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Abstract
Occlusion is a frequent phenomenon that hinders the task of visual object tracking. Since occlusion can be from any object
and in any shape, data augmentation techniques will not greatly help identify or mitigate the tracker loss. Some of the existing
works deal with occlusion only in an unsupervised manner. This paper proposes a generic deep learning framework for
identifying occlusion in a given frame by formulating it as a supervised classification task for the first time. The proposed
architecture introduces an “occlusion classification” branch into supervised trackers. This branch helps in the effective learning
of features and also provides occlusion status for each frame. A metric is proposed to measure the performance of trackers
under occlusion at frame level. The efficacy of the proposed framework is demonstrated on two supervised tracking paradigms:
One is from the most commonly used Siamese region proposal class of trackers, and another from the emerging transformer-
based trackers. This framework is tested on six diverse datasets (GOT-10k, LaSOT, OTB2015, TrackingNet, UAV123, and
VOT2018), and it achieved significant improvements in performance over the corresponding baselines while performing on
par with the state-of-the-art trackers. The contributions in this work are more generic, as any supervised tracker can easily
adopt them.

Keywords Occlusion · Siamese · RPN · Transformers · Visual object tracking

1 Introduction

Visual object tracking is a well-known task in computer
vision, having applications in machine vision, surveillance,
autonomous driving, and various other fields. Recently,
the performance of visual trackers has increased signifi-
cantly with Siamese region proposal networks (RPN) [1–3]
and transformer encoder decoder (TED) networks [4–6].
However, it is still challenging to track objects under real
challenging scenarios such as occlusion, background clut-
ter, and deformation, to name a few [7]. When tracking an
object of interest, it may often go behind the visible scene
due to interference from other objects. This phenomenon is
called occlusion, which causes the object’s track loss, hin-
dering its tracking. According to GOT-10k [7], occlusion is
one of the most challenging factors that can easily cause
tracker failures. During occlusion, the tracker is uncertain
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about the object’s position and may be misguided. Identify-
ing the frames inwhich the object of interest is occluded helps
us provide effective feedback to improve the development of
the trackers significantly.

Existing state-of-the-art trackers are broadly classified
into Correlation filter based and Deep learning based [7].
Advanced Correlation filters employ deep learning network
features for correlation (frequency-domainmultiplication) to
improve the performance [8] substantially. Given the dif-
ficulty in modeling uncountable natural objects that cause
the target’s occlusion, state-of-the-art correlation filter-based
methods cannot directly address the occlusion challenge. On
the other hand, the need for more annotated data hinders the
development of deep learning based trackers to tackle this
challenge.

Few works in the literature address occlusion’s effect on
the tracker’s performance. However, to our knowledge, none
of the existing works used annotated occlusion label infor-
mation that is available in some of the tracking datasets [7,
9, 10]. Thus, occlusion awareness is not posed as a super-
vised learning task.Also, no separatemetrics exist to quantify
the occlusion identification accuracy at the frame level dur-
ing the inference. In this work, we proposed a framework to
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embed frame level occlusion information in the supervised
training process with popular deep learning based tracking
frameworks. It is achieved by formulating the frame level
identification of occlusion as a binary classification problem.
The proposed framework integrates the occlusion awareness
learning branch along with the deep trackers’ bounding box
regression and classification branches. We demonstrate that
this occlusion aware training also improves the performance
of the trackers, along with inferring the occlusion status at
frame level. We further propose a metric to quantify the
frame level performance of the occlusion status prediction
in the deep trackers. The performance is occlusion informa-
tion available in a few testing datasets [9, 11],

The main contributions of this work are:

• To foster the development of frame level occlusion iden-
tification in the state-of-the-art visual object tracking
frameworks.

• To infuse the occlusion awareness through the occlusion
classification branch in visual tracking frameworks to
effectively learn features during training.

• To improve the overall performance of the trackers by
using occlusion status information in locating the object
of interest during online tracking.

• To design an evaluation methodology for analyzing the
occlusion status identification at the frame level, while
tracking.

