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Abstract
Monocular Simultaneous Localization And Mapping (SLAM) suffers from scale drift, leading to tracking failure due to
scale ambiguity. Deep learning has significantly advanced self-supervised monocular depth estimation, enabling scale drift
reduction. Nonetheless, current self-supervised learning approaches fail to provide scale-consistent depth maps, estimate
depth in dynamic environments, or perceive multi-scale information. In response to these limitations, this paper proposes
Dyna-MSDepth, a novel method for estimating multi-scale, stable, and reliable depth maps in dynamic environments. Dyna-
MSDepth incorporates multi-scale high-order spatial semantic interaction into self-supervised training. This integration
enhances the model’s capacity to discern intricate texture nuances and distant depth cues. Dyna-MSDepth is evaluated on
challenging dynamic datasets, including KITTI, TUM, BONN, and DDAD, employing rigorous qualitative evaluations and
quantitative experiments. Furthermore, the accuracy of the depth maps estimated by Dyna-MSDepth is assessed in monocular
SLAM. Extensive experiments confirm the superior multi-scale depth estimation capabilities of Dyna-MSDepth, highlighting
its significant value in dynamic environments. Code is available at https://github.com/Pepper-FlavoredChewingGum/Dyna-
MSDepth.

Keywords Monocular depth estimation · Dynamic scenes · Visual SLAM · Self-supervised learning · Scale drift

1 Introduction

Visual SLAM is vital for autonomous robots, with appli-
cations ranging from autonomous driving [1] to 3D recon-
struction [2], navigation [3], and high-definitionmapping [4].
Monocular SLAM, enabled by low-cost cameras, is crucial in
this domain [5]. However, scale ambiguity often leads to sig-
nificant scale drift during long-term operation, particularly
in dynamic scenes [6].

Addressing scale drift in monocular SLAM usually
involves providing depth information for image pixels [7].
Traditionally, this required additional sensors like stereo

B Jianjun Yao
travisyao@hrbeu.edu.cn

Yingzhao Li
yzli@hrbeu.edu.cn

Jiajia Li
hahajaja@hrbeu.edu.cn

1 College of Mechanical and Electrical Engineering, Harbin
Engineering University, Nantong Street, Harbin 150001,
Heilongjiang, China

cameras or LiDAR [8], which increases costs and complex-
ity. Recent advances in monocular depth estimation net-
works offer a promising alternative. While supervised meth-
ods require expensive LiDAR for training, self-supervised
approaches, like Hr-depth [9] and Monodepth2 [10], learn
from geometric projection matching without depth ground
truth.

Nevertheless, most monocular depth estimation networks
failed to produce consistent depth maps between frames,
leading to tracking failures inSLAM[11]. In dynamic scenes,
the depth estimation of dynamic objects was highly inaccu-
rate and their edges appeared blurred, primarily attributed to
the violation of the geometric consistency assumption [12].
Moreover, monocular estimation methods lacked accurate
scale estimation and struggled to perceive distance between
objects and the camera, leading to increased inaccuracy in
depth estimation for dynamic objects, particularly in scenes
with low discriminability, such as highways [7].

This paper proposesDyna-MSDepth, a novel self-supervised
monocular depth estimation network, aimed at addressing
the aforementioned challenges. As shown in Fig. 1, Dyna-
MSDepth produces a stable and reliable depth map with
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sharp edge segmentation and scale consistency in dynamic
scenes, enabling direct utilization formonocular SLAMscale
recovery. Dyna-MSDepth employs scale consistency loss
to establish connections between depth values in consec-
utive frames. Additionally, a pre-trained supervised model
provides depth priors, enabling depth value prediction on
dynamic objects and segmentation of dynamic object edges.
To perceive objects at varying distances, multi-scale input is
employed in themonocular sequences, while high-order spa-
tial interaction enhances feature fusion. Dyna-MSDepth is
extensively evaluated on four challenging dynamic datasets,
including KITTI, TUM, DDAD, and BONN. The results
demonstrate thatDyna-MSDepth outperforms existingState-
Of-The-Art (SOTA) approaches both qualitatively and quan-
titatively. Moreover, the dense depth maps estimated by
Dyna-MSDepth are directly utilized for scale recovery in
ORB-SLAM3, resulting in significantly reduced scale drift
in the KITTI dataset.

In summary, the contributions of this paper are:

1. Dyna-MSDepth is proposed as a solution for multi-scale
monocular depth estimation in dynamic scenes, enabling
direct utilization of the estimated depth maps for scale
recovery in monocular SLAM to mitigate scale drift;

2. The performance of Dyna-MSDepth is assessed through
qualitative and quantitative evaluations on four challeng-
ing dynamic datasets, i.e., KITTI, TUM, DDAD, and
BONN;

3. The effectiveness of Dyna-MSDepth’s depth map is
demonstrated through its application inmonocular SLAM,
with evaluations conducted on the KITTI datasets.

