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Abstract
Metric learning focuses on finding similarities between data and aims to enlarge the distance between the samples with
different labels. This work proposes a semi-supervised metric learning method based on the point-to-class structure of the
labeled data, which is computationally less expensive, especially than using point-to-point structure. Specifically, the point-
to-class structure is formulated into a new triplet constraint, which could narrow the distance of inner-class data and enlarge
the distance of inter-class data simultaneously. Moreover, for measuring dissimilarity between different classes, weights
are introduced into the triplet constraint and forms the weighted triplet constraint. Then, two kinds of regularizers such as
spatial regularizer are rationally incorporated respectively in this model to mitigate the overfitting phenomenon and preserve
the topological structure of the data. Furthermore, Riemannian gradient descent algorithm is adopted to solve the proposed
model, since it can fully exploit the geometric structure of Riemannian manifolds and the proposed model can be regarded
as a generalization of the unconstrained optimization problem in Euclidean space on Riemannian manifold. By introducing
such solution strategy, the variables are constrained to a specific Riemannian manifold in each step of the iterative solution
process, thereby enabling efficient and accurate model resolution. Finally, we conduct classification experiments on various
data sets and compare the classification performance to state-of-the-art methods. The experimental results demonstrate that
our proposed method has better performance in classification, especially for hyperspectral image data.

Keywords Metric learning · Manifold optimization · Semi-supervised learning · Classification

1 Introduction

Metric learning, one of the core problems in pattern recogni-
tion, aims to measure the similarity between data when the
classification algorithms such as k-nearest neighbors (kNN)
could not find its meaningful results. Therefore, many metric
learningmethods have been proposed, for example theMaha-
lanobis metric learning, whose goal is to narrow the distance
between the samples with the same labels, and to enlarge the
distance between the samples with different labels. In fact,
for some traditional classification methods, such as Support
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Vector Machine (SVM) [1], and k-nearest neighbors (kNN)
[2], they also rely on a bettermetric tomeasure the dissimilar-
ities between data, and their results will be greatly improved
by combining metric learning. On this basis, more and more
improved metric learning based models and algorithms have
been proposed in recent years. Generally speaking, they can
be divided into three categories by training samples unsu-
pervised metric learning [3–10], supervised metric learning
[11–18], and semi-supervised metric learning [19–22].

Unsupervised metric learning methods mainly deal with
the data without label information, which just aim at finding
a latent data manifold embedded in the higher dimensional
space, such that local or global structure between data could
be preserved. For example, Principal Component Analysis
(PCA) [3], as a well-known classical method, is usually
regarded as a dimensional reduction method, but in essence,
it can be viewed as an unsupervised metric learning method.
Similarly, Multidimensional scaling (MDS) [4] and Nonneg-
ative Matrix Factorization (NMF) [5] can both be regarded
as the unsupervisedmetric learningmethods. However, these
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above methods do not work when dealing with nonlin-
ear data. Therefore, the amount of nonlinear methods is
proposed. For example, Laplacian Eigenamp (LE) [7] is
a nonlinear method by the eigenfunctions of the graphic
LaplaceCBeltrami operator and theHessian operator, respec-
tively to preserve the local neighbor of every single data.
Subsequently, on this basis, Locality Preserving Projections
(LPP) [8], a linear approximation version of LE was pro-
posed. In contrast, the required nonlinear map in LE is
replaced by a linear map, which simplifies the model but can
also have a good performance. Another classical nonlinear
method is locally linear embedding (LLE) [9], which pre-
serves the local order relation of data in both the embedding
space and the intrinsic space. Moreover, LLE also has its lin-
ear approximation version called neighborhood preserving
embedding (NPE) [10]. Similarly, linear projection obtained
by NPE replaces the desired map in LLE, whose perfor-
mance is still comparable to that of the formerLLE.However,
these unsupervisedmethods do not fully take into account the
label information of the data that have a very positive impact
in classification. Therefore, label-information-based metric
learning method has been proposed in recent years.

The main idea of supervised metric learning is to use
the label information to shorten the distance between sim-
ilar samples while enlarge the distance between samples in
different classes. Xing et al. [11] first proposed the Maha-
lanobis metric learning model by introducing the "similar
pairs" and "dissimilar pairs" constraints, which can separate
similar and dissimilar data clearly. Based on it, the amount of
Mahalanobis metric learning methods was investigated suc-
cessively. For example, Weinberger et al. [13] presented the
large margin nearest neighbors (LMNN), in which a hinge
loss function is constructed with the triplet constraints, such
that a large margin of distance can be held between the
inter-class data points. From the information theory, Davis
et al. [14] developed information-theoretic metric learning
(ITML), involving a natural entropy-based objective func-
tion under the pairwise distance constraints, which can be
solved as a low-rank kernel learning problem. In addition,
Zuo et al. [18] developed Positive-semidefinite constrained
metric learning (PCML) and Nonnegative-coefficient con-
strainedmetric learning (NCML), which are both formulated
as the kernel classification problem with the positive semi-
definite constraint, such that they can be solved by iterated
training of support vector machines (SVMs). Based on the
Riemannian geometry framework, an early approach put for-
ward geometric mean metric learning (GMML) [17], which
efficiently solves the metric learning problem through the
Riemannian geometry of positive definite matrices. And
Li et al. introduced a Kullback–Leibler Divergence (KLD)
based metric learning model called Kullback–Leibler Diver-
gence Metric Learning [23]. The model is based on the
KLD which is extended by the introduction of a linear map-

Fig. 1 Illustration of semi-supervised metric learning

ping and can well express the data distribution similarity.
Then, an intrinsic steepest descent method is introduced to
solve such optimization problem.AnotherRiemannian based
method called graph embedding multi-kernel metric learn-
ing (GEMKML) algorithm was proposed [24], in which the
Grassmannian manifold-valued feature representations are
produced as the feature in a metric learning process. Fur-
thermore, the Grassmannian conjugate gradient method is
used during the optimization process. However, the above-
mentioned supervisedmetric learningmethod is too idealistic
in the label information of data, since in practical applica-
tions, it may happen that only partial information is available.
Therefore, semi-supervised metric learning methods only
using partial labeled information have been developed sub-
sequently.

