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Abstract
This paper presents a deep learning method for image dehazing and clarification. The main advantages of the method are high
computational speed and using unpaired image data for training. The method adapts the Zero-DCE approach (Li et al. in IEEE
Trans Pattern Anal Mach Intell 44(8):4225–4238, 2021) for the image dehazing problem and uses high-order curves to adjust
the dynamic range of images and achieve dehazing. Training the proposed dehazing neural network does not require paired
hazy and clear datasets but instead utilizes a set of loss functions, assessing the quality of dehazed images to drive the training
process. Experiments on a large number of real-world hazy images demonstrate that our proposed network effectively removes
haze while preserving details and enhancing brightness. Furthermore, on an affordable GPU-equipped laptop, the processing
speed can reach 1000 FPS for images with 2K resolution, making it highly suitable for real-time dehazing applications.

Keywords Image dehazing and clarification · No-reference neural network training · Real-time dehazing · Zero-DCE

1 Introduction

Bad weather image restoration is important for a number
of real-world applications including video-based car driver
assistance systems, autonomous drone navigation, and video
surveillance. Haze, a prevalent atmospheric phenomenon,
can substantially impair the effectiveness of high-level vision
tasks, thereby underscoring the practical significance of a
robust, well-generalized dehazing algorithm. A popular sim-
plified model of images degraded by haze [1–3] is described
by the equation:

I(x) = t(x)J(x) + A (1 − t(x)) (1)

Here I(x) and J(x) are the hazy and clear images, respec-
tively. The term A is the global atmospheric light. The
transmission map t(x) = e−βd(x) quantifies the portion of
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the light that reaches the camera, where d(x) is the scene
depth and β is the atmospheric scattering coefficient.

Image dehazing is an ill-posed problem. Traditionally,
most prior-based algorithms and early learning-based meth-
ods have focused on estimating the transmission map t(x)
and global atmospheric light A to reconstruct a clear image,
as described by Eq. 1. More recently, advanced learning-
based approaches have emerged that either directly predict
the latent haze-free image or the residuals between haze-free
and hazy images, thereby enhancing performance.

This paper introduces a novel deep learning method to
attack the image dehazing problem.The approach follows the
learning strategy of the Zero-DCE low-light image enhance-
ment [4]: it is based on designing a multi-term no-reference
loss function that distinguishes haze-free images from hazy
ones. It doesn’t require paired hazy and hazy-free images
of the same scenes and employs a lightweight neural net-
work. As a result, in addition to haze suppression and image
clarification, achieves a remarkably high image processing
speed. The source code is available at https://github.com/
Hongyi311/Fast-No-Reference-Deep-Dehaze.

1.1 Related work

Asmentioned earlier, most dehazing methods can be divided
into two categories. One is based on light scattered physi-
cal modeling [5–7] and hand-crafted image priors. Most of
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these methods leverage priors to estimate the transmission
map t(x) and atmospheric light A, subsequently obtaining
the restored dehazed image J(x). The dark channel prior
(DCP) [1] is pioneering work in this field, from which
some improved methods based on DCP also emerged [8–
10]. Further advancements have been achieved through the
introduction of the Color Attenuation Prior [11], Gradient
Channel Prior [12], Region Line Prior [13], and more recent
innovations such as the Saturation Line Prior [14], Rank-
One Prior [3], and Region Gradient Constraint Prior [15],
etc., have further enhanced the performance of prior-based
methods. These priors are often estimated based on statis-
tical characteristics of haze-free and hazy images, boasting
commendable interpretability and generalizability. However,
their effectivenessmaybe diminished across images in varied
scenarios.

The other family of methods exploits deep learning, aim-
ing at restoring hazy images through well-trained neural
network models. Cai et al. [2] first proposed a CNN-based
model named DehazeNet to estimate the transmission map.
Then Li et al. [16] proposed AODNet, which modified (1) to
obtain recovered images in an end-to-endmanner.Afterward,
more sophisticated models emerged, such as incorporating
attention mechanisms [17–20] and transformer-based archi-
tecture [21, 22], etc. They provided significant improvements
in dehazing performance. However, such methods cannot
overcome the reliance on paired clear images and synthe-
sized hazy images as the training data. Real-world hazy
scenes can exhibit a wide range of variability in terms of
atmospheric conditions, lighting, scene content, etc. This
poses an ongoing challenge for the model’s generalization
on real-world images. Although generative adversarial net-
work (GAN) based methods [23, 24] have been proposed to
eliminate the need for paired images, they still require careful
selection of training data and usually incur significant train-
ing costs. UCL-dehaze [25] and C2PNet [26] introduced the
novel unsupervised contrast learning approaches to dehazing,
the models are extremely large in size and computationally
intensive.