2 Related work

This chapter presents an overview of the relevant researches.
Firstly, the scale drift problem in monocular SLAM is
addressed (Sect. 2.1). Secondly, the current research status of
monocular depth estimation networks is analyzed (Sect. 2.2).
Finally, the significance of multi-scale approaches in self-
supervisedmonocular depth estimation is discussed (Sect. 2.3).

2.1 Scale drift in monocular SLAM

Visual SLAM encompasses monocular [7], stereo [14], and
RGBD [15] techniques, each employing distinct sensor
setups. Monocular SLAM is preferred due to its cost-
effectiveness and simplicity [5]. Nonetheless, it suffers from
scale ambiguity, leading to significant scale drift over time.
Consequently, this limitation severely impacts subsequent
tasks such as localization, mapping, 3D reconstruction, and
navigation [16]. To address the single-purpose scale drift, [8]
and [17] incorporated ridar and IMU sensors. [18] assumed

a known camera height from the ground. [19] and [7]
employed costly global bundle adjustment after calculat-
ing the Sim(3) transformation. Several learning-based visual
odometry methods aimed to directly recover the absolute
scale in the scene [20–22]. However, their accuracy lagged
behind traditional multi-view geometry-based SLAM algo-
rithms due to the absence of bundle adjustment, feature
search, and loop closing [23].

2.2 Self-supervisedmonocular depth estimation

Monocular depth estimation methods in deep learning are
categorized into three approaches. The first category involves
supervised training using ground truth obtained fromLiDAR
and RGB-D cameras. [24] leveraged high-order three-
dimensional geometric constraints and depth truth values to
enhance depth prediction accuracy. [25] improved supervised
training performance through the incorporation of attention
mechanisms. These approaches necessitate costly depth truth
data. The second category utilizes calibrated binocular cam-
eras to project depthmaps from the left to the right camera and
subsequently calculates photometric loss. [26] addressed the
uncertainties associated with stereo depth estimation. While
thismethod can providemetric depth, it requires precise cam-
era calibration. The third category explores unsupervised or
weakly supervised methods to learn depth prediction. [10]
was the earliest and most typical self-supervised monocular
depth estimation method. [27] enhanced the performance of
self-supervised method through semantic guidance. [28–30]
investigated the impact of physical world attacks on self-
supervisedmonocular depth estimation and proposed several
effective countermeasures. The use of self-supervised meth-
ods, which do not rely on depth ground truth, is prevalent. To
address the challenges of scale inconsistency, dynamic object
estimation, and scale ambiguity in self-supervised monocu-
lar depth estimation, [11] had proposed scale consistency loss
to ensure continuity of inter-frame depth values. Addition-
ally, [12] had introduced pseudo depth approach to tackle
the depth estimation problem of dynamic objects. These
advancements contribute to the growing popularity of self-
supervised monocular depth estimation.

2.3 Visual SLAM combined with depth estimation

Acquiring camera pose and maintaining global consistency
mapping in dynamic environments poses significant chal-
lenges. Numerous methodologies have been developed to
address this issue. [31] employed SegNet for semantic
segmentation, effectively eliminated feature points within
dynamic regions. [32] combined MaskRCNN with ORB-
SLAM2 [19] to detect moving vehicles, thereby mitigating
the impact of dynamic obstacles on static background pose
estimations. [33] leveraged semantic information to aid
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Fig. 1 Dyna-MSDepth is
evaluated against SOTA
methods on 4 challenging
dynamic datasets. Top row: the
original images from the TUM,
BONN, KITTI, and DDAD
datasets, respectively. Second
row: the monocular depth
estimation results of other
SOTA methods. The left two
columns are the results of [13],
and the right two columns are
the results of [11]. Third row:
the monocular depth estimation
results of Dyna-MSDepth.
Bottom row: the ground truth
depth maps provided by the
datasets

in epipolar geometry calculation within dynamic environ-
ments, overcoming noise interference in motion information
between adjacent frames. [34] integrated object detection and
depth information for dynamic feature recognition, achieving
performance levels comparable to semantic segmentation.
Moreover, [34] employed IMU for motion prediction in
feature tracking and motion consistency checking. [35]
utilized the interdependence between camera motion and
optical flow, optimizing them jointly within a unified learn-
ing framework in dynamic environments. [36] optimized
static scenes, dynamic object structures, and camera pose
simultaneously, facilitating the decoupling and estimation
of three-dimensional bounding boxes for dynamic objects
within fixed time windows. While existing methodologies
effectively handle dynamic feature points and optical flow,
enhancing positioning accuracy and robustness in dynamic
environments, monocular SLAM invariably suffers from sig-
nificant scale drift regardless of the approach employed.

