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Abstract. Assuming the intractability of factoring, we show that the output of the
exponentiation modulo a composite function fN ,g(x) = gx mod N (where N = P · Q)
is pseudorandom, even when its input is restricted to being half the size (i.e. x <

√
N ).

This result is equivalent to the simultaneous hardness of the upper half of the bits of
fN ,g , proven by Håstad, Schrift and Shamir. Yet, we provide a different proof that
is significantly simpler than the original one. In addition, we suggest a pseudorandom
generator that is more efficient than all previously known factoring-based pseudorandom
generators.

Key words. Modular exponentiation, Discrete logarithm, Hard-core predicates, Si-
multaneous security, Pseudorandom generator, Factoring assumption.

1. Introduction

One-way functions play an extremely important role in modern cryptography. Loosely
speaking, these are functions that are easy to evaluate but hard to invert. A number-
theoretic function which is widely believed to be one-way, is the exponentiation func-
tion over a finite field. Its inverse, the discrete logarithm function, is the basis for nu-
merous cryptographic applications. Most applications use a field of prime cardinality,
though many of them can be adapted to work in other algebraic structures as well.

∗ This write-up is based on the Master’s Thesis of the second author (supervised by the first author).
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A concept tightly connected to one-way functions is the notion of hard-core predicates,
introduced by Blum and Micali [BM]. A polynomial-time predicate b is called a hard-
core of a function f , if all efficient algorithms, given f (x), can guess b(x) with success
probability only negligibly better than half. Blum and Micali showed the importance of
hard-core predicates in pseudorandom bit generation. Specifically, they showed that the
modular exponentiation function over a field of prime cardinality, fP,g(x) = gx mod P ,
has a hard-core predicate, and used it in order to construct a pseudorandom bit generator.
The study of hard-core predicates of fP,g has culminated in the work of Håstad and
Näslund [HN], showing that all bits of fP,g are individually secure.

1.1. Hard-Core Functions

The concept of a hard-core function (or the simultaneous security of bits) is a general-
ization of hard-core predicates. Intuitively, a sequence of bits associated to a one-way
function f is said to be simultaneously secure if no efficient algorithm can gain any
information about the given sequence of bits in x , when only given f (x). Proving the
simultaneous security of a sequence of bits (rather than a single bit) in fP,g is a desirable
result, enabling the construction of more efficient pseudorandom generators as well as
improving other applications. However, the best known result regarding the simultaneous
security of bits in fP,g is due to Long and Wigderson [LW], Kaliski [K2] and Peralta [P],
who showed that O(log n) bits are simultaneously secure, where n is the length of the
modulus P .

Stronger results were demonstrated when the modulus was taken to be a composite,
thus allowing one to relate (simultaneous) hardness of bits in the argument to the factoring
problem. Denote by fN ,g the exponentiation modulo a composite function, defined as
fN ,g(x) = gx mod N , where N is an n-bit composite equal to the multiplication of two
large primes and g is an element in the multiplicative group mod N . Håstad et al. showed
that under the factoring intractability assumption, all the bits in fN ,g are individually hard,
and that the upper �n/2� bits and lower �n/2� bits are simultaneously hard [HSS].

In the same setting (and under the same assumption that factoring is hard), we show
that no efficient algorithm can tell apart fN ,g(r) from fN ,g(R), where r is a random
�n/2�-bit string and R is a random n-bit string.1 That is, one can work with an exponent
x of half the length, and still obtain an element that “seems random” to all efficient
algorithms. Note that all the cryptographic tools that use exponentiation in Z∗

N (and base
their security on the discrete logarithm assumption) can greatly benefit from this fact,
since the time consumed for exponentiation grows linearly with the length of the exponent
(and is thus cut by a factor of two). Our result is in fact equivalent to the result of Håstad
et al. [HSS] on the simultaneous hardness of the upper �n/2� bits of fN ,g . Nevertheless,
we give an alternative proof for it while using some of their ideas and techniques. Our
approach significantly simplifies the proof given in [HSS] and sheds a new light on it.

We mention that our work also implies that no efficient algorithm can tell apart
fN ,g(r · 2k) from fN ,g(R), where r and R are as above and k is polynomial in n. For

1 As a matter of fact, in the exact formulation of our result, R is uniformly distributed over the range of
naturals smaller than the order of g (on the group Z∗

N ). However, the above claim (with R uniformly distributed
in {0, 1}n) holds as well, as an implication of Theorem 3.4.
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details, see [R3]. In particular, when taking k to be �n/2�, this result is equivalent to the
simultaneous hardness of the lower �n/2� bits of fN ,g .

Another implication of our work (to be further discussed below) is the construction
of a pseudorandom bit generator based on the computational indistinguishability of
fN ,g(r) from fN ,g(R). Our generator is somewhat more efficient than all previously
known factoring-based pseudorandom generators.

1.2. An Efficient Pseudorandom Generator

The notion of a pseudorandom bit generator, introduced by Blum and Micali [BM], plays
a central role in cryptography. It enables the user to expand a short random seed into a
longer sequence of bits, that can be used in any efficient application instead of a truly ran-
dom bit sequence. Blum and Micali presented a pseudorandom bit generator based on the
discrete log problem. Using the fact that the exponentiation function over a field of prime
cardinality has a hard-core predicate, they suggested an iterative generator that yields one
bit of output per exponentiation. Furthermore, they conceived a general paradigm that
constructs an iterative pseudorandom generator, given any length-preserving one-way
permutation f , and a hard-core predicate b for f .

The Blum–Blum–Shub pseudorandom generator [BBS], hereafter referred to as the
“BBS generator”, is based on the above paradigm, taking f to be the modular squaring
function, where the modulus N is a Blum integer.2 Since, as shown by Rabin [R1],
the problem of factoring N can be reduced to the problem of extracting square roots
in the multiplicative group modN , the function f is a one-way function assuming the
intractability of factoring Blum integers. Additionally, Blum et al. showed that f induces
a permutation over the set of quadratic residues in the multiplicative group modN , and
using the results of Alexi et al. [ACGS] and Vazirani and Vazirani [VV], this implies that
the least significant bit constitutes a hard-core predicate for f . The BBS generator is by
far more efficient than the Blum–Micali generator.3 In particular, for every polynomial
P(·), the BBS generator stretches an n-bit seed into a P(n)-bit pseudorandom string
using P(n) modular multiplications.

Another generator whose pseudorandomness is based on factoring, was suggested by
Håstad, Schrift and Shamir [HSS], and will be referred to as the “HSS generator”. The
HSS generator relies on the simultaneous hardness of half of the bits in the exponentiation
modulo a composite function fN ,g . Loosely speaking, the HSS generator takes an n-bit
random seed x (where n is the size of the modulus N ), and outputs fN ,g(x) followed
by the lower half of the bits of x .4 Observe that from an n-bit seed, the HSS generator
obtains 1.5n bits of output, using n modular multiplications on the worst case, and 0.5n
modular multiplications on the average case (when assuming that the terms g20

, . . . , g2n

are pre-computed together with the other parameters of the generator).