Semi-supervised learning integrates the advantages of
supervised and unsupervised learning, aiming to overcome
the limitations inherent in both approaches. On the one hand,
for unsupervised learning, it lacks real sample information
to support the clustering results, thereby compromising its
accuracy and stability. On the other hand, supervised learning
requires a large number of training samples, while label-
ing samples requires a significant amount of manpower and
time resources, which often leads to the lack of training sam-
ples in practical applications. Consequently, semi-supervised
learning has attracted increasing attention in recent years
and demonstrated its remarkable application value and
potential in various fields such as medical/healthcare [25],
transportation [26], manufacturing [27], etc. The goal of
semi-supervised metric learning is to utilize unlabeled data
with the help of labeled data tomake supervisedmetric learn-
ing to learn an appropriate metric such that it agrees with
pairwise or triplet constraint. The main concept of semi-
supervised metric learning is shown in Fig. 1. For example,
Hoi et al. [19] first introduced the semi-supervised learning
into metric learning and put forward the Laplacian Regular-
izedMetric Learning (LRML), which combines both labeled
and unlabeled data information through an effective graph
regularization framework. Another semi-supervised metric
learning was developed called Regularized semi-supervised
metric learning (RSSML) [20], in which the local topology
and triplet constraints are considered in the model combin-
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ing with the regularization by the unlabeled samples, which
satisfies three basic assumptions for semi-supervised learn-
ing namely, smoothness, cluster and manifold assumptions.
Based on these three assumptions, semi-supervised metric
learning for stratified spaces (S2MLS2) [28] was developed,
in which unsuitable local constraints is eliminated for adapt-
ing to themulti-manifolds smoothness assumption, and some
non-local constraints is introduced to detect the shared struc-
tures at different positions for lack of supervised information.
Moreover, Li et al. [29] put forward a semi-supervised met-
ric learning method called regularized large margin distance
metric learning (RLMM), which considers the triplet con-
straint and pairwise constraint at the same time in the metric
learning model by using two hinge loss function. Wang et
al. [30] proposed a coefficient-based semi-supervised met-
ric learning model, in which a linear combination of a set
of base vectors is learned as a new metric instead of the
traditional metric matrix, combining with the pairwise con-
straint and sparse regularization. In addition, Ying et al.
[22] proposed a metric learning algorithm based on Rieman-
nian manifold optimization [31], in which a semi-supervised
metric learning model is specially formulated by consider-
ing the metric information of inner classes and interclasses,
and an adaptive parameter is designed into the triplet con-
straint to balance the inner metrics and intermetrics by using
data point-to-point structure. Furthermore, Semi-supervised
Subspace Metric Learning [32] is presented, in which a low-
dimensional subspace is learned by an inverse problem on
Grassmannian manifold, then some local positive definite
metrics are learned on this subspace.

Different from above works, we will design a semi-
supervised metric learning method based on the point-to-
class structure of the labeled data. Intuitively, each point
should be closer to its own class center than to any other
class under a better metric. By this assumption, the point-
to-class structure is formulated into a new triplet constraint,
which aims to narrow the distance of inner-class data and
meanwhile to enlarge the distance of inter-class data. In
fact, in traditional point-to-point triplet constraint, the num-
ber of the triples between all the labeled samples is quite
large. Usually, an attempt is to use the distances from one
point to its neighbors rather than to all other points [22],
however, which will cause the information to be lost in prac-
tice. Therefore, it is highly desired to explore the effective
point-to-class based metric learning method in many fields
such as computer vision tasks, which will reduce compu-
tational cost accordingly. Meanwhile, different weights are
introduced into the triplet constraint to measure the inter-
classes dissimilarity. In fact, its smaller value corresponds
to the larger distance of data in different classes, while its
larger value indicates that the points in different classes are
very close, which will be prone to be misclassified with-
out metric learning generally. This work aims to enlarge the

distances between the points and their different classes, espe-
cially for the points corresponding to the large weight values.
Note that, the point-to-class distance is defined as the distance
between point to the class-center.Moreover, two kinds of reg-
ularization terms are incorporated respectively in this work
to mitigate the overfitting phenomenon, which occasionally
occurs in the LMNN due to its absence of regularization,
especially in high dimension. One is about the spatial regu-
larizer [33] for hyperspectral image data in order to capture
its spatial information. For other data sets, we use a more
common regularizer which aims to preserve the topological
structure of the data [20]. In addition, we adopted Rieman-
nian gradient descent algorithm to solve the proposed model,
which makes full use of the geometric structure of Rieman-
nian manifolds and can be regarded as a generalization of
the unconstrained optimization problem in Euclidean space
on Riemannian manifold. In order to verify its precision, we
test its classification accuracy on various data sets, includ-
ing four UCI data sets, USPS handwriting data set, and two
face data sets yaleB and ORL. In addition, hyperspectral data
classification problems is attracting wide public attention in
recent years [34–37]. Therefore, two hyperspectral image
data sets(Indian pines and KSC) are also used to test our
method.

The rest of this work is organized as follows. Section2
briefly reviews some related works, including metric learn-
ing and Riemannian manifold optimization. In Sect. 3, the
improved metric learning with weighted triplet constraint is
given and its corresponding Riemannian manifold algorithm
is demonstrated. All results of the numerical experiments
will be shown to prove the precision in Sect. 4. Section5 is
the conclusion of this work.

