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Abstract. Tool wear affects the surface roughness dramati-
cally. There is a very close correspondence between the ge-
ometrical features imposed on the tool by wear and micro-
fracture and the geometry imparted by the tool on to the
workpiece surface. Since a machined surface is the negative
replica of the shape of the cutting tool, and reflects the vol-
umetric changes in cutting-edge shape, it is more suitable to
analyze the machined surface than look at a certain portion
of the cutting tool. This paper discusses our work that ana-
lyzes images of workpiece surfaces that have been subjected
to machining operations and investigates the correlation be-
tween tool wear and quantities characterizing machined sur-
faces. Our results clearly indicate that tool condition moni-
toring (the distinction between a sharp, semi-dull, or a dull
tool) can be successfully accomplished by analyzing surface
image data.
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1 Introduction

Tool wear affects the surface morphology dramatically. The
shape of a cutting tool changes due to different types of wear
on the tip, flank and rake. There is a very close correspon-
dence between the geometrical features imposed on the tool
by wear and micro-fracture, and the geometry imparted by
the tool onto the workpiece surface. A machined surface car-
ries valuable information about the process, including tool
wear, built-up edge and vibrations. Under the stable machin-
ing conditions the surface texture changes remarkably due to
the changes in cutting tool shape caused by wear. Since the
cutting tool operates directly on the workpiece, it affects the
texture of the workpiece surface, which in turn provides re-
liable and detectable information to categorize the condition
of the cutting tool.

Many researchers have investigated the correlation be-
tween the surface roughness and texture and tool condition in
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finishing, diamond-turning and grinding operations. In [12],
[13] and [14], random process analysis techniques, includ-
ing spectral analysis of the surface waviness were applied to
characterize the surfaces generated by sharp and dull tools.
In [6] and [8], the autocorrelation technique was applied to
characterize the machined surfaces. Several others have de-
veloped optical systems to measure the tool flank wear and
crater wear in turning [2, 3, 10].

A machined surface is the negative replica of the shape
of the cutting tool, and it reflects the volumetric changes in
the shape of the cutting edge. Also, it is easier to analyze
the machined surface than to look at certain portions of the
cutting tool, which is normally the case with the optical sys-
tems for flank wear measurement. Although some systems
have more complex optical heads to look at both the flank
and crater wear, they still provide incomplete information.
Furthermore, these optical systems are more complex and
costly. Our texture analysis system uses a CCD camera with
a high-magnification lens. This system provides sufficient
information about a machined surface and is much faster
than a stylus-based system. There are many texture discrim-
ination methods [7, 9, 11]. However, real-world textures are
often not uniform, due to changes in orientation, scale or
other visual appearances. Furthermore, texture discrimina-
tion methods are usually computationally intensive. In this
paper, images of the workpiece surfaces are analyzed to dis-
tinguish sharp tools from dull ones using machine vision
techniques.

2 Experimental investigation

2.1 Experimental set-up

In our experiments, we turned different AISI 1045 and AISI
4340 workpiece materials with different grades and makes
of coated and uncoated cemented carbide inserts for differ-
ent machining periods. The turning operation lasted until
the inserts reached catastrophic failure. After each pass, the
surfaces of the resulting machined workpieces were imaged
as 640× 480-pixel grey-leveldigital images using a CCD
camera (with a high-magnification lens) connected to a com-
puter equipped with image acquisition capability. The corre-
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Fig. 1. a Surface machined by a sharp tool andb surface machined by a
dull tool

sponding flank wear of the cutting tool was also measured.
A large number of roughing (dry turning) tests have been
conducted using different combinations of cutting speeds
(100–300 m/min) and feeds (0.3–0.8 mm/rev). In all tests,
the depth of cut was kept at 3 mm. The results reported in
Sect. 4, are from the machining tests with two different sets
of cutting data and workpiece materials. In set A, AISI 1045
workpieces were turned at the feed rate of 0.4 mm/rev and
the cutting speed of 220 m/min. In set B, the cutting speed
was selected at 120 m/min to turn AISI 4340 workpieces
with feed rate of 0.3 mm/rev.

