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Abstract. Accurate and efficient vectorization of line draw-
ings is essential for any higher level processing in document
analysis and recognition systems. In spite of the prevalence
of vectorization and line detection methods, no standard for
their performance evaluation protocol exists. We propose a
protocol for evaluating both straight and circular line ex-
traction to help compare, select, improve, and even design
line detection algorithms to be incorporated into line draw-
ing recognition and understanding systems. The protocol in-
volves both positive and negative sets of indices, at pixel
and vector levels. Time efficiency is also included in the
protocol. The protocol may be extended to handle lines of
any shape as well as other classes of graphic objects.
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1 Introduction

Vectorization and other line detection techniques have been
developed to convert images of line drawings in various do-
mains from pixels to vector form (e.g., Kasturi et al. 1990;
Nagasamy and Langrana 1990; Filipski and Flandrena 1992)
and a number of methods and systems have been proposed
and implemented (e.g., Boatto et al. 1992; Vaxiviere and
Tombre 1992; Dori et al. 1993; Dori 1995). However, the
performance of these methods and systems is known at best
only from the reports of their developers, based on their
own perceptual, subjective, and qualitative human vision
evaluation. Objective evaluations and quantitative compar-
isons among the different line detection algorithms are not
available. This is due to the lack of protocols that provide
for quantitative measurements of their interesting metrics, a
sound methodology acquiring appropriate ground truth data,
and adequate methods for matching the ground truth data
with the data describing the detected lines. To fully compre-
hend and reliably compare the performance of line detection
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method and to help select, improve, and even design new
methods to be applied in further systems intended for some
specific application strongly requires the establishment of
objective evaluation protocols, matching methods, and a re-
sulting performance evaluation methodology.

Performance evaluation is a very new research topic in
the field of computer vision and image processing in general.
Performance evaluation has been recognized as an important
factor in advancing the research in this field. Most work to
date has been carried out to evaluate performance of thinning
algorithms. Haralick (1992) was the first to propose a general
approach for performance evaluation of image analysis, with
thinning taken as a case in point. Evaluation and comparison
of thinning algorithms have also been performed by Lee et
al. (1991), Lam and Suen (1993), Jaisimha et al. (1993), and
Cordella and Marcelli (1996). Some of these evaluation and
comparison works were carried out from the viewpoint of
OCR, while the work of Jaisimha et al. (1993) is domain
independent. Although thinning may also be employed as
preprocessing of line detection, the latter has different char-
acteristics and therefore requires different evaluation proto-
col. However, performance evaluation of vectorization and
line detection has been reported only recently by Kong et
al. (1996) and Hori and Doermann (1996).

Kong et al. (1996) have developed a protocol and a sys-
tem for systematically evaluating the performance of line
detection algorithms, mainly for dashed-line detection algo-
rithms. They define the overlap criteria of the match between
a ground truth and a detected linc based on the angle and the
distance between them, and the partial overlap is also con-
sidered. The protocol includes several important evaluation
aspects, such as endpoint detection and line style (pattern)
detection. Although the evaluation aspects are selected pri-
marily for dashed lines, they are suitable for any line style
(pattern). Both the detection rate and the false alarm rate
(misdetection rate) are used in the evaluation, yielding pos-
itive and negative evaluation, respectively. The geometry
matching criteria are rather arbitrary and rigid, for example,
the angle should be less than 3◦ and the distance between
two lines less than 5 pixels. The protocol also excludes the
evaluation of line width detection as well as detected line
fragmentation and combination. Rather, they consider line
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fragmentation and combination as being simply wrong, and
only the best match with the maximum overlap is chosen.

Hori and Doermann (1996) present a methodology for
measuring the performance of algorithms for application-
specific raster-to-vector conversion (also referred to as vec-
torization). They provide a set of basic metrics (evaluation
contents) which is specifically geared to vectorization of me-
chanical engineering drawings but may be used in all appli-
cations. Using CAD representation, they specify the output
(line) feature set to include the endpoints, the line thickness
(width), and line type (pattern, which may be dashed, dot-
ted, or solid) as well as a number of further feature points
such as T junctions, crossing points, and corner points. Their
point matching threshold is set as half the line width plus an
allowable margin error. This threshold is adaptive and suits
any line width. Another rational metric is the weighted to-
tal line matching value, which is the weighted sum of each
line’s matching value (1 for match, 0 for mismatch) with
the line lengths being the weights. Hori and Doermann’s
performance evaluation protocol has also a number of dis-
advantages. First, it makes no distinction between detection
rate and false alarm rate. Second, the metrics for line eval-
uation are given in several nonuniform units. It uses length
ratio, deviation, and count ratio to evaluate the line length
detection, line location detection, and line quantity detec-
tion, respectively. The evaluation of feature points is also
given in four distinct forms: endpoints, T junctions, crossing
points, and corner points. There is lack of an overall evalua-
tion metric which provides an overall combined performance
evaluation of the algorithm under consideration. Third, the
location deviation metrics are not normalized with respect to
the line widths; rather, the protocol uses absolute Euclidean
distances. Finally, as in Kong et al.’s protocol, this protocol
also neglects the evaluation of line width detection, detection
fragmentation, and detection combination.