Recent progress in using deep learning models for image
dehazing includes combining together extended haze mod-
els and sophisticated neural network architectures [27] and
employing novel learning strategies [28–30]. Finally, it is
worth mentioning recent works [31, 32] where multi-scale
edge-aware image filters are proposed for image dehazing
purposes.1

Since dehazing algorithms often serve as data pre-
processing for high-level tasks, real-time performance is
one of the key objectives. In recent prior-based algorithms,
Rank-One Prior [3] introduced GPU acceleration, achiev-

1 We are grateful to one of the reviewers of the paper for pointing these
two papers.

ing a processing time of 0.04 s per image for small-sized
images (less than 720p). Region Gradient Constraint Prior
[15] employs a parallel sliding window strategy, achieving
impressive processing times of 0.004s for a 512×512 image.
Deep learning-based algorithms primarily enhance speed by
reducing model size and FLOPs. With GPU acceleration,
TOENet [19] can process a 2K hazy image in only 0.006s.
TSDNet [20] separates the dehazing task into three simple
stages, achieving a processing speed of over 30 FPS with
better quality.2 It is difficult to decide which of these meth-
ods is the fastest one, as different hardware components and
programming languages are used in the above-mentioned
methods. However, it is safe to assert that the proposed
method, achieving a processing speed of 1KFPS for 2K reso-
lution images, is at least four times faster than the previously
fastest method.

1.2 Contribution

In this paper, a zero-reference deep learning dehazing net-
work is proposed. Inspired from Zero-DCE [4], the network
does not rely on paired training data. The model’s train-
ing is driven by a set of specially designed loss functions
to evaluate the quality of the dehazed images. Additionally,
rather than recovering clear images from hazy ones using
the physical model described in (1), the approach from Zero-
DCE is continued, applying high-order curves for pixel-wise
adjustments on the dynamic range of the hazy image. Such
a design enhances the model’s generalization on real-world
hazy images while simultaneously improving the recovery
of details and brightness across various scenarios. Overall,
the contributions of this study are as follows:

• The first image dehazing network that does not require
paired or unpaired training data was developed, thereby
improving the model’s generalization on real-world hazy
images.

• High-order curves were employed for pixel-wise adjust-
ments to dehaze, rather than relying on physical models
to recover images. This demonstrates the feasibility of
using high-order curves for dynamic range adjustments
in image dehazing.

• A comparison was made between the proposed method
and several recently proposed image dehazing and clarifi-
cation techniques.While itmaynot currently be classified
as state-of-the-art (SOTA) in terms of natural image
restoration, it performs exceptionally well in terms of
fine imagedetail restoration andbrightness enhancement.
More importantly, the proposedmethod significantly out-

2 The aforementioned speed performances are all sourced from the
original papers.
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performs others in terms of processing speed, making it
highly efficient for real-time processing.

2 Proposed no-ref deep image dehazing
ANN

In this section, the details of the proposed Fast No-reference
Deep Image Dehazing network (FaNDID) are introduced,
including the curve adjustments strategy, structure of the net-
work, and zero-reference loss functions.

2.1 Network structure

Following the definition of the initial quadratic curve for
image enhancement in Zero-DCE [4], our initial curve takes
the following form:

D(x) = I (x) + α(x)I (x) (1 − I (x)) (2)

where D(x) is the dehazed result of the input hazy image
I (x), α(x) ∈ [0, 1] is the curve parameters map with the
same size as the input image, which means each pixel has its
own curve to adjust the intensity. Then, iteratively applying
this formula gives the high-order curve:

Dn(x) = Dn−1(x) + αn(x) (1 − Dn−1(x)) (3)

where n is the iteration times. In our work, n is set to 8. This
high-order curve enhances the adjustability of the dynamic
range with its simple yet differentiable form.