2.2 Image capture

Figure 1 shows the digital images of surfaces machined with
a sharp insert and a dull insert from one of the tests. A CCD
camera is placed at a certain distance over the workpiece
and the images of turned surfaces are captured at certain
predefined positions. The images of each set are ordered by
assigning an image number according to the level of wear of
the insert. The higher the image number, the greater the level
of wear of the insert, and therefore the poorer the quality of
the machined surface.

a

b

Fig. 2a,b. Gradient images ofa Fig. 1a andb Fig. 1b

3 Image-processing techniques
for surface texture analysis

The grooves evident in the images are formed by the in-
sert during machining. The texture within each groove is
determined by the manner in which the metal is machined.
Generally, as the insert becomes blunt, wear particles on the
machined surface become more apparent and the texture of
the machined surface becomes more irregular. Imageseg-
mentationtechniques [5] andtexture analysismethods [1]
can be used to bring out the differences between the images.
Image segmentation involves dividing an image into areas
that have some physical significance and therefore represents
spatial analysis of the regions of interest in the image. The
segmentation process first involves extraction of edge infor-
mation from the images using theSobel operator[4], and
this is followed by athresholding[4] operation. After the
Sobel operation, the wear particles become more apparent
in the resultinggradient image, as illustrated in Fig. 2, and
are easily visible in the resultingbinary imagesafter thresh-
olding, as illustrated in Fig. 3. The thresholds were obtained
by simple analysis of histograms of the respective gradient
images. The following sub-sections describe two techniques
that use the processed digital images to distinguish between
surfaces machined with a sharp tool and those machined
with a dull tool.
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Fig. 3a,b.Binary images of the machined surfaces of the set A material for
a surface machined by a sharp tool andb surface machined by a dull tool

a

b

Fig. 4a,b.Binary images of the machined surface of the set B material for
a surface machined by a sharp tool andb surface machined by a dull tool

a

b

Fig. 5a,b. Column projections of thea image of Fig. 3a, andb image of
Fig. 3b

a

b

Fig. 6a,b. Column projections of thea image of Fig. 4a, andb image of
Fig. 4b
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Fig. 7. Run-length matrixP generated from imageA

3.1 Column projection analysis

This technique operates on thethresholded gradient images
(i.e., binary images; Fig.4) of the machined surfaces.Col-
umn projectionsare obtained by adding all pixel values along
each column of the processed image data, thereby reduc-
ing the 2D binary image to a 1D array that can be pro-
cessed quickly. The 1D column projection array, illustrated
in Figs. 5 and 6, is normalized with respect to the largest peak
to eliminate the non-uniformity of the sources of illumina-
tion. It is apparent from Figs. 5 and 6 that the peaks obtained
from the column projections of the surfaces machined with
a sharp tool are quite distinct from those obtained from the
surfaces machined with a dull tool. The area under the peaks
can be used to distinguish surfaces machined with a sharp
tool from surfaces machined with a dull tool. In Fig. 5a and
b, the equidistant peaks correspond to the feed marks. The
grooves produced by the feed motion of the cutter are pre-
dominant in the actual turned surfaces. As the cutting edge
becomes more irregular with scars at the cutting tip, the ap-
pearance of the machined surface tends to be more smeared
and the grooves corresponding to the feed marks become
less predominant. Figures 5b and 6b clearly illustrate this
well-known phenomenon.

3.2 Run-length statistical method

Run-length statistical methods[1] operate directly on the gra-
dient images (without thresholding). Before the application
of these methods, a 2D matrix called therun-length matrix
P is computed. The elementsp(i, j) of the run-length matrix
P represent the number of grey-level runs of lengthj and
grey level i. Consecutive pixels of the same grey value or
level in either the horizontal or vertical direction constitute
a run. In this paper, the run-length matrixP is obtained in
the vertical direction. As an example, the run-length matrix
P in vertical direction of imageA is as illustrated in Fig. 7.

The run-length statistics used in this paper are defined by
the following equations and areshort-run emphasis(SRE),
long-run emphasis(LRE), run-length nonuniformity(RLN),
run percentage(RP), low-grey-level-run emphasis(LGRE)
andhigh-grey-level-run-length emphasis(HGRE).