The problem of evaluating arcs and higher order curves
has not been addressed. Kadonaga and Abe (1996) compare
the methods for detecting corner points from digital curves.
This may be related to curve detection, but their scheme is
aimed at evaluating the detection of feature points rather than
curves. The performance evaluation protocol of the detection
of arcs and higher order curves should include other critical
factors.

Time efficiency is an important factor of the performance
of the vectorization and line detection algorithms, especially
in industrial applications, where large drawing images must
be processed in reasonable time to make the system practical.
However, time performance is seldom evaluated. Only Lee
at el. (1991) have compared the time efficiency of thinning
algorithms.

We propose here an objective and comprehensive proto-
col for performance evaluation of vectorization and line de-
tection algorithms which includes a reasonable line matching
definition and its measurement degree (vector detection qual-
ity), a number of evaluation criteria, and a set of single and
combined performance evaluation indices at both the pixel
and vector levels. Both the detection and false alarm rates are
considered. It is designed for straight lines as well as circu-
lar arcs of any style. Time efficiency is also included in this
protocol. Experiments using this protocol in the performance
evaluation of our sparse pixel vectorization algorithm, step-
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Fig. 1. a The ideal oval area occupied by a bar.b The ideal arc image

wise recovery arc segmentation algorithm, and dashed line
detection algorithm with the machine drawing understand-
ing system (MDUS) are presented. We compare and discuss
the evaluation results between this protocol and those of
Kong et al. (1996) and Hori and Doermann (1996). The
proposed protocol may also be extended to cover the per-
formance evaluation of text segmentation and other graphic
object recognition algorithms.

In Sect. 2 we first present and discuss the objectives,
characteristics, and expected outputs of vectorization and
line detection algorithms. The performance evaluation con-
tents is determined and defined accordingly. Section 3 pre-
sents our matching methods for a pair of ground truth line
and its corresponding detected line. In Sect. 4 we propose the
general protocol for vectorization performance evaluation,
which combines a set of indices for both detection and false
alarms at the pixel and vector levels. Section 5 describes
the experiments using the protocol in the performance eval-
uation of our sparse pixel vectorization algorithm, stepwise
recovery arc segmentation algorithm, and the dashed line
detection algorithm in the MDUS that we developed, and
compares the experimental results of the proposed protocol
with those of protocols proposed by Kong et al. (1996) and
Hori and Doermann (1996). Discussion and summary appear
in Sect. 6.

2 Performance contents of vectorization
and line detection

Vectorization and line detection processes yield vector form
lines from the pixel-based drawing image. We refer to vec-
torization specifically as the process which is responsible
only for converting the image to raw fragment vectors (bars
and polylines) and to line detection as the process which
yields fine lines (with specific and accurate shapes and
styles) from the raw fragmentary vectors.

A vector represents a bar which has, in addition to the
two endpoints, a specified line width, an associated line style,
and the round cap end style. Figure 1 shows examples of the
area occupied by the image of a solid straight line segment
and a solid circular arc. We define the following terms that
are used throughout the paper:

– Bar: a solid straight line segment with nonzero width
which occupies a (possibly slanted) black pixel area in
the drawing image. The ideal area is an oval consisting
of a rectangle and two semicircles, as shown in Fig. 1a,
as if displayed using the round cap endpoint style.

– Arc: a solid circular line segment with nonzero width
which occupies a (possibly closed) black pixel area in
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the drawing. The ideal endpoints are also round capped,
as shown in Fig. 1b.

– Polyline: a chain of two or more equal width bars linked
end to end.

– Line: a generalization of bar, arc, and polyline to re-
fer any vector, whose style may be solid, dashed, dash-
dotted, or dash-dot-dotted, among others.

– Line detection algorithm: an algorithm that operates on
raster image to detect lines. It is a generalization of vec-
torization which yields bars and polylines, arc segmen-
tation, which yields arcs, and detection of other classes
of lines.

– Basic line detection phase: the first phase of a line de-
tection algorithm.

– Postprocessing phase: the second phase of a line detec-
tion algorithm, in which line fragments are manipulated
to refine the output.

