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Abstract. Morphological shared-weight neural networks
(MSNN) combine the feature extraction capability of math-
ematical morphology with the function-mapping capabil-
ity of neural networks in a single trainable architecture.
The MSNN method has been previously demonstrated us-
ing a variety of imaging sensors, including TV, forward-
looking infrared (FLIR) and synthetic aperture radar (SAR).
In this paper, we provide experimental results with laser
radar (LADAR). We present three sets of experiments. In
the first set of experiments, we use the MSNN to detect dif-
ferent types of targets simultaneously. In the second set, we
use the MSNN to detect only a particular type of target. In
the third set, we test a novel scenario, referred to as the Sims
scenario: we train the MSNN to recognize a particular type
of target using very few examples. A detection rate of 86%
with a reasonable number of false alarms was achieved in
the first set of experiments and a detection rate of close to
100% with very few false alarms was achieved in the second
and third sets of experiments. In all the experiments, a novel
pre-processing method is used to create a pseudo-intensity
images from the original LADAR range images.
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1 Introduction

Designing a system to automatically detect a certain type
of object (target) in a scene is a challenging problem that
has yet to be fully automated. Automatic target recognition
(ATR) systems must (1) have the ability to suppress clutter
and noise, (2) have a high detection rate and low number
of false alarms, and (3) tolerate the target’s image variabil-
ity (e.g., rotation, translation, illumination, and partial oc-
clusion) [Bhanu et al. 1983; Bhanu and Jones 1992; Roth
1990].

Many authors have considered ATR using different tech-
niques and imagery/data sets [Bhanu et al. 1997]. Some ATR
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systems rely on forming prototypical examples (templates)
of a target’s variability and then performing template match-
ing for target identification. Other ATR systems extract target
features that are invariant to position/rotation and use them
to classify possible targets. Many feature-based approaches
rely on human vision and intuition for the identification of
meaningful features. Sometimes this leads to unintentional
biases, because some image modalities are fundamentally
different than visual imagery (e.g., in synthetic aperture radar
(SAR) imagery, resolution does not depend on the distance
from the target) [Koch et al. 1995; Sajda et al. 1995].

Some ATR systems detect possible targets by comparing
the statistical characteristics of the pixels in the target win-
dow to a pre-defined threshold or to the characteristics of
pixels in an annulus window placed around the target. Such
systems include the constant-false-alarm rate (CFAR) filter,
the DEVLIN filter, and the LODARK filter [Moore 1998;
Li and Zelnio 1996].

Another approach widely used in ATR is the use of cor-
relation filters. For a certain input image, the output plane is
computed by cross-correlating the input image with the de-
signed filters. The ultimate goal of designing the filters is to
produce a high output at the positions of the targets and very
small output elsewhere. Examples of such filters include the
synthetic discriminant function (SDF), and the minimum av-
erage correlation energy filter (MACE) [Casasent and Chang
1986; Casasent and Ravichandran 1992; Mahalanobis et al.
1987; Sims et al. 1994; Won 1995; Hobson et al. 1994].

Morphological shared-weight neural networks (MSNN)
have been shown to outperform both MACE filters and
standard shared-weight neural networks (SSNN) of iden-
tical structure in ATR applications (more detections and
fewer false alarms) [Won 1995; Won et al. 1997]. The
MSNN multi-sensor capabilities in ATR have been pre-
viously demonstrated using different imagery data sets in
the visible and beyond-visible spectrums including forward-
looking infrared (FLIR) [Won 1995; Won et al. 1997] and
SAR [Theera-Umpon et al. 1998; Khabou et al. 1999].

In this paper, we provide results with laser radar
(LADAR). We present three sets of experiments. In the first
set of experiments, we use the MSNN to detect different
types of targets simultaneously. In the second set, we use
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Fig. 1. Architecture of shared-weight neural networks

the MSNN to detect only a particular type of target. In the
third set, we test a novel scenario that was suggested to us
by Richard F. Sims, which we shall refer to as the Sims sce-
nario. The scenario is the following: a reconnaissance-type
flight acquires a very small number of images of a particular
scene. These images are downloaded to a training program
that is trained to recognize one or more particular objects in
the scene. The training program must operate very quickly.
The resulting ATR algorithm is downloaded into another
system which returns to the physical scene. Of course, the
objects in the scene may have moved and the angle of en-
try into the scene may be different. The ATR must detect
examples of the object in the new images.