2.4 Multi-scale models

Image pyramids are extensively employed in computer vision
tasks to enable models to handle multi-resolution and multi-
scale information [7, 19, 37]. Image pyramids simulate
various object distances, which is crucial for handling the
scale blurriness in monocular vision. It aids monocular depth
estimation and SLAM in perceiving depth values for objects
of different sizes. [38] employed multi-scale input and atten-
tion mechanism to enhance spatial perception in monocular
depth estimation. [39–41] captured fine-grained images with
multi-scale input. [42]mitigated the impact of object size dif-
ferences on the Convolutional Neural Network (CNN)model
through multi-scale input. While the CNNmodel establishes

multi-scale through downsampling in its backbone, it per-
tains to the feature layer post complex operations rather than
the original RGB image [43, 44]. By incorporating multi-
scale input, Dyna-MSDepth effectively emulates objects at
different distances and scales, thereby improving the accu-
racy of dynamic object depth estimation.

3 Method

This section presents the principles of Dyna-MSDepth.
Firstly, Sect. 3.1 introduces the principle of self-supervised
monocular depth estimation. Section 3.2 further analyzes
the theory of depth ranking, which serves as the foundation
for Dyna-MSDepth in estimating depth in dynamic scenes.
Section 3.3 proposes a multi-scale depth estimation module
that incorporates high-order spatial interaction, leading to
improved performance compared to the baseline. Building
upon these foundational theories, Sect. 3.4 introduces the
specific architecture of Dyna-MSDepth for self-supervised
multi-scale monocular depth estimation in dynamic scenes.

3.1 Self-supervisedmonocular depth estimation

The self-supervised monocular depth estimation approach
consists of two components: DepthNet for depth estimation
and PoseNet for 6D pose estimation [10]. During the training
process, given a pair of monocular images (Ix , Iy), Depth-
Net estimates the dense depth map (Dx , Dy), while PoseNet
estimates the relative pose Pxy between the image pair. Sub-
sequently, Dy is employed to generate the simulated image
I ′
x of the previous frame using Pxy projection. By calculating
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the pixel difference between Ix and I ′
x , the self-supervised

monocular depth estimation method is trained.
Several monocular depth estimation networks lack the

ability to produce a consistent and densely connected depth
map, resulting in discontinuous depth values between frames
[45, 46]. To address this issue, Dyna-MSDepth incorporates
a consistency loss LG from [11] to enforce the continuity of
depth values across frames, thereby enhancing the stability
of downstream tasks like SLAM. For the point p in Dy that
is successfully projected to Dx , the geometric inconsistency
of p between the synthetic depthmap Dy

x and the target depth
map D′

x can be calculated:

Ddiff =
∥
∥D′

x (p) − Dy
x (p)

∥
∥
2

D′
x (p) + Dy

x (p)
, (1)

while Dy
x represents the depth map obtained by projecting

Dy using Pxy , and D′
x denotes the depth map produced by

interpolation aligned with Dy
x . Then, the geometric consis-

tency loss LG is calculated as:

LG = 1

|U |
∑

p∈P

Ddiff(p) =
∥
∥D′

x (p) − Dy
x (p)

∥
∥
2

D′
x (p) + Dy

x (p)
, (2)

where U represents the effective projection points. The LG

penalty was applied during the training process to ensure
depth consistency within each batch, resulting in continuous
depth maps for the entire image sequence.

Equation 2 normalizes depth map inconsistencies through
summation. When the dynamic objects appear in training
frames, loss LG rapidly increases due to multi-view consis-
tency assumption violation. Hence, Dyna-MSDepth cites a
weight parameter [13]:

Ms = 1 − Ddiff (3)

The parameter Ms , ranging from 0 to 1, denotes the gra-
dient proportion from the loss function LG in training. A
smaller A implies higher likelihood of dynamic objects in
the region, necessitating decreased contribution to the loss
function LG .

Additionally, Dyna-MSDepth employs a photometric loss
LP from [11], which is weighted, to constrain Ix and I ′

x :

LP = 1

|U |
∑

p∈U
(λ

∥
∥Ix (p) − I ′

x (p)
∥
∥

+(1 − λ)
1 − SSIMxx ′(p)

2
), (4)

LM
P = 1

|U |
∑

p∈U
(Ms(p)LP (p)), (5)

Finally,Dyna-MSDepth incorporates an edge-aware smooth-
ing loss LS from [13] to effectively regularize the depth map:

LS =
∑

p

(e−∇ Ix (p)∇Dx (p))
2
, (6)

where∇ denotes the first derivative with respect to the spatial
dimension.

In cases where the dynamic object occupies a minority of
image pixels, the loss function can include geometric con-
sistency loss, photometric loss, and edge smoothing loss:

Lself = αLG + βLM
P + γ LS (7)

The weights of three losses are denoted as α, β, and γ ,
respectively.

3.2 Dynamic region refinement

Supervised monocular depth estimation is not directly appli-
cable for dynamic scenes, but it can assist unsupervised
monocular depth estimation [27]. The supervised network,
trained on large-scale datasets, offers advantages in depth
ordinal, depth value smoothness, and sharp object edges. It
particularly aids in training unsupervised monocular depth
estimation networks in dynamic scenes, effectively captur-
ing near-far point relationships of dynamic objects [12]. To
address dynamic scenes and ensure fair comparisons, this
study adopted the approach of [12] for handling dynamic
objectives during self-supervised training. [12] employed a
fully supervisedmodel to generate a depth map as a priori for
self-supervised training. It introduces Depth Ranking Loss
LDR to regulate the proximity of dynamic objects to the static
background, and employs smoothing loss LN to promote
depth map continuity. Notably, executing the supervised net-
work only once at the training onset minimizes additional
training and inference costs.