We expect the vectorized results to preserve to the great-
est extent possible the original shape of all the lines in the
image. To avoid cumulative errors and evaluate each major
phase separately, the shape preservation is evaluated with re-
spect to the results of basic line detection phase rather than
on the final output after postprocessing phase.

We expected line detection algorithms to yield fine lines
that are as accurate as possible. The attributes of a line in the
drawing include style, width, endpoints and, for an arc, also
center. The detection accuracy of each line is reflected by
the detection quality of its attributes. The evaluation should
consider the detected values of these attributes. Two addi-
tional factors affect the line detection accuracy. One is the
detection fragmentation, i.e., the extent to which a ground
truth line is detected as several line fragments. Fragmenta-
tion occurs not only in the detection of dashed style lines
but also in the detection of solid lines. The other factor is
the detection consolidation, i.e., the extent to which two or
more ground truth lines are linked and detected as one line.
This case occurs in situations where the endpoints of two
collinear lines of (usually slightly) different widths are too
close to be separated by the algorithm, or where two parallel
lines are too close to each other. These two factors should
also be included in the evaluation.Vector detection quality
is a metric that incorporates the detection of the line’s ba-
sic attributes with the detection fragmentation and detection
consolidation factors.

Lines rather than feature points are used as the evaluated
entities in our protocol. Feature points detection may be im-
portant in specific tasks, such as OCR. However, feature
points alone do not directly reflect the detection capability
of line detection algorithms. At any rate, important feature
points are included directly in the line detection evaluation
protocol since they are also attributes of the lines. For ex-
ample, the feature points specified by Hori and Doermann
(1996) are the endpoints, corners and T junctions. Corners
and T junctions are also endpoints of lines.

3 Matching ground truth to detected output

Ground truth is the original data, which is the basis for com-
parison with the detection results. This is the essence of per-
formance evaluation. For the pixel-level shape-preservation

evaluation the ground truth is the original raster image on
which the detection algorithms operate. To evaluate the pro-
cessing capability (robustness) of image analysis algorithms
on real-life, noisy images, image degradation models have
been proposed by Kanungo et al. (1993) and used by Har-
alick (1992) and Hori and Doermann (1996). The ground
truth image is the original clear image, and the actual input
image is the degraded image.

For vector-level evaluation the ground truth is a set of
lines whose attributes are known in advance and are more
difficult to obtain. For real applications vector ground truth
is usually not available. For experimental evaluations vector
ground truth can be obtained by either manually measuring
the image or automatically generating and using them to
construct (with the optional degradation) the input image
for the evaluation test.

The matching problem at the pixel level can be solved
simply by considering the pixel coordinates since the ground
truth pixels and the detected pixels are stored in the identical
data structures.

The matching problem at the vector level is more com-
plicated because a detected vector may have location offset,
a different line style, and even a different geometry shape
than its ground truth. Moreover, there may be no counter-
part to either a ground truth or a detected line at all. The
matching definition of Kong et al. (1996) is based on the
angle, distance, and relative overlap between the two lines.
This may yield a false matching result. For example, con-
sider two equal, very long straight lines that intersect at their
middle points at a 3◦ angle. The distances between the two
pairs of corresponding endpoints of such two lines may be
large. Nevertheless, these two lines are erroneously matched
using the matching definition. Likewise, a short line cannot
match a long line according to the relative overlap criterion.
Hori and Doermann (1996) use endpoint matching in their
line matching definition. This criterion is suitable only for
straight lines and not for circular arcs and curves.

Our protocol defines the matching of a pair of lines based
on both the area overlap and the endpoint matching between
them. The area occupied by a bar is determined by its end-
points and width; therefore the area overlap between two
bars can be calculated by their endpoints and width alone.
For curves we require that the matched lines both overlap
and have matching endpoints. We do not limit the match-
ing definition to lines of the same geometric shape. Lines
with different shapes may also be matched, and the match-
ing degree (vector detection quality) is calculated with shape
misdetection evaluation included. This option is needed be-
cause, for example, short arcs with a small open angle may
be reasonably misdetected as bars.

Based on the above matching definition, we can calcu-
late the overlapping segment of a detected line and its cor-
responding ground truth line. Figures. 2 and 3 illustrate the
matching definition and the calculation of the overlapping
segment.