2 A Blum integer is equal to the multiplication of two primes of equal size, each congruent to 3 mod 4.
3 The Blum–Micali generator obtains each bit of output at the cost of one modular exponentiation that is

implemented by n modular multiplications, as opposed to one modular multiplication per output bit needed
by the BBS generator.

4 As a matter of fact, in order to achieve true pseudorandomness, universal hashing is applied. The actual
construction is presented in Section 4.
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Even though our main result is equivalent to the simultaneous hardness of half of the
bits in fN ,g , our result gives rise to a pseudorandom generator that is (in a sense) more
natural than the HSS generator, as well as more efficient than it. Informally, we suggest a
generator that takes a random seed x of size �n/2�, and outputs fN ,g(x). Observe that our
generator doubles the length of its input. In particular, it obtains n bits of output from an
0.5n-bit seed using 0.5n modular multiplications on the worst case, and 0.25n modular
multiplications on the average case (once again, assuming that the terms g20

, . . . , g2�n/2�

are pre-computed).
The following table compares the three factoring-based generators discussed above,

each having the same security parameter n (the size of the modulus N ). Note that the
“cost” column refers to the average number of multiplications done in every application
of the generator, and the “amortized cost” column refers to the average number of
multiplications divided by the number of additional output bits of the generator (i.e. the
amortized cost is the cost divided by the difference between the output length and the
seed length).5

Seed length Output length Cost Amortized cost

BBS construction n P(n) (∀P) P(n)
P(n)

P(n) − n
≈ 1

HSS construction n 1.5n 0.5n
0.5n

1.5n − n
= 1

Our construction 0.5n n 0.25n
0.25n

n − 0.5n
= 0.5

We mention that our generator (as well as the HSS generator) has an efficient parallel
implementation in time O(log n).6 This is opposed to the BBS generator which is not
known to have a fast parallel implementation (i.e. any faster than the straightforward
sequential implementation).

Another pseudorandom generator that is related to our work was proposed indepen-
dently by Genarro [G1]. This generator is proved to be secure assuming that discrete
exponentiation modulo a prime is hard to invert even when the exponent is of poly-
logarithmic length (this assumption is called Discrete-Log with Short Exponents; in
short, the DLSE-Assumption). Gennaro’s generator is more efficient than ours: given a
prime modulus of size n, every l modular multiplication yields n − l − 1 bits of output,
where l is poly-logarithmic in the size of n. However, Gennaro’s generator is based
on a strong and relatively new assumption (compared with the Factoring Assumption

5 Above, we compare the various generators with respect to the same security parameter. Still, one might
consider a comparison with respect to the same seed length. In order to do that we must normalize the
input/output sizes of our generator so that its seed length will be n. Thus, the output produced by our generator
will be of length 2n, the cost will be 0.5n and the amortized cost will again be 0.5 multiplications per an
additional output bit. Note, however, that the size of the security parameter in our construction will be twice
its size in the BBS and the HSS constructions. Thus, our construction will be safer. On the other hand, each
multiplication will involve twice as big numbers.

6 The parallel implementation uses �n/2� processors P1, . . . , P�n/2�, where the input of each processor Pi

is the i th bit of the seed, si , and the output is the multiplication of the values g2i−1·si contributed by each
processor.
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which has undergone years of extensive research). We mention that, as was shown in
[OW], the DLSE-Assumption is not secure for a random prime modulus, so that one
needs to restrict the primes to safe primes. Both generators (Gennaro’s and ours) are
based on a similar observation, except that ours is an immediate implication of our
main result (Theorem 3.2) and Gennaro’s generator is an immediate implication of the
DLSE-Assumption.

1.3. Organization

The rest of this work is organized as follows. Basic definitions and notations are given
in Section 2. In Section 3 we state and prove the main theorem (regarding the pseu-
dorandomness of exponentiation with a short exponent), show its equivalence to the
[HSS] result and discuss the difference between the two proofs. In Section 4 we address
the issue of constructing a pseudorandom generator based on results such as ours and
those in [HSS]. The issues addressed may be of general interest beyond the specific hard
problem on which our construction is based (i.e. factoring).

2. Preliminaries

2.1. General

Probability ensembles. Let I be a countable index set. A probability ensemble in-
dexed by I is a sequence of random variables indexed by I . Namely, X = {Xi }i∈I ,
where the Xi ’s are random variables, is a probability ensemble indexed by I .

In our applications, we use N as an index set, and let each Xn (in an ensemble of the
form {Xn}n∈N) range over strings of length n. In particular, we denote by Un the random
variable that is uniformly distributed over {0, 1}n .

Statistical difference. A basic notion from probability theory is the statistical difference
between probability ensembles {Xn}n∈N and {Yn}n∈N. The statistical difference measures
the distance between distributions and is defined to be

SD(Xn, Yn) = 1

2
·
∑

α

| Pr[Xn = α] − Pr[Yn = α]|.

Probability ensembles {Xn}n∈N and {Yn}n∈N are called statistically close if their statistical
difference is negligible in n (we say that a function µ: N → [0, 1] is negligible if for
every positive constant c and all sufficiently large n’s, µ(n) < 1/nc).

Computational indistinguishability. A weaker notion of closeness between probability
ensembles is the notion of indistinguishability by all efficient algorithms. When no
efficient algorithm (which may be probabilistic) can tell apart the two ensembles, we
call them computationally indistinguishable. Formally,

Definition 2.1. We say that two ensembles {Xn}n∈N and {Yn}n∈N are computationally
indistinguishable, if for every probabilistic polynomial-time algorithm D, for every
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positive constant c and for all sufficiently large n’s,

| Pr[D(Xn, 1n) = 1] − Pr[D(Yn, 1n) = 1]| <
1

nc
.

A notation. Let A be a finite set, then a ∈R A denotes that the element a is uniformly
chosen from the set A (i.e. each value is obtained with probability 1/|A|).

2.2. The Factoring Assumption

We denote by Nn the set of all n-bit integers N = P · Q, where P and Q are two
odd primes of equal length. The collection Nn can be sampled efficiently. Specifically,
given input 1n , it is possible to pick a random element in Nn in polynomial time (using
a polynomial number of coin tosses).

The problem of factoring integers is widely believed to be intractable. Integers be-
longing to the set Nn are considered to be particularly hard to factor. Note that Nn is
a non-negligible fraction of all n-bit integers. Currently, the best algorithm known can
factor an integer picked randomly from Nn in a (heuristic) running-time of e1.92n1/3 log2/3 n

[LLMP]. We use the following assumption.

Assumption 1 (Factoring Assumption). Let A be a probabilistic polynomial-time al-
gorithm. Then, for every constant c > 0 and all sufficiently large n’s,

Pr[A(P · Q) = P] <
1

nc
,

where N = P · Q is selected uniformly from Nn .