This work proposes a novel tracking framework, referred
to as “GOA-Net: Generic Occlusion Aware Network”. This
supervised learning framework provides occlusion status at
the frame level and improves overall tracking performance.
The contributions are more generic as any supervised tracker
can adapt the proposed strategy for occlusion aware learn-
ing. Two popular deep learning-based supervised tracking
frameworks are considered for demonstration purposes. The
first one is SiamRPN++ [1] from established Siamese Region
Proposal Networks (RPN) based trackers, while the second
one is TransT [4] from recent Transformer based trackers.
These two baselines in the proposed framework are GOA-
Net (RPN) and GOA-Net (TED). Information on visibility
and occlusion available in the GOT-10k [7], LaSOT [9], and
VID dataset [10] is effectively used for the proposition of
this supervised occlusion aware learning strategy. Efficacy
of the proposed methods is demonstrated on test datasets
from GOT-10k [7], LaSOT [9], OTB2015 [12], TrackingNet
[13] UAV123 [14] andVOT2018 [11]. An instance of the vis-
ible results of the baseline and proposed framework, under
occlusion, are shown in Fig. 1.

2 Literature review

There exist various frameworks to track an object in short
term. We can broadly classify them into a few categories,
viz Correlation filter based trackers, Siamese trackers, deep
reinforcement learning based trackers, transformer based
trackers and diffusion based trackers.

2.1 Correlation filter based trackers

Given an object of interest in a video frame, correlation track-
ers employ correlation operation to find its location in the
next frame. Correlation filters achieve higher computational
performance in establishing this through well-formulated
optimizations. Correlation filter-based approaches are most
popular in visual object tracking. Henriques et al. [15] esti-
mated the location of an object using frequency response
maps of image and learned filter. They exploited circulant
matrix properties to correlate various shifted search regions
with the filter to track higher frames per second (fps). Danell-
jan et al. [16] improved the performance further by efficient
feature representations and continuous correlation operation.
Bhat et al. [8] achieved state-of-the-art performance by ana-
lyzing and evaluating effective shallow and deep feature
combinations. Lu et al. [17]work consists of region proposals
with channel regularisation within correlation filter learning.
In Ref. [18], Fu et al. learned a unique correlation filter for
dealing with latent distractions such as similar objects and
clutter by carefully reducing its target response values. Parts
based tracking to better deal with the partial occlusion are
proposed in Refs. [19–21].

2.2 Siamese trackers

Advancements in deep learning attracted the tracking com-
munity a lot. To find the object’s location in a frame, trackers
search around its location in the previous frame and calcu-
late correlation with a template. The spatial correlation was
performed between the feature maps obtained from a learned
network instead of pixels in the image in Siamese trackers.
A famous work from Bertinetto et al. in SiamFC [22] used
a fully convolutional Siamese Network for object tracking
and inspired many works later. Going ahead with SiamFC,
region proposal network (RPN) block consists of classifica-
tion and regression branches, brought into tracking by Li et
al. in SiamRPN [2]. Otherworks such asDaSiamRPN [3] and
SiamRPN++ [1] also employed RPN block for enhancement
in the performance. Some of the recent works like ATOM
[23], IOU-SiamTrack [24] and SiamBAN [25], focused on
maximising intersection over union (IOU). All of these can
be called as Siamese RPN class of trackers. Li et al. [26]
incorporated Correlation Filter and Siamese network into a
single tracking framework to complement each other.
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Fig. 1 Visual results on the
Fernando sequence from the
VOT2018 dataset. SiamRPN++,
GOA-Net (RPN), TransT, and
GOA-Net (TED) are in row 1,
row 2, row 3, and row 4,
respectively. Observe the
successful prediction of
occlusion status and increased
overlap using GOA-Net models.
Note that ground truth and
predictions are in red and blue,
respectively. Here occl_pr and
occl_gt are the predicted and the
ground-truth occlusion statuses,
respectively. 1 and 0 correspond
to the presence and absence of
occlusion

2.3 Deep reinforcement learning based trackers

Deep reinforcement learning (DRL) is an area of machine
learning concerned with how intelligent agents ought to take
actions in an environment to maximize the notion of cumula-
tive reward. In this direction, Sangdoo et al. used controlled
sequential actions in their work [27] using deep reinforce-
ment learning. Choi et al. [28] used a template selection
strategy constructed by deep reinforcement learningmethods
for real-time tracking. Luo et al. [29] proposed an end-to-
end tracking and camera control by using DRL. Q-Learning
improved the tracking performance of systems with faults
in Ref. [30]. In Ref. [31], deep reinforcement learning is
exploited to deal with the localization delay in the action
steps effectively and explore the long-term information in
videos efficiently.