For bars, consider a pair of a detected line (k) and a
corresponding ground truth line (g). Let c = k∩g denote the
line segment ofk that overlapsg, i.e., c is the intersection
of k and g. The method of calculatingc is presented and
illustrated in Fig. 2. A ground truth line and a detected line
are defined to be overlapping if each one of at least two out
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Fig. 2. Illustration of calculating the intersection part of
two overlapping lines
Fig. 3a,b.Illustration of the matching of arcs.a Two arcs.
b An arc and a bar

of the four endpoints of the two lines lies inside the image
area of the other line, as shown in Fig. 2. A point lying inside
the occupied area of a line also means that the distance of
the point to the line is less than half the line width. This
definition gives rise to the following three cases:

– Ground truth line overlap: both endpoints of the ground
truth line lie inside the detected line’s area.

– Detected line overlap: both endpoints of the detected line
lie inside the ground truth line’s area.

– Partial overlapping: exactly one endpoint of the ground
truth line lies inside the detected line’s area and exactly
one endpoint of the detected line lies inside the ground
truth line’s area.

The overlapping segment is a virtual line whose end-
points are the two endpoints lying inside the area of the
matching line, which are called touching points. The over-
lapping segment is evaluated, and the evaluation is part of
the ground truth line and the detected line. The distances
from these two touching points to the matching line are de-
notedd1 andd2.

The matching of arcs (two arcs, or an arc and a bar) is
similar to that of straight lines, except that the overlap dis-
tance (doverlap) is added to the criteria. The overlap distance,
as shown in Fig. 3, is defined as the Hausdorf distance: the
maximum of all minimum distances between the points on
the detected line (arc) and the ground truth line (arc) in the
overlap area, includingd1 and d2. Such matching requires
that the overlap distance be less than half the ground truth
line width. This criterion can be extended to the matching
of polylines, which may be either the ground truth line or
the detected line, or both.

4 Indices of performance evaluation

Customary current performance evaluation methods of com-
puter vision, image processing, document image analysis,
and recognition systems are based on perceptive measuring,
i.e., relying on human vision. The results are subjective and
qualitative. Different people may give different evaluations.
In order to supply objective and quantitative measurements
which are comparable, quantitative indices should be pro-
vided along with the evaluation protocol.

According to the performance evaluation criteria de-
fined in Sect. 2, we define performance evaluation indices
to measure each criterion. The shape comparison of com-
plex graphic objects is easier in pixel form than in vector
form. Therefore the shape-preservation capability is a pixel-
level performance attribute of line detection algorithms. The

vector attributes (such as style, width, and endpoints) are
easier to compare at vector level. The line detection accu-
racy (vector detection quality) therefore lies in the accuracy
of vector-level attributes.

The performance of detection and recognition algorithms
is usually reflected by two rates: true positive and false pos-
itive (Nalwa 1993). The true positive rate is the rate of pos-
itive responses in the presence of instances of the feature,
and in our case the detection (recognition) rate, which is the
ratio of the number of correctly detected lines to the total
number of ground truth lines. The false positive rate is the
rate of positive responses in the absence of the feature, and
in our case is the false alarm (misdetection) rate, which is
the ratio of the number of those detected lines that have no
matched ground truth lines to the total number of detected
elements. These two rates are used together because we wish
to increase the detection rate while decreasing the false alarm
rate. The detection rate increase is often accompanied by the
increase in the false alarm rate while adjusting the parame-
ters within an algorithm. A tradeoff must be made between
them. Therefore some single index combining the detection
rate and the false alarm rate may be useful as an overall and
parameter that is independent performance indicator.

Our protocol combines the measurement of two perfor-
mance attributes of line detection algorithms. One is rate and
the other is level. The two values of the rate attribute are
detection rate (D) and false alarm rate (F ). The two level
attribute values are pixel (p) and vector (v). The cartesian
product of the two rate values with the two level values
yields four performance indices, which are listed in Table 1
and defined below.

4.1 Pixel level performance indices

Pixel detection rate

Let Pg be the set of all the black pixels in the ground truth
image, i.e., the original image to be vectorized; letPg(k)
be the set of pixels belonging to the ground truth linek;
and letPd be the set of all the black pixels detected by
the segmentation. The detection rate of the ground truth line
k, d(k), is defined in Eq. 1:

d(k) =
|Pg(k) ∩ Pd|
|Pg(k)| (1)

Obviously, 0≤ d(k) ≤ 1, because the nominator on the
right side of Eq. 1 ranges from 0 to|Pg(k)|. The total pixel
detection rate,Dp, is a weighted sum ofd(k):
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Fig. 4a,b. Synthetic drawing A (400× 300 pixels.a Synthetic image.b Vectors

Fig. 5a,b. Synthetic drawing B (400× 300 pixels.a Synthetic image.b Vectors

Table 1. The vectorization evaluation processes and the resulting performance indices