Our LADAR data set is structured to support this sce-
nario. We trained the MSNN to recognize a particular type
of object in a particular scene using very few examples (one
or two). It then needed to detect the objects in other images
from differentviewing angles. Although the objects are very
small and look very similar to the clutter, the results are
good enough to indicate that this is a realistic approach to
ATR.

This paper is organized as follows. First, we briefly de-
scribe the MSNN architecture, then we describe the LADAR
data set and the novel pre-processing scheme we used in our
experiments. Finally, we present the experimental results.

2 MSNN architecture

Before describing the MSNN architecture, we provide brief
definitions of some gray-scale morphological operations. A
full discussion can be found in [Dougherty 1992; Serra 1982,
1988; Haralick et al. 1997]. The basic morphological opera-
tions of erosion and dilation of an imagef by a structuring
element (SE)g are

erosion : (f 	 g)(x) = min{f (z)−gx(z) : z ∈ D[gx]} , (1)

dilation : (f ⊕ g)(x) = max{f (z)−g∗
x(z) : z ∈ D[g∗

x]} , (2)

wheregx(z) = g(z − x), g∗(z) = −g(−z) and D[g] is the
domain ofg. The gray-scale hit-miss transform is defined as

f ⊗ (h, m) = (f 	 h) − (f ⊕ m∗) . (3)

a

b

c

Fig. 2. Ground-truth layout of thea “crossroads”,b “SAM site” and c
“convoy” scenes showing the different flight paths (dashed arrows)

It measures how a shapeh fits underf using erosion and
how a shapem fits abovef using dilation. High values
indicate good fits.

MSNN has the same architecture as SSNN, except that
MSNN extract features using a hit-miss transform instead
of linear convolution. MSNN is composed of two cascaded
sub-networks, called stages: a feature extraction stage fol-
lowed by a feed-forward classification stage. The feature
extraction stage is composed of one or more feature extrac-
tion layers. Each layer is composed of one or more feature
maps. Associated with each feature map, is a pair of struc-
turing elements – one for erosion and one for dilation. The
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values of a feature map are the result of performing a hit-
miss operation with the pair of structuring elements on a
map in the previous layer (see Fig. 1). The values of the
feature maps on the last layer are fed to the feed-forward
classification stage of the MSNN [Gader et al. 1994, 1995].

3 LADAR data set description

The LADAR data set was collected by an aircraft equipped
with a LADAR sensor during 14 separate flights over sev-
eral desert locations. Each flight produced 7 image data files,
except for flight F203B, in which one data file was dam-
aged, making a total of 97 images. The data set contains
several images of three different scenes: “crossroads”, “con-
voy” and “SAM site” (surface-to-air missiles) from different
viewing angles. The “crossroads” scene contains a single
M60 tank. The “convoy” scene contains a convoy of 10
identified targets, 1 unidentified target and many question-
able target-like objects scattered throughout the scene. The
“SAM site” scene contains 6 missile launchers positioned
radially around the control center. The ground-truth layouts
of the scenes are shown in Fig. 2, where the known targets
are labeled with “T”, the unknown objects are labeled with
“?”, and the flight directions are shown with dashed arrows.
Since there are multiple passes over each scene, this data set
allows us to simulate the Sims scenario.

For the first and second sets of experiments, the data is
divided into training and testing sub-sets in the following
manner. The odd-numbered images from each flight were
included in the training set – except the images from flight
F2053, which were all included in the testing set – and the
rest of the images were included in the testing set. In this
manner, we categorized the data into 52 training images con-
taining a total of 89 targets and 45 testing images containing
a total of 86 targets.