The full supervised network predicts the depth map of
the current RGB image, serving as the pseudo-depth truth
value during training.Ms calculates geometric inconsistency,
dividing the dynamic region. Restricting depth estimation of
dynamic regions and enhancing the relationship between far
and near points in static regions improve depth prediction
for dynamic regions [12]. Model extracts the depth ranking
from the pseudo-depth map, constraining network-predicted
depth through Depth Ranking Loss LDR :

η(p0, p1) = log(1 + exp(−l(p0 − p1))), (8)

LDR = 1

|�|
∑

p∈�

η(p), (9)
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where l represents the ordinal label provided by the depth
prior, and � represents all sampling point pairs.

To enhance the smoothness of the estimated depth map,
Dyna-MSDepth incorporates a calculation of the surface
normal by comparing the predicted depth map with the
corresponding depth prior. This calculation can be further
optimized as follows [12]:

LN = 1

N

N
∑

i=1

∥
∥ni − n∗

i

∥
∥, (10)

where ni represents the surface normal obtained from the
predicted depth, while n∗

i represents the normal derived from
pseudo-depth. N denotes the total number of pixels in the
image.

In the depth prior generated by supervised monocular
depth estimation, the edges of the object are segmented
very sharp. In order to segment dynamic objects well in the
self-supervised monocular depth estimation network, Dyna-
Depth further applies the edge normal loss [12], so that the
estimated depth map is consistent with the relative normal
angle of the edge point pair in the depth prior:

LEN = 1

N

N
∑

i=1

∥
∥nAinBi − n∗

Ain
∗
Bi

∥
∥, (11)

where nAi represents the normal of the estimated depthmap’s
point pairs, while n∗

Ai represents the normal of the point pairs
provided by the depth prior.

Thus, the total loss of Dyna-MSDepth is formulated as:

L = αLG + βLM
P + γ LN + ϕLDR + ϑLEN , (12)

where ϕ and ϑ are weights respectively to punish different
losses.

3.3 Multi-scale DepthNet

Current configuration restricts Dyna-MSDepth to fixed-
resolution image processing, limiting scale adaptability.
Monocular scenes often require capturing objects at varying
distances from the camera’s optical center, making a single
scale insufficient [47]. Employingmulti-scale input enhances
information coverage for objects of different scales. Addi-
tionally, single-scalemethods often encounter discontinuities
due to crossing large depth disparities [48]. Leveragingmulti-
scale information smooths depth images, reducing depth
value inconsistencies. Furthermore, multi-scale information
effectivelymitigates imagenoise [49], artifacts, and enhances
depth estimation accuracy and robustness.

Hence, to enhance the capabilities of DepthNet in Dyna-
MSDepth, an additional branch is incorporated to handle

RGB images with varying resolutions. When the monocu-
lar image is inputted to the network, the original resolution
image is fed into the existing DepthNet backbone, while a
down-sampled low-resolution image is directed to the new
branch. Consequently, Dyna-MSDepth exhibits multi-scale
characteristics. Moreover, most monocular depth estimation
networks utilize ResNet as their backbone, which, although
efficient and lightweight, lacks sufficient interaction among
high-order spatial features across different levels. This lim-
itation hampers its potential for improved accuracy and
robustness. Consequently, this section aims to devise a novel
multi-scale DepthNet, integrating the latest gConv model for
high-order spatial feature interaction.

The significance of gated convolution (gConv) [50] within
Dyna-MSDepth lies in its pivotal role in facilitating multi-
scale input and high-order spatial interaction. Assuming that
u ∈ R

H×W×C represents the input layer of gConv, the corre-
sponding output feature layer y is mathematically expressed
as follows:

[aH×W×C
0 , bH×W×C

0 ] = φin(u) ∈ R
H×W×2C , (13)

a1 = f (b0) � a0 ∈ R
H×W×C , (14)

y = φout(a1) ∈ R
H×W×C , (15)

where φin and φout are the linear projection processes, and f
represents depth-wise convolution, and a0 and b0 represent
the intermediate features in the gConv.

The mathematical description of a1 can be further refined
as:

a(i,c)
1 =

∑

j∈�i
ωc
i→ j b

( j,c)
0 a(i,c)

0 , (16)

where�i is a local window centered at i , and ω is the weight
of depth-wise convolution. By utilizing element-wise mul-
tiplication, the interaction between ai0 and b j

0 at the 1-order
spatial level enhances the model’s representation capability.