Evaluation subprocess Level Detection rate (D) False alarm rate (F ) Perfomance index
Shape preservation Pixel Pixel detection Pixel false alarm Pixel recovery index
evaluation (p) rate (Dp) rate (Fp) (PRI)

Vector detection Vector Vector detection Vector false alarm Vector recovery index
quality evaluation (v) rate (Dv) rate (Fv) (VRI)

Dp =
∑
k∈Vg

d(k)wg(k) (2)

whereVg is the set of lines in the ground truth image, and
wg(k) is the weight of a ground truth linek, which is relative
to its size (number of pixels). If no ground truth line in the
drawing overlaps any other ground truth line, or if such
overlap can be neglected, the weight of a ground truth line
k can be defined as in Eq. 3:

wg(k) =
|Pg(k)|
|Pg| (3)

Substituting Eqs. 1 and 3 into Eq. 2 yields:

Dp =
1
|Pg|
∑
k∈Vg

|Pg(k)Pd| (4)

Note that the sum ofwg(k) over all k in Vg is usually
larger than 1, because the lines in an image often intersect
each other, and their images therefore partially overlap, and
the overlapping areas are counted more than once. To over-
come this problem the total pixel detection rateDp is cal-
culated directly from the whole set of detected pixels rather
than considering the individual ground truth lines, as fol-
lows:

Dp =
|Pg ∩ Pd|
|Pg| (5)

Pixel false alarm rate

The pixel false alarm rate of the detected line k is defined
as:

f (k) =
|Pd(k)− Pd(k) ∩ Pg|

|Pd(k)| (6)

wherePd(k) is the set of pixels of the detected linek. Sim-
ilarly, the total pixel false alarm rate is a weighted sum of
f (k):

Fp =
∑
k∈Vd

f (k)wd(k) (7)

where, as withwg(k), wd(k) is the weight of the detected
line k. If the detected lines do not overlap each other in the
image, then:

wd(k) =
|Pd(k)|
|Pd| (8)

and Vd is the set of lines detected from the ground truth
image. Substituting Eqs. 6 and 8 into Eq. 7 yields:

Fp =
1
|Pd|
∑
k∈Vd

|Pd(k)− Pd(k) ∩ Pg| (9)

Again, since lines usually overlap in part, the total pixel
false alarm rate is calculated directly from the whole set of
detected pixels rather than through individual detected lines:

Fp = 1− |Pg ∩ Pd|
|Pd| (10)

Using the pixel detection rate and pixel false alarm rate, the
combined pixel recovery index is defined as:

PRI = αDp + (1− α)(1− Fp) (11)

where 0≤ α ≤ 1 is the relative importance of the detection
and 1− α the relative importance of the false alarm.

4.2 Vector level performance indices

Vector detection quality measures the matching accuracy be-
tween a ground truth line and the corresponding detected line
in terms of the line’s attributes. We first define vector detec-
tion quality for the overlapping segment of a detected line
and its corresponding ground truth line. The vector detection
rate and the vector false alarm rate are on this basis.

Consider a matched pair of a detected linek and a corre-
sponding ground truth lineg, and their overlapping segment
c, which are illustrated in Figs. 2 and 3. The distances from
the two touching endpoints to the matching line,d1(c) and
d2(c), and the overlap distancedoverlap are measured rela-
tive to the ground truth line width. For ground truth lines
whose width is an even number of pixels,di(c) (i = 1, 2) is
taken as zero when their calculated value is 1 pixel, because
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either one of the two pixels in the middle of the width can
be considered correct.

The vector detection quality [Qv(c)] of the overlapping
segmentc is the weighted product of the following five
quality factors: endpoints quality,Qpt(c); overlap distance
quality Qod(c); line width quality,Qw(c); line style quality,
Qst(c); and line shape quality,Qsh(c). These are defined
below. For the sake of simplicity the weights in the product
are taken to be equal. Thus the total vector detection quality
is the geometric mean of the five quality factors:

Qpt(c) = e−
d1(c)+d2(c)

W (g) (12)

Qod(c) = e−
2doverlap (c)

W (g) (13)

Qw(c) = e−
|W (k)−W (g)|

W (g) (14)

Qst(c) = e−|Style(k)−Style(g)| (15)

Qsh(c) = e−|Shape(k)−Shape(g)| (16)