The LADAR data set came in three different configu-
rations: range, intensity and height. In our experiments, we
used a transformation of the range data, which we refer to
as the pseudo-intensity data. The pseudo-intensity image en-
hancement accentuates the targets and features of the terrain.
To create the pseudo-intensity images, the input LADAR
range image is first inverted to make the targets brighter
than the background, and then median filtered using a 3× 3
neighborhood. The 3× 3 Sobel edge masks are used to esti-
mate the partial derivatives,gx andgy, at each point in the
range image. The value of the pseudo-intensity image at a
point is defined by:

p =
255√

g2
x + g2

y + 1
. (4)

The rationale for referring to this image as pseudo-intensity
is that the intensity of the return should depend on the rela-
tionship between the normal vector at a point and the sensor.
If the normal vector points in the direction of the sensor,
then the partial derivatives should be zero, and the pseudo-
intensity attains a maximum value. This is intuitive since, if
the LADAR impinge on a planar surface with normal vector
pointing towards the sensor, we would then expect a max-
imum intensity return. As the normal vector rotates away

a

b

Fig. 3a,b. A “convoy” scene imagea before andb after pseudo-intensity
enhancement

Fig. 4. Example of a “hard” scene that produced many false alarms. None
of the “blobs” in this scene is a target

from the direction of the sensor, the intensity of the return
is reduced nonlinearly. Notice in Fig. 3 that the objects ap-
pear more defined in the pseudo-intensity images than they
are in the range images.

4 MSNN ATR results using a LADAR data set

4.1 Training procedure

We used the “dynamic random selection” method described
in [Won et al. 1997] to train the MSNNs. This training
method has been shown to be effective in background sup-
pression (i.e., reducing the number of false alarms) because
it uses more background than target samples and it replaces
samples once it learns them. The training begins with se-
lecting random target and background sub-images from the
training scenes. The pattern sum squared (PSS) error is mea-
sured for each sub-image at every epoch. If it is low for a
certain sub-image, a new sub-image is randomly selected
to replace it. The training is continued until the root mean
squared (RMS) error attains a pre-defined level or the max-
imum number of epochs is attained.

4.2 Target aim point selection algorithm

During training in target detection, MSNN takes a sub-image
as input and produces two output values: target or non-target.
For testing, the network scans an entire input scene and gen-
erates an output image, the detection plane. The values of
the detection plane are proportional to the outputs from the
target class node. ATR systems require a point, called the
target aim point (TAP), at which to aim. A network perfor-
mance can be measured by the location of the TAPs. The
TAP selection algorithm we used consists of thresholding

Fig. 5. Training image for scenario 4
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b

Fig. 6a,b. Training images for scenario 6

a (0, 0, 0)

b (0, 0, 0)

c (0, 0, 0)

d (0, 0, 0)

e (0, 0, 0)

f (1, 1, 0)

g (1, 1, 1)

Fig. 7a–g.Testing images for scenario 4. A total of two out of two targets
(squares) were detected with 1 false alarm (circle)

the output plane and applying binary opening with a 2× 2
structuring element to remove speckle noise. The result is
then labeled using a component-labeling algorithm. The ar-
eas and centroids of the connected components are recorded.
Only components with areas in an acceptable range are con-
sidered. The centroids of these components are the TAPs.

4.3 Experimental results

For the first and second sets of experiments, we trained two
MSNNs using the LADAR training data set. Both MSNNs
had a 20×20 input and one feature extraction layer with two

a (0, 0, 0)

b (1, 1, 1)

c (3, 3, 1)

d (5, 5, 2)

e (2, 2, 1)

f (0, 0, 0)

g (0, 0, 1)

Fig. 8a–g.Testing images for scenario 6. A total of 11 out of 11 targets
were detected with 6 false alarms

Table 1. MSNN detection results on LADAR testing data

No. of False
detections alarms

MSNN trained on different types of targets 75/86 133
MSNN trained only on tanks 30/30 45

feature maps. The downsampling rate was 2 (i.e., 10× 10
feature maps) and both structuring elements were 3× 3.
The feed-forward stage of the MSNN was composed of a
three-unit hidden layer and a two-unit output layer (target
and non-target). This structure worked the best among many
structures we experimented with.