The zero-reference dehazing network takes hazy images
as input and outputs parameter maps for curve iteration. The
network architecture follows the design used in Zero-DCE
[4], as depicted in Fig. 1, consists of seven plain convolu-
tional layers. In the first six layers, each employs 32 kernels
of size 3 × 3 with a stride 1 and uses the ReLU activation
function. The intermediate feature maps are symmetrically
connectedwith skip concatenation. For a regularRGB image,
eight iterations are performed when applying the high-order
curve in Eq. 3 for each pixel in all three channels. Therefore,
the final layer comprises 24 kernels, with the tanh activation
function applied to limit the output range. This layer gener-
ates eight curve parameter maps for each color channel for
iterative processing. The network is lightweight, with only
79K trainable parameters.

2.2 No-reference loss function

The loss function plays a pivotal role in zero-reference learn-
ing. Since our network is inspired by Zero-DCE, which
specializes in enhancing low-light images, a naive approach
was to invert the hazy image I(x, y) to treat 1 − I(x, y)

as a low-light image, subsequently enhancing its brightness
before inverting the result once more. As demonstrated in
Fig. 2, it’s clear that this method yields unsatisfactory out-
comes. However, the loss function in Zero-DCE has been
proven to play a crucial role in balancing image brightness
and color. Therefore, in addition to the four loss functions
originally proposed in Zero-DCE, four additional functions
are incorporated into the network to assess the quality of
enhanced images, thereby driving improvements in dehazing
performance.To ensure efficient training, these loss functions
are all differentiable and possess relatively low computa-
tional complexity.
Dark Channel Loss The dark channel prior is defined as the
local minimum of all pixels in a patch [1]:

D(x) = min
y∈�r (x)

(
min

c∈{r ,g,b}I
c(y)

)
(4)

where �r (x) denotes a local patch centered at x , with size
r × r . Although it fails in sky and regions with bright colors,
its simplicity and effectiveness make it a viable choice as one
of the loss functions for measuring the degree of dehazing
in enhanced images. Calculating the dark channel involves
a process similar to a sliding window, which can signifi-
cantly reduce computational speed. An effective approach is
to directly divide the image into blocks with the same size
as patches, then calculate the minimum pixel value in each
block and assume that all the pixels in each block have the
same dark channel value. r = 8 is used in this paper. Mean-
while, we dropped out those blocks with value larger than
0.7, which is usually the dark channel of the sky region. The
loss function can be denoted as:

Ldc = W1

M

M∑
i=1

min x
x∈�i

(5)

where M is the number of blocks after dropping out and W1

is the weight. Ldc provides an efficient approximation of the
image’s dark channel.
Contrast Loss Image contrast is related to total variation of
the image gradient

C(I ) =
∑
x

|∇ I (x)| (6)

where ∇ denotes the gradient operator. Through multiple
experiments, it has been found that using both the first
and second derivatives of an image can enhance its edges.
However, the former may lead to local overexposure and
darkness, while the latter can refine texture and make the
image brighter. Therefore, both of them are incorporated into
a contrast-enhancing loss function Lce and assign weights to
balance their effects:

123



122 Page 4 of 13 H. Qin, A. G. Belyaev

Fig. 1 Illustration of the structure representation and workflow of the network

Fig. 2 A naive approach to implement Zero-DCE on inverted hazy images. The right image in each pair is the final inverted low-light enhanced
result

Lce=−W2 ln

[
1

N

∑
x

|∇ I (x)|
]

− W3 ln

[
1

N

∑
x

|�I (x)|
]

(7)

where N is the number of pixels of image I, � stands for a
3× 3 discrete Laplacian, and W2 and W3 are two weights to
balance the influence between the ∇ and � components in
the contrast loss function. Taking the negative natural loga-
rithm allows it to enhance the contrast and texture details by
reducing the loss.
Hue lossHue disparity has been employed in [33] for detect-
ing hazy areas, and it is defined as the difference in the hue
channel between the original image I and the semi-inverse
image Isi :

H(x) =
∣∣∣I h(x) − I hsi (x)

∣∣∣ (8)

where h means the hue channel, Isi is the maximum pixel-
wise value between the original image and its inverse:

Isi (x) = max
c∈(r ,g,b)

[
I c(x), 1 − I c(x)

]
(9)

Due to the high pixel intensities in regions heavily affected
by haze, the semi-inverse image remains identical to the orig-
inal one in these regions, resulting in low hue disparity. This
concept can be used as a loss function. Theoretically, this

function can reduce the pixel values of hazy regions, but
since it involves a comparison of hue channels, it also has an
impact on the hue value of an image.