2 Related works

2.1 Metric learning

For some classification or clustering problems, the tradi-
tional Euclidean distance metric sometimes can not well
capture the distance or similarity between two samples. The
concept of metric learning was first introduced by Xing et
al. [11] in 2002, aiming to accurately describe the rela-
tionship between training sample points based on distance
in classification problems. By employing metric learning,
more suitable metrics can be discovered to better capture the
intrinsic characteristics of data distribution and consequently
enhance the accuracy of classification tasks.

The goal ofmetric learning is to learn an effective distance
metric, such that samples from the same class are brought
closer together while samples from different classes aremax-
imally separated under the new metric. Let A ∈ R

n×n be a
positive semidefinite matrix, and we define A as our distance
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metric. So, under the metric A, for any two points x and y,
the distance between them can be expressed by

d2A(x, y) = ‖x − y‖2A = (x − y)T A(x − y) (1)

Given data set X = {x1, x2, . . . , xn}, with xi ∈ R
n . Let

S and D represent the sets of similar and dissimilar pairs,
respectively, which are used to characterize the relationships
of similarity or dissimilarity among sample points, and can
be defined by

S = {(xi , x j )| xi and x j is similar} (2)

D = {(xi , x j )| xi and x j is dissimilar} (3)

The pairwise constraints in metric learning models are
commonlydenoted as S and D. Therefore, basedon the afore-
mentioned pairwise constraints, our metric learning model
can be formulated as follows

min
A

g(A) =
∑

(xi ,x j )∈S
‖xi − x j‖2A

s.t . f (A) =
∑

(xi ,x j )∈D
‖xi − x j‖2A � 1

A � 0.

(4)

In this metric learning model, g(A) describes the distance
between similar samples under pairwise constraints, while
f (A) describes the distance between dissimilar samples.
The purpose of this model is to ensure that the distance
between similar samples is minimized, while ensuring that
the distance between dissimilar samples falls within a spe-
cific range. According to [11], the optimization problem 4
can be solved by a projected gradient method.

2.2 Riemannianmanifold optimization

Riemannian manifold optimization is a special kind of opti-
mization problem, which has a broad application in machine
learning [38–41].

Refer to [42], the Riemannian optimization problem can
be written as follows

min
x∈M

f (x) (5)

where M is a Riemannian manifold, and f : M → R is
a smooth cost function or objective function. When M =
R
n for some n, the optimization problem reduces to an

unconstrained optimization problem in Euclidean space. The
standard gradient descent algorithm in Euclidean space R

n

iterates

xk+1 = xk − αk∇ f (xk) (6)

where αk > 0 is called the step-sizes or learning rate, ∇ f :
R
n → R

n is the gradient of f , and can be given by

∇ f =
(

∂ f

∂x1
,

∂ f

∂x2
, · · · ,

∂ f

∂xn

)T

(7)

However, when theM is not a linear space but a general Rie-
mannian manifold, the optimization problem may become
more difficult to solve by using the gradient descent algo-
rithm. Therefore, we need to define the Riemannian gradient
and the way of moving on a Riemannian manifold.

For a Riemannian manifold M, the inner product <

·, · >x is equipped in the tangent space denoted by TxM
at each point x ∈ M. Let f be a smooth function of the Rie-
mannian manifold M, the differential of a smooth function
on a Riemannian manifold can be defined by

Df (x)[v] = d

dt
f (γ (t))

∣∣∣∣
t=0

(8)

where γ (t) is a smooth curve on M passing through the
point x, and satisfies γ ′(0) = v, v ∈ TxM. The Riemannian
gradient grad f (x) is the tangent vector in TxM satisfies

Df (x)[v] =< v, grad f (x) >x ,∀v ∈ TxM. (9)

According to [42], when M is a Riemannian submanifold
of Euclidean space R

n equipped with the metric < ·, · >,
and f : M → R is a smooth function on M, there must be
f̄ (x) : Rn → R, satisfing f̄ (x) = f (x), x ∈ M. Then the
Riemannian gradient can be calculate by

grad f (x) = Projx (∇ f̄ (x)) (10)

where Projx : Rn → TxM the projector from R
n to TxM,

orthogonal with respect to < ·, · >.
In addition, to update the sequence like (6) on Riemannian

manifold, a retraction plays an inportant role in the iteration
process. A retraction R at x ∈ M denoted by Rx is a smooth
map from TxM toM,which satisfies

1. Rx (0x ) = x where 0x is the zero element in TxM
2. DRx (0x ) = idTxM where DRx (0x ) is the differential

map of Rx at 0x , idTxM is the identity map in TxM.

By introducing the retraction, we can restrict the variables
to the same Riemannian manifold during each iteration step.
Therefore, the Riemannian gradient descent algorithm can
be written as follows.

Given x0 ∈ M and retraction R,xk can be iterated through

xk+1 = Rxk (−αkgrad f (xk)) (11)

where αk is the step-size in kth iteration.
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3 The proposedmethod

3.1 Metric learningmodel

Given data set X = {x1, x2, . . . , xn}, with xi ∈ R
n . For

semi-supervised learning, the data set is divided into two
parts, XL and XU . The samples in XL = {x1, x2, . . . , xl}
are all labeled, with the label set Y = {y1, y2, . . . , yl}. The
other part XU contains the rest of the samples without labels.
Our goal is to find a best metric mentioned in (1) that makes
samples can be classified accurately.

Generally speaking, the goal of metric learning is to
narrow the distance of inner-class data and meanwhile to
enlarge the distance of inter-class data. To better illustrate
our model, we rewrite the notation of the samples. Sup-
pose that the samples in XL can be divided into c subsets
with the same labels denoted by X1, X2, . . . , Xc, where
Xi = {x (i)

1 , x (i)
2 , . . . , x (i)

ni }, ni is the sample numbers of Xi .