The first MSNN was trained on all 89 different targets
present in the training data set, while the second MSNN was
trained only on the tanks (36 of them in the training set).
We wanted to see if we need only one MSNN to detect all
types of targets or we need one MSNN for each target type.

The testing results are shown in Table 1. It is worth
mentioning that, out of the 75 detections produced by the
MSNN trained on all types of targets, 30 were tanks and that
the number of false alarms is almost half of that produced
by the different detectors reported in [Moore 1998]. Many
of the false alarms were due to target-like “blobs” present in
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Table 2. Sims scenario training conditions

Target Flight No. of
Scenario type directions scenes/targets

1 Bus 2035 & 2039 2/2
2 Bus 203D & 2039 2/2
3 Bus 2033 & 203B 2/2
4 Bus 203B 1/1
5 Bus 2033 1/1
6 Tank 2035 & 2039 2/8
7 Tank 203D & 2039 2/6
8 Tank 2033 1/5
9 Tank 2039 1/3

Table 3. Sims scenario testing results

No. of Flight No. of False
Scenario scenes direction detections alarms

1 7 203D 2/2 0
2 7 2035 2/2 0
3 7 2035 2/2 1
4 7 2033 2/2 1
5 7 2035 1/2 1
6 7 203D 11/11 6
7 7 2035 7/10 4
8 6 203B 3/5 0
9 7 203D 11/11 6

some of the testing scenes (Fig. 4). These “blobs” are very
hard to distinguish from actual targets, even to a trained eye,
since they are far away in range.

Both MSNNs detected all 30 tanks in the test set, how-
ever, the MSNN that was trained only on tanks produced far
fewer false alarms than the MSNN that was trained on all
types of targets. This may suggest that designing different
MSNNs that detect different types of targets and fusing their
results may produce more detections and fewer false alarms
than using only one MSNN trained on all types of targets.

We now report on our experimental results with the Sims
scenario.One or two instances of an object (tank or bus)
from either one or two flight directions are used to quickly
train MSNN. Then the trained net is scanned across all
frames of one of the other sequences (different flight di-
rection) to find the object of interest. The different scenarios
we tried and their corresponding results are described in
Tables 2 and 3. Figure 5 shows theone frame from flight
direction 203B used in training for scenario 4 and Fig. 6
shows thetwo frames from flight directions 2035 and 2039
used in training for scenario 6. Figure 7 shows the detection
results on the testing scenes from flight direction 2033 used
in testing scenario 4 and Fig. 8 shows the detection results on
the testing scenes from flight direction 203D used in testing
scenario 6. In Fig. 7 and 8, the three numbers below each
image indicate, respectively, the number of targets in that
image, the number of targets detected, and the number of
false alarms.

Depending on the number of images and the number of
targets per image used in the training process, the MSNNs
only took between 30 and 90 s to fully train on a Sun Ul-
tra 1 workstation. The scanning time is a small fraction of a
second on the same workstation and can be improved consid-
erably, either by better coding or by use of FFT techniques.

5 Conclusion

In this paper, we have demonstrated the ATR capability of
MSNN using a LADAR imagery data set. The first set of ex-
perimental results indicate that designing MSNN to detect a
certain type of target is better than designing MSNN that de-
tects all target types simultaneously. Furthermore, the false-
alarm rate is reduced by 50% over previous results reported
in [Moore 1998]. Those previous results were obtained us-
ing a combination of CFAR, DEVLIN, and LODARK filters
and regular feed-forward neural networks. It is important to
mention that we used exactly the same training and testing
data. The MSNN performed well in the Sims scenario in
which it was only trained ononeor two scenes in about 30–
90 s on a standard Sun Ultra 1 workstation and then tested
on scenes fromdifferent flight directions. Our results show
the MSNN robustness, its ability to recognize targets even
when trained on very few samples, and its ability to reduce
the number of false alarms.
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