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Abstract. This paper describes the design and implemen-
tation of a machine vision system CATALOG for detection
and classification of some important internal defects in hard-
wood logs via analysis of computer axial tomography (CT or
CAT) images. The defect identification and classification in
CATALOG consists of two phases. The first phase comprises
of the segmentation of a single CT image slice, which re-
sults in the extraction of 2D defect-like regions from the CT
image slice. The second phase comprises of the correlation
of the 2D defect-like regions across CT image slices in order
to establish 3D support. The segmentation algorithm for a
single CT image is a complex form of multiple-value thresh-
olding that exploits both, the prior knowledge of the wood
structure within the log and the gray-level characteristics of
the image. The algorithm for extraction of 2D defect-like
regions in a single CT image first locates the pith of the
log cross section, groups the pixels in the segmented im-
age on the basis of their connectivity and classifies each 2D
region as either a defect-like region or a defect-free region
using shape, orientation and morphological features. Each
2D defect-like region is classified as a defect or non-defect
via correlation across corresponding 2D defect-like regions
in neighboring CT image slices. The 2D defect-like regions
with adequate 3D support are labeled as true defects. The
current version of CATALOG is capable of 3D reconstruc-
tion and rendering of the log and its internal defects from
the individual CT image slices. CATALOG is also capable of
simulation and rendering of key machining operations such
as sawing and veneering on the 3D reconstructions of the
logs. The current version of CATALOG is intended as a de-
cision aid for sawyers and machinists in lumber mills and
also as an interactive training tool for novice sawyers and
machinists.
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1 Introduction

Internal features of hardwood logs such as knots, cracks,
decay and other anomalies of tree growth determine their
ultimate value. If these defects were known prior to the saw-
ing of the log, optimized sawing plans could be devised to
achieve greater value from the log. Production of lumber
is essentially a destructive process. With each cut into the
log, new information is divulged on the quality of the wood
inside which often suggests a different and better sawing or
cutting pattern. However, since each step in the sawing pro-
cess is irreversible, the loss in the value yield has already
happened and cannot be subsequently rectified. Hardwood
lumber production has traditionally had a low conversion ef-
ficiency. Haygreen and Bowyer [21] report that an average of
35% of the log is converted to usable lumber. Improving the
lumber value yield from logs has become important to many
sawmill managers as the cost of logs has risen to 80% of
total production costs [22]. Existing technologies to increase
lumber volume by external log inspection have reached the
point that little further progress is expected. Even today’s
most experienced sawyers cannot glean from an external in-
spection of the log, knowledge of its internal features and
their location to any degree of accuracy. It seems reason-
able to assume that future gains in lumber value yield will
be possible only by internal log scanning.

A detailed knowledge of the presence, location, and size
of internal defects prior to the first cut into the log is esti-
mated to lead to potential gains of about 15–18% in lumber
value [28, 36, 37, 41]. On a national basis this represents a
savings of $2 billion for the United States hardwood lum-
ber industry. Hardwood resources continue to be underuti-
lized in many regions of the US [40]. Environmental con-
cerns and the ecological need for maintaining biodiversity
in forest ecosystems underscore the need to utilize as many
hardwood species for wood products as possible, thereby
reducing the pressures on harvesting a few select species.
Forest-products-based economies are also dependent on get-
ting the highest value wood products from a declining forest
resource base. Improving the efficiency in converting low-
grade logs into high-value products would reduce harvesting
pressure on select hardwood species. High-value hardwoods
such as Hard Maple, Black Walnut, White Ash and Red Oak
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have the greatest differences in value between the highest
and lowest lumber grades. Improving yields of higher grade
lumber via identification and localization of internal defects
will significantly increase the value of these scarce hardwood
resources. In summary, optimized production of lumber from
hardwood logs would maximize the resulting value of hard-
wood lumber, allow better utilization of hardwood logs, re-
duce unnecessary wastage and thus play a significant role in
the conservation of depleting hardwood forest resources in
the US and all over the world.

Studies of computer axial tomography (CAT or CT) and
nuclear magnetic resonance (NMR) scanning for internal log
defects [7, 17, 22, 29, 41] have demonstrated that both CT
and NMR scanners available today can be used successfully
to image the internal features of logs. CT scanners, which
are essentially solid state (i.e., with no moving parts), can
scan at rates exceeding 30 slices per second. Thus the tech-
nical feasibility of scanning logs in real time is approaching
reality. However, the computational methods for interpreting
the CT scans of logs reliably and in real time are an open
research topic.

In this paper, we present a system CATALOG (Computer
Axial Tomography forAnalysis of LOGs) for the detec-
tion and 3D rendering of internal defects of hardwood logs.
CATALOG is also capable of simulating various machining
operations on hardwood logs such as sawing and veneering.
The current version of CATALOG focuses on the detection
and 3D rendering of important defects such as knots, holes,
bark/moisture pockets and cracks via analysis of a set of
cross-sectional CT images of hardwood logs. We expect the
current version of CATALOG to be used as a decision aid
by sawyers and machinists in a lumber mill. The detection
and rendering of hardwood defects and computer simulation
of key machining operations would assist sawyers and ma-
chinists to decide on an optimal lumber production strategy
for a given hardwood log. CATALOG could also be used as
an interactive training tool for novice sawyers and machin-
ists, whereby they could practice various lumber production
strategies onvirtual logs before working on real logs.

2 Review of related work

CT and NMR scanning represent two potentially viable
techniques for acquiring cross-sectional images of logs. Al-
though NMR is a more recent innovation, CT technology
is approaching the speed necessary for production use [22].
The first CT scanners developed for medical use in the early
1970s, measured X-ray absorption which was then correlated
with material density. A brief description of the computa-
tional principle underlying CT is explained in [25] and a de-
tailed history and evolution of CT scanners is given in [29].
While CT scanners are currently available for industrial uses
such as testing poles and concrete, the CT scanning technol-
ogy developed for medical use holds the most promise for
adaptation to sawmills.

Although NMR scanners became commercially available
in the mid-1980s, NMR techniques have been widely used
for more than 30 years to study the molecular structures of
solid-state materials and chemical compounds. NMR images
are characterized by the fact that wet portions of the object

being imaged appear as relatively light regions in the re-
sulting image, whereas dry portions of the object appear as
relatively dark regions in the image. Hence, NMR imaging
techniques are particularly well suited for detecting internal
features of logs that are characterized by varying moisture
content in the underlying wood [6, 7]. Chang et al. [6] eval-
uated internal defects of hardwood logs using NMR scan-
ning technology. Defects such as knots, reaction wood, wet-
wood, and gum spots were clearly identified. The locations
of hidden defects such as buried knots and scars were also
provided by the images. Information about uneven mois-
ture content distribution was shown to be useful in identify-
ing potential drying problems. Algorithm development was
identified as a key requirement to utilizing NMR. Chang [7]
also evaluated the economic feasibility of fast NMR imag-
ing scanners in hardwood sawmills. It was shown that once
NMR scanning systems could be purchased for less than $1
million, their use in sawmills would become economically
feasible [7].