2.3. The Group Z∗
N

For a composite N , denote by Z∗
N the multiplicative group that consists of all the naturals

that are smaller than N and are relatively prime to it. We represent the elements in Z∗
N

by binary strings of size n = �log N�. Further notations we use are:

• Let x < N , and let 1 ≤ j ≤ i ≤ n. We denote by xi the i th bit in the binary
representation of x , and by xi, j the substring of x including the bits from position
j to position i .

• Denote by ordN (g) the order of an element g in Z∗
N ; that is, the minimal k ≥ 1 for

which gk = 1(modN ).
• Denote by 〈g〉 the subgroup of Z∗

N generated by g. That is, 〈g〉 is the set of all
elements of the form gx mod N for some x .

• Denote by Pn the set of pairs 〈N , g〉 where N ∈ Nn and g ∈ Z∗
N . Note that Pn is

efficiently samplable.

We now define the exponentiation modulo a composite function and its inverse the
discrete logarithm modulo a composite function.

Definition 2.2. Let 〈N , g〉 be a pair in Pn . We define the exponentiation modulo a
composite function fN ,g: {0, 1}∗ → 〈g〉 to be fN ,g(x) = gx mod N .
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Definition 2.3. Let 〈N , g〉 be a pair in Pn . We define the discrete log modulo a com-
posite function DLN ,g: 〈g〉 → [0, ordN (g)), where DLN ,g(y) is defined to be the unique
natural x < ordN (g) for which fN ,g(x) = y.

3. Exponentiation with a Short Exponent Is Pseudorandom

We introduce two probability ensembles, which we show to be computationally indis-
tinguishable assuming the intractability of factoring.

Definition 3.1. Let 〈N , g〉 be a uniformly distributed pair in Pn . Let R be uniformly
distributed in [0, ordN (g)) and let r be uniformly distributed in {0, 1}�n/2�. We denote by
Fulln the distribution 〈N , g, gR mod N 〉 and by Half n the distribution 〈N , g, gr mod N 〉.

Theorem 3.2. Suppose that factoring is intractable. Then the ensembles {Half n}n∈N

and {Fulln}n∈N are computationally indistinguishable.

3.1. Proof Outline

We use the hybrid technique in order to prove the indistinguishability of Fulln and Half n .
We define hybrid distributions Hi

n and show that, assuming the intractability of factoring,
for every i ≥ n/2, the distributions Hi

n and Hi+1
n are computationally indistinguishable.

Definition 3.3. Let 〈N , g〉 be a uniformly distributed pair in Pn , and let x be uniformly
distributed in {0, 1}i . We denote by Hi

n the distribution 〈N , g, gx mod N 〉 (see Fig. 1).

Clearly, the distribution H �n/2�
n is identical to Half n . In Section 3.4 we show that the

hybrid H n+ω(log n)
n is statistically close to Fulln . Thus, in order to establish Theorem 3.2,

it is sufficient to prove the following result.

Theorem 3.4. Suppose that Factoring is intractable. Then, for i ≥ �n/2�, the distri-
butions Hi

n and Hi+1
n are computationally indistinguishable.

We begin the proof of Theorem 3.4 by restricting the hybrid distribution defined above
to a specific choice of N and g. Specifically,

Fig. 1. We denote random bits by “*” and the length of the binary expansion of ordN (g) by m. Lines (1), (2)
and (3) show the exponents of Half n , Fulln and the hybrid Hi

n , respectively.
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Definition 3.5. Let 〈N , g〉 be any pair in Pn and let x be uniformly distributed in {0, 1}i .
We denote by Hi

N ,g the distribution 〈gx mod N 〉.

We prove that a polynomial-time algorithm D that distinguishes Hi
N ,g and Hi+1

N ,g with
a non-negligible advantage can be transformed into a polynomial-time algorithm D′ that
is able to extract the discrete-log of elements of the form gx mod N where |x | ≤ i + 1,
with respect to these N and g. That is:

Lemma 3.6. Let 〈N , g〉 be a pair in Pn and let i be polynomial in n. There exists an
explicit transformation from a polynomial-time algorithm D that distinguishes Hi

N ,g and

Hi+1
N ,g with a non-negligible advantage to a polynomial-time discrete-log finder D′, that

on input of the form gx mod N , where |x | ≤ i +1, finds x with overwhelming probability.

The last ingredient in the proof of Theorem 3.4 relies on the connection between
factoring N and computing the discrete logarithm modulo N . It is well known that in
order to factor N it is sufficient to compute S = DLN ,g(gN mod N ), for a random
g ∈ Z∗

N . An important feature of S is that its size (denoted |S|) is relatively small,
specifically, |S| = �n/2� + 1 = �log N�/2 + 1 (see Section 3.2 for further details).
Using Lemma 3.6, contradiction to Theorem 3.4 implies the ability to compute S and
thus factor N .

3.2. Factoring versus Discrete Logarithm in Z∗
N

As mentioned above, there is a tight connection between factoring N and revealing the
discrete logarithm of a suitably chosen element in Z∗

N . Specifically, in order to factor a
random integer N = P · Q in Nn , it is sufficient to find the discrete log of gN mod N
for a randomly chosen g ∈ Z∗

N . This is due to the following trivial fact:

Fact 1. Let 〈N , g〉 belong to Pn (say that N = P · Q). Then, if ordN (g) > P + Q − 1,

the discrete logarithm S
def= DLN ,g(gN ) is equal to P + Q − 1.

Proof. Recall that the order of g divides the order of the group Z∗
N , which equals

ϕ(N ) = (P −1)(Q −1). Therefore, gN ≡ gN−ϕ(N ) ≡ gP+Q−1(mod N ). Consequently,
if ordN (g) > P + Q − 1, then S = P + Q − 1.

The following proposition, established by Håstad et al. [HSS], asserts that an element
chosen uniformly in Z∗

N is very likely to be of high order:

Proposition 3.7 (Håstad et al.). Let 〈N , g〉 be uniformly distributed in Pn , where N =
P · Q. Then, for every k,

Pr

[
ordN (g) <

1

nk
· (P − 1)(Q − 1)

]
≤ O

(
1

n(k−4)/3

)
.

The only use we make of the above proposition, is to show that with very high probability,
ordN (g) cannot be too small. Specifically, Proposition 3.7 implies that with overwhelm-
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ing probability ordN (g) is greater than P + Q − 1. Therefore, as was first observed by
Chor [C], if we obtain S, then we can solve the two equations P + Q −1 = S (according
to Fact 1) and P · Q = N for the unknowns P and Q and thus factor N .

3.3. Transforming a Hybrid Distinguisher into a Discrete-Log Finder

The proof of Lemma 3.6 is basically a reduction. We show how to use the algorithm D
that distinguishes Hi

N ,g and Hi+1
N ,g as an oracle that gives us information on the (i + 1)st

bit of an (i +1)-long exponent. We then show how to manipulate gx in order to extract x .