For each class Xi , we denoteμi = ∑ni
k=1

1
ni
x (i)
k as the center

of all samples in Xi . Like (1), we define the distance between
a single samples x and the class set Xi by

d2A (x, Xi ) = (x − μi )
T A (x − μi ) (12)

Inspired by the triplet constraint in [22], we define the
point-to-class triplet constraint denoted by

T =
{(

x (k)
i , Xk, Xl

)
: dA

(
x (k)
i , Xk

)
< dA

(
x (k)
i , Xl

)}
(13)

Then our metric learning can be modeled as follows

min
A

∑

T
dA

(
x (k)
i , Xk

)
− dA

(
x (k)
i , Xl

)

s.t .A 	 0

(14)

Then for each labeled sample, by the definition in (12) we
rewrite the objective function as follows

∑

l 
=k

(
dA

(
x (k)
i , μk

)
− dA

(
x (k)
i , μl

))
(15)

In (15), since the distance between the same class does not
need to be calculated, therefore, some terms are deleted, and
(15) turns into

dA
(
x (k)
i , μk

)
−

∑

l 
=k

dA
(
x (k)
i , μl

)
(16)

In order to balance the terms that have been deleted, and to
make our model more accurately to capture those distance
that attempts to become larger duringmetric learning, weight

is added into the second terms, like many local-preserved
methods [16],

dA
(
x (k)
i , μk

)
−

∑

l 
=k

wi,k,ldA
(
x (k)
i , μl

)
(17)

where the specific weights are assigned as follows

wi, j,k =
⎧
⎨

⎩
exp

(
−‖x ( j)

i −μk‖2
σi, j

)
j 
= k

0 j = k
(18)

In order to merge the two terms in Eq. (17), we redefine the
weights as follows

Wi, j,k =
⎧
⎨

⎩
− exp

(
−‖x ( j)

i −μk‖2
σi, j

)
j 
= k

1 j = k
(19)

Then

c∑

l=1

Wi,k,ldA(x (k)
i , μl) (20)

Summing over each x (k)
i , we have

c∑

k=1

nk∑

i=1

c∑

l=1

Wi,k,ldA
(
x (k)
i , μl

)
(21)

To sum up, the proposed Riemannian-based graph-
regularized metric learning (RGML) with weighted triplet
constraint model finally can be expressed as the following

min
A

c∑

k=1

nk∑

i=1

c∑

l=1

Wi,k,ldA
(
x (k)
i , μl

)

s.t .A 	 0

(22)

Similar with [22], in order to prevent overfitting, a graph
regularizer is added to our model, which could preserve three
basic assumptions of semi-supervised learning and take full
advantage of the topology of the data. The semi-supervised
metric learning model can be written as follows

min
A

c∑

k=1

nk∑

i=1

c∑

l=1

Wi,k,ldA
(
x (k)
i , μl

)
+ λReg(A)

s.t .A 	 0

(23)

where the Reg(A) is the graph regularizer, and λ is a param-
eter which controls the balance between the two terms.

Since the regularization term uses the unlabeled data, we
do not consider the distance between points and classes in
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this term. Note that for different types of data, we will choose
different graph regularization terms according to the charac-
teristics of different types of data. The first regularization
term is

n∑

i=1

βi

∑

j∈N (i)

Si j D
2
i j (24)

where βi = f (p(xi )) ∈ R
+,and p(xi ) is the density of

xi , N (i) is the nearest neighbor of xi , Si j is the similarity
between xi and x j , which we want to preserve in the new
metric. Di j is the distance between xi and x j under themetric
A formulated by (39). For the sake of calculation, we define
ηi, j as follows

ηi, j =
{
1 j ∈ N (i)

0 others
(25)

Then, (24) turns into

n∑

i=1

βi

n∑

j=1

ηi j Si j D
2
i j =

n∑

i, j=1

W (s)
i, j D

2
i j (26)

where W (s)
i, j = βiηi j Si j .

In addition, for the hyperspectral image, spatial regularizer
[33] might be a better choice. To make it suit our metric
learning model, the spatial regularizer can be reformed as

n∑

i, j=1

W (sp)
i, j D2

i j (27)

where W (sp)
i, j is the spatial weight, which reflects the spatial

similarity, and can be expressed in the following

W (sp)
i, j =

⎧
⎨

⎩
exp

(−‖xi−x j ‖2
σ

)
xi and x j are spatial neighbors

0 others

(28)

Finally, two types of graph regularizer could be reduced to

n∑

i, j=1

Wi, j D
2
i j (29)

Note that different Wi, j determine which regularizer is used
in our method.

Therefore, the distance metric model eventually becomes

min
A

c∑

k=1

nk∑

i=1

c∑

l=1

Wi,k,ldA
(
x (k)
i , μl

)
+ λ

n∑

i, j=1

Wi, j D
2
i j

s.t .A 	 0

(30)

To solve the it, we first simplify the loss term in (30) by

c∑

k=1

nk∑

i=1

c∑

l=1

Wi,k,l

(
x (k)
i − μl

)T
A

(
x (k)
i − μl

)

= Tr(
c∑

k=1

nk∑

i=1

c∑

l=1

Wi,k,l

(
x (k)
i − μl

) (
x (k)
i − μl

)T
A)

(31)

Let

M =
c∑

k=1

nk∑

i=1

c∑

l=1

Wi,k,l

(
x (k)
i − μl

) (
x (k)
i − μl

)T
(32)

Then (31) turns into

Tr(MA) (33)

For regularizer in (30), we have

n∑

i, j=1

Wi, j D
2
i j =

n∑

i, j=1

Wi, j
(
xi − x j

)T
A

(
xi − x j

)

= Tr(
n∑

i, j=1

Wi, j
(
xi − x j

) (
xi − x j

)T
A)

= Tr
(
XLXT A

)

(34)

where L = D − W is the Laplace matrix, W = (Wi, j )n×n

is the weight matrix and D is a diagonal matrix defined by
Di,i = ∑n

j=1 Wi, j . Let

R = XLXT (35)

Then the regularizer turns into

Tr(RA) (36)

Therefore, (30) can be rewritten as

min
A

f (A) = Tr (MA) + λTr (RA)

s.t .A 	 0
(37)

3.2 Riemannian gradient descent algorithm

In our semi-metric learning model, the objective function
is a smooth function defined on the Symmetric Positive
Definite (SPD) manifold. According to the theory of Rie-
mannian manifold optimization, similar to many methods
based on Riemannian optimization [22, 43–47], the prob-
lem can be solved using the Riemannian Gradient Descent
(RGD) method [42]. The solution strategy of Riemannian
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manifold optimization is introduced for optimization prob-
lems with manifold constraints. In each iteration step, the
variables are constrained to the same Riemannian manifold
to achieve efficient and accurate model solutions.