Hodges et al. [22] evaluated the economic potential of
CT in hardwood sawmills. For large mills (60×103m3/year),
investments in CT scanning systems could be profitable even
with only moderate increases in lumber value yield (5–10%),
whereas for smaller mills (12× 103m3/year), such invest-
ments would become profitable only as increases in lumber
value yield approached 30%. In their review, Hailey and
Swanson [20] evaluated CT and NMR techniques and esti-
mated that the value of solid-wood products could increase
by up to 15% from the use of imaging techniques to identify
internal defects in logs. They emphasized the need to cor-
relate scanning parameters to internal log characteristics, to
advance software and analytical techniques (especially im-
age analysis and computer graphics), and to develop lower
priced and portable scanning systems. Funt and Bryant [17]
evaluated a computer system that automatically interprets CT
images to identify knots, rot, and cracks occurring in logs.
It was shown that although CT technology could greatly im-
prove lumber grade and quality, it was critical to reduce
algorithm execution times, design larger diameter industrial
scanners capable of withstanding typical sawmill conditions,
and develop software capable of constructing 3D models
from 2D scans. Moisture content variation within the log
was identified as a source of error in distinguishing defects
from sound wood.

Taylor et al. [39] conducted a feasibility study for locat-
ing knots by using industrial photon emission tomography
(PET) where the reconstructed PET images were used to
identify internal knots and locate the log perimeter. Com-
parisons between actual log slices and the PET images indi-
cated that both, the log perimeter and knot locations could
be accurately identified. However, knot identification could
be made difficult by logs with high moisture content and/or
relatively uniform densities between knots and surrounding
wood. Funck et al. [16] evaluated the potential of machine
vision systems to identify defects on wood surfaces. They
developed a detailed machine vision database for numerous
natural and process-induced surface features of wood rele-
vant to grading and inspection tasks. Algorithms were devel-
oped to detect, locate, and classify these features. Wagner et
al. [41] used ultrafast CT techniques as a means of acquir-
ing scans at speeds approaching those required to be used in
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commercial sawmills and veneer plants. Based upon visual
comparisons of crosscut log disks with the corresponding CT
images, it was demonstrated that defects can be identified in
images taken in ultrafast mode. Wagner et al. [41] also used
computer simulation techniques to evaluate the impact of
internal log defects on the resulting lumber value. Their re-
sults indicated that the use of CT log scanning should result
in higher lumber value.

Conners [8] designed a computer vision system to auto-
matically grade hardwood lumber in one step, reducing the
need for sequential grading common in many sawmills. This
vision system was capable of locating defects within precut
boards and also automatically grading the board, using color
information to separate clear wood from defects. Conners [9]
also discussed a multisensor machine vision system that uses
a combination of color imaging, X-ray scanning and laser-
based ranging. The X-ray scanner detected knots and other
defects, including decay and honeycomb. Laser-based rang-
ing cameras were used to identify additional defects, includ-
ing wane, splits, checks, and holes, as well as to assist in the
interpretation of X-ray images. McMillan et al. [26] evalu-
ated an automatic lumber-processing system ALPS in which
logs were scanned by CT to locate internal knots. It was
demonstrated that CT images of Southern Pine logs could
clearly distinguish between earlywood and latewood zones,
pith, juvenile wood, pitch streaks, and knots.

Forrer et al. [14] have evaluated preprocessing algo-
rithms to identify defects in Douglas Fir veneer. Three
sweep-and-mark algorithms first gather data by sweeping
through an image, then mark regions that might contain
defects. Only the information on marked features is used
in subsequent algorithms, reducing the amount of data that
needs to be processed. The three mark-and-sweep algorithms
are based on either statistical features, morphological (shape)
features, or spectral features in the form of color clusters. In a
related study, Forrer et al. [15] evaluated the performance of
three image preprocessing-processing algorithms to identify
defects in Douglas Fir veneer. The three sweep-and-mark
algorithms operate on the principle of dividing images into
tiles, then sweeping through the tiles to determine locations
of potential defects using statistical, morphological or spec-
tral features. The study demonstrated that the algorithm that
used statistical features provided the best results for identi-
fying log defects such as loose and tight knots, open holes,
pitch pockets and streaks. Davis et al. [10], Som et al. [35]
and Svalbe et al. [38] describe their efforts at developing
a portable X-ray CT scanner capable of scanning telephone
and utility poles on site for internal decay. Grundberg and
Gronlund [18] describe their efforts at building a database of
log images and internal defects for Scotch Pine and Norway
Spruce.

Butler et al. [3, 4] investigated a method for detecting ve-
neer defects based on a dual-threshold algorithm. The image
was subdivided into tiles which were subsequently marked
not only based on their own features (relative to a thresh-
old value), but also based on features of the neighboring
tiles which had already been marked. The use of the sec-
ondary threshold improved the overall performance of the
algorithm, especially on images containing pitch pockets and
streaks, and reduced the overall error rate in identifying both
clear wood and defects. Samson [30] developed a geometri-

cal model to describe knots within logs and on the surface of
lumber beams sawn from those logs. The logs were modeled
as perfect cylinders. The knots were modeled as right ellipti-
cal cones with apices at the pith and axes at arbitrary angles
to the log axis. Samson [31] further developed a mathemati-
cal algorithm to describe the effect of knots in the conversion
of logs into structural lumber.

More recently, Li et al. [24] and Schmoldt et al. [33, 34]
have investigated the use of artificial neural networks for
identification and classification of internal defects from CT
images of logs. The pixel gray-level value and the gray-
level values of its neighboring pixels are fed as inputs to
the neural network. The output of the neural network is the
classification of the pixel as either a defect or a non-defect
pixel. In the former case, the defect pixel is further clas-
sified as belonging to a specific defect type such as knot,
void, rot, etc. Both, local 2D and 3D pixel neighborhoods
were considered as inputs to the neural network. The neural
network was shown to have a high rate of correct classifica-
tion with low miss and false-alarms rates in both cases, with
3D neighborhoods resulting in better performance. However,
since only gray-level values are used as inputs, the neural
network is reported to have problems distinguishing between
knots and moisture pockets, both of which are characterized
by high gray-level values in the CT images.

Occena and Schmoldt [27] describe an interactive graph-
ics sawing program GRASP for modeling various hardwood
processes such as sawing, veneering and edging. The logs
and their internal defects are modeled as closed polyhedral
solids, i.e., a set of concatenated polygonal surface patches.
Schmoldt et al. [32] describe a veneering simulator for gen-
erating and rendering veneer images that result from per-
forming various types of veneer-slicing operations on log
CT images. Owing to the limited resolution of the CT im-
ages used, the veneer images are fairly coarse. Moreover,
no algorithmic details or run-time performance figures are
provided.

Zhu et al. [42] describe a prototype computer vision sys-
tem for identification and localization of defects in hard-
wood logs using CT images. The system identifies defect-
like regions in individual CT images using a multi-threshold
algorithm and connects corresponding regions in adjacent
CT image slices using a generalization of the 8-neighbor
connected-component labeling algorithm. Basic 3D geomet-
ric features of the defects are used in conjunction with the
Dempster–Schafer theory of evidential reasoning to classify
defects. However, statistics on the accuracy and reliability
of defect identification and localization are not provided in
their paper.

Guddanti and Chang [19] describe a software program
TOPSAW for replicating sawmill sawing using CT images
of full-length hardwood logs. A log was cut into boards at a
local sawmill by letting a sawyer make the sawing decisions.
The positions and orientations of the log and the sawblade
during the entire sawing process were recorded and then
replicated in the TOPSAW program to produce the same
boards in the computer. The total value of the boards as
estimated by the software matched to within 97% of the
value produced at the sawmill. Experimental results on a
single hardwood log are reported in their paper.
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The CATALOG system, described in this paper, incor-
porates certain major advances over existing wood- and
lumber-processing systems that employ machine vision. CA-
TALOG is an outcome of our earlier research in defect iden-
tification in hardwood logs from CT image slices [2, 11, 12].
The current version of CATALOG allows efficient 3D recon-
struction and 3D visualization of the log sample. A detailed
analysis of the sequence of cross-sectional CT images of the
log sample results in the generation of a 3D model of the
log sample that incorporates both (i) the 3D characterization
of the internal defects and (ii) the 3D characterization of the
ring structure of the log sample. Unlike GRASP [27], CAT-
ALOG uses a volumetric model which is more accurate than
the wireframe surface model. The 3D model enables the user
to view the log sample from any user-specified orientation
and viewpoint and also view the interior of the log sam-
ple for any user-specified orientation of the cutting plane.
This enables the viewer to evaluate a wide variety of saw-
ing patterns without putting steel to wood. CATALOG can
also simulate veneering operations on logs and on flat boards
obtained by sawing the logs. The voxel-based 3D log model
in CATALOG results in a very realistic rendering. Efficient
algorithms for mapping the voxel data to pixel data in the
sawing plane or veneering plane result in superior run-time
performance.