3.3.1. Using D to Discover the (i + 1)st Bit of the Exponent

Assume that for some non-negligible ε the following holds:

| Pr[D(N , g, gx ) = 1 | x ∈R {0, 1}i ]

− Pr[D(N , g, gx ) = 1 | x ∈R {0, 1}i+1]| ≥ ε. (1)

Observe that

Pr[D(N , g, gx ) = 1 | x ∈R {0, 1}i+1]

= 1
2 · Pr[D(N , g, gx ) = 1 | x ∈R {0, 1}i ]

+ 1
2 · Pr[D(N , g, g2i +x ) = 1 | x ∈R {0, 1}i ]. (2)

From (1) and (2) we obtain the following:

| Pr[D(N , g, gx ) = 1 | x ∈R {0, 1}i ]

− Pr[D(N , g, g2i +x ) = 1 | x ∈R {0, 1}i ]| ≥ 2ε. (3)

Denote by H̄ i
N ,g the distribution g2i +x where x is drawn uniformly from {0, 1}i . Another

way to state inequality (3) is to say that the distinguisher D has advantage at least
2ε in distinguishing the distributions Hi

N ,g and H̄ i
N ,g . Let β and γ be the acceptance

probabilities of D on input taken from Hi
N ,g and H̄ i

N ,g , respectively. That is, let

β
def= Pr[D(N , g, gx ) = 1 | x ∈R {0, 1}i ] (4)

and

γ
def= Pr[D(N , g, g2i +x ) = 1 | x ∈R {0, 1}i ]. (5)

Without loss of generality assume that γ > β. Note that γ (respectively β) denotes
the probability that the “1-answer” given by D is correct (respectively wrong); i.e. the
(i + 1)st bit is indeed 1. A good approximation of β and γ can be easily obtained (in
polynomial time) by performing a priori tests on D, using samples taken from Hi

N ,g

and H̄ i
N ,g .

In what follows we will use the distinguisher D as an oracle, that enables us to “peek”
into a 1-bit window on the (i + 1)st location of an unknown exponent of length (i + 1).
Specifically, we will use D in order to derive the (i + 1)st bit of an (i + 1)-bit string x ,
given gx . This is straightforward in case γ = 1 and β = 0, but we will show how to
extract valuable information also in the general case of γ > β.
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3.3.2. Discovering x : a Naive Implementation

Suppose for a moment that we had a “perfect” oracle, that given input Z = gx , where x
is of length (i + 1), would supply us, with success probability 1, the (i + 1)st bit of x .
It would then enable us to extract x , using two simple operations:

Shifting to the left: By squaring Z we shift x by one position to the left.
Zeroing the jth bit: By dividing Z by g2 j−1

we zero the j th position in x , in case it is
known to be 1.

Therefore, we can extract x from the most significant to the least significant bit by
“moving” it under the (i + 1)st window. Specifically, we query the oracle and determine
the (i + 1)st bit of x and zero it in case it equals 1. Next, we shift x by one position to
the left, query again the oracle to discover the next bit, and so on.

However, as the oracle might give us erroneous answers and all we are guaranteed
is that there is a γ − β gap (which is greater than 2ε) between the probability to get a
correct 1-answer and the probability to get an erroneous 1-answer, our implementation
needs to be more careful.

When dealing with a general oracle, we randomize our queries to the oracle and
learn the correct answer by comparing the proportion of 1-answers with β and γ . A
straightforward way to learn the (i + 1)st bit of x given Z = gx , would be to query the
oracle on polynomially many random multiples Z · grk for known rk’s chosen uniformly
from {0, 1}i , and based on the fraction of 1-answers to decide between 0 and 1. However,
this approach fails, since despite our knowledge of rk , we cannot tell whether a carry
from the addition of the i least significant bits of the known rk and the unknown x effects
the (i + 1)st bit of their sum. Thus we cannot gain any information on the (i + 1)st bit
of x from the answer of the oracle on Z · grk .

3.3.3. Discovering x : the Actual Implementation

We now give a rough description of a procedure that resolves this difficulty and computes
x . Let us make our life easier and assume for start that x is of length i − m, where m
is logarithmic in n (say, m = �log n/ε�).7 We first show how to extract discrete logs of
exponents x of that size.

Let l be an index going down from i − m to 1. The procedure consists of i − m stages
(a stage for each value of l), where on each stage we create a list Ll which is a subset of
{0, . . . , 2i−m−l+1−1} such that Ll will contain candidates for the |x |−l+1 = i−m−l+1
most significant bits of x . We want two invariants to hold for the list Ll :

1. Ll contains an element e such that x − e · 2l belongs to the set {0, . . . , 2l − 1}. In
other words, we want e to equal xi−m,l (i.e. xi−m · · · xl+1xl).

2. The size of Ll is small; that is, it contains up to a polynomial number of values
(where the polynomial is set a priori).

Thus, on the last stage (when the index l equals 1), we will have a list of polynomial size
that contains x .

7 We assume that i ≥ m, since for i < m we can find x simply by trying all possibilities.
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The values in each list are kept sorted. The transition from the (l +1)st list to the lth list
is done as follows: We first let Ll contain all the values v such that v = 2u or v = 2u +1
where u is in Ll+1, thus making the size of Ll twice the size of Ll+1. Obviously, by
this we maintain the first invariant specified above. In case the size of Ll exceeds the
polynomial bound we fixed, we use repeatedly a Trimming Rule (to be described next)
in order to throw candidates out of Ll until we are within the maximal size allowed. We
stress that the Trimming Rule never throws away the correct candidate (i.e. xi−m,l).8

3.3.4. Keeping the Size of Ll Bounded

Suppose that we decide to trim Ll whenever the difference between the largest candidate
in it, denoted by vl

max, and the smallest candidate in it, denoted by vl
min, exceeds a

certain polynomial, say 2m (recall that m = �log n/ε� and since ε is non-negligible,
we have that 2m is polynomial in n). At least one of the values vl

max and vl
min is not

the correct value xi−m,l . Therefore, the Trimming Rule (to be defined in what follows)
may throw one of them out of the list. For this purpose, we define a new target x ′ (see
Section 3.3.5), for which gx ′

can be efficiently computed given Y = gx , vl
max and vl

min.
We will examine a certain position in it (that is dependent on l), henceforth referred
to as the crucial position (shortly denoted cp). Essentially, x ′ will have the following
properties:

1. If vl
min is the correct candidate (i.e. xi−m,l = vl

min), then the cp-bit in x ′ is 0, so are
m bits to its right and so are all the bits to its left.

2. If vl
max is the correct candidate (i.e. xi−m,l = vl

max), then the cp-bit in x ′ is 1, the m
bits to its right are all 0’s and so are all the bits to its left.

Consequently, in these two situations we will be able to perform the randomization we
wanted. We first shift x ′ to the left until the cp-bit is placed in the (i + 1)st location (by
repeated squaring). We then multiply the result by gr for some randomly chosen r ∈
{0, 1}i . The probability to have a carry into the (i+1)st location from the addition of r and
the shifted x ′, is no more than 1/2m (a carry might occur only when ri,i−m+1 = 11 · · · 1).
Hence, by using a polynomial number of queries to the oracle (with independently chosen
r ’s) we are able to deduce the value of the cp-bit by comparing the fraction of 1-answers
with β and γ .