Recall the following optimization problem

min
x∈M

f (x) (38)

whereM is a Riemannian manifold, and f is a smooth func-
tion. Given x0 ∈ M, xk can be iterated by RGD through

xk+1 = Rxk (−αkgrad f (xk)) (39)

For the proposed model, the SPD manifold is the set of
all n-order symmetric positive definite matrices denoted by
S++
n , which can be defined as follows

S++
n =

{
S ∈ R

n×n | ST = S, S 	 0
}

. (40)

Equipped with the affine-invariance metric mentioned in
[48], the S++

n becomes an n(n + 1)/2 dimension Rieman-
nian manifold. Refer to [22], the Riemannian gradient of the
smooth function f (A) in (37) can be calculate by

grad f (A) = sym (∇ f (A)) = sym
(
MT + λRT

)
(41)

where sym(X) = XT +X
2 is the symmetrization operator,

and ∇ f is the Euclidean gradient of f , since f can also
be regarded as a smooth function in Euclidean space Rn×n .

Moreover, the exponential map expS(L) is defined by

expS(L) = S1/2 exp
(
S−1/2LS−1/2

)
S1/2 (42)

where S ∈ S++
n , L ∈ TSS++

n is a tangent vector at S,
and exp(X) = ∑∞

n=0
Xn

n! is the matrix exponential function.
Obviously, expS(L) satisfies the condition in 2.2, which can
be used as a retraction in our algorithm.

Therefore, the iterative scheme for Riemannian gradient
descent is given by

Ak+1 = A1/2
k exp

(
−αA−1/2

k grad f (Ak)A
−1/2
k

)
A1/2
k (43)

To sum up, the Riemannian gradient descent algorithm for
the RGML model has been shown in Algorithm 1.

4 Experimental results

In order to verify the performance of the proposed metric
learning method, we will conduct some classification experi-
ments on several data sets, including fourUCIdata sets (wine,

Algorithm 1 Riemannian Gradient Descent Algorithm for
Metric Learning
Input: Sample set X (including XL and XU ); label set Y ;
Output: Metric A
1: Initializing A0, α (step-size), m (maximum number of iterations)
2: For k = 1, 2, . . . ,m do
3: Computing the gradient grad f (Ak) by (41)
4: Setting Ak+1 = A1/2

k exp (−αA−1/2
k grad f (Ak)A

−1/2
k )A1/2

k
5: End for

iris, dermatology and balance), USPS digit image data set,
two face data sets (YaleB and ORL) and two hyperspectral
image (HSI) data sets (Indian Pines and KSC). Then, we
will compare our methodwith other algorithms, for example,
large margin nearest neighbors (LMNN) [13], information-
theoreticmetric learning(ITML) [14], LaplacianRegularized
Metric Learning (LRML) [19], geometric meanmetric learn-
ing (GMML) [17], positive-semidefinite constrained metric
learning [18], and kNN without any metric learning method
namely under the Euclidean metric.

4.1 UCI data sets

The UCI machine learning repository [49] is a collection
of databases, used by the machine learning community for
the empirical analysis of machine learning algorithms. In the
following experiments, four data sets are selected and their
details are shown in Table 1.

Note that Each dataset is split into two parts, labeled data
set XL and unlabeled data set XL . | XL | and | XU | are
the number of the labeled samples and unlabeled samples.
Then |XL |

|XU | is the labeled sample ratio for the semi-supervised
metric learning. Due to the small amount of data, a por-
tion of the unlabeled data would be also used for testing.
All the data used in the experiment are randomly selected.
Firstly, we select part of the data as labeled data, and then
take the rest of the data as unlabeled data, and use part of
the unlabeled data for testing. For each UCI dataset, the
test is repeated 30 times. The parameters of all algorithms
are selected carefully to make sure they’re on their best
behavior, and all parameters in our method are as follows.
σi, j ∈ Wi, j,k in (18) can be calculated by σi, j = ‖x ( j)

i − x‖,
where x is the kth nearest point in XL . The value of λ will
be varied according to the data set, and we will determine
its value experimentally. The regularizer used for UCI data
is the similarity regularizer in (24). βi can be calculated by
βi = f (p(xi )), where f a linearmap, and p(xi ) can be given

by p(xi ) = 1
|N (i)hn |

∑
j∈N (i) Kh

(
xi−x j

h

)
, whereN (i) is the

set of all neighbors of xi , Kh is the a Gaussian kernel, h is the
bandwidth. Then we normalize the p(xi ) by

p(xi )
max {p(x)} . Si j

can be obtained by a Gaussian kernel Si j = exp
(
−d2i j/2σ

)
,

where d2i j = ‖xi − x j‖2 is the Euclidean distance, and
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Table 1 Details for the UCI
datasets

Dataset Labeled samples Unlabeled samples Testing samples Class

Wine 30 148 30 3

Iris 30 120 30 3

Dermatology 30 328 30 6

Balance 30 595 30 3

Fig. 2 Test error rates for UCI data sets obtained by different methods

σ = min D+(1/v)(max D−min D). min D and max D are
the minimum and maximum values of the distance between
samples.