The other distinguishing feature of the CATALOG sys-
tem is that, like the system of Zhu et al. [42], it explicitly
uses the reconstructed 3D information for classification and
characterization of wood defects. During the course of de-
sign and implementation of CATALOG, we discovered that
the identification and classification of certain defects could
not be done reliably in a single 2D CT image and that 3D in-
formation was necessary to resolve the resulting ambiguity.
A majority of wood defect classification systems that rely
on 2D CT image data alone tend to be conservative in their
classification of defects, i.e., if there is any doubt whether a
certain region in the CT image is a defect or not, it is labeled
as a defect. This results in a large false-alarm rate. In CAT-
ALOG, if a 2D defect does not have adequate 3D support
from adjacent 2D image slices, then it is not classified as a
defect, thus reducing the false-alarm rate without sacrificing
defect detection and classification accuracy. Using informa-
tion from the 3D reconstruction of the log to resolve and
correct ambiguities in the segmentation of the individual 2D
CT images is one of the novel features of CATALOG. A
major difference between the approach followed in CATA-
LOG and that Zhu et al. [42] is that CATALOG employs a
two-stage approach: generation of a defect hypothesis using
2D information from single CT image slices and verification
of the hypothesis using 3D information. The system of Zhu
et al. [42], on the other hand, uses the 3D information di-
rectly for hypothesis generation and hypothesis verification.
We have found the approach in CATALOG to be compu-
tationally more efficient, since the 3D information is used
only in the hypothesis verification stage.

In the sections that follow, we describe the salient fea-
tures of CATALOG and present experimental results on CT
images of real hardwood logs. Section 3 gives an overview
of the CATALOG system. In Sect. 4, the segmentation of
a single CT image is described. In Sect. 5, the procedure
for identification and localization of defects in a segmented

Fig. 1. The high-level structure of the CATALOG system

CT image is described. Section 6 describes the 3D analysis
procedure for verification and correction of the 2D segmen-
tation via correlation across CT image slices and its impact
on the performance of CATALOG. Section 7 describes the
algorithms for simulation and rendering of key machining
operations in CATALOG. In Sect. 8, run time results are
presented and the paper is concluded in Sect. 9 with an out-
line for future research.

3 The CATALOG system

The current version of CATALOG consists of four principal
subsystems.

(1) Preprocessing and segmentation of individual 2D CT
image slices.

(2) Detection and classification of internal defects in the
individual 2D CT image slices.

(3) 3D reconstruction of the internal defects and the internal
structure of the log.

(4) Simulation of machining operations on the 3D recon-
struction of the log.

Figure 1 depicts the overall structure of the CATALOG
system. Figure 2 depicts a detailed flowchart describing the
various components within the first three subsystems men-
tioned above. The CT images of the logs were captured using
a Toshiba TCT 20AX CT scanner, which has a pixel res-
olution of 0.75 × 0.75 mm and a scanning pitch of 5 mm.
Each CT image is 320× 320 pixels in size with an intensity
resolution of 8 bits per pixel (i.e., 256 gray levels). Thus, a
log segment of length 1 m produces 200 images resulting in
a total of 200× 320× 320 ≈ 19.5 MB of raw image data.
The current version of CATALOG focuses on four represen-
tative hardwood species: White Ash, Red Oak, Black Walnut
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Fig. 2. Flowchart of the defect detection and classifica-
tion procedure in CATALOG

and Hard Maple. These species account for over 80% of the
hardwood lumber production in the United States.

In the initial stages, the defect detection and classifica-
tion procedure in CATALOG adopts a bottom-up process-
ing approach. It first processes and analyzes each CT image
individually and then correlates the results from each CT
image with those from neighboring CT images to extract
and classify the relevant 3D defects. The knowledge of the
3D internal defects and the growth ring structure deduced
from the individual CT image slices is used to reconstruct
a 3D model of the internal defects and the internal struc-
ture of the log. As depicted in Fig. 1, the reconstructed 3D
model is used to detect and rectify errors in the segmenta-
tion and classification of the defects in the 2D CT image
slices. This ability for top-down verification and error rec-
tification is one of the salient features of CATALOG which
sets it apart from other existing computer vision systems for
log inspection and lumber grading. The four subsystems in
CATALOG are elaborated upon in the following sections.

4 Segmentation of a single CT image in CATALOG

The pixel gray level in a CT image represents the X-ray at-
tenuation coefficient (which is proportional to the amount of
X-ray energy absorbed) and consequently the average den-
sity (or specific gravity) of the material within the 3D vol-
ume representing that pixel. Figure 3 shows sample cross-

sectional CT images of logs from the aforementioned four
hardwood species. Lower material density results in lower
gray-level pixel values in the CT image and vice versa. The
density of the wood within a cross section of a log of a
given species exhibits significant variation depending on the
growth ring structure and the presence of certain character-
istic defects within the log. The gray-level distribution of
different log slices of the same species was seen to be very
similar. Figures 4 and 5 show the gray-level profile along a
horizontal line passing through the center of the CT image.
Figure 4 shows the gray-level variation caused by the ring
structure in White Ash, whereas Fig. 5 shows the gray-level
variation caused by the presence of knots in White Ash.

4.1 Gray-level variation in CT images
due to wood structure

The significant gray-level variations observed in a CT im-
age slice that is free of defects could be attributed to the
following elements of wood.

4.1.1 Ring structure

The ring structure is composed of alternating layers of late-
wood and earlywood. Since latewood is composed of smaller
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Fig. 3a–d. Sample cross-sectional CT im-
ages ofa White Ash b Red Oakc Black
Walnut d Hard Maple

Fig. 4a,b. Gray level variation due to the ring structure in the CT image of White Ash.a Portion of the CT image.b The gray level profile along a
horizontal line passing through the center ofa

Fig. 5a,b. Gray-level variation due to knots in the CT image of White Ash.a Portion of the CT image.b The gray-level profile along a horizontal line
passing through the center ofa
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size cells it has a higher density than earlywood and ap-
pears brighter in the CT images. The ring structure can be
modeled as a series of concentric ellipses in the absence
of defects. Certain defects such as knots distort the normal
ring structure. Thus, if an image region has several broken
and/or distorted rings, it may be deemed to contain potential
defects.

4.1.2 Sapwood and heartwood

In some hardwood species such as Red Oak and Black Wal-
nut, a pale-colored inner core called heartwood surrounded
by a darker outer zone called sapwood can be observed.
Heartwood has higher density than sapwood because of
higher moisture content and concentration of certain inor-
ganic and extractive materials [21]. Note that, since water
has a higher material density than wood, regions of high
moisture content appear brighter in the CT image.

4.1.3 Bark

The bark tissue surrounding the log cross section has a higher
material density due to higher content of moisture and in-
organic minerals. Hence, it shows up as a bright ring sur-
rounding the log interior in a CT image slice.