After realizing the 1-order spatial interaction, Dyna-
MSDepth further extends it to high-order spatial interaction
[50], so that it can learn stronger features. φin is used to
further extract high-dimensional features:

[aH×W×C0
0 , bH×W×C0

0 , . . . ,bH×W×Cn−1
n−1 ]

= φin(u) ∈ R
H×W×C0+∑

0≤k≤n−1 Ck . (17)

At this stage, the concept of 1-order spatial interaction
can be expanded recursively to include higher-order spatial
interaction, referred to as gnConv:

ak+1 = fk(bk+1) � qk(ak)/α, k = 0, 1, . . . , n − 1, (18)

where α is a scale factor used to ensure training stability,
and fk represents k depth-wise convolution layers, and qk is
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Fig. 2 The architecture of Dyna-MSDepth. It consists of three parts: self-supervised monocular depth estimation, dynamic region optimization,
and multi-scale input

utilized for dimensionmapping across various feature layers,
facilitating dimension matching:

qk =
{

Identity,
Linear(Ck−1,Ck).

(19)

The recursive process yields a final output that is passed to
φout for outputmapping, denoted as gnConv. Additionally, to
reduce computational overhead, feature dimensionality can
be optimized as follows:

Ck = C

2n−k−1 , 0 ≤ k ≤ n − 1. (20)

Indeed, the computation of gnConv entails a coarse-to-
fine strategy. Additionally, the computation of gnConv does
not experience a substantial increase as n becomes larger:

FLOPs(gnConv) <H × W × C(2 × K 2+11/3 × C + 2),

(21)

where K is the convolution kernel size of depth-wise convo-
lution.

The high-order spatial interaction principle of gnConv
exhibits similarity to the attention mechanism in Transform-
ers. The Transformer architecture, which includes the multi-
head self-attention mechanism, has demonstrated promising
results [51, 52]. However, it suffers from quadratic complex-
ity in terms of the feature layer size [50]. In contrast, the

gnConv model not only achieves advanced high-order spa-
tial interactions but also reduces computational burden. This
reduction is particularly important for successful Monocular
depth estimation.

3.4 Model architecture

The architecture of Dyna-MSDepth is illustrated in Fig. 2.
The input for Dyna-MSDepth is continuous RGB image
frames. When feeding the image pair (Ix , Iy), three data
streams are generated. Firstly, a pre-trained supervised net-
work predicts the current frame. The supervised network
establishes a stable near-far relationship between dynamic
objects and static backgrounds, providing sharp object edges.
It should be noted that the supervision network runs only
once during the entire training process, minimizing train-
ing costs. Secondly, the image pair (Ix , Iy) undergoes depth
map extraction through the multi-scale DepthNet, enabling
multi-scale, multi-resolution, and high-order spatial interac-
tion feature fusion. Thirdly, PoseNet processes the image pair
(Ix , Iy) to determine the relative pose between the images.
Using the estimated depth map and relative pose, the loss is
computed according to Eq. 12, and gradient backpropaga-
tion is applied to complete the training process. Following
training, Dyna-MSDepth generates a smooth, stable, sharp-
edged, and consistent depthmapduring the forward inference
process. This depth map is qualitatively and quantitatively
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evaluated, and then utilized in monocular SLAM to mitigate
scale drift.

4 Experiment

Dyna-MSDepth, proposed in this paper, aims to estimate reli-
able multi-scale depth maps in dynamic scenes to restore
scale consistency in visual SLAM. This chapter introduces
four challenging dynamic datasets (TUM, KITTI, BONN,
DDAD) for evaluating the depth estimation performance
of Dyna-MSDepth in Sect. 4.1, along with the evaluation
metrics in Sect. 4.2. Dyna-MSDepth is trained on these
datasets, and the results in Sect. 4.4 demonstrate its superior
performance compared to existing leading-edge methods.
Furthermore, the estimateddepthmaps are directly integrated
into the visual SLAM system, showcasing their practical
applicability through qualitative and quantitative assess-
ments in Sect. 4.5.

4.1 Datasets

KITTI. The KITTI dataset serves as a common benchmark
for SLAM, monocular depth estimation, and object detec-
tion. Certain sequences in the KITTI dataset pose challenges
due to the presence of numerous dynamic objects, leading
to potential failures in SLAM feature point tracking and
optical flow estimation [7]. Furthermore, monocular depth
estimation is adversely affected by the presence of dynamic
objects. To mitigate this issue, it becomes necessary to per-
formmonocular depth estimation on the KITTI dataset while
accounting for the influence of dynamic objects. In line with
previouswork [53], 697 imageswere utilized from theKITTI
dataset for testing and the remaining images for training.
Image resolution was scaled from 1241×376 to 832×256.

TUM. Similarly, the TUM dataset serves as a crucial
benchmark for indoor SLAM systems. Notably, the dynamic
sequences in the TUM dataset contain a significant number
of dynamic objects that occupy a substantial portion of the
image. Conventional SLAM approaches tend to suffer from
tracking losses or drift in suchdynamic sequences.Therefore,
it is imperative to estimate the depth of monocular images in
a manner that accounts for the influence of dynamic objects
in the TUM dataset. Additionally, the TUM dataset provides
depth ground truths, enabling the evaluation of estimated
depth maps. For evaluation purposes, the last two dynamic
sequences from the TUM dataset were reserved for testing,
while the remaining sequences were used for training. Image
resolution was scaled from 640×480 to 320×256.