Figure2 shows all classification results for four UCI
data sets by 1NN classification method under the metric
A obtained by different methods. From this figure, we can
see that except for the individual results (LRML algorithm
on "dermatology" data set), all metric learning algorithms

improve the classification results of the Euclidean metric.
What’s more, the proposed method (RGML) has the best
classification results on each UCI data set.

To visualize the effect of the proposed metric learning, we
project all results to 2 dimensional space by t-SNE [50].Visu-
alization results for four UCI data sets (from top to bottom
is "wine", "iris", "dermatology", "balance") under different
metrics by different methods are shown in Fig. 3. From left to
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Fig. 3 Visualization results for
UCI data sets ("wine", "iris",
"dermatology", "balance" from
top to bottom) by different
methods

right, they are Euclidean metric without any metric learning,
GMML, PCML and RGML. Different colors represent the
samples from different classes, and we can clearly see that
different classes of points are clearly distinguished by our
algorithm, which is superior to other methods.

How to choose the trade-off parameter λ is also a key point
for improving our method’s performance. Figure4 shows its
influence on recognition error rate under different intervals
for four different UCI data sets. For "wine", "iris" and "der-
matology", the rangeofλ in the experiment is 0.1 ∼ 2×10−3,
and for "balance", the range is 0.1 ∼ 2 × 10−4. For "wine",
"iris", "dermatology" and "balance", the best λ value is
1.5×10−3, 0.1×10−3, 0.7×10−3, and 1.1×10−4, respec-
tively.

Furthermore, Fig. 5 shows the variation trend of objective
function along with the iteration by Riemannian gradient
descent (RGD) algorithm for four UCI data sets. It can be
seen that with the number of iterations increases, the values
of the objective function keep decreasing and gradually con-
verge. especially for "wine" data set, its convergence speed
is the fastest among the four UCI data sets.

4.2 USPS data set

The USPS data set contains 20,000 samples, and all samples
in USPS data set are 16 × 16 gray-level images of 10 types
of handwritten digits. In our experiment, 30% of the data are
randomly selected as the labeled data. The regularizer used

for USPS data set is the same as the UCI data sets, and the
parameters are also same.

Firstly, for the parameter λ, we also conduct the experi-
ment for its selection. Figure6 shows the recognition error
rate under different λ, from which we can see that the range
of the λ is 0.5 ∼ 10×10−6 and the best λ for USPS data set is
1.5× 10−6, which will be used in the following comparison
experiments.

Figure7 shows the recognition error rates for USPS
dataset by 1NN classification method under the metric A
obtained by different methods. We can see that LRML per-
forms badly in this data set, and the reason whymay be that it
only considers the pairwise constraints for labeled data and
its regularization term only considers the relations among
their neighbors rather than among their local topology. And
the performance of the proposed RGML method is compa-
rable to other methods such as ITML, GMML, PCML and
LMNN, particularly superior to LRML.Note that LMNNhas
the lowest error rate, since it enables a large margin between
different class points while for RGML there is no such clear
margin, which may be helpful in the classification task.

Furthermore, Fig. 8 gives all recognition results of differ-
ent methods. Note that the first row shows the test samples
and the rest rows display their nearest neighbours obtained by
different metric methods. From this figure, we can find that
the proposedmethodowns a very high classification accuracy
compared with other methods, for example, LMNN, ITML,
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Fig. 4 The influence of λ on recognition error rates under different intervals for UCI data sets by RGML

LRML and PCML, which all misclassify some handwritting
digits such as 3, 5 or 8.

4.3 Facial data sets

YaleB and ORL are two classic facial data sets, where YaleB
data set contains 2414 frontal-face images over 38 subjects
and about 64 images per subject, which are captured under
different lighting conditions and various facial expressions,
and ORL database contains 400 images from 40 distinct sub-
jects, in which for some subjects, the images are taken at
different times, varying the lighting, facial expressions and
facial details. All images in both data sets are cropped and

resized to the size of 32× 32. Similarly, 30% of the data are
randomly selected as the labeled data, and we also use the
same regularizer as the UCI data sets.

Initially, we conduct experiments to determine the optimal
selection of the parameter λ. Figure9 shows all recognition
error rates under different λ for two facial data sets. The
range of λ for "yaleB" data set is 0.5 ∼ 10 × 10−7 and
the best λ value is 1 × 10−7. For "ORL", the range of λ is
0.5 ∼ 10× 10−6 and the best one is 5× 10−7. Similarly, we
choose the optimal λ for our method RGML in the following
experiments to compare with other methods.

Figure10 shows recognition error rates using kNN clas-
sification algorithm by different metric learning methods on
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Fig. 5 Variation of the objective function of RGML along with the iterations for UCI data sets

two data sets. We find that for two face data sets our method
have best performance among all the metric learning method
for every k. Moreover, the classification effect of the pro-
posed RGML algorithm is almost unaffected by the value of
k, which shows its robustness for different k.

4.4 Hyperspectral image datasets

In this section, we will perform classification experiments
on two hyperspectral data such as Indian pines data set and
Kennedy Space Center (KSC) data set. Note that Indian
pines data set consists of 145 × 145 pixels and 224 spectral
reflectance bands in thewavelength range 0.4 ∼ 2.5×10(−6)

meters. Here the number of bands are reduced to 200 by
removing bands covering the region of water absorption:
[104–108], [150–163], 220. The KSC data, acquired from an
altitude of approximately 20km, has a spatial resolution of
18m. After removing water absorption and low SNR bands,
176 bands are used for the analysis. For classification, 13
classes representing various land cover types that occur in
this environment are defined for the site. The detailed infor-
mation of these two data sets is shown in Tables 2 and 3.

During these experiments about HSI data sets, 30% of the
data are randomly selected from each class as the labeled
data. The regularizer used here is the spatial regularizer in
(27), in which the parameter σ will have a great impact on
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Fig. 6 The influence of λ on recognition error rates under different
intervals for USPS data set by RGML

Fig. 7 Recognition error rates by different methods for USPS data set

the classification accuracy.The followingFig. 11will demon-
strate how to choose σ . Note that all experiments are repeated
10 times and we use three classification measurements, i.e.,
average classification accuracy of all the classes (AA), over-
all classification accuracy (OA) and kappa coefficient (KC).