4.2 Gray-level variation in CT images due to defects

The termdefectin the wood industry refers to any irregular-
ity, imperfection or deviation from normal wood quality that
make the wood unsuitable or less desirable for a specific use.
Certain defects such as knots and bark pockets arise due to
irregularities of tree growth, whereas cracks and decay arise
due to cutting of the wood or invasion by foreign organisms.

4.2.1 Knots

A knot is the portion of a branch that is embedded in the
wood of a tree trunk. Knots tend to distort the normal growth
rings in the tree trunk. Due to the higher density of cells
within a knot, it is characterized by high gray-levels in the
CT image. Most knots have an elliptical cross section.

4.2.2 Cracks and holes

Cracks and holes have the lowest material density (since
they are comprised of air), and hence are characterized by
gray-levels close to zero in the CT image.

4.2.3 Bark pockets and moisture pockets

Bark pockets are a result of small amounts of bark tissue
embedded in the wood of the tree trunk. Moisture pockets are
a result of high concentration of water in certain regions of
the tree trunk. Both, bark and moisture pockets, for reasons
cited earlier, are characterized by high material density and
therefore exhibit high gray-levels in the CT image.

4.2.4 Decay pockets

Regions in the tree trunk which are invaded by decay-
causing organisms result in decay pockets. Since decayed
wood has a decreased amount of cellulose and lignin, it has
a lower material density than normal wood and shows up
darker (i.e., with lower gray-levels) when compared to nor-
mal wood. The material density of the decay pocket bears a
direct relation to the extent of decay.

4.3 Histogram-based thresholding of CT image slices

Based on the characteristics of the wood structure and de-
fects discussed earlier and our empirical observations, we
deem a CT image of a log cross section to be typically com-
posed of four groups of gray-level intensity values. From
the lowest to the highest gray-level value they correspond to
pixels from (1) cracks, large voids (holes) and decay pock-
ets with advanced decay, (2) decay pockets with early stages
of decay and earlywood, (3) latewood, and (4) knots, bark
pockets and moisture pockets. Note that gray-levels from
each of these classes could overlap with those of adjacent
classes. A multiple-thresholding algorithm is used for seg-
menting the CT image into four classes.

4.4 Area-based multiple threshold selection

The gray-level histogramH[i] of the log CT image, which
denotes the relative frequency of each gray-leveli in the
log CT image is typically multi-modal. It is difficult to se-
lect multiple thresholds using a standard threshold selection
technique [23], even after a smoothing technique is applied
to suppress trivial peaks in the histogram. This is because
(a) there are too many peaks in the histogram which cannot
be suppressed by the histogram smoothing technique and (b)
the valleys between histogram peaks are long and flat mak-
ing threshold selection difficult. We solve this problem by
using a very simple threshold selection technique which we
term asarea-based multiple threshold selection. This tech-
nique incorporates the following heuristics: (a) the annual
rings of wood are not broken, and hence the image does not
contain a single large region whose pixel gray-level values
lie within a narrow range and (b) the earlywood and late-
wood constitute a major portion of the image. The multiple
threshold selection is done as follows (Fig. 6).

Fig. 6. Histogram of the image and threshold selection
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1. Suppose the pixel group with the lowest gray-level range
(or the first class) and the pixel group with the highest
gray-level range (or the fourth class) account forp1%
andp2% of the pixels in the log CT image, respectively.
As long asp1 andp2 are sufficiently large, cracks, voids
and decay pockets with advanced decay are assured to be
included in the first class and, knots and bark/moisture
pockets in the fourth class. On the other hand, the fact
that the gray-level values of defects in the first class are
significantly lower than the gray-level values of defects
in the fourth class prevents the growing of a large con-
nected region that contains both a defect from the first
class and a defect from the fourth class (such as a crack
and a knot). Also, the risk of adding false positives to the
first and fourth classes is small ifp1 andp2 are chosen
to be not too large. Our empirical observations after sev-
eral experiments have shown values ofp1 in the range
3–5% andp2 in the range 10–15% to yield good results.
We also observed that the results were insensitive to the
values ofp1 andp2 as along as the values were chosen
from the aforementioned ranges.

2. Compute the first thresholdg1 as follows:
g1∑
i=0

H[i] = p1 . (1)

Compute the third thresholdg3 as follows:

Max∑
i=g3

H[i] = p2 , (2)

whereMax is the maximum gray-level value in the CT
image. The second thresholdg2 is chosen such that
g2∑

i=g1

H[i] =
(100− p1 − p2)

2
. (3)

3. Classify each pixel in the CT image as belonging to
one of the four classes based on its gray-level valueg:
Class 1: 0≤ g < g1; Class 2:g1 ≤ g < g2; Class 3:
g2 ≤ g < g3 and Class 4:g3 ≤ g ≤ Max.

4.5 Selective smoothing of the CT image

The CT image of a log contains a fair number of gray-level
transitions among earlywood, latewood, and knots. However,
since each CT scanner’s spatial resolution is limited (ours is
0.75×0.75 mm), a single pixel in the CT image may actually
include wood elements from two or more classes, but may
only be assigned a gray-level corresponding to a single class.
Sometimes a small portion of wood may have abnormal den-
sity or may be assigned an incorrect gray value by the scan-
ner (these pixels are termed as noisy pixels). If the thresholds
selected above are directly applied to the raw CT image, one
may experience the problem of oversegmentation and/or un-
dersegmentation. In an oversegmented image a connected
group of pixels arising from a single wood structure may
be split into more than one region. In an undersegmented
image pixels belonging to distinct wood elements may be
incorrectly merged into a single region. This could result in

Fig. 7a,b.Pixels from the fourth class:a in the raw image;b in the smoothed
image

misclassification of normal pixels as defects and also failure
to detect certain defects. It is therefore necessary to smooth
the CT image to avoid problems of under/oversegmentation.
Our selective smoothing algorithm designed for this purpose
can be described as follows (Fig. 6).

1. Suppose the pixel percentages for each transition are
known. From these percentages and the gray-level his-
togram, both the lower gray-level (glow) and the upper
gray-level (gup) of each transition are computed.

2. For each pixel with a gray-level value betweenglow and
gup, modify its gray-level by applying a majority filter:
if the number of pixels in its 8-neighborhood with gray-
level betweenglow andgup is greater than or equal to 5,
then keep its gray-level unchanged, else if the number
of pixels in its 8-neighborhood with gray-level less than
glow is greater than or equal to the number of pixels in
its 8-neighborhood with gray-level greater thangup, set
its gray-level to a value lower thanglow (typically the
average of the gray-level values less thanglow), or else
set its gray-level to a value greater thangup (typically
the average of the gray-level values greater thangup).
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Fig. 8. The pixels from the first class: crack-like defects

Figure 7 shows the difference between the segmentation
results of the original image and the smoothed image. The
knot-like region in the upper right corner of the smoothed
image has a hole bounded by a closed contour, but not so
in the raw image. A small knot near the center of the image
can be detected in the smoothed image but probably not in
the raw image.

Since the gray value of sapwood is significantly lower
than that of heartwood for some wood species, the above se-
lective smoothing technique is not always effective for tran-
sitions between earlywood and latewood. In this case, differ-
ent glow andgup values for earlywood-latewood transitions
of sapwood and heartwood may be necessary. But for the
purpose of detecting knots, cracks, holes and bark/moisture
pockets the aforementioned smoothing algorithm works well.

5 Extraction of defect-like regions
from a segmented CT image

After the three thresholds determined in Sect. 4.4 are applied
to the smoothed image, the image is segmented into four
classes. We ignore the second and third classes because they
are mostly comprised of earlywood and latewood. The pixels
from the first class in the smoothed image are intended to
correspond to cracks and holes and those from the fourth
class to knots and bark/moisture pockets (Figs. 7b and 8).