However, based on extensive validation with synthesized
hazy and haze-free images, as well as the results obtained
using state-of-the-art dehazing methods on real-world hazy
images, it is observed that while the brightness and saturation
of hazy images change significantly compared to the clear or
dehazed images, the variation of hue is usually smaller, espe-
cially in areas with milder haze or in the presence of vividly
colored objects within dense haze. Therefore, the research
aims for an Lhue loss function component to predominantly
impact the image brightness and saturation, while constrain-
ing its effect on hue: Lhue =

− W4 ln

[
1

N

∑
x

∣∣∣I h(x) − I hsi (x)
∣∣∣
]

+ W5

N

∑
x

∣∣∣I h(x) − Y h(x)
∣∣∣
(10)

where Y is the dehazed image, W4 and W5 are two positive
weights.
Brightness loss To ensure that the bright regions do not
become excessively dark, an additional function is intro-
duced. This function calculates, separately for the original
image and the enhanced image, the ratio of pixels with
intensity greater than 0.7 to the total number of pixels and
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compares these two ratios:

Lbright = W6
Borg − Ben

N
(11)

Finally, the total loss is simply adding them together:

Ltotal = Ldce + Ldc + Lce + Lhue + Lbright (12)

where Ldce is the original loss function from Zero-DCE [4].

3 Experiments

3.1 Implementation details

Dataset. RESIDE-β [34] provides a large number of syn-
thetic images with varying degrees of haze. From Part 1,
2000 images with different levels of haze were selected for
training. Then, 500 outdoor images from Part 4 and 500
indoor images from SOTS (another subset) were used for
testing. Additionally, to evaluate the dehazing performance
on real-world hazy images, the testing set also included 1000
images from RTTS and 10 images from HSTS, both subsets
of RESIDE-β [34], as well as 100 images from RUSH [3].

After numerous experiments, the following parameter set-
tings were implemented: W1 = 0.2,W2 = 0.3,W3 =
0.5,W4 = 0.1,W5 = 5,W6 = 5, yielding the best visual
results. The network optimization utilized the ADAM opti-
mizer with default parameters and a fixed learning rate of
1e−4. The model was trained and tested using a laptop
equipped with a 13th Gen Intel(R) Core(TM) i9-13900HX
CPU @ 2.20 GHz with 32GB RAM and an Nvidia GeForce
RTX 4060 GPU with 8GB VRAM.

3.2 Ablation study

3.2.1 Loss functions

Figure3 illustrates the results of removing each loss function
component.When Ldc is removed, some detailswithin bright
white backgrounds are lost, as Ldc originally serves to reduce
the brightness in these areas, revealing details. Removing
the first-order derivative component of Lce leads to an over-
all brighter image but reduced contrast. On the other hand,
W3 = 0 makes the image much darker and loses numerous
details. When the first part of Lhue is omitted, the colors
in regions close to the camera become lighter, leading to
an unclear appearance. When the second part restricting the
hue is removed, the image undergoes severe color distortion.
Finally, if Lbright is removed, the sky region becomes too
dark. Therefore, each component of the loss function plays
a crucial role in the visual quality of the image.

3.2.2 Number of layers in the network

Currently, the network utilizes 7 convolutional layers, result-
ing in rather high-order curves for adjusting the dynamic
range of the image. Further testing was conducted with fewer
layers, specifically 5 and 3 layers (since the network uses
symmetric skip concatenation, it is preferable to reduce two
layers at a time), and the dehazed results are shown in Fig. 4.
Reducing the number of layers can further improve training
speeds and alleviate the oversharpening issues. However, due
to the reduction in the order of the adjustment curves, the
dehazing capability of the network is weakened, performing
poorly in those regions with heavy haze. In contrast, when
the number of layers is 7, the details of distant buildings are
relatively clear.

3.2.3 Dark channel patch size and sky threshold

When calculating the dark channel loss function, images are
segmented using 8×8 patches. The loss function uses non-
overlapping patches and averages the dark channel values
of the patches after threshold filtering. Therefore, the patch
size not only affects the dehazing details but also influences
the overall color adjustment due to the varying number of
patches. As shown in Fig. 5, if a 16 × 16 patch size is used,
it means that more details might be obscured by the dark
channel values. Additionally, fewer patches lead to a higher
average loss value, making the dehazed image appear overly
dim or color distorted, with white objects adjusted to the
ambient color tone. On the other hand, reducing the patch
size to 4x4 increases the number of patches, resulting in a
lower initial loss value but poorer dehazing performance,
with slightly sharpened images and deeper colors. The dark
channels of images obtained with different patch sizes do
not vary significantly in corresponding regions. Therefore,
the number of patches significantly affects the initial loss
value, impacting the dehazing results.