As the value of the cp-bit is revealed, we can discard one of the candidates vl
min or

vl
max from the list: if the value of the cp-bit is 1, then we are guaranteed that vl

min is
not correct, and if the value of the cp-bit is 0, then we are guaranteed that vl

max is not
correct.

Note that in case neither vl
max nor vl

min are correct, we cannot ensure that m bits to the
right of the cp-bit in x ′ will be 0’s, so a carry may reach the (i + 1)st position. Thus
we can get the frequency of 1-answers altogether different from β and γ . Yet in that
case, it is OK for the Trimming Rule to discard either one of the extreme values from
the list.

We proceed with a formal presentation of the proof.

8 The Trimming Rule and its analysis are exactly the same as in [HSS].
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3.3.5. Definition of x ′ and cp

In order to trim the list Ll , we define the new secret x ′ (which is a function of l, x , vl
min

and vl
max) to be

x ′ =
⌈

22m

vl
max − vl

min

⌉
· (x − vl

min · 2l).

Note that gx ′
can be efficiently evaluated given Y = gx , vl

min and vl
max. The crucial

position in x ′ is defined to be

cp = l + 2m + 1

Recall that l ≤ i − m and so cp ≤ i + m + 1. However, we need to have cp ≤ i + 1,
whenever we apply the Trimming Rule. This can be assured, because we trim Ll whenever
the difference between the extreme values in it exceeds 2m , which happens only for
indices l ≤ i − 2m. Thus, we have that cp ≤ 2m + i − 2m + 1 = i + 1.

3.3.6. The Actual Algorithms and Their Analysis

We first describe the procedure “Find x” that on input 〈N , g〉 ∈ Pn , index i (the index of
the hybrid for which the acceptance probability of D on Hi

N ,g and H̄ i
N ,g differs by more

than 2ε) and Y = gx , where |x | = i − m, finds x . We proceed with an analysis of the
procedure, which leads us to the exact formulation of the Trimming Rule.

Procedure “Find x”
On input 〈N , g〉 ∈ Pn , index i and Y = gx where |x | = i − m,
execute the following steps:

1. Let Li−m = {0, 1}.
2. For l = i − m − 1 to 1 do the following:

(a) Let Ll
def= {2u, 2u + 1: u ∈ Ll+1}.

Order the resulting list from the largest element vl
max to the smallest

element vl
min.

(b) If vl
max − vl

min > 2m (we are guaranteed that vl
max − vl

min ≤ 2 · 2m by
the previous stage) use the Trimming Rule (to be specified) repeatedly
until the difference between the largest element in the list and the
smallest one is no more than 2m .

3. Check all values v ∈ L1 and see whether gv equals Y . If such a value is
found, then it is x .

Two facts. We make two observations which lead us to the formulation of the rule by
which we trim Ll (assuming that 2m < vl

max − vl
min ≤ 2m+1):

Fact 2. Suppose that vl
min indeed equals xi−m,l . Then the cp-bit in x ′ is 0, all the bits

to its left are 0’s and m − 1 bits to its right are 0’s as well.

Fact 3. Suppose that vl
max indeed equals xi−m,l . Then the cp-bit in x ′ is 1, all the bits

to its left are 0’s and so are m − 2 bits to its right.
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x ′ = 0 0 0 0 0 0 0 0 0 0 ? ? ?
↑ ↑
cp cp − m

Fig. 2. The structure of x ′ when vl
min equals xi−m,l .

Proof of Fact 2. Using vl
max − vl

min > 2m , observe that

x ′ =
⌈

22m

vl
max − vl

min

⌉
· (vl

min · 2l + xl,1 − vl
min · 2l)

≤ 2m · xl,1

≤ 2m+l

= 2cp−m−1.

(See Fig. 2.)

Proof of Fact 3. Observe that

x ′ =
⌈

22m

vl
max − vl

min

⌉
· (vl

max · 2l + xl,1 − vl
min · 2l)

=
⌈

22m

vl
max − vl

min

⌉
· ((vl

max − vl
min) · 2l + xl,1)

= 22m+l + δ · (vl
max − vl

min) · 2l +
⌈

22m

vl
max − vl

min

⌉
· xl,1,

where

δ =
⌈

22m

vl
max − vl

min

⌉
− 22m

vl
max − vl

min

∈ [0, 1).

Let U1 = δ · (vl
max − vl

min) · 2l and let

U2 =
⌈

22m

vl
max − vl

min

⌉
· xl,1.

We can write x ′ as

x ′ = 2cp−1 + U1 + U2.

Recall that 2m < vl
max − vl

min ≤ 2m+1. Therefore, U1 ≤ 2m+1+l = 2cp−m and U2 ≤
2m+l = 2cp−m−1. Also, both U1, U2 ≥ 0. Thus, U1 + U2 ∈ [0, 2cp−m+1). Consequently
x ′ is of the following form (see Fig. 3):

• The cp-bit in x ′ is 1 and all the bits to its left are 0’s.
• The m − 2 bits to the right of the cp-bit in x ′ are 0’s.
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x ′ = 0 0 0 0 0 1 0 0 0 ? ? ? ?
↑ ↑
cp cp − m + 1

Fig. 3. The structure of x ′ when vl
max equals xi−m,l .

We now formally state the Trimming Rule:

Trimming Rule (on the current list Ll with vl
min and vl

max)

1. Compute Y ′ = gx ′ = (Y · g−vl
min·2l

)e where Y = gx and e =
�22m/(vl

max − vl
min)�.

2. Shift x ′ by i + 1 − cp bits to the left (by computing Y ′′ = (Y ′)2i+1−cp
),

thus placing the crucial position (i.e. cp) in x ′ on location i + 1.
3. Pick t (n) = n4/ε2 random elements r1, . . . , rt (n) ∈ {0, 1}i−m .
4. For each 1 ≤ k ≤ t (n) query the oracle on Y ′′ · grk (mod N ) and denote

by bk its answer (i.e. bk = D(gx ′ ·2i+1−cp+rk )). Denote by M the mean∑t (n)
k=1 bk/t (n).

5. If M ≤ (β + (γ − β)/2) discard the candidate value vl
max from the list

Ll . Otherwise (i.e. when M > (β + (γ − β)/2)) discard the candidate
value vl

min.

Using the Chernoff bound one can show that the error probability of the Trimming Rule
(i.e. the probability that the correct value will be discarded from the list) is exponentially
small (for the exact proof see our technical report [GR]). Note that for every index l, the
transition from the (l + 1)st list to the lth list is done in polynomial time, and thus the
procedure “Find x” together with the Trimming Rule runs in polynomial time. Thus, we
have showed how to extract the discrete-log of exponents x of size i − m.

In order to complete the proof of Lemma 3.6, we still need to explain how can we
extract the discrete-log of exponents x of size i + 1. Remember that m was chosen to
be logarithmic in n (i.e. m = �log n/ε�). We can simply try all combinations for the
m + 1 most significant bits of x . For each such combination try to zero these bits in x
and run the procedure “Find x”. For one of these combinations this will work and x will
be found in the list Li−m . Since “Find x” runs in polynomial time and since the number
of combinations 2m+1 is polynomial, x can be derived with overwhelming probability in
polynomial time.