5.1 Locating the pith

The physical pith is a small area which may be viewed as
the biological center of a tree although it is rarely located
in the geometric center of the log cross sections. It has an
important role in aiding the identification of various wood
features. For example, growth rings typically form a circular
pattern with the pith at the center, and the longitudinal axes
of knots and cracks normally pass through the pith.

Fig. 9. The Hough transform procedure for locating the pith

Table 1. Results of the pith locating procedure

Species No. of Percentage of images with
Images pith location precision within

5 pixels 10 pixels 20 pixels
White Ash 424 74.2 93.6 96.8
Red Oak 633 60.5 83.0 98.9
Black Walnut 456 83.2 97.8 100
Hard Maple 663 54.5 77.3 99.0

Assuming that the pith is the innermost portion of the
growth rings and that the growth rings are nearly circular
in shape, a simple algorithm for locating the pith can be
designed. Our algorithm locates the pith using the Hough
transform [1] for circle detection. First, the Canny edge op-
erator [5] is applied to the raw CT image and the output
thresholded based on edge strength. An edge map denot-
ing the locations of the edge pixels and a gradient direction
image are then obtained from the thresholded output. For
an edge pixel (xe, ye), the coordinates (xc, yc) of the cen-
ter of a circle with radiusr within a certain range along
the gradient directionθ and passing through the edge pixel
are computed as:xc = xe + r cosθ and yc = ye + r sinθ
(Fig. 9). The corresponding location in a 2D Hough accu-
mulator array representing thex and y coordinates of the
centers of the circles is incremented by unity (Fig. 9). The
above procedure is repeated for several values ofr within a
certain range at each edge point. Finally, the location in the
accumulator array with maximum value is selected as the
location of the pith. In practice, just the central portion of
the image (representing about 1/3 of the log cross sectional
area) needs to be processed since the pith rarely lies near
the boundary of the log cross section. Table 1 summarizes
the results of the pith-locating procedure. As can be seen in
Table 1, for a majority of the CT images from all the four
hardwood species, the pith is localized within a precision of
5 pixels (3.75 mm). For almost all of the CT images from
all the four hardwood species, the pith is localized within
a precision of 20 pixels (15 mm). An error tolerance of 10
pixels (7.5 mm) in the pith location can be seen to offer a
good compromise (Table 1). Subsequent feature detection
and localization procedures that rely on the pith location are
designed to take this error tolerance into account.

5.2 Identification of defect-like regions

Using a region-growing process, 8-connected pixels (i.e.,
indirect neighbors and direct neighbors) in the image be-
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Fig. 10. aRetained defect-like regions with spikes: cracks and knots.b The finally retained detect-like regions with holes and gaps filled: cracks and knots

longing to the first class are grouped in the same region,
whereas 8-connected pixels belonging to the fourth class are
grouped in the same region. For each regionR obtained
from the region-growing process, the following features are
computed.

– Region perimeterPR, region areaAR and the region
centroid (xR, yR) computed asxR = 1

AR

∑
(x,y)∈R x and

yR = 1
AR

∑
(x,y)∈R y.

– Region slendernessSR which is computed as

S =
Imax − Imin

Imax + Imin
,

whereImax and Imin are the maximum and minimum
moments of inertia given by:

Imax =
1
2

[
M20 + M02 +

√
M2

11 + (M20 − M02)2

]
,

Imin =
1
2

[
M20 + M02 −

√
M2

11 + (M20 − M02)2

]
,

andMij =
∑

(x,y)∈R(x−xR)i(y−yR)j is theijth central
moment. For all shapes, the value ofSR lies in the range
[0, 1], whereSR = 0 for a circle andSR = 1 for a straight
line segment.

– Region orientationθmin which is the direction of axis of
least moment of inertiaImin with respect to thex axis.
The value ofθmin is computed as follows:

θmin =
1
2

arctan

(
2M11

M20 − M02

)
.

The value ofθmax which is the direction of axis of great-
est moment of inertiaImax is given byθmax = θmin + π

2 .
Note thatθmin andθmax values can be computed only
for shapes that are not perfectly circular.

In order to optimize the feature extraction process, a
minimum-area criterion was first used to decide whether a

region should be retained for further processing or deleted
from the region list. A region retained in the list often has
some spike-like branches (Fig. 10a) which are deleted using
a raster-scan algorithm. For each retained region, the orienta-
tions of its major and minor axes are computed as described
above. The region’s slenderness is used to further classify the
defect-like regions from the first class into crack-like regions
or hole-like regions. Over the course of several experiments
we have empirically determined that holes and bark/moisture
pockets have slenderness values in the range [0.00, 0.40],
cracks have slenderness values in the range [0.73, 0.98] and
knots have slenderness values in the range [0.13, 0.61] for
CT images of all the four hardwood species considered in
this paper. The contour of the region is then simply repre-
sented by the convex hull (for knots, holes and bark/moisture
pockets) or a polygon (for a crack). Figure 10b shows the
finally retained defect-like regions with holes and gaps filled.

6 3D analysis of defect-like regions
across CT image slices

The ultimate objective of the system is to detect 3D log
defects from a series of CT images. Therefore, we need
to reconstruct 3D defects from the 2D defect-like regions
and also verify if they indeed constitute valid defects. Since
a log is from a living tree, the physical condition as well
as the biological characteristics of the tree may result in
a large variation in the CT images of a log. A region in
a segmented CT image may be deemed as belonging to a
defect, but in reality may be caused by a variation in the
physical condition in the wood. For example, consider the
CT image of Hard Maple shown in Fig. 11a. The 2D region
corresponding to the bright spot in the lower right corner,
which in reality was caused by high local moisture content
(i.e., a moisture pocket), was incorrectly classified as a knot-
like region by the 2D analysis procedure described in the
previous section. However, after the log was dried, a CT
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Fig. 11. aThe bright spot in the lower right corner in the CT image of Hard Maple is a water pocket misclassified as a knot-like region.b A later scan of
the dried log sample does not display the bright spot (the cracks were introduced by the drying process)

Fig. 12. The geometric parameters used to group the defect-like regions

image at the same cross sectional location did not display
the bright spot (Fig. 11b). Also, when the log was physically
cut at the same cross sectional location no knot was revealed.

The above example underscores why it is necessary to
discard 2D defect-like regions if they have no 3D support,
i.e., have no corresponding defect-like regions in neighbor-
ing CT images to constitute a valid 3D defect. Even if a
defect-like region has 3D support from neighboring CT im-
ages, the defect-like region and the corresponding defect-like
regions in neighboring CT images are considered to consti-
tute a false defect if they do not satisfy the 3D parameters
of a valid defect. In fact, by using knowledge derived from
wood science, most ambiguities that arise in the segmenta-
tion and classification of defects in 2D CT images could be
resolved via 3D analysis of defect-like regions across suc-
cessive CT image slices.