Additionally, the sky threshold is used in both the dark
channel loss and brightness loss, serving to identify pixels
or patches attributed to the sky region and thereby preserv-
ing its color integrity. Extensive testing established 0.7 as the
optimal threshold. A lower threshold, such as 0.6, tends to
obscure details in heavily hazed areas, while a higher thresh-
old of 0.8 often results in images with darkened colors and
reduced contrast, see Fig. 6. This effect is particularly pro-
nounced in images where the sky appears grayish-white. In
such cases, the pixel values in the sky region fall below the
threshold, causing them to be treated as dense haze areas,
which leads to excessive reduction in pixel values. Gener-
ally, a threshold of 0.7 is effective in preserving the natural
color of the sky across various image characteristics.”
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Fig. 3 Ablation study of the contribution of each component in the loss function. Top row: hazy images. Second row: dehazed results when full
weights applied. Bottom row: from left to right are results when a W1 = 0, b W2 = 0, c W3 = 0, d W4 = 0, e W5 = 0, f W6 = 0, respectively

Fig. 4 Ablation study on the number of network layers. a Hazy image. b 3 layers. c 5 layers. d 7 layers

Fig. 5 Ablation study on the patch size in dark channel loss. a is the hazy image. The patch size in b is 4 × 4, in c is 8 × 8, and in d is 16 × 16

Fig. 6 Ablation study on the value of sky threshold. The value in a, d is 0.6, in b, e is 0.7, and in c, f is 0.8. The corresponding hazy images can
be found in Fig. 3. Zoom in for image details
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Fig. 7 Visual comparisons on outdoor synthetic hazy images from RESIDE-β. Images in a are hazy images, dehazed by b SLP, c ROP, d ROP+,
e RGCP, f TOENet, g TSDNet, h DehazeFormer i C2PNet, and j the proposed FaNDID, respectively. k is GT. Zoom in for image details

Fig. 8 Visual comparisons on indoor synthetic hazy images from RESIDE-SOTS. Images in a are hazy images, dehazed by b SLP, c ROP, d ROP+,
e RGCP, f TOENet, g TSDNet, h DehazeFormer i C2PNet, and j the proposed FaNDID, respectively. k is GT. Zoom in for image details

3.3 Results and discussion

3.3.1 Qualitative comparison

The dehazing performance of the proposed FaNDID on both
synthetic and real-world hazy images was compared with
those of state-of-the-art dehazing algorithms and models
introduced in recent years. The prior-based methods include:
Saturation Line Prior (SLP) [14], Rank One Prior (ROP and
ROP+) [3], and Region Gradient Constrained Prior (RGCP)
[15]. In terms of learning-based methods, comparisons were
made with TOENet [19], TSDNet [20], DehazeFormer [22]
and C2PNet [26].

Figures7 and8 illustrate the dehazing effects on outdoor
synthetic hazy images from RESIDE-β [34] and indoor
images from RESIDE-SOTS [34], respectively. It is evi-
dent that most learning-based methods, trained with paired

data to restore images to their original haze-free state, tend
to achieve results that are closer to the ground truth com-
pared to prior-based methods. Conversely, FaNDID employs
an unpaired data training strategy, focusing on enhancing
visual aspects such as brightness, contrast, and detail recov-
ery. Despite some issues with oversaturation and sharpening,
FaNDID’s dehazing performance generally surpasses that of
many prior-based methods.

However, synthetic hazy images usually differ signifi-
cantly from real-world conditions due to the complex and
varying nature of real-world haze, including factors like
light scattering, particle size, and distribution. Therefore, the
dehazing performance and generalization on real-world hazy
images should receivemore attention. FaNDIDwas tested on
three real hazy image datasets: RESIDE-RTTS andRESIDE-
HSTS (the realistic images subset), both from the work of Li
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Fig. 9 Visual comparisons on
real-world hazy images from
RESIDE-RTTS. Images in a are
hazy images, dehazed by b SLP,
c ROP, d ROP+, e RGCP, f
TOENet, g TSDNet, h
DehazeFormer, i C2PNet and j
the proposed FaNDID,
respectively. Zoom in for image
details

et al. [34], and RUSH [3]. The results are shown in Figs. 9, 10
and11, respectively.