Figure11 shows their OAs of two data sets under the
different parameters in the regularizer. Window size rep-
resents the range to determine spatial neighbors of each
point. In our experiment, we set three different window sizes
by "3 × 3", "5 × 5" and "7 × 7". For each window size,
we conduct classification experiments under σ ranging in
0.1, 0.25, 0.5, 0.75, 0.9, 1. The results show that for Indian
Pines data set when "window size"= 7×7 and σ = 0.25, we
can get the best result. For KSC data set, the best parameters
are "window size"= 5 × 5 and σ = 0.1.

Similarly, as for the trade-off parameter λ, we also carry
out the experiments on it. Figure12 shows the OAs of two

data sets under differentλ. For Indian pines data set, the range
of λ is 0.9 1.1, we find out that the best λ is 1.03. However,
for KSC data set, the value of λ ranges from 0.08 to 0.1, and
the experiment shows that the best λ is 0.081.

Based on these optimal parameters, we will compare the
proposed method with other algorithms in Tables 4 and 5.

From Table 4 and 5, we can see all classification results
for Indian Pines and KSC data sets. In these two tables, we
list all classification accuracy indexes such as AA, OA and
KC, for all algorithms in each data class. Notably, the highest
value for each index is highlighted in bold. And the proposed
RGML method shows its superiority in most cases. Specif-
ically, for Indian Pines data set, OA and KC of ours are the
highest among all algorithms involved in comparisons. For
KSC data set, all of three classification indexes are the high-
est.

Furthermore, Figs. 13 and 14 show the classification maps
for twoHSI data sets. TheGround Truthwas shown at the top
left corner, where the pixels in different colors represent dif-
ferent features. The predicted results of different algorithms
for each pixel are presented in the classification maps by
different colors. By comparing the classification maps of
all algorithms with the Ground Truth, we can see that our
algorithm performs best among all methods involved in com-
parisons.

5 Conclusion

In this work, point-to-class distance is used to investigate the
semi-supervise metric learning problem, which can better
describe the differences between samples than the point-to-
point structure to some extent. The goal of metric learning is
to narrow the distance of inner-class data and meanwhile
to enlarge the distance of inter-class data, which can be
achieved by the triplet constraint. For traditional point-to-
point triplet constraint, if we want to consider the triplet
constraint between all the labeled samples, the number of
triples in the model is going to be huge. Usually, an attempt
is only to use the distances from one point to its neighbors
rather than to all other points, however, which will cause the
information to be lost in practice. One alternative triplet con-
straint formulated by the point-to-class structure is raised in
thiswork, inwhichwe consider the distance fromone point to
the center of each class. In addition, to make our model more
accurately to capture those distance that attempts to become
larger during metric learning, we put different weights on the
point-to-class triplet constraint to measure the interclasses
dissimilarity. For each point, the class-centers that corre-
spond to the larger weights will be preferentially considered
for enlarging the distances between it and its different classes.
By adding weights, we can automatically figure out which
class centers are close enough to be prior considered. Then,
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Fig. 8 Recognition results for
the test samples under different
metrics for USPS data set

Fig. 9 The influence of λ on recognition error rates under different intervals for yaleB and ORL data sets by RGML

regularization term is also incorporated into the proposed
model in order to mitigate the overfitting phenomenon and
preserve the topological structure of the data. For different
data types, two kinds of regularizer are utilized in this work,
for example, in term of hyperspectral images data, since their
spatial neighbors are usually in the same class, the added
spatial regularizer could better preserve their such struc-
ture during metric learning. Moreover, since the objective
function in the proposed model is smooth on an SPD mani-
fold, Riemannian gradient descent algorithm is given, which
owns higher computational efficiency and is one appropri-
ate choice for the solution of the model. Finally, we use the
learned metrics to classify different data sets and compare
the classification performance to state-of-the-art methods.

The experimental results show that the proposed method has
a better performance in classification of various kind of data
such as hyperspectral image data.

The future work will primarily focus on reducing com-
putational complexity of metric learning to reduce the time
cost of themodelwhen handling large datasets.Moreover, for
the Riemannian manifold optimization method in this work,
we plan to introduce other Riemannian metrics, such as the
log-Euclidean metric, in conjunction with other Riemannian
manifold optimization methods like Riemannian conjugate
gradient method for further research.
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Fig. 10 Recognition error rates for yaleB and ORL by different methods for k from 1 to 8

Table 2 Number of samples of
each class for the Indian Pines
data set

Class NO Land cover Samples

1 Alfalfa 46

2 Corn-notill 1428

3 Corn-mintill 830

4 Corn 237

5 Grass-pasture 483

6 Grass-tree 730

7 Grass-pasture-mowed 28

8 Hay-windrowed 478

9 Oats 20

10 Soybeans-notill 972

11 Soybeans-mintill 2455

12 Soybeans-clean 593

13 Wheat 205

14 Woods 1265

15 Bldg-grass-tree-drives 386

16 Stone-steel-towers 93

Table 3 Number of samples of
each class for the KSC data set

Class NO Land cover Samples

1 Scurb 761

2 Willow-swamp 243

3 Cabbage-palm-hammock 256

4 Cabbage-palm/oak-hammock 252

5 Slash-pine 161
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Table 3 continued Class NO Land cover Samples

6 Oak/broadleaf-hammock 229

7 Hardwood-swamp 105

8 Graminoid-marsh 431

9 Spartina-marsh 520

10 Cattail-marsh 404

11 Salt-marsh 419

12 Mud-flats 503

13 Water 927

Fig. 11 Influence of different parameters in the regularizer for two HSI data sets