BONN.TheBONNdataset comprises 26 indoor sequences
featuring fast-moving individuals and other objects. The pri-
mary distinction of the BONN dataset lies in the speed of
object movement when compared to the TUM dataset. The

Pre-set test set was selected for evaluation while employing
the remaining sequences for training [12]. Image resolution
was scaled to 320×256 to maintain consistency.

DDAD. DDAD, a comprehensive dataset comprising 200
sequences, presents a significant challenge for monocular
depth estimation and SLAMdue to the predominant presence
of moving vehicles. Unlike the KITTI dataset, the DDAD
dataset primarily consists of dynamic scenes. The DDAD
dataset follows the standard training set/test set segmenta-
tion, including 12,650 training images and 3950 test images,
all scaled to a resolution of 640×384.

4.2 Evaluationmetrics

The evaluation of Dyna-MSDepth encompasses two aspects:
monocular depth estimation and SLAM.

For monocular depth estimation, standard evaluation met-
rics were employed such as mean absolute relative error
(AbsRel), root mean squared error (RMS), and accuracy
under threshold(δi < 1.25i , i = 1, 2, 3). To ensure con-
sistent evaluation, the scale was restored before calculating
these metrics. Additionally, this paper used a novel evalua-
tion approach that distinguishes dynamic and static regions
based on semantic segmentation [12]. Specifically, this study
utilize a pre-trained semantic segmentation network to iden-
tify dynamic objects (people and cars) in the four datasets.
Subsequently, compute the monocular depth estimation met-
rics separately for dynamic and static regions.

Regarding the evaluation of the SLAM system, this paper
focus on the KITTI datasets. On the KITTI dataset, the
primary challenge for monocular SLAM is the scale drift
resulting from long sequences. Hence,the extent of scale
drift reduction achieved by incorporating the depthmap from
Dyna-MSDepth estimation was assess, along with the aver-
age trajectory accuracy after scale alignment.

4.3 Implementation details

During the training process, the initial learning rate for the
four datasets was set to 1e-4 and multiplied by 0.8 every 10
epochs. The batch size for the KITTI and DDAD datasets
in outdoor scenes is set to 8, while the batch size for the
TUM and BONN datasets in indoor scenes is set to 4. α = 1,
β = 0.5, and γ = ϕ = ϑ = 0.1. The pre-trained LeReS
[54] model was utilized to generate a depth prior and MSeg
[55] was utilized for generating dynamic object masks for
evaluation.

4.4 Depth estimation results

Figure 3 presents the qualitative comparison results between
Dyna-MSDepth and other cutting-edge techniques on the
KITTI dataset. The depth map generated by Dyna-MSDepth
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Fig. 3 Qualitative comparison results of Dyna-MSDepth and other
SOTA schemes on the KITTI dataset. Top row: the original images from
the KITTI dataset. Second row: the monocular depth estimation results
of [11]. Third row: the monocular depth estimation results of [12].

Fourth row: the monocular depth estimation results of Dyna-MSDepth.
Bottom row: the ground truth depthmaps provided by theKITTI dataset

Table 1 Quantitative
comparison results of
Dyna-MSDepth and other SOTA
schemes on the KITTI dataset

Methods Full image Dynamic Static
AbsRel RMS δ1 δ2 δ3 AbsRel δ1 AbsRel δ1

Monodepth2 0.114 4.986 0.869 0.956 0.980 0.187 0.731 0.104 0.884

SC-Depth 0.118 4.997 0.860 0.956 0.981 0.242 0.698 0.108 0.878

SC-DepthV3 0.118 4.709 0.864 0.960 0.984 0.205 0.703 0.108 0.881

Dyna-MSDepth 0.111 4.641 0.873 0.965 0.986 0.181 0.733 0.103 0.886

outperforms the previousmethod. Specifically, the depth esti-
mation for small objects in [11] is highly inaccurate, while
for low texture regions in [12], although improved com-
pared to [11], it still falls short of the accuracy achieved by
Dyna-MSDepth. Table 1 summarizes the quantitative evalu-
ation, demonstrating the significant performance enhance-
ment of Dyna-MSDepth compared to SC-DepthV3 [12].
Notably, Dyna-MSDepth achieves a 3% improvement in
accuracy for dynamic regions. Enhancing performance in
small object, low texture, and long distance depth estima-
tion is achieved through the utilization of multi-scale input
in Dyna-MSDepth.