Observations indicate that among the evaluated dehazing
methods, SLP [14] and all the other learning-based meth-
ods [19, 20, 22, 26] generally yield more natural-looking
images. However, SLP and TOENet reduce image brightness
significantly and introduce black shadows. Although TSD-
Net, DehazeFormer, and C2PNet perform better in dehazing
without introducing black shadows, these methods do not
always achieve good dehazing effects in all images, espe-
cially in low-light or heavy fog scenarios. Figure10 is an
example of this. On the other hand, ROP+ [35] and RGCP
[15] excel in both dehazing efficiency and in enhancing image
brightness. However, they also occasionally struggle with
achieving complete haze removal and may destroy some
details in the image. ROP [35], being the precursor to ROP+,

demonstrates this limitation more distinctly. Notably, in the
images of the second row of Fig. 9, RGCP compromises the
vibrancy of the colors in pedestrians’ attire on the bridge.
Meanwhile, in the third row, ROP+ tends to overempha-
size the light sources, thereby masking the details of the
surrounding environment. Similarly in Fig. 11, these three
methods compromise the facial details of the motorcyclist
in the first image, and due to excessive brightness enhance-
ment, the background details of the forest in the third image
are obscured.

Therefore, despite the proposed FaNDID introducing a
mild degree of oversaturation and halo artifacts, it effec-
tively maintains a harmonious equilibrium between image
luminosity and detail preservation, offering a commendable
solution in the context of dehazing challenges.
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Fig. 10 Visual comparisons on
real-world hazy images from
RESIDE-HSTS. Images in a are
hazy images, dehazed by b SLP,
c ROP, d ROP+, e RGCP, f
TOENet, g TSDNet, h
DehazeFormer, i C2PNet and j
the proposed FaNDID,
respectively. Zoom in for image
details

3.3.2 Quantitative comparison

Table 1 presents the referenced metrics, i.e. PSNR, SSIM,
and multiscale SSIM, for dehazed results across 500 out-
door synthetic hazy images from the RESIDE-β dataset,
As the qualitative analysis indicates, learning-based algo-
rithms, which are trained with paired data, generally excel
in restoring images closer to their original state, thereby
achieving higher metrics scores. Conversely, prior-based
methods, which rely on analyzing the statistical characteris-
tics of images for dehazing, often do not perform as well on
synthetic datasets due to the discrepancy between synthetic
and real hazy images. FaNDID manages to bridge the gap

between learning-based and prior-based methods. It effec-
tively reduces haze and achieves PSNR and SSIM scores that
are higher than those of most prior-based methods, and the
Multi-scale SSIM score is also competitive. This indicates
the good performance of our method in preserving details.

Tables 2 and 3 apply no-reference image quality met-
rics NIQE [36], PIQE [37], and BRISQUE [38] to evaluate
the quality of dehazed real-world images. Here, FaNDID
outperforms most algorithms in terms of PIQE, while its per-
formance in NIQE and BRISQUE is comparatively average.
This is mainly due to the current results sometimes exhibit-
ing issues of over-sharpening and over-saturation. However,
these metrics should be considered as indicative rather than
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Fig. 11 Visual comparisons on
real-world hazy images from
RUSH. Images in a are hazy
images, dehazed by b SLP, c
ROP, d ROP+, e RGCP, f
TOENet, g TSDNet, h
DehazeFormer, i C2PNet and j
the proposed FaNDID,
respectively. Zoom in for image
details

Table 1 The dehazed image quality assessment of 500 outdoor synthetic hazy images in RESIDE-β

Method SLP ROP ROP+ RGCP TOENet TSDNet Dehazeformer C2PNet FaNDID

PSNR ↑ 17.08 15.13 16.02 14.69 22.01 18.94 20.58 21.52 16.42

SSIM ↑ 0.76 0.69 0.71 0.65 0.89 0.88 0.88 0.89 0.77

Multi-SSIM ↑ 0.88 0.82 0.86 0.83 0.95 0.96 0.95 0.96 0.83

Table 2 The dehazed image quality assessment of 1000 hazy images in RESIDE-RTTS

Method SLP ROP ROP+ RGCP TOENet TSDNet Dehazeformer C2PNet FaNDID

NIQE ↓ 3.344 3.575 3.702 4.102 3.249 2.793 3.119 3.354 3.552

PIQE ↓ 22.79 24.01 17.64 20.32 22.71 19.42 20.71 18.71 19.87

BRISQUE ↓ 31.26 30.09 32.10 30.31 31.18 27.24 30.06 25.91 32.07
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Table 3 The dehazed image quality assessment of 100 hazy images in RUSH

