,an (we assume at least one good query exists since we are only
interested in analyzing this case). To see how this maps on to the reduction being ana-
lyzed above, note that conditioning on the event that A successfully responds to queries

Parallel and Concurrent Security of the HB and HB+ Protocols 419

a1
1, . . . ,a1

n and a2
1, . . . ,a2

n is equivalent to choosing these two queries uniformly from

the set of good queries. Setting Δ1 def= Δ(a1
1, . . . ,a1

n) and Δ2 analogously, we have

Δ1 ⊕ Δ2 = fA
(
a1

1, . . . ,a1
n

) ⊕ fcorrect
(
a1

1, . . . ,a1
n

) ⊕ fA
(
a2

1, . . . ,a2
n

)

⊕ fcorrect
(
a2

1, . . . ,a2
n

)

= Z⊕ ⊕ fcorrect
(
a1

1, . . . ,a1
n

) ⊕ fcorrect
(
a2

1, . . . ,a2
n

)
.

Furthermore,

fcorrect
(
a1

1, . . . ,a1
n

) ⊕ fcorrect
(
a2

1, . . . ,a2
n

)

= (〈s1,b1〉 ⊕ 〈
s2,a1

1

〉
, . . . , 〈s1,bn〉 ⊕ 〈

s2,a1
n

〉)

⊕ (〈s1,b1〉 ⊕ 〈
s2,a2

1

〉
, . . . , 〈s1,bn〉 ⊕ 〈

s2,a2
n

〉)

= (〈
s2,a1

1

〉 ⊕ 〈
s2,a2

1

〉
, . . . ,

〈
s2,a1

n

〉 ⊕ 〈
s2,a2

n

〉)

= (〈
s2,

(
a1

1 ⊕ a2
1

)〉
, . . . ,

〈
s2, (a1

n ⊕ a2
n)

〉) = Ẑ.

So Δ1 ⊕Δ2 = Z⊕ ⊕ Ẑ, and we see that Z⊕ and Ẑ differ in fewer than u′ entries exactly
when wt(Δ1 ⊕ Δ2) < u′.

Now, by definition of a good query, each vector in the support of D has weight at
most u = ε+n. By Lemma 7, with constant probability over Δ1,Δ2 generated indepen-
dently according to D, we have wt(Δ1 ⊕ Δ2) < u′ (note that u′ and u were chosen to
satisfy the conditions of the lemma). This concludes the proof of Theorem 4. �

5. Conclusions and Open Questions

The main technical results of this paper are the first rigorous proofs of (1) security of the
HB+ protocol against active attacks, even under parallel and concurrent executions; and
(2) “hardness amplification” for the HB and HB+ protocols as the number of iterations
of the basic authentication step increases. Our proofs are also the first to explicitly take
into account the non-zero completeness error and the impact this has on the security of
the protocol as a whole.

We believe our proofs are remarkably simple, and view this as an additional contri-
bution of this work (rather than as a drawback!). Indeed, we expect there will be further
applications of Lemma 1 to the analysis of other cryptographic constructions based on
the LPN problem, and hope this paper inspires and aids others in exploring such appli-
cations.

It would be very interesting to see an efficient protocol based on the LPN problem that
is provably resistant to man-in-the-middle attacks such as those of Gilbert et al. [12].
Though much recent work [5,9,13,14,33] (subsequent to the results described here) ad-
dresses this problem, none of these provides a provably secure solution to the problem
in its full generality. It would also be useful to improve the concrete security reductions
obtained here, or to propose new protocols with tighter security reductions. As one pos-
sible approach toward this goal, one can imagine changing the HB/HB+ protocols so

420 J. Katz, J.S. Shin, and A. Smith

that the tag always introduces at most ε · n errors, rather than introducing errors in each
of the n iterations with independent probability ε.7 (A related idea, in a different con-
text, was explored in [3]; their analysis does not seem to apply to our setting.) This
would give protocols with perfect completeness, and would improve the concrete secu-
rity bounds as well since the upper bound u could be set to exactly ε · n. On the other
hand, it is not clear what can be said of the hardness of the natural variant of the LPN
problem such protocols would be based on.

References

[1] M. Bellare, R. Impagliazzo, M. Naor. Does parallel repetition lower the error in computationally sound
protocols?, in 38th IEEE Symposium on Foundations of Computer Science (IEEE, New York, 1997), pp.
374–383

[2] E.R. Berlekamp, R.J. McEliece, H.C.A. van Tilborg, On the inherent intractability of certain coding
problems. IEEE Trans. Inf. Theory 24, 384–386 (1978)

[3] A. Blum, M. Furst, M. Kearns, R. Lipton, Cryptographic primitives based on hard learning problems,
in Adv. in Cryptology—Crypto’93. LNCS, vol. 773 (Springer, Berlin, 1994), pp. 278–291

[4] A. Blum, A. Kalai, H. Wasserman, Noise-tolerant learning, the parity problem, and the statistical query
model. J. ACM 50(4), 506–519 (2003)