6.1 Preliminary grouping of defect-like regions

To implement the 3D analysis efficiently, preliminary groups
of defect-like regions are generated from the defect-like re-

Fig. 13. Branch angle of a knot

gion list using an iterative clustering procedure with the ge-
ometric parametersθmin, r and α depicted in Fig. 12 as
features. The parameterr denotes the distance of the cen-
troid of the defect-like region from the pith, whereasθmin

denotes the region orientation. Each group is essentially a
series of defect-like regions with identical class labels that
are spatially connected across CT image slices. A group may
be classified as a valid defect if it satisfies a series of 3D
tests. In order to optimize the 3D analysis, a group is re-
jected if the number of 2D regions within it is less than a
predefined threshold which is three for a group belonging to
the fourth class and ten for a group belonging to the first
class. The threshold values are dependent on the minimum
size of the defect to be detected, the error tolerance in the
pith location and the scanning parameters employed.
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Fig. 14. a A portion of Red Oak shows a knot detected. The branch angle is about 46o. b A portion of Hard Maple shows a water pocket. The angle
between pith line and region center line is about 3o. c A portion of Red Oak shows a crack detected

6.2 Measurement of 3D defect parameters
using successive CT image slices

A knot is a branch that is embedded in the wood of a tree
trunk. The branch angle, which refers to the angle between
the branch pith axis and the tree trunk pith axis (Fig. 13)
was experimentally determined to be in the range [30o, 60o]
for all the four hardwood species considered in this paper.
Table 2 shows the branch angle values for knots encoun-
tered in several CT images derived from all the four hard-
wood species. The branch angle, measured between the log
pith axis and the line passing through the centers of the 2D
knot-like regions in successive CT image slices, is the most
important factor in distinguishing a knot from other defects
belonging to the fourth class, such as a bark/moisture pocket
(Fig. 14a and b). For bark/moisture pockets, on the other
hand, the angle between the log pith axis and the line pass-
ing through the centers of the corresponding defect-like re-
gions was experimentally found to lie in the range [0o, 15o].
Other slightly less important 3D measurements to distinguish
knots from bark/moisture pockets include the change in re-
gion area across successive CT image slices, and the region
shape. For a normal knot, the area should change from small
to large to small along successive CT slices containing the
knot, and the region shape is oval with a slenderness factor
in the range [0.13, 0.61]. For bark/moisture pockets, there
is little change in region area and the region shape has a
slenderness factor in the range [0.00, 0.40].

For defect groups from the first class, a 3D orientation
measurement and the measurement of the angle between the
log pith axis and the line passing through the region centers
in successive CT image slices are used to determine the
validity of the group. The 3D orientation test for a typical
crack shows that the plane containing the major axes of the
crack-like regions in successive CT slices intersects the log
pith axis. The line passing through the region centers in

Table 2. Branch angle and length for knots of four hardwood species

Species CT image Branch Knot
slice nos. angle (deg) length (mm)

White Ash 31–44 42.1 66.0
33–56 45.2 87.1
81–92 38.3 44.1
104–130 33.7 159.0
105–135 33.1 183.5

Red Oak 1–4 52.2 24.6
14–17 49.1 23.7
21–43 44.2 143.0
41–52 47.0 81.5
121–138 48.1 120.3

Hard Maple 10–23 37.9 80.8
15–19 34.1 24.8
20–24 38.3 27.3
65–70 41.1 31.1

Black Walnut 123–128 33.2 28.1
141–144 56.2 29.6
172–183 37.8 71.8
202–206 55.8 36.8

successive CT image slices, on the other hand, is roughly
parallel to the log pith axis making an angle in the range
[0o, 10o] with the log pith axis (Fig. 14c) and with the region
shape having a slenderness factor in the range [0.73, 0.98].
Since cracks and holes have similar gray-levels, the region
slenderness factor is the main distinguishing feature. Holes,
typically, were found to have a region slenderness factor in
the range [0.00, 0.40].

6.3 Experimental validation of defect identification
and localization procedures

The aforementioned procedures for defect identification and
localization were subject to comprehensive and rigorous ex-
perimental validation. Two log samples each of White Ash
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Table 3. Detection rate and false-alarm rate for knots with 2D analysis

Species Images True Detected Detected Detection False-alarm
knots true knots false knots rate rate

White Ash 424 225 203 38 90.2% 15.8%
Red Oak 633 161 134 16 83.2% 10.7%
Black Walnut 456 330 283 110 85.7% 28.0%
Hard Maple 663 194 163 84 84.0% 34.0%

Table 4. Detection rate and false-alarm rate for knots with 3D analysis

Species Images True Detected Detected Detection False-alarm
knots true knots false knots rate rate

White Ash 424 225 201 13 89.3% 6.1%
Red Oak 633 161 130 7 80.8% 5.1%
Black Walnut 456 330 275 21 83.3% 7.1%
Hard Maple 663 194 158 23 81.4% 12.7%

and Black Walnut and three log samples each of Hard Maple
and Red Oak were used in the validation process. The log
samples were approximately 1 m in length owing to the fact
that the CT scanner did not allow scanning of logs with
length much greater than 1 m. The scanned logs were physi-
cally cut at cross sectional locations where the corresponding
CT images showed a high incidence of internal defects. The
cross sections of the cut logs were imaged with an opti-
cal scanner with 24-bit color resolution (i.e., 8 bits each for
red, green and blue) and spatial resolution of 100 pixels per
linear inch. The defects in the color image were manually
identified and delineated and treated as ground truth for the
purpose of validation. The CT images and the color images
were placed in registration for the purpose of validation.

A verification test was performed to ascertain whether
a defect-like region in the CT image had a corresponding
region in the color image and vice versa. A correspondence
between two defect-like regions was deemed to have been
established if (i) the defect-like regions has identical labels
(knot, crack, or bark/moisture pocket), (ii) the displacement
of the region centroids in the two images was less than a
predefined threshold, (iii) the difference in region orientation
was less than a predefined threshold and (iv) the overlap fac-
tor defined as the ratio of the area of intersection of the two
regions to the area of the region as measured in the color
image was greater than a predefined threshold. The results
of the above procedure are used to compute the detection
rate (number of defects in the color image that are identified
in the CT image) and the false-alarm rate (number of defects
in the CT image that have no corresponding defect in the
color image). The goal of a machine vision system would be
to maximize the detection rate while minimizing the false-
alarm rate. The detection rate and false-alarm rate were com-
puted with 2D analysis only and with 2D analysis followed
by 3D analysis for knots, cracks, holes and bark/moisture
pockets. The detection rate and false-alarm rate results for
knots are tabulated in Tables 3 and 4, whereas the results for
cracks are tabulated in Tables 5 and 6. As the results show,
the incorporation of 3D analysis results in a drastic reduction
in the false-alarm rate at the cost of a very nominal decrease
in the detection rate. Figure 15 shows the 3D rendering of
the detected internal defects in a log with and without 3D
analysis.

Table 5. Detection rate and false-alarm rate for cracks with 2D analysis

Species Images True Detected Detected Detection False-alarm
cracks true cracks false cracks rate rate

White Ash 424 112 92 6 82.1% 6.1%
Red Oak 633 8 6 2 75.0% 25.0%
Black Walnut 456 29 22 5 75.9% 18.5%
Hard Maple 663 5 4 2 80.0% 33.3%

Table 6. Detection rate and false-alarm rate for cracks with 3D analysis

Species Images True Detected Detected Detection False-alarm
cracks true cracks false cracks rate rate

White Ash 424 112 89 2 79.5% 2.2%
Red Oak 633 8 6 1 75.0% 14.3%
Black Walnut 456 29 21 2 72.4% 8.7%
Hard Maple 663 5 4 1 80.0% 20.0%

The localization accuracy was quantified in terms of the
average centroid displacement, average region orientation
difference and average overlap factor for each defect type,
i.e., knot, bark/moisture pocket, crack and hole. The localiza-
tion results are tabulated in Table 7. Table 7 shows that holes
and cracks are localized with greater accuracy, followed by
knots and moisture/bark pockets. This can be attributed to
the fact that cracks and holes typically exhibit less variance
in terms of both shape parameters and gray-level values than
knots and moisture/bark pockets.