Qv(c) = [Qpt(c)Qod(c)Qw(c)Qst(c)Qsh(c)]1/5 (17)

wheredi(c) (i = 1, 2) are the distances from the two end-
points of segmentc to g; doverlap is the overlap distance, as
shown in Figs. 2 and 3. They reflect the discrepancy between
the locations of the ground truth line and the detected line.
W (g) is the line width ofg, andW (k) is the line width of
k. The reason for dividing the distances by the width of the
ground truth line in Eq. 12 and 13 is that the accuracy of
location detection is related to the line width: a thick line
allows greater location detection error in pixel units than a
thin line. The width quality factor in Eq. 14 is also measured
by the width difference relative to the width of the ground
truth. Style(l) is the value of the line style ofl, which is
assigned the value of 1 for solid, 2 for dashed, 3 for dash-
dotted, and 4 for dash-dot-dotted.Shape(l) is the value of
the line shape ofl, which is set to 1 for straight, 2 for circu-
lar, and 3 for polyline. The values ofStyle(l) andShape(l)
may also be extended to include other styles and shapes in
the future.

For arcs the detection accuracy of the center and the
radius may also be included; since these attributes are related
to overlap distance quality, it is not included in our protocol.

Equations 12–17 can be used for any pair of detected
line and ground truth line because the vector detection qual-
ity Qv(c) quickly vanishes as the location offset between the
two lines increases, or the differences of other attributes in-
crease. HenceQv(c) reflects the extent to which a detected
line matches a ground truth. However, for this to be useful
one must know the ground truth vector data, which are nor-
mally not available for hand-made drawings unless they are
measured manually. For synthetic or CAD-produced draw-
ings the line attributes can be known in advance.

Vector detection rate

Since a single ground truth line may be detected as several
lines, its vector detection quality is defined in terms of two
elements. The first element is the line’s basic quality [Qb(g)],
which is the length-weighted sum of the vector detection

qualities of the overlapping segments between the ground
truth line and each of its detected lines. The second element
is the fragmentation quality [Qfr(g)], which indicates how
fragmented the detected line is with respect to the ground
truth line. Denote byD(g) the set of the detected lines that
(fully or partially) overlap ground truth lineg. Let k be an
element ofD(g) and letl(v) be the length of any linev. The
basic quality of ground truth lineg is defined as:

Qb(g) =

∑
k∈D(g)(Qv(k ∩ g)l(k ∩ g))

max(l(g),
∑

k∈D(g) l(k ∩ g))
(18)

where (k ∩ g) is the overlapping segment ofk and g, and
l(k ∩ g) is its length.Qfr(g) is defined in Eq. 19 as the
average of the squared overlapping segment lengths, such
that the more equally broken the segments are, the smaller
is the fragmentation quality:

Qfr(g) =

√∑
k∈D(g) l(k ∩ g)2∑
k∈D(g) l(k ∩ g)

(19)

The total vector detection quality ofg is defined as:

Qv(g) = Qb(g)Qfr(g) (20)

Note that if |D(g)| = 1 andk ∩ g = g thenQfr(g) = 1, and
Qv(g) = Qb(g) = Qv(k ∩ g).

The image vector detection rate is the length-weighted
sum of the vector detection qualities of all ground truth lines
in the entire image:

Dv =

∑
g∈Vg Qv(g)l(g)∑

k∈Vd l(g)
(21)

Vector false alarm rate

The vector detection quality of a detected line is defined in
a way similar to the way in whichQv(g) is defined. Several
ground truth lines may overlapk, which means thatk er-
roneously links two or more distinct ground truth lines. To
account for this type of false linking we use the fragmen-
tation quality measure as follows. SupposeG(k) is the set
of the ground truth lines that (fully or partially) overlapk,
then:

Qfr(k) =

√∑
g∈G(k) l(k ∩ g)2∑
g∈G(k) l(k ∩ g)

(22)

As before,k ∩ g is the overlapping vector segment ofk and
g, andl(k ∩ g) is its length.

The basic quality ofk,Qb(k), is the length-weighted sum
of the vector detection qualities of the overlapping segments
between detected linek and each of its ground truth lines:

Qb(k) =

∑
g∈G(k)(Qv(k ∩ g)l(k ∩ g))

max(l(k),
∑

g∈G(k) l(k ∩ g))
(23)

The total vector detection quality of detected linek is defined
as:

Qv(k) = Qb(k)Qfr(k) (24)

The false alarm factorFv(k) of the detected linek is defined
in terms of its vector detection quality in Eq. 25:
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Table 2. Examples of performance evaluation of a single bar detection

Table 3. Examples of performance evaluation of a single arc detection

Fv(k) = 1−Qv(k) (25)

This is becauseQv(k) reflects the degree ofk being a true
line. 1− Qv(k) therefore reflects the degree of it being a
false alarm. An ideal detected line has a vector detection
quality value of 1, and therefore its false alarm factor is 0.
A bad line has quality value 0, meaning that it is definitely
a false alarm.