[5] J. Bringer, H. Chabanne, E. Dottax, HB++: A lightweight authentication protocol secure against some
attacks, in Proceedings of SecPerU 2006, ed. by P. Georgiadis, J. Lopez, S. Gritzalis, G. Marias (IEEE
Computer Society Press, Los Alamitos, 2006), pp. 28–33

[6] R. Canetti, J. Kilian, E. Petrank, A. Rosen, Black-box concurrent zero-knowledge requires (almost)
logarithmically many rounds. SIAM J. Comput. 32(1), 1–47 (2002)

[7] R. Canetti, S. Halevi, M. Steiner. Hardness amplification of weakly verifiable puzzles, in 2nd Theory of
Cryptography Conference (TCC 2005). LNCS, vol. 3378 (Springer, Berlin, 2005), pp. 17–33

[8] F. Chabaud, On the security of some cryptosystems based on error-correcting codes, in Adv. in
Cryptology—Eurocrypt ’94. LNCS, vol. 950 (Springer, Berlin, 1995), pp. 131–139

[9] D.N. Duc, K. Kim, HB+ Securing against GRS man-in-the-middle attack, in Institute of Electronics,
Information and Communication Engineers, Symposium on Cryptography and Information Security,
Jan. 23–26, 2007

[10] U. Feige, A. Shamir, Witness indistinguishability and witness hiding protocols, in 22nd ACM Sympo-
sium on Theory of Computing (ACM, New York, 1990), pp. 416–426

[11] M. Fossorier, M.J. Mihaljevic, H. Imai, Y. Cui, K. Matsuura, An algorithm for solving the LPN problem
and its application to security evaluation of the HB protocols for RFID authentication, in Progress in
Cryptology—INDOCRYPT 2006. LNCS, vol. 4329 (Springer, Berlin, 2006), pp. 48–62

[12] H. Gilbert, M. Robshaw, H. Silbert, An active attack against HB+: A provably secure lightweight au-
thentication protocol. IEE Electron. Lett. 41(21), 1169–1170 (2005)

[13] H. Gilbert, M.J.B. Robshaw, Y. Seurin, Good variants of HB+ are hard to find, in Financial Cryptogra-
phy and Data Security, FC 2008. LNCS, vol. 5143 (Springer, Berlin, 2008), pp. 156–170

[14] H. Gilbert, M.J.B. Robshaw, Y. Seurin, HB#: Increasing the security and efficiency of HB+, in Adv. in
Cryptology—EUROCRYPT 2008. LNCS, vol. 4965 (Springer, Berlin, 2008), pp. 361–378

[15] O. Goldreich, Modern Cryptography, Probabilistic Proofs, and Pseudorandomness (Springer, Berlin,
1998)

[16] O. Goldreich, H. Krawczyk, On the composition of zero-knowledge proof systems. SIAM J. Comput.
25(1), 169–192 (1996)

[17] O. Goldreich, Y. Oren, Definitions and properties of zero-knowledge proof systems. J. Cryptol. 7(1),
1–32 (1994)

[18] O. Goldreich, N. Nisan, A. Wigderson, On Yao’s XOR-lemma. Available at http://eccc.uni-trier.de/
eccc-reports/1995/TR95-050/

7 Note that introducing exactly ε · n errors in the n iterations is insecure.

http://eccc.uni-trier.de/eccc-reports/1995/TR95-050/
http://eccc.uni-trier.de/eccc-reports/1995/TR95-050/

Parallel and Concurrent Security of the HB and HB+ Protocols 421

[19] V. Guruswami, List Decoding of Error-Correcting Codes (Springer, Berlin, 2004)
[20] J. Håstad, Some optimal inapproximability results. J. ACM 48(4), 798–859 (2001)
[21] N. Hopper, M. Blum, A secure human-computer authentication scheme. Technical Report CMU-CS-

00-139, Carnegie Mellon University, 2000
[22] N. Hopper, M. Blum, Secure human identification protocols, in Adv. in Cryptology—Asiacrypt 2001.

LNCS, vol. 2248 (Springer, Berlin, 2001), pp. 52–66
[23] S.M. Johnson, A new upper bound for error-correcting codes. IRE Trans. Inf. Theory 8(3), 203–207

(1962)
[24] S.M. Johnson, Improved asymptotic bounds for error-correcting codes. IEEE Trans. Inf. Theory 9(3),

198–205 (1963)
[25] A. Juels, S. Weis, Authenticating pervasive devices with human protocols, in Adv. in Cryptology—

Crypto 2005. LNCS, vol. 3621 (Springer, Berlin, 2005), pp. 293–308. Updated version available at:
http://www.rsasecurity.com/rsalabs/staff/bios/ajuels/publications/pdfs/lpn.pdf

[26] J. Katz, J.-S. Shin, Parallel and concurrent security of the HB and HB+ protocols, in Adv. in
Cryptology—Eurocrypt 2006. LNCS, vol. 4004 (Springer, Berlin, 2006), pp. 73–87