Fig. 12 Influence of different parameter λ for two HSI data sets

123



105 Page 16 of 19 Y. Xia, H. Zhang

Table 4 Classification results for Indian Pines data set by 1NN under different metrics learned by different methods

Class NO Euclidean GMML ITML LMNN LRML PCML RGML

1 58.00±12.29 59.00±12.87 60.00±17.64 74.00±17.13 71.00±8.76 88.00±6.32 70.00±14.14

2 61.64±3.29 65.98±3.29 71.01±4.16 74.16±2.47 61.33±4.14 78.32±2.77 84.55±2.61

3 60.06±3.70 66.14±2.29 65.42±3.46 72.65±2.81 60.06±3.18 77.59±1.39 77.83±3.39

4 47.71±6.25 50.83±4.41 56.67±7.97 63.96±6.81 44.38±6.29 73.96±5.66 66.88±5.51

5 88.45±3.25 88.87±2.27 83.4±4.44 91.55±2.42 87.32±3.30 93.09±2.75 90.41±3.15

6 94.04±1.07 94.18±1.26 94.04±2.68 96.85±0.87 94.38±1.24 97.33±1.14 97.60±1.30

7 93.33±11.65 93.33±11.65 85.00±21.44 91.67±16.2 95.00±8.05 95.00±8.05 95.00±8.05

8 96.35±2.32 96.88±1.77 96.77±2.27 98.44±1.01 95.10±2.31 99.38±0.73 99.06±0.77

9 57.50±26.48 57.50±23.72 77.50±27.51 82.50±16.87 55.00±22.97 87.50±17.68 67.50±28.99

10 69.38±2.85 72.97±3.28 72.67±2.84 76.62±3.20 63.38±4.74 82.62±3.12 84.77±3.35

11 74.87±2.60 77.84±1.43 78.35±1.67 81.18±1.30 79.04±1.66 84.83±1.42 87.86±0.81

12 52.27±3.54 57.23±3.46 64.45±5.78 74.54±2.38 53.11±3.06 77.56±2.86 80.50±3.71

13 95.37±3.14 95.61±2.52 95.85±5.15 98.54±1.71 95.61±3.95 98.78±1.72 98.78±1.72

14 89.88±1.72 90.51±2.51 90.59±1.84 91.86±1.80 92.13±1.48 94.19±1.05 95.26±1.43

15 46.15±5.09 47.44±4.60 53.46±8.40 63.08±5.98 49.49±4.61 60.26±7.05 66.03±3.15

16 87.37±8.3 91.05±6.59 86.32±7.92 87.37±8.30 83.68±9.43 91.05±7.46 86.84±8.32

AA 73.27±2.19 75.34±2.04 76.97±3.92 82.43±2.34 73.75±2.14 86.22 ± 1.45 84.30±1.77

OA 73.60±0.83 76.33±0.68 77.56±0.74 81.73±0.78 74.30±0.50 85.02±0.92 86.90 ± 0.65

KC 0.6985±0.0093 0.7297±0.0079 0.7438±0.0087 0.7917±0.009 0.7052±0.0058 0.8291±0.0105 0.8504 ± 0.0075

The bold indicates the highest value for each classification accuracy indexes

Table 5 Classification results for KSC data set by 1NN under different metrics learned by different methods

Class NO Euclidean GMML ITML LMNN LRML PCML RGML

1 92.94±1.22 92.68±1.74 93.53±2.14 94.51±1.08 94.25±1.79 90.33±2.30 95.82±1.75

2 88.16±5.25 86.33±5.36 87.35±4.98 90.82±2.20 92.04±4.56 87.14±4.31 92.24±4.17

3 89.23±3.53 89.42±4.56 88.85±4.60 92.5±2.47 86.15±4.03 85.58±4.64 89.62±3.29

4 68.24±7.44 64.31±7.50 66.08±6.67 73.92±6.54 76.27±8.13 58.82±4.53 71.57±6.22

5 61.82±9.92 57.88±9.42 62.73±10.40 68.18±10.13 76.67±8.21 58.18±8.90 79.70±4.05

6 49.57±6.94 48.91±7.12 55.00±9.17 58.48±3.90 63.04±9.61 41.09±9.64 70.00±7.45

7 85.71±5.94 81.43±7.60 83.33±9.32 88.1±6.83 81.43±9.38 79.52±11.68 81.90±6.66

8 87.93±3.64 84.37±3.88 89.08±2.72 92.53±2.38 92.41±2.88 85.98±1.7 95.52±2.20

9 96.54±2.09 95.19±2.60 96.44±1.76 97.21±1.78 96.92±2.56 95.77±1.37 97.50±1.22

10 96.67±2.10 96.67±1.75 99.26±0.86 98.52±1.13 99.75±0.52 97.65±0.91 99.75±0.52

11 98.10±1.79 97.86±1.84 98.33±1.15 98.81±1.25 98.45±1.59 97.5±1.73 98.93±1.04

12 94.16±2.49 93.66±2.73 95.74±1.55 97.92±1.09 99.50±0.52 95.54±2.3 99.41±0.69

13 99.89±0.23 99.89±0.23 100.00±0.00 100±0.00 100.00±0.00 100.00±0.00 100.00±0.00

AA 85.30±1.41 83.74±1.47 85.82±1.47 88.58±1.19 88.99±1.13 82.55±1.10 90.15 ± 0.69

OA 90.30±0.82 89.26±0.89 90.92±0.70 92.76±0.63 93.09±0.57 88.56±0.68 94.03 ± 0.64

KC 0.892±0.0091 0.8804±0.0099 0.8989±0.0078 0.9194±0.0070 0.9231±0.0064 0.8726±0.0075 0.9335 ± 0.0071

The bold indicates the highest value for each classification accuracy indexes
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Fig. 13 Classification maps for
Indian Pines data set by
different methods

Fig. 14 Classification maps for
KSC data set by different
methods
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