The image vector false alarm rate is the length-weighted
sum of the false alarm factors of all lines detected from the
entire image:

Fv =

∑
k∈Vd Fv(k)l(k)∑

k∈Vd l(k)
(26)

The combined vector recovery index (VRI) is:

V RI = βDv + (1− β)(1− Fv) (27)

whereβ is the relative importance of detection, similar to
α in Eq. 11. The termsα and β are originally set at 0.5
to assign equal importance to the detection and the false

alarm, as used in the experiments in this paper. However,
they may be set at other values in the performance evaluation
of some task-specific systems. For instance,α andβ can be
set smaller to give greater importance to the false alarm if
the reliability level rather than the level of detection is more
critical. With appropriate values ofα and β the combined
indices give quantitative performance evaluation. The higher
the combined indices, the better is the algorithm. In general,
the pixel recovery index (PRI) is appropriate for evaluating
the shape preservation capability of the basic vectorization,
the output of which is raw bars and polylines, while the VRI
is suitable for evaluating the final results of line detection
algorithms.

Finally, PRI and VRI may be combined into a single
measure, the combined detection index (CDI), whereγ is
originally set at 0.5 in this protocol:

CDI = γPRI + (1− γ)V RI (28)



247

6a 6b

8




7

Fig. 6a,b. Synthetic drawing (720× 600 pixels) of arcs.a Synthetic image.b Vectors

Fig. 7. 3D plot of PRI in Fig. 6

Fig. 8. 3D plot of VRI in Fig. 6

Table 4. Automatic evaluation of pixel detection and vector detection of SPV algorithm

Fig. no. Evaluation level Detection rate False alarm rate Combined recovery index Combined detection index
4 Pixel level 0.96 0.07 PRI=0.95 0.95

Vector level 0.92 0.05 VRI=0.94
5 Pixel level 0.96 0.08 PRI=0.94 0.93

Vector level 0.90 0.08 VRI=0.91

5 Experimental results of the protocol

We have applied the above definitions to devise an auto-
matic evaluation protocol. The protocol is used to evaluate
algorithms that are incorporated into the MDUS (Liu and
Dori 1996b). The implementation is in C++ running on SGI
Indy and Indigo2 workstations and SUN Sparcstations. The
executable codes are available from the ftp address1. The
pixel-level evaluation uses Eqs. 5, 10, and 11. The vector-
level evaluation is carried out as follows. The first step is
to match ground truth lines with detected lines. This is per-
formed by finding, for each line in the ground truth set, the

1 ftp.technion.ac.il/pub/supported/ie/dori/MDUS/sgim dus.gz,
sunmdus.gz, and gtruth.tar.gz

subset of detected lines that overlap it either fully or par-
tially. The overlapping segments of every detected line and
the ground truth line are measured using Eqs. 12–17. The
vector detection qualities of these overlapping segments, as
well as their lengths, are accumulated for both the ground
truth lines and the corresponding detected lines. The basic
quality (Qb), fragmentation quality (Qfr), and total quality
(Qv) for both the ground truth lines and their corresponding
detected lines are calculated using Eqs. 18–20 and 22–24,
respectively. After the quality of all ground truth lines and
detected lines are calculated, the total vector detection rate,
the vector false alarm rate, and the resulting VRI are calcu-
lated using Eqs. 21, 26, and 27, respectively.
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Table 5. Automatic evaluation of the stepwise recovery arc segmentation algorithm

Table 6. Automatic evaluation of the dashed line detection algorithm

Tables 2 and 3 are examples of our protocol’s perfor-
mance evaluation of bar detection and arc detection, respec-
tively. Table 2 also compares the proposed protocol with the
protocols proposed by Kong et al. (1996) and Hori and Do-
ermann (1996). In Kong et al.’s protocol the match result is
binary: 1 for a matched line and 0 for an unmatched line.
In Hori and Doermann’s protocol the count ratio is the ra-
tio between the number of detected lines and the number of
ground truth lines, the length ratio is the ratio between the
sum of lengths of the detected lines and that of the ground
truth lines, and the deviation is the average of euclidean dis-
tance between each pair of matched lines. In Table 2 the
ground truth is an 8-pixel-wide bar ending at (10,20) and
(90,20) in the first eight cases and is broken into two bars at
(35,20)–(50,20) in the merged case. In Table 3 the ground
truth in the first three cases is a full circle and in other cases
is an arc ending at (30,15) and (70,15). The center is (50,50).

The radius is 40. The width is 8. The width of the detected
line is also 8.