3.3.7. Proof of Theorem 3.4

We now show that the hybrids Hi
n and Hi+1

n are indistinguishable assuming intractability
of factoring. Specifically, Theorem 3.4 can be derived from the following claim:

Claim 3.7.1. Suppose that the gap between the acceptance probability of D on the
hybrids Hi

n and Hi+1
n is greater than ε. Then, with probability at least ε/8, we can factor

a composite N , uniformly distributed in Nn .
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Proof. Let Wn ⊆ Pn be the set of pairs 〈N , g〉 in Pn for which it holds that D distin-
guishes Hi

N ,g and Hi+1
N ,g with advantage at least ε/2. For a pair 〈N , g〉 uniformly chosen

from Pn (where N is equal to P · Q) the following two facts hold:

1. With probability greater than ε/2, the pair 〈N , g〉 belongs to the set Wn .
2. With overwhelming probability ordN (g) > P + Q − 1.

The first fact can be established from a standard averaging argument and the second
fact from Proposition 3.7. Therefore, given a random N = P · Q in Nn , we can pick
g uniformly in Z∗

N and with probability higher than ε/4 both of the above conditions
hold (i.e. 〈N , g〉 ∈ Wn and ordN (g) > P + Q − 1). Recall now that factoring N is
possible by finding the discrete-log of S = DLN ,g(gN ). According to Fact 1, we have
that S = P + Q + 1, so by revealing S we can factor N . Since 〈N , g〉 ∈ Wn , we
can extract discrete-logs of elements of the form gx mod N , where x ∈ {0, 1}i+1, with
overwhelming probability (using Lemma 3.6). Thus, with probability at least ε/8 (over
the uniform distribution of N ∈ Nn and our algorithm’s coin tosses), we extract S (using
the fact that the size of S is �n/2� + 1 ≤ i + 1) and factor N .

Remark. In fact, Theorem 3.4 holds even for i’s such that i ≥ �n/2� − O(log n)

(rather than i ≥ �n/2�). Given such i < �n/2�, we try all combinations for the m + 1 +
�n/2�− i most significant bits of S (instead of just m +1 such bits). The total number of
combinations remains polynomial in n, so this leaves us with polynomial running time.

3.4. Proof of the Main Theorem

We now turn back to Theorem 3.2, and prove it using Theorem 3.4.
Recall how the distributions Half n and Fulln were defined (see Definition 3.1). Clearly,

the hybrid H �n/2�
n is identical to Half n . Note that the distribution H n+ω(log n)

n is statistically
close to Fulln , as asserted by the following claim:

Claim 3.7.2. The distributions Fulln and H n+ω(log n)
n are statistically close.

Proof. Let M denote 2n+ω(log n). M can be written as k · ordN (g) + r where k is an
integer and 0 ≤ r < ordN (g). We now calculate the statistical difference between the
distributions Fulln and H n+ω(log n)

n . Note that the first equality below is implied from the
fact that in fN ,g(x) the exponent x is reduced modulo ordN (g):9

SD(Fulln, H n+ω(log n)
n ) = 1

2

∑
α∈[0,ordN (g))

| Pr[Fulln = α] − Pr[H n+ω(log n)
n = α]|

= 1

2

[
r ·

∣∣∣∣ 1

ordN (g)
− k + 1

M

∣∣∣∣ + (ordN (g) − r)

·
∣∣∣∣ 1

ordN (g)
− k

M

∣∣∣∣
]

.

9 Thus, for each element 0 ≤ x < r there will be k + 1 congruent elements (modulo ordN (g)) in the range
[0 · · · M − 1], and for each element r ≤ x < ordN (g) there will be k congruent elements in [0 · · · M − 1].



86 O. Goldreich and V. Rosen

Using the fact that

k

M
≤ 1

ordN (g)
≤ k + 1

M

we may remove the absolute values and rewrite the above equation as

1

2

[
r ·

(
k + 1

M
− 1

ordN (g)

)
+ (ordN (g) − r) ·

(
1

ordN (g)
− k

M

)]

= 1

2

[
(ordN (g) − 2r) · r

M · ordN (g)
+ r

M

]

≤ r

M
,

where the inequality uses r ≥ 0. Since

r

M
<

N

M
≤ 2n

2n+ω(log n)
,

we have that SD(Fulln, H n+ω(log n)
n ) is negligible in n.

Consequently, if there exists a probabilistic polynomial-time algorithm D, that dis-
tinguishes the ensemble Half n from Fulln , then D distinguishes (almost) as well Half n
from H 1.5n

n .
Assume now that the gap between the acceptance probability of D on the extreme

hybrids H �n/2�
n and H 1.5n

n is greater than δ (where δ is non-negligible). We construct an
algorithm A that factors integers uniformly distributed in Nn . On input N , algorithm A
picks a random i in {�n/2�, . . . , 1.5n} and runs the procedure “Find x” on (N , i). By
Claim 3.7.1, the probability that “Find x” indeed factors N , is greater than one-eighth
of the gap between the acceptance probabilities of D on Hi

n and Hi+1
n , for a random i as

above. Observing that the expected gap between the i th and (i + 1)st hybrids is at least
δ/n, we derive a contradiction to Assumption 1.

Remark. The above proof actually establishes the indistinguishability of Half n and
Hl(n)

n for any l(n) = n + ω(log n) such that l(n) ≤ poly(n).

3.5. Equivalence to the HSS Result

Theorem 3.2 is actually equivalent to the result by Håsted et al. [HSS] on the simultaneous
hardness of the upper �n/2� bits in the exponentiation function fN ,g . In order to show that,
we discuss first an alternative version of Theorem 3.2. Recall the hybrid Hl(n)

n defined
in the proof of Theorem 3.2, including triplets 〈N , g, gR〉, where 〈N , g〉 is uniformly
distributed in Pn and R is uniformly distributed in {0, 1}l(n). For any function l: N → N

such that l(n) ∈ {n + ω(log n), . . . , poly(n)} (e.g. l(n) = 1.5n), we denote Hl(n)
n by

F̃ulln . The following is a corollary from Theorem 3.2 and from Claim 3.7.2.

Corollary 3.8. The probability ensembles {Half n}n∈N and {F̃ulln}n∈N are computa-
tionally indistinguishable.
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We show that Corollary 3.8 is equivalent to the result of Håsted et al. [HSS]. However,
first, we give the exact formulation of their result.

Definition 3.9. Let 〈N , g〉 be uniformly distributed in Pn , let x be uniformly distributed
in {0, 1}l(n) and let r be uniformly distributed in {0, 1}�n/2�. We define the following
probability distributions:

Xn
def= 〈N , g, fN ,g(x), xl(n),�n/2�〉

and
Yn

def= 〈N , g, fN ,g(x), r〉.