7 3D visualization and simulation
of machining operations

As mentioned earlier, CATALOG is capable of 3D recon-
struction and visualization of the scanned logs and simula-
tion and visualization of key machining operations on logs
such as sawing and veneering. In contrast to other lumber-
processing simulation systems [19, 27, 32] which use ap-
proximate log models (such as wireframe models), CATA-
LOG uses a 3D volumetric log model derived by the stacking
of the data and results derived from successive CT images.
Consequently, the results of our simulation and visualization
algorithms are more realistic. In spite of the large volume
of data that needs to be handled, our simulation and render-
ing algorithms are efficient enough that the run times would
be considered acceptable in a real-time lumber production
environment.

The graphics simulator in CATALOG is designed to be
interactive, flexible and extensible and uses a layered object-
oriented software development methodology. As shown in
Fig. 16, the graphics simulator consists of four layers: user
interface (UI) layer, process layer, object layer and data store
layer. The UI layer communicates only with the process
layer and takes inputs from the user as the arguments to
the object builder. It lets the user select what object to con-
struct, and which data sources to use, and specify viewing
conditions and other cutting parameters. The process layer
consists of the object builder and graphics renderer. The ob-
ject builder actually consists of several procedures to build
models of a log (with or without defects), and models of
board or veneer that would result from processing the log.
The graphics renderer consists of procedures for setting up
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Fig. 15a,b.3D rendering of the detected internal defects in a loga without 3D analysis andb with 3D analysis

Table 7. Localization accuracy for internal defects

Defect type Parameters Red Oak Hard Maple Black Walnut White Ash

Knot No. of defects 15 21 20 17
Centroid 6.24 3.53 3.11 4.27
displacement (mm)
Orientation 8.31 5.54 7.88 6.14
difference (deg)
Overlap 0.86 0.83 0.91 0.93
factor

Hole No. of defects 9 4 2 3
Centroid 2.21 1.80 3.82 3.31
displacement (mm)
Orientation 10.02 8.81 9.23 5.77
difference (deg)
Overlap 0.92 0.97 0.95 0.93
factor

Crack No. of defects 12 17 7 9
Centroid 5.77 3.26 4.29 2.83
displacement (mm)
Orientation 6.83 2.87 5.65 4.14
difference (deg)
Overlap 0.91 0.93 0.96 0.97
factor

Bark/Moisture No. of defects 7 3 3 5
pocket Centroid 10.34 12.76 8.63 7.42

displacement (mm)
Orientation 9.81 9.75 10.22 10.54
difference (deg)
Overlap 0.81 0.88 0.83 0.82
factor

the 3D transformations, projections and other viewing pa-
rameters. The object layer consists of (i) high-level objects
such as the 3D log, 3D defect, sawn product and veneer,
(ii) low-level objects describing the volumetric model, sur-
face model and cross sectional boundary of the log, and
(iii) raw data which consists of the CT image slices, cutting
plane data and cutting line data. The data store layer consists
of a file system that stores all the raw data. Future versions
of CATALOG will use a database to store raw data.

In the current version of CATALOG, the 3D reconstruc-
tion can be viewed in two modes.

(i) The natural mode where the log is viewed as a solid
entity. This mode allows one to examine the external
features of the log.

(ii) The defect mode where the defects within the log are
viewed as solid entities and the rest of log (including the
growth ring structure) is viewed as a semi-transparent
entity. This viewing mode is used to highlight the inter-
nal 3D defects in the log and also view the relative 3D
positions of these defects within the log (Fig. 15).
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Fig. 16. The graphics simulator subsystem in CATALOG

In both modes, the user can manipulate the log via transla-
tion and rotation in a world coordinate reference frame, via
rotation about the log axis and by changing the viewpoint of
observation in a world coordinate reference frame or in the
log coordinate reference frame. All the above operations are
modeled as 3D homogeneous coordinate transforms com-
monly employed in 3D graphics algorithms [13].

7.1 Simulation of the sawing operation

In CATALOG, a sawn product from a log is modeled as the
intersection volume of the log and all the half-spaces defined
by the specified sawing planes. In the interest of run-time
efficiency, the intersection operation is not performed in 3D
space. Instead, the intersection area in each image plane (xy
plane with a constantz value) is computed and the results are
stacked along thez axis to generate the intersection volume.
The cross sectional boundary of the log in each CT image
slice is computed using a boundary-following algorithm. The
cross section of the sawn product is then computed using the
following algorithm.

Algorithm to determine the cross section
of the sawn product
Assume that the user has inputn sawing planes:Aix+Biy+
Ciz + Di = 0; i = l, 2, . . . , n. Let each sawing plane define
a half-spaceAix + Biy + Ciz + Di ≥ 0 that constrains the
sawn product. Letzc denote thez coordinate of the CT im-
age slice andncols andnrows the number of columns and
number of rows of the image, respectively. LetAREA be
the rectangular area defined byz = zc, 0 ≤ x < ncols and
0 ≤ y < nrows. The intersection operation which deter-
mines whether then half-spaces define a feasible subregion
within AREA (Fig. 17) can be computed as follows:

1. Let ARRAY be an array of the same size asAREA.
All locations in ARRAY are initialized to 0.

2. For each half-space defined byAix+Biy+Ciz+Di ≥ 0,
do

Fig. 17. Cutting planes constraining the sawn product

Fig. 18. Result of a simulated sawing operation

a) if the half-space includesAREA or portion of
AREA, then each element ofARRAY included by
the half-space is incremented by 1;

b) else there is no common intersection for all the half-
spaces inAREA, hence exit;

3. Compute the intersection region between the pixels in
AREA surrounded by the log boundary points (i.e., in-
terior pixels of the log cross section) and theARRAY
pixels with valuen (Fig. 17).

4. Stack the intersection regions computed in successive
CT image slices to generate the 3D model for the sawn
product.

5. Since the resolution along thez axis is much coarser
than that along thex andy axes, use linear interpolation
along thez axis to improve the visual quality of the
model.

For the sawing operation, the user can specify the posi-
tions and orientations of the sawing planes, the position and
orientation of the log and the viewpoint of observation, each
either in a world coordinate reference frame or in the log co-
ordinate reference frame. Once the log is sawed, the user can
view the cross section from any viewpoint. The cross section
contains both, the markings from the growth ring structure as
well as the log defects. Simulation of the sawing operation
enables the user to view the 2D boards that would possibly
result from subjecting the log to a certain sawing scheme.
Figure 18 depicts the result of a simulated sawing operation
on a 3D log reconstruction.
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Fig. 19. Veneering operations using rotary-peeling and slicing

7.2 Simulation of the veneering operation

CATALOG is capable of simulating the veneering operation
on the 3D log reconstruction as well as on 2D boards that
result from the sawing operation. In the former case, the
rotary-peeled veneering technique is used where the wood
is shaved off the cylindrical surface of the log using a ro-
tary lathe machine. In the latter case, the wood is shaved
off the board surface using a slicing machine. Figure 19 de-
picts both these veneering operations. From a mathematical
modeling standpoint, the sliced veneering technique is very
similar to the sawing technique discussed previously. Hence,
we discuss the rotary-peeled veneering technique in greater
detail.

The input parameters for the simulated rotary-peeled ve-
neering operation are: the number of consecutive CT images
n, thez coordinates of the first and last CT image slice de-
noted byz1 andz2, respectively, the rotation axis specified
by two pointsP1 = (x1, y1, z1) andP2 = (x2, y2, z2), the ve-
neer thicknesst, and the diameter of the inner coreDmin

(Fig. 20). From the log cross sectional boundary computed
for each CT image slice and the specified rotation axis, the
maximum diameterDmax of the veneering cylinder can be
computed (Fig. 20b).