To test the protocol on whole drawings we applied it to
evaluate the performance of three line detection algorithms
within MDUS: sparse pixel vectorization (SPV; Liu and Dori
1996a), stepwise recovery arc segmentation (SRAS), and
dashed line detection (DLD; Dori et al. 1996). To test the
SPV performance automatically, we manually generated the
drawings in Figs. 4a, 5a (using Microsoft Paintbrush soft-
ware). In this way we know all the attribute values of the
ground truth lines. The vectorized results output by SPV
are displayed in Figs. 4b, 5b, and the evaluation results are
shown in Table 4.

Figure 6a is the ground truth image of arcs, generated in
the same way, to evaluate the SRAS algorithm, and Fig. 6b
shows the arcs recognized by SRAS. The arcs are drawn in
a 5× 6 matrix, the widths of lines in the rows numbering
1–5 from top are 1, 2, 3, 5, and 9 pixels, the open angles in
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Fig. 9a,b. An automatically generated drawing (1000× 1000 pixels) of dashed lines.a Image.b Vectors

Table 7. Time performance of MDUS (in seconds on SGI Indigo2)

the columns numbering 1–6 from left are 2π, 3π/2, π/2, π/4,
andπ/8, and the radii of the concentric arcs in each matrix
cell are 5, 10, 20, and 50 pixels. The evaluation results are
shown in Table 5, whereD is the detection rate,F is the
false alarm rate,RI is the recovery index at either pixel or
vector level, and CDI is the combined detection rate defined
in Eq. 28. Both PRI and VRI increase along with the open
angle and the width of the arc, as shown in the 3D plots
in Figs. 7 and 8. The highest PRI and VRI are 0.97 for a
9-pixel-wide circle, the worst PRIs are around 0.50 for 1-
pixel-wide arcs, and the worst VRIs are around 0.40 for
π/8 arcs. The ground truth images (in TIFF) and vectors (in
IGES) are also available from the ftp address (see above).

Figure 9a is an automatically generated drawing of
dashed lines (generated in the Dashed Line Detection Con-
test held at the Pennsylvania State University during the First
International Workshop on Graphics Recognition, August,
1995). Figure 9b is the result generated by our DLD algo-
rithm that won the contest (Dori et al. 1996). The automatic
evaluation was performed by a program written especially
for the contest by a team lead by Professor Haralick (Kong
et al. 1996). The recognition rate was 100%, with only one
false alarm. The automatic evaluation on the same drawing
has also been performed using our protocol and Hori and
Doermann’s protocol. The results are listed and compared
in Table 6, where x is match, D is the detection rate, Fa is
the false alarm rate, Lr is the length ratio, Cr is the count

ratio, and Dev is the deviation;Qv, Dv, Fv, andV RI are
as defined in Sect. 4.2.

Finally, time efficiency is evaluated by reporting the
elapsed time of running MDUS for each drawing. Since
drawings vary in sizes, density, and complexity, we use two
drawing-independent time evaluation factors to evaluate the
time efficiency of line detection algorithms: time per (black)
pixel and time per (ground truth) line. The time performance
evaluation of MDUS is shown in Table 7.

6 Conclusion

We have demonstrated a protocol for performance evalua-
tion of line detection algorithms. A preliminary comparison
between the proposed protocol and two other protocols is
also presented. The proposed protocol is objective and com-
prehensive. It incorporates a set of single and combined per-
formance evaluation indices at both the pixel and vector lev-
els. Both the detection and false alarm rates are considered.
The protocol is designed for straight lines, circular arcs, and
polylines of any style. It may also be extended to other line
shapes. The results presented in Tables 2 and 6 may indicate
that the proposed protocol reflects line detection performance
more accurately than the other two because it incorporates
many aspects and factors. Comparing the results of the three
evaluation protocols, we see that Kong’s protocol is more
binary and less accurate, and that Hori and Doermann’s pro-
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tocol yields several single indices and no overall index. To
evaluate the performance of the evaluation protocols more
work is required on a large sample of drawings.

Time efficiency is also included in the protocol. The
time/vector factor is greater on high quality drawings in
which the vectors are longer and their number is small.
This factor is not very suitable for evaluating the time effi-
ciency of the vectorization algorithms because the vectors’
attributes (e.g., length and width) vary much from drawing
to drawing. However, the time/pixel does not vary signifi-
cantly from drawing to drawing. In general, the higher the
pixel density, the higher is the time/pixel factor because high
density pixels have higher coupling.

Based on the experiments presented in this work, an al-
gorithm with a combined detection (recovery) index of 0.8
or higher may be considered good with respect to human
vision evaluation. However, more work should employ this
protocol on a series of algorithms and degraded drawings
to obtain an objective assessment on commonly accepted
criteria.
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