Method SLP ROP ROP+ RGCP TOENet TSDNet Dehazeformer C2PNet FaNDID

NIQE ↓ 2.921 2.925 3.092 3.218 2.792 2.793 2.821 3.06 3.532

PIQE ↓ 19.56 18.36 12.61 13.25 19.53 19.42 21.00 23.57 13.46

BRISQUE ↓ 30.12 28.71 32.82 29.40 29.15 26.55 28.55 32.98 30.29

Table 4 Run-time (s) performance

Method 720p time/FLOPs 1080p time/FLOPs 2K time/FLOPs Parameters Platform

SLP 1.079 2.238 9.725 – MATLAB

ROP 0.089 0.281 0.534 – MATLAB

ROP+ 0.182 0.363 1.611 – MATLAB(GPU)

RGCP 0.047 0.136 0.269 – MATLAB

TOENet 0.043/27.26G 0.048/61.33G 0.045/145.40G 273.6K Pytorch (GPU)

TSDNet 0.006/338.49G 0.007/761.64G 0.007/1805.3G 1.22M Pytorch (GPU)

Dehazeformer 0.012/172.77G 0.012/388.58G 0.013/692.05G 1.28M Pytorch (GPU)

C2PNet 1.817/3251.4G 4.162/6537.2G 6.223/8322.7G 7.16M Pytorch (GPU)

FaNDID 0.001/75.53G 0.0011/165.4G 0.0009/392.2G 79.2K Pytorch (GPU)

Fig. 12 Sometimes our method
may require a color amendment.
a Hazy images. b Our method is
applied. c ROP [35] nicely
restores image colors but
preserves a significant amount
of haze. d Inter-image color
transfer [39] is applied with the
ROP images used as color
donors

definitive assessments of dehazing quality and generalizabil-
ity.

On the other hand, it is worth noting that the proposed
method is exceptionally fast when utilizing GPU for acceler-
ation, and the image size has almost no impact on processing
speed. As listed in Table4, it can achieve processing speeds
of around 1000 FPS, making it highly suitable for real-time
video dehazing. Compared to other standard deep learning
methods that are trained onpaired data, themodel in thiswork
is particularly lightweight, with only 79K trainable parame-
ters, and its FLOPs are also highly competitive.

4 Limitations and future work

The proposed method is not free of drawbacks, as it may
develop oversharpening effects including halo artifacts. This
is also why it has not achieved the state-of-the-art (SOTA)
status across all quality measures. The model aims to both
dehaze and enhance the image, revealingmany details in low-
light conditions. However, this also results in higher overall
image brightness, making the image appear less natural. This
issue necessitates further optimization of the loss function
components in future work. In addition, as illustrated in
Fig. 12, these images have backgrounds with noticeable col-
ors causing the network to accentuate these colors further.
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This can be slightly alleviated by incorporating the ROP
method [35] through an inter-image color transfer scheme
[39]. Figure12 shows the results using color transformation
with the results of ROP as the source.

Currently, the loss function used in this model is too com-
plicated but the authors failed to find a simpler loss function
that delivers similar or better restoration quality. This will
be a primary focus for future efforts to enhance this work.
Another possible direction for future work consists of learn-
ing the loss function from examples.

The lightweight network with relatively shallow depth
and simple architecture is used in this study, as seen in
Fig. 1. Possibly employing a lightweight network with a
more sophisticated architecture would lead to a better image
restoration performance without sacrificing computational
speed.

5 Conclusion

This paper introduces a zero-reference deep dehazing net-
work that doesn’t rely on paired images as a training dataset.
It leverages several designed loss functions to evaluate the
quality of dehazed images, driving the training process.
Although it still exhibits some limitations, it outperforms
other state-of-the-artmethods in brightness enhancement and
detail preservation. Furthermore, the network is lightweight
and exceptionally fast, making it highly suitable for video
dehazing applications. Promising future work includes video
dehazing which requires adding temporal coherence terms to
the loss function.
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