Theorem 3.10 (Håstad et al.). The probability ensembles {Xn}n∈N and {Yn}n∈N are
computationally indistinguishable.10

3.5.1. The Equivalence

Theorem 3.11. Theorem 3.10 holds if and only if Corollary 3.8 holds.

Proof. We show how to transform a probabilistic polynomial-time algorithm D that
distinguishes the ensemble {Xn} from {Yn} into a probabilistic polynomial-time algorithm
D′ that distinguishes the ensemble {Half n} from {F̃ulln}, and vice versa.

Transforming D into D′. On input 〈N , g, y〉, pick z uniformly from {0, 1}l(n)−�n/2� and
run D on 〈N , g, y · gz·2�n/2�

, z〉. Return D’s answer as output. Observe that:

1. If 〈N , g, y〉 is taken from Half n , then y = gr where r ∈ {0, 1}�n/2�. Therefore, we
have that 〈N , g, gz·2�n/2�+r , z〉 is distributed as Xn .

2. If 〈N , g, y〉 is taken from F̃ulln , then y = gR , where R ∈ {0, 1}l(n). Let Um denote
a uniformly distributed m-bit string and let ≈ denote statistical closeness. Then

(Ul(n) + z · 2�n/2�) mod ordN (g) ≈ Ul(n) mod ordN (g).

Therefore, 〈N , g, gz·2�n/2�+R, z〉 is statistically close to Yn .

Thus, Theorem 3.10 is implied by Corollary 3.8.

Transforming D′ into D. On input 〈N , g, y, z〉, run D′ on 〈N , g, y/gz·2�n/2� 〉 and output
D′’s answer. Observe that:

1. If 〈N , g, y, z〉 is taken from Xn , then y = fN ,g(x) = gx and z = xl(n),�n/2�.
Therefore, y/gz·2�n/2� = gx�n/2�,1 and thus 〈N , g, y/gz·2�n/2� 〉 is uniformly distributed
in Half n .

10 Actually, the definition of simultaneous hardness of the upper �n/2� bits of fN ,g is wrong in [HSS]. Håsted
et al.’s definition states that the two distributions 〈x̃n,�n/2�, Z〉 and 〈r, Z〉 are computationally indistinguishable,
where Z = gx (for x ∈R Z∗

N ), x̃ = DLN ,g(Z) and r ∈R {0, 1}�n/2�. However, this definition is flawed: at
least the most significant bit in the first distribution, x̃n , will always be 0, since ordN (g) is always smaller than
N/2. Hence the above two distributions can be easily distinguished.
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2. If 〈N , g, y, z〉 is taken from Yn , then y = fN ,g(x) = gx and z is independent of x .
Note that

(Ul(n) − z · 2�n/2�) mod ordN (g) ≈ Ul(n) mod ordN (g).

Therefore, 〈N , g, y/gz·2�n/2� 〉 is statistically close to F̃ulln .

Thus, Theorem 3.10 implies Corollary 3.8.

Further discussion of the above equivalence is given in Section 3.3.3 of [R3].

3.5.2. Discussion

Our proof of Theorem 3.2 simplifies to a great extent the proof given in [HSS] to
Theorem 3.10. The main reason for this is that we use an oracle that distinguishes
between the hybrids Hi

n and Hi+1
n , instead of an oracle that predicts the i th bit of x ,

given fN ,g(x). Unlike [HSS], we can use i’s as big as we want, avoid the difficulties
with biased bits and eliminate the dependence on the order of g in the basic procedure
(Lemma 3.6). More specifically:

• Unlike in [HSS], we do not require that the order of g in Z∗
N be very high (i.e.

greater than n−k · (P −1)(Q −1)). Theorems 3.2 and 3.4 only require that the order
of g be greater than P + Q − 1, while for Lemma 3.6 the order of g is irrelevant.

• We do not need to consider separately the O(log n) most significant bits as done in
[HSS] (where a very complex proof is given for these bits).

• As a consequence from the different nature of the oracles, the randomization con-
ducted by us (randomizing the bottom i bits) is different from the randomization
done in [HSS] (randomizing the full range [0, ordN (g))). Therefore many of the
difficulties encountered in [HSS] are not relevant in our proof. For example, we do
not need to avoid a wrap around the order of g.

4. Application to Pseudorandom Generators

An immediate application of Theorem 3.2 yields an efficient factoring-based pseudo-
random generator which nearly doubles the length of its input. An additional tool used
is a construction by Goldreich and Wigderson of a tiny family of functions which has
good extraction properties [GW]. We also discuss how the parameters of the generator
(a composite N ∈ Nn and an element g ∈ Z∗

N ) can be chosen in a randomness-efficient
way (which is polynomial time). In particular, we present a method of choosing a ran-
dom n-bit prime using only a linear number of random bits. This translates to a hitting
problem which can be solved efficiently using methods described in [G3].

4.1. Our Construction versus the HSS Construction

Looking at Theorem 3.2, the first construction that comes to mind is a “pseudorandom
generator” that takes a seed r of length �n/2� and outputs gr mod N (for a fixed pair
〈N , g〉 in Pn). However, the output of the above so-called “pseudorandom generator”
is not really pseudorandom. Even though it is computationally infeasible to distinguish
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between it and the distribution gR mod N for a random R in [0, ordN (g)), we are not
guaranteed that it cannot be easily told apart from the uniform distribution on n-bit strings.
The same applies for a “pseudorandom generator” implied directly by Theorem 3.10,
which takes a seed x of length n, and outputs gx mod N followed by x�n/2�,1 (again, for
fixed 〈N , g〉 in Pn).

Denote by Half N ,g the distribution gr mod N , where r is uniformly distributed over
strings of length �n/2�, and by FullN ,g the distribution gR mod N , where R is uniformly
distributed over [0, ordN (g)). Observe that the “amount of randomness” that FullN ,g

encapsulates in it is high, in the sense that it does not assign a too large probability
mass to any value. More formally, we measure the “amount of randomness” in terms of
min-entropy (see [CG]).

Definition 4.1. Let X be a random variable. We say that X has min-entropy k, if for
every x we have that Pr(X = x) ≤ 2−k .

The distribution FullN ,g has min-entropy greater than κ , where

κ
def= κ(N , g)

def= �log(ordN (g))�.

The following fact is an immediate consequence of Proposition 3.7:

Fact 4. Let 〈N , g〉 be uniformly distributed in Pn , then κ ≤ n− 1
2 log2 n with negligible

probability.

Using hash functions which have good extracting properties, we are able to “smoothen”
the distribution FullN ,g , and extract from it an almost uniform distribution over strings of
length n− log2 n. To be more formal, we use a family of functions F having an extraction
property, satisfying that for all but an ε fraction of the functions in F , a distribution over
strings of length n having min-entropy n − 1

2 log2 n is mapped to a distribution over
strings of length n − log2 n which is ε-close to uniform (we refer to ε, which is generally
taken to be negligible in n, as the quality-parameter of the extraction property achieved
by F). The price we pay for the use in extractors is reflected in a lower expansion factor
of the pseudorandom generators. Specifically, we need to use a part of the random seed
in order to choose a random function in the family F that we are using.