Given the CT image coordinate system (x, y, z), a veneer
coordinate system denoted by (xv, yv, zv) is created with its
origin at P1 = (x1, y1, z1) andzv axis in the directionP1P2.
The transformation between the CT image coordinate system
and the veneer coordinate system is given by

[xv, yv, zv, 1]T = Ry(α)Rx(θ)Tv[x, y, z, 1]T ,

where

α = arctan

(
−(x2 − x1)√

(z2 − z1)2 + (y2 − y1)2

)
,

θ = arctan

(
y2 − y1

z2 − z1

)
,

Ry(α) =




cosα 0 sinα 0
0 1 0 0

− sinα 0 cosα 0
0 0 0 1


 ,

Rx(θ) =




1 0 0 0
0 cosθ − sinθ 0
0 sinθ cosθ 0
0 0 0 1


 ,

Tv =




1 0 0−x1
0 1 0 −y1
0 0 1 −z1
0 0 1 −z1
0 0 0 1


 .

Also

[x, y, z, 1]T = T−1
v R−1

x (θ)R−1
y (α)[xv, yv, zv, 1]T .

Figure 21a shows a trace line for one complete rotation
of the rotary-peeled veneer with initial radius ofr and an
ending radius of (r−t). The lengthS of the resulting veneer
is given by

S =
∮

ds =
∫ 2π

0

(
r − α

2π
t
)

dα = 2π

(
r − t

2

)
,

where ds = Rdα =
(
r − α

2π t
)
dα is the incremental arc

length (Fig. 21b).
Let m = Dmax−Dmin

2t be the total number of rota-
tions that the log can have with veneer thicknesst. Let
Si = 2π

(
Dmax

2 − (i − 1)t − t
2

)
be the length of the veneer

generated by theith rotation. The total veneer lengthL is
given by

L =
m∑
i=1

Si =
m∑
i=1

[2π(
Dmax

2
− (i − 1)t − t

2
)]

= πm(Dmax − tm)

=
π(Dmax − Dmin)(Dmax + Dmin)

4t
.

The simulation of the rotary-peeled veneering operation
maps the intersection of a rotary cylinder of radiusr and
a CT image onto a trace line in the veneer image. The al-
gorithm for the simulation of the rotary-peeled veneering
operation is given below.
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Fig. 20a,b.Parameters for simulation of the rotary-peeled veneering operation.a Veneer coordinate system.b Rotary peeling parameters

Algorithm for simulation of rotary-peeled veneering
operation

1. For 0< zv ≤ zc (wherezc is the width of the veneer
cut), in steps of 1 do
a) ForDmax/2 ≥ r ≥ Dmin/2, in steps oft do

i. For 0< α ≤ 2π, in steps of 1/r do
A. Computexv =

(
r − α

2π t
)

cosα.

B. Computeyv =
(
r − α

2π t
)

sinα.

C. Compute [x, y, z, 1]T = T−1
v R−1

x (θ)R−1
y (α)

× [xv, yv, zv, 1]T .
D. Determine the gray-levelg from the CT im-

age (x, y, z). Use linear interpolation from
neighboring pixels in the CT image and
from pixels in successive CT slices if nec-
essary.

E. Iv[s][zv] = g where Iv is the veneer im-
age ands is the arc length given bys =(
rα − α2

4π t
)

.

2. Display the veneer imageIv[s][zv]. To improve visual
quality of the veneer image, supersample it using linear
interpolation.

Figure 22 depicts a veneer image generated from a sim-
ulated rotary-peeled veneering operation on a 3D log recon-
struction. The goal in simulating the veneering operation is
to minimize the production of low-grade veneer that contains
a lot of defects and thus optimize value recovery.

8 Run-time results

The algorithms for defect identification, defect localization,
3D model reconstruction, and simulation and visualization of
machining operations were implemented in Visual C++ on
a 200-MHz PentiumPro workstation with 256 MB of RAM.
For the purpose of 3D rendering, a modified version of the
z-buffer algorithm was used which allowed for simultaneous
rendering of opaque and semi-transparent objects [13]. This

Fig. 21a,b.Computation of the length of a veneer trace.a Change of radius
during one rotation.b Computation of the arc length

was found useful when displaying the reconstructed log in
the defect mode.

The defect identification and localization process (with
3D analysis) averaged 112 s on a 1-m-length log which re-
sulted in 200 CT image slices, each of size 320×320 pixels
with a gray-level resolution of 8 bits per pixel thus amount-
ing to approximately 19.5 MB of raw image data. The 3D
model reconstruction algorithm averaged 57 s whereas the
rendering algorithm for the 3D log model averaged 49 s.
Overall, the entire process of defect identification, defect
localization, 3D model reconstruction and rendering took
between 3 and 4 min for all the log species that were con-
sidered. The graphical simulation of the sawing operation
averaged 38 s for a cut defined by two sawing surfaces. The
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Fig. 22. Veneer image generated from
a simulated rotary-peeled veneering
operation

graphical simulation of the rotary-peeled veneering opera-
tion averaged 8 s for a veneer of length 1.2 m and width of
1 m.

Although the run times mentioned above are impressive,
they fall short of those required for real-time processing of
lumber in a sawmill. The use of faster hardware is an ob-
vious solution and so is the use of parallel computing. It
is to be noted that the processes for defect identification,
defect localization and 3D model reconstruction could be
pipelined. One could also exploit data parallelism at the pixel
level for each of these processes as well as for simulation
and visualization of machining operations. Future versions
of CATALOG will incorporate these enhancements to make
it suitable for real-time processing of lumber.

9 Conclusions and future research

The current version of CATALOG is capable of detection
and 3D rendering of defects such as knots, cracks, holes and
bark/moisture pockets in hardwood logs of select hardwood
species. The species that were considered were Red Oak,
Black Walnut, White Ash and Hard Maple, which account
for over 80% of the lumber production in the United States.
CATALOG is capable of 3D reconstruction and rendering of
the log along with its internal defects. CATALOG is also ca-
pable of simulating and rendering key machining operations
such as sawing and veneering on the 3D reconstructions of
the logs. The current version of CATALOG could be used
as a decision aid by sawyers and machinists, as well as an
interactive tool for training novice sawyers and machinists.

However, the current version of CATALOG does not per-
form well with CT images containing defects or growth rings
with irregular shapes (Fig. 23), containing very dense annual
rings, where the width of the rings is less than the scan-
ner spatial resolution, and with CT images that exhibit low-
density variation between normal wood and defects. These
problems need to be addressed in the future versions of CAT-
ALOG.

The future versions of CATALOG will incorporate au-
tomated optimal sawing strategy selection and automated
lumber grading. The current version of CATALOG relies
on the user to select the optimal sawing strategy after hav-
ing viewed the 3D log reconstruction along with its internal
defects, simulated the relevant machining operations on the
3D log reconstruction and viewed the simulation results. The
future version of CATALOG will be able to suggest an op-
timal sawing strategy for the log that would maximize the
grade and yield of the resulting lumber and also satisfy the

Fig. 23. A CT image of Red Oak with an irregular ring structure

constraints imposed by market demand. We expect this to
be a complex problem in computational geometry and con-
strained optimization. An automated procedure for optimal
sawing strategy selection would necessarily entail an auto-
mated procedure for lumber grading. Lumber grading would
not only have to take into account the presence of defects
in the cut lumber but also aesthetic (and hence subjective)
aspects based on wood grain texture, wood surface texture,
etc. The future version of CATALOG will incorporate a lum-
ber grading rulebase that will be constructed from grading
heuristics acquired with the help of expert (human) lumber
graders. The use of parallel computing to make CATALOG
capable of processing lumber in real time will also be ex-
plored.
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