Figure 4 presents the qualitative comparison results of
Dyna-MSDepth and other state-of-the-art approaches on the
TUM test set. The findings demonstrate that depth estimation
without a dynamic object loss function yields poor results

for dynamic objects. In particular, nearby points fail to esti-
mate accurate depth values, resulting in blurred boundaries
and potential SLAM failure. In contrast, SC-DepthV3 [12]
exhibits commendable depth estimation for dynamic regions,
yet it still experiences missed detection for other close-
range dynamic objects (e.g., hands and heads). Additionally,
Dyna-MSDepth shows superior performance in capturing
low-texture structures at relatively distant distances, show-
casing the benefits of multi-scale input. The quantitative
indicators in Table 2 also verify this conclusion.

Figure 5 illustrates the qualitative comparison between
Dyna-MSDepth and other leading-edge methods on the
BONN dataset. The findings reveal that without optimizing
the dynamic region loss function, monocular depth esti-
mation results of Dyna-MSDepth for dynamic targets are
notably poor, with the depth value of dynamic objects closely
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Fig. 4 Qualitative comparison
results of Dyna-MSDepth and
other SOTA schemes on the
TUM dataset. Top row: the
original images from the TUM
dataset. Second row: the
monocular depth estimation
results of [13]. Third row: the
monocular depth estimation
results of [12]. Fourth row: The
monocular depth estimation
results of Dyna-MSDepth.
Bottom row: the ground truth
depth maps provided by the
TUM dataset

Table 2 Quantitative
comparison results of
Dyna-MSDepth and other
cutting-edge methods on the
TUM dataset

Methods Full image Dynamic Static
AbsRel RMS δ1 δ2 δ3 AbsRel δ1 AbsRel δ1

Monodepth2 0.312 1.408 0.474 0.793 0.905 0.431 0.348 0.262 0.526

SC-Depth 0.257 0.283 0.616 0.814 0.909 0.512 0.274 0.176 0.715

SC-DepthV2 0.223 0.282 0.643 0.862 0.932 0.283 0.494 0.206 0.686

SC-DepthV3 0.163 0.265 0.797 0.882 0.937 0.165 0.796 0.171 0.780

Dyna-MSDepth 0157 0.259 0.801 0.885 0.947 0.162 0.802 0.161 0.783

linked to the static background. Additionally, due to the lack
of multi-scale characteristics, the depth estimation results
for the static background are subpar. In contrast, the cur-
rent SOTA method, SC-DepthV3 [12], exhibits significant
improvement in deep optimization for dynamic regions.
Nonetheless, there are still limitations in SC-DepthV3’s
depth estimation results when dynamic objects enter the
scene or when two moving objects overlap, making the
extraction of object edges less distinct. Conversely, Dyna-
MSDepth demonstrates superior performance in handling
dynamic objects, and its multi-scale input enables precise
capturing of intricate details of distant objects like tables and
chairs. Table 3 presents the quantitative comparison results
of Dyna-MSDepth on the BONN dataset, indicating its over-
all superiority over SC-DepthV3, particularly in terms of

dynamic region accuracy, which exhibits a 1.2% enhance-
ment.

Figure 6 illustrates the qualitative comparison results of
Dyna-MSDepth and other state-of-the-art techniques on the
DDAD dataset. The depth map produced by method [11]
exhibits poor discrimination between near and far points,
resulting in inaccurate depth estimation for dynamic objects.
On the other hand, SC-DepthV3 yields sharp edges for
dynamic objects but struggles with accurate depth estima-
tion for distant low-texture scenes and objects. In contrast,
leveraging multi-scale input, Dyna-MSDepth demonstrates
improved depth estimation for small objects in the distance.
The comparison results on the DDAD dataset (Table 4)
reveal that Dyna-MSDepth, discussed in this study, exhibits
slightly lower accuracy in dynamic regions compared to SC-
DepthV3, albeit with similar processing methods. However,
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Fig. 5 Qualitative comparison
results of Dyna-MSDepth and
other SOTA schemes on the
BONN dataset. Top row: the
original images from the BONN
dataset. Second row: the
monocular depth estimation
results of [13]. Third row: the
monocular depth estimation
results of [12]. Fourth row: the
monocular depth estimation
results of Dyna-MSDepth.
Bottom row: the ground truth
depth maps provided by the
BONN dataset

Table 3 Quantitative
comparison results of
Dyna-MSDepth and other
leading-edge methods on the
BONN dataset

Methods Full image Dynamic Static
AbsRel RMS δ1 δ2 δ3 AbsRel δ1 AbsRel δ1

Monodepth2 0.565 2.337 0.352 0.591 0.728 0.474 0.172 0.594 0.383

SC-Depth 0.272 0.733 0.623 0.858 0.948 0.704 0.166 0.180 0.714

SC-DepthV2 0.211 0.619 0.714 0.873 0.936 0.488 0.247 0.152 0.803

SC-DepthV3 0.126 0.379 0.889 0.961 0.980 0.220 0.720 0.102 0.931

Dyna-MSDepth 0.120 0.385 0.898 0.967 0.984 0.193 0.732 0.104 0.929

Dyna-MSDepth’s multiscale architecture notably enhances
its ability to capture detailed textures and distant depth,
leading to superior overall performance when compared to
SC-DepthV3.