Håstad et al. [HSS] used a universal family of hash functions [CW1] in their con-
struction of a pseudorandom generator. The quality parameter achieved by this family
of functions is exponentially small in n (and therefore has the best possible quality).
However, a universal family of hash functions has to be large: exponential in n. Thus
the number of random bits needed to generate (and represent) a function in this family
is polynomial in n, resulting in a considerably large loss in the expansion factor of their
generator.

Instead, we use an explicit construction due to Goldreich and Wigderson [GW] of
a family of functions, which exhibits a tradeoff between the size of the family and the
quality parameter ε of the extraction property it achieves. Specifically, they demonstrate a
construction of a family of functions of size poly(n/ε) achieving the extraction property
with quality ε. Taking, for example, ε = n− log n , yields a family of functions of very
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good quality (not exponentially small in n but still negligible in n), where each function
in the family can be represented using O(log2 n) bits. Let F be such a family, where
each f ∈ F maps {0, 1}n to {0, 1}n−log2 n . Thus, we get

Construction 4.2. We define the mapping G N ,g: {0, 1}�n/2�+O(log2 n) → {0, 1}n as
follows: Let x ∈ {0, 1}�n/2� and f ∈ F . Then

G N ,g( f, x)
def= ( f, f (gx mod N )).

Theorem 4.3. G N ,g is a pseudorandom generator.

Proof Sketch. Let Um denote the uniform distribution over {0, 1}m . Let r and R be
uniformly distributed in {0, 1}�n/2� and [0, ordN (g)), respectively. By Theorem 3.2,
( f, f (gr mod N )) is indistinguishable from ( f, f (gR mod N )), which in turn is sta-
tistically close to UO((log n)2)+(n−(log n)2).

For further details, see our Technical Report [GR].

Increasing the expansion factor of the generator. The pseudorandom generator de-
scribed above almost doubles the length of its input. However, such a small expansion
factor has limited value in practice. Still, it is well known that even a pseudorandom
generator G producing n + 1 bits from an n-bit seed can be used in order to construct
a pseudorandom generator G ′ having any arbitrary polynomial expansion factor (see,
e.g. Theorem 3.3.3 in Section 3.3 of [G2]). Unfortunately, the cost of the latter trans-
formation is rather high: producing each bit in G ′’s output requires one evaluation of
G. Nevertheless, since our generator G N ,g has an expansion factor of nearly 2 to start
with, we can do better than that: G N ,g can be used to construct a generator G ′

N ,g having

an arbitrary polynomial expansion factor, such that for every n/2 − O(log2 n) bits of
output, one evaluation of G N ,g is required. We remark that the issue of increasing the
expansion factor of G N ,g is relevant mostly due to the need to pick the parameters N
and g randomly, which requires O(n) additional random bits (as will be explained in the
subsequent subsection). Our suggestion is to pick randomly N and g, set them once and
for all, and construct a pseudorandom generator having a large expansion factor using
this specific G N ,g . This way the cost of picking N and g becomes negligible (compared
with our “profit” from the new generator). We describe now how in general one uses a
generator G: {0, 1}n → {0, 1}n+l(n) (for an integer function l) to construct a generator
G ′: {0, 1}n → {0, 1}l(n)·p(n), for any arbitrary polynomial p(·).

Construction 4.4. Let l: N → N be an integer function satisfying l(n) > 0 for every
n ∈ N, let p(·) be a polynomial and let G: {0, 1}n → {0, 1}n+l(n) be a deterministic

polynomial-time algorithm. Define G ′(s) = τ1 · · · τp(n), where s0
def= s, the string si is

the n-bit long suffix of G(si−1) and τi is the l(n)-bit long prefix of G(si−1), for every
1 ≤ i ≤ p(n) (i.e., τi si = G(si−1)).

Theorem 4.5. If G is a pseudorandom generator, then so is G ′.
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Theorem 4.5 is a generalization of Theorem 3.3.3 proven in [G2] (regarding a generator
producing n + 1 bits from an n bit seed). Observe that for every l(n) output bits of G ′,
one evaluation of G is required. Using our generator G N ,g as the building block, we
obtain a generator G ′

N ,g that expands input of size n/2 + O(log2 n) to output of size nc

using approximately nc/(n/2) applications of G N ,g .

4.2. An Efficient Choice of the Parameters (N and g)

In order to use the generator G N ,g we need to generate the parameters N and g from a
primary seed in an “efficient” way, where by “efficient” we mean that both the running
time and the amount of randomness used should be as small as possible. The major
challenge is to generate efficiently two uniformly distributed primes P and Q, in order
to obtain a random N = P · Q in Nn . A random element g in Z∗

N can be chosen using
O(n) random coins by picking a random number in {0, 1}n+log2 n and reducing it modulo
N (only with negligible probability the element obtained will not be relatively prime to
N ). We describe now a general method by which we can pick a random n-bit prime in
polynomial time, using only a linear number of random coins.

The trivial algorithm to choose a random n-bit prime is to repeat the following two
stages until a prime x is output:

1. Choose a random integer x in {0, 1}n .
2. Test whether x is a prime. If it is, stop and output x .

Since the density of primes in {0, 1}n is approximately 1/n, the expected number of
times that the above loop is performed is approximately n. Even assuming that we have a
deterministic primality test, the above algorithm requires an expected O(n2) random bits.
We now show how to perform poly(n) dependent iterations of the loop using only O(n)

random bits (rather than doing O(n) independent iterations using O(n2) random bits).
We use, however, a probabilistic primality tester of Bach [B], which is a randomness-
efficient version of the Miller–Rabin [M], [R2] primality tester.

Theorem 4.6 (Randomness-Efficient Primality Tester [B]). There exists a probabilis-
tic polynomial-time algorithm that on input P uses |P| random bits so that if P is a
prime, then the algorithm always accepts, and otherwise (i.e. P is a composite) the
algorithm accepts with probability at most 1/

√
P .

Combining the above procedures, we have

Corollary 4.7. There exists a probabilistic polynomial-time algorithm that uses 2n
random coins such that:

1. With probability �(1/n) outputs an n-bit prime. Furthermore, the probability to
output a specific prime is 2−n .

2. With probability 1 −�(1/n)− exp(−n) outputs a special failure sign, denoted ⊥.
3. With probability at most 2−n/2 outputs a composite.

We refer to the algorithm guaranteed from Corollary 4.7 as a black-box. We associate
every string s ∈ {0, 1}2n with the output of the black-box given s as its random coins.
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Denote by W the set of strings in {0, 1}2n that are associated with an n-bit prime.
Corollary 4.7 implies that the density of W within {0, 1}2n is �(1/n). The problem of
uniformly picking an n-bit prime translates to a hitting problem, where we need to find
a string s ∈ W (which is subsequently used as random input for the black-box in order
to yield a prime). An additional requirement is that the distribution of primes obtained
in this way will be very close to uniform. Our goal is to find an algorithm that hits W ,
whose randomness complexity is linear in n. This goal can be achieved using standard
techniques; see our Technical Report [GR].
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