RNL =
1
s

N∑
j=1

(
M∑
i=1

p(i, j)

)2

; (1)
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Fig. 8a,b.Area under the column projection peaks vs. image number fora
set A, andb set B

RP =
1
n

M∑
i=1

N∑
j=1

p(i, j) ; (2)

SRE =
M∑
i=1

N∑
j=1

p(i, j)
j2

; (3)

LRE =
1
s

M∑
i=1

N∑
j=1

j2p(i, j) ; (4)

LGRE =
M∑
i=1

N∑
j=1

(p(i, j)/s)
j2

; (5)

HGRE =
1
s

M∑
i=1

N∑
j=1

i2p(i, j) . (6)

In the above equations,M is the number of grey-levels,N
is the longest run,s is the total number of runs in the image,
andn is the number of pixels in the image. The next section
discusses the results obtained by applying these techniques
to the images of the machined surfaces.

4 Results and observations

Figure 8 shows the area under the peaks of the column pro-
jection data for all images in each set. The plots clearly show
that the area increases as the quality of the machined surface
deteriorates.
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Fig. 9a,b.Run-length statistical parameters RLN and
RP versus image number fora set A, andb set B

a

b

Fig. 10a,b.Run-length statistical parameters LGE vs.
SRE and HGRE vs. LGRE fora set A andb set B

From Fig. 9, it is evident that the RLN and the RP pa-
rameters increase as the quality of the machined surface de-
teriorates. This is expected, since the non-uniformity of the
vertical image pixels increases as the image surface deteri-

orates. When the other run-length statistical parameters are
also plotted against the image numbers, it becomes evident
that they do not provide as good an indication of the dete-
rioration of the machined surface as that provided by RLN
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Fig. 11a,b.Tool wear vs. image number fora set A andb set B

and RP. However, good discrimination between surfaces ma-
chined with a sharp tool and surfaces machined with a dull
tool is provided by the LRE versus SRE plots, and HGRE
versus LGRE plots as shown in Fig. 10.

From Figs. 8, 9 and 10, we also find that the ability to
distinguish between different surfaces generated by sharp
and dull tools, is better for set B than the set A. A possible
reason for this may be the different workpiece material used
in set B. Generally, the wear pattern on a cutting edge is
more uniform, consistent and repeatable while machining a
harder and tougher high-alloyed tool steel as compared to the
wear pattern induced by turning of low- and medium-carbon
steels.

Figure 11 shows the corresponding flank wear of the
tool as the quality of the machined surfaces deteriorates as
measured by an optical microscope. It is very clear that the
processed information from the digital images of the ma-
chined surfaces clearly point to increased deterioration and
therefore increased probability of tool breakage even before
it happens, as is indicated by the flank wear information.
This very significant result implies that machine vision tech-
niques are excellent for monitoring cutting-tool condition in
roughing (dry cutting) and will be helpful to prevent damage
to the machine tool.

5 Concluding remarks

Processing the column projection data by monitoring the area
under the peaks and calculating the run-length statistical pa-
rameters are effective in directly monitoring the deterioration

of machined surfaces, and therefore indirectly monitoring the
condition of the cutting tool.

Using a Pentium 166-MHz computer with image acqui-
sition capability, the whole monitoring procedure including
image capture and image analysis can be performed in sec-
onds. The column projection method took under 8 s, while
the run-length statistical method took under 20 s. Typical
tool life of a turning tool is several minutes, and so the
techniques presented in this paper can be used for offline
tool condition monitoring in real production environments.

It is evident from the results presented in Figs. 6 and
8 that the run-length statistical method provides better dis-
crimination between a sharp and a dull tool as compared
with that provided by the column projection method. Both
of our image analysis methods (see Figs. 6 and 8) provide
earlier detection of the onset of catastrophic failure as com-
pared with the conventional flank wear measurements (see
Fig. 10). From Figs. 6, 8 and 9, we also find that the ability
to distinguish between surfaces machined wit h a sharp tool
from surfaces machined with a dull tool is better for set B
than for set A. A possible reason for this is that the mate-
rial used in Set B is prehardened and tempered high-tensile
Nickel Chromium steel (AISI4340).

We have shown that machine vision techniques can be
applied to effectively monitor the condition of the cutting
tool (a sharp, semi-dull, or a dull tool) by analyzing the ma-
chined surfaces. The encouraging results of our work paves
the way for the development of a real-time, low-cost, and
reliable tool-condition-monitoring system.
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