4.5 SLAM test results

In outdoor settings like autonomous driving, SLAM sys-
tems require prolonged operation, exacerbating scale and
trajectory drift issues. To assess Dyna-MSDepth’s efficacy in
mitigating these challenges, this study conducts experiments
with ORB-SLAM3 on the KITTI dataset in monocular and
RGB-D modes, evaluating positioning accuracy and scale
drift. Loop detection is disabled in both experiments to bet-
ter gauge the depth map’s impact on scale restoration.

The KITTI dataset, commonly utilized for SLAM exper-
iments in outdoor environments, contains sequences with
a substantial presence of dynamic objects. The Dyna-
MSDepth generated depth map is directly employed in
ORB-SLAM3, followed by trajectory evaluation for each
sequence. The Fig. 7 demonstrates the pronounced scale drift
occurring due to the monocular camera’s continuous opera-
tion over vast distances. With the integration of the depth
map, a substantial alleviation of scale drift is observed. This
improvement in scale accuracy is further validated by the
data presented in the Table 5, highlighting the significant
enhancement in positioning precision achieved through the
incorporation of Dyna-MSDepth generated depth maps.
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Fig. 6 Qualitative comparison
results of Dyna-MSDepth and
other SOTA schemes on the
DDAD dataset. Top row: the
original images from the DDAD
dataset. Second row: the
monocular depth estimation
results of [11]. Third row: the
monocular depth estimation
results of [12]. Fourth row: the
monocular depth estimation
results of Dyna-MSDepth.
Bottom row: the ground truth
depth maps provided by the
DDAD dataset

Table 4 Quantitative
comparison results of
Dyna-MSDepth and other
cutting-edge methods on the
DDAD dataset

Methods Full image Dynamic Static
AbsRel RMS δ1 δ2 δ3 AbsRel δ1 AbsRel δ1

Monodepth2 0.239 18.392 0.752 0.899 0.949 0.747 0.432 0.188 0.771

SC-Depth 0.169 16.290 0.773 0.905 0.951 0.345 0.546 0.155 0.783

PackNet 0.182 15.021 0.828 0.925 0.961 0.564 0.520 0.137 0.843

SC-DepthV3 0.142 15.868 0.813 0.922 0.963 0.199 0.697 0.140 0.813

Dyna-MSDepth 0.131 14.650 0.833 0.933 0.971 0.201 0.696 0.127 0.837

5 Conclusion

Monocular SLAM iswidely used in visual localization, map-
ping, 3D reconstruction, and navigation tasks due to its
low cost and easy configuration. However, it suffers from
scale ambiguity and significant scale drift during long-term
running, particularly in dynamic scenes where geometric
consistency assumptions are violated.

To address these issues, this paper proposes Dyna-
MSDepth, a self-supervised monocular depth estimation
network that restores scale consistency and provides globally
consistent depth maps in dynamic scenes. Dyna-MSDepth
employs self-supervised training and a specific loss func-
tion to generate dense depth maps with continuous values,
ensuring scale consistency formonocular SLAM.Adynamic
optimization strategy is introduced to estimate reliable depth
maps in the presence of dynamic objects. Furthermore,multi-
scale inputs are introduced to enable Dyna-MSDepth to
perceive the depth values of objects with different distances
and scales.

Qualitative and quantitative evaluations on challenging
dynamic datasets (KITTI, TUM, BONN, DDAD) demon-
strate that Dyna-MSDepth outperforms existing state-of-
the-art methods in monocular depth estimation. Monocular
SLAMexperiments on theKITTI datasets further confirm the
effectiveness of Dyna-MSDepth in enabling accurate map-
ping and navigation tasks.

The paper concludes with the following findings:

1. The proposed Dyna-MSDepth can estimate stable, reli-
able and consistent multi-scale depth maps in dynamic
scenes;

2. Evaluation on four challenging dynamic datasets demon-
strates that Dyna-MSDepth outperforms other state-of-
the-art methods, as observed through qualitative and
quantitative analysis;

3. The depth maps generated by Dyna-MSDepth can be
directly utilized in monocular SLAM without the need
for additional complex post-processing, highlighting its
practical applicability.
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Fig. 7 Qualitative comparison results show that the depth map estimated by Dyna-MSDepth is directly used to reduce the scale drift of monocular
SLAM. The sequence from left to right is 00, 05, 06, 07, 08, 09

Table 5 The quantitative
comparison results (m) of
Dyna-MSDepth before and after
the introduction of the depth
map estimated on the KITTI
dataset

Method 00 01 02 03 04 05

Monocular 75.6501 275.463 44.5924 2.29264 2.39428 38.2833

RGBD w/ Dyna-MSDepth 22.6451 112.219 18.5262 0.715301 1.12295 9.70304

Method 06 07 08 09 10

Monocular 42.9787 14.1814 47.9749 50.3000 10.8759

RGBD w/ Dyna-MSDepth 5.01295 3.27497 12.4913 7.79669 6.83360
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