[27] J. Katz, A. Smith, Analyzing the HB and HB+ protocols in the “large error” case. Available at
http://eprint.iacr.org/2006/326

[28] M. Kearns, Efficient noise-tolerant learning from statistical queries. J. ACM 45(6), 983–1006 (1998)
[29] Z. Kfir, A. Wool, Picking virtual pockets using relay attacks on contactless smartcard systems. Available

at http://eprint.iacr.org/2005/052
[30] I. Kirschenbaum, A. Wool, How to build a low-cost, extended-range RFID skimmer. Available at

http://eprint.iacr.org/2006/054
[31] E. Levieil, P.-A. Fouque, An improved LPN algorithm, in Security and Cryptography for Networks

(SCN 2006). LNCS, vol. 4116 (Springer, Berlin, 2006), pp. 348–359
[32] V. Lyubashevsky, The parity problem in the presence of noise, decoding random linear codes, and

the subset sum problem, in 9th Intl. Workshop on Randomization and Computation (RANDOM 2005).
LNCS, vol. 3624 (Springer, Berlin, 2005), pp. 378–389

[33] J. Munilla, A. Peinado, HB-MP: A further step in the hb-family of lightweight authentication protocols.
Comput. Netw. 51, 2262–2267 (2007)

[34] R. Pass, M. Venkitasubramaniam, An efficient parallel repetition theorem for Arthur-Merlin games, in
39th ACM Symposium on Theory of Computing (ACM, New York, 2007), pp. 420–429

[35] C. Peikert, Public-key cryptosystems from the worst-case shortest vector problem, in 41st ACM Sympo-
sium on Theory of Computing (ACM, New York, 2009), pp. 333–342

[36] R. Raz, A parallel repetition theorem. SIAM J. Comput. 27(3), 763–803 (1998)
[37] O. Regev, On lattices, learning with errors, random linear codes, and cryptography, in 37th ACM Sym-

posium on Theory of Computing (ACM, New York, 2005), pp. 84–93
[38] A.C.-C. Yao, Theory and applications of trapdoor functions, in 23rd IEEE Symposium on Foundations

of Computer Science (IEEE, New York, 1982), pp. 80–91

http://www.rsasecurity.com/rsalabs/staff/bios/ajuels/publications/pdfs/lpn.pdf
http://eprint.iacr.org/2006/326
http://eprint.iacr.org/2005/052
http://eprint.iacr.org/2006/054

	Parallel and Concurrent Security of the HB and HB+ Protocolsn1
	Abstract
	Introduction
	Difficulties and Limitations
	Our Contributions
	Additional Discussion

	Definitions and Preliminaries
	The LPN Problem
	A Technical Lemma
	The HB/HB+ Protocols, and Security Definitions

	Security of the HB Protocol Against Passive Attacks
	Security of the HB+ Protocol Against Active Attacks
	The Case epsilon< 1/4
	Auxiliary Lemmas
	The Case epsilon< 1/2

	Conclusions and Open Questions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c00200073006b00e60072006d007600690073006e0069006e0067002c00200065002d006d00610069006c0020006f006700200069006e007400650072006e00650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e00200065006e002000700061006e00740061006c006c0061002c00200063006f007200720065006f00200065006c006500630074007200f3006e00690063006f0020006500200049006e007400650072006e00650074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000640065007300740069006e00e90073002000e000200049006e007400650072006e00650074002c002000e0002000ea007400720065002000610066006600690063006800e90073002000e00020006c002700e9006300720061006e002000650074002000e0002000ea00740072006500200065006e0076006f007900e9007300200070006100720020006d006500730073006100670065007200690065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f9002000610064006100740074006900200070006500720020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e0065002000730075002000730063006800650072006d006f002c0020006c006100200070006f00730074006100200065006c0065007400740072006f006e0069006300610020006500200049006e007400650072006e00650074002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF753b97624e0a3067306e8868793a3001307e305f306f96fb5b5030e130fc30eb308430a430f330bf30fc30cd30c330c87d4c7531306790014fe13059308b305f3081306e002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c306a308f305a300130d530a130a430eb30b530a430ba306f67005c0f9650306b306a308a307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f007200200073006b006a00650072006d007600690073006e0069006e0067002c00200065002d0070006f007300740020006f006700200049006e007400650072006e006500740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200065007800690062006900e700e3006f0020006e0061002000740065006c0061002c0020007000610072006100200065002d006d00610069006c007300200065002000700061007200610020006100200049006e007400650072006e00650074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e40020006e00e40079007400f60073007400e40020006c0075006b0065006d0069007300650065006e002c0020007300e40068006b00f60070006f0073007400690069006e0020006a006100200049006e007400650072006e0065007400690069006e0020007400610072006b006f006900740065007400740075006a0061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f6007200200061007400740020007600690073006100730020007000e500200073006b00e40072006d002c0020006900200065002d0070006f007300740020006f006300680020007000e500200049006e007400650072006e00650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing false
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