2.4 Transformer based trackers

Recent state-of-the-art trackers are based on transformers
as they are designed to handle sequential input data with
attention. Some works from this category include STARK
(learning spatio-temporal transformer for visual tracking)
[5], keep track (learning target candidate association to keep
track of what not to track) [32]. Other works on transformers
are TrDimp (transformer meets tracker: exploiting temporal

context for robust visual tracking) [6], TransT (transformer
tracking) [4] and latest MixFormer (end to end tracking with
mixed attention). In most of these works, transformers with
encoder and decoder blocks (TED) having attention layers
have replaced RPN (of Siamese trackers).

2.5 Diffusion based tracker

Latest trends in reaction diffusion neural networks (RDNNs)
learning methodologies extended for tracking. Inspiration is
drawn from works such as cooperative-competitive neural
networks with reaction-diffusion [33] and anti-disturbance
state estimation for PDT-switched RDNNs utilizing time-
sampling and space-splitting measurements [34]. Authors
have used diffusion model to denoise the target under track-
ing in their work [35]. It models the diffusion process using a
point set representation, which can better handle appearance
variations for more precise localization.

2.5.1 Existing works dealing occlusion

Occlusion has been a long-standing challenge in visual object
tracking [7]. Given the dynamic nature of the scenes in the
real world, it is nearly impossible to model any visual feature
of occlusions like shape or color. Except for the availability of
target information to be tracked, no prior information about
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the nature of occlusion is available. So, most existing works
only devise strategies to mitigate the occlusion effect based
on the target response score. Performance of single object
trackers has raised many-folds through several variations of
the well-known Siamese trackers [1, 2, 36], and boosted fur-
ther by the introduction of transformers based trackers [4–6].

However, most of these state-of-the-art trackers either
need to pay more attention to the specific challenge of
occlusion or need a dedicated mechanism to deal with the
occlusion.

Here, we review a few existing works that specifically
deal with the occlusion. The content-adaptive progressive
occlusion analysis (CAPOA) algorithm by Jiyan et al. [37]
distinguished the target and outliers by combining the infor-
mation provided by spatiotemporal context, reference target,
and motion constraint. Accurate tracking of an occluded tar-
get was achieved by refining the target location using variant
mask template matching (VMTM). To deal with the template
drift, they have proposed a drift-inhibiting masked Kalman
appearance filter (DIMKAF), which accurately evaluates the
influence of template drift when updating the masked tem-
plate. Finally, a local best match authentication (LBMA)
algorithm was used to handle complete occlusions.

Deepak et al. [38], in their work SiamFC-SD, used struc-
tured dropouts in feature maps to mimic the changes under
occlusion. Wu et al. [39] used a hard example discrimination
method to estimate occlusion occurrence. Wenil et al. [40]
used depth information to predict occlusion and precise
object location. Fan et al. [41] proposed predefined masks
at different locations and took these masks as the conditions
to guide occlusion-aware feature learning. Parts-based track-
ing was proposed to deal with the partial occlusion in a series
of works with scale adaptation (OAPT) [42], using geometry
constraint and attention selection[19], applying discrimina-
tive correlation filters [20], online latent structured learning
[21]. These works reflect the importance of occlusion infor-
mation in tracking a visual object.

However, the existing methods for addressing occlusion
[38–42] are unsupervised, and there was no direct metric to
quantify their performance on occlusion identification ability
as well. This work focuses on proposing supervised occlu-
sion aware networks and highlights their ability to identify
occlusion for effective tracking.

3 Proposedmethod

This section presents the proposed supervised learning
framework for frame level occlusion awareness. It also elab-
orates on loss functions and implementation details for the
same. The work is different from the existing visual object
tracking works that deal with occlusion in the following
ways:

• Existing methods deal with occlusion in an unsupervised
manner. The proposed method is based on supervised
learning of occlusion, leading to an effective representa-
tion of features under occlusion.

• GOA-Net identifies occlusion at the frame level and uses
this information to update the object location.

• Existing methods are specific to a tracking framework
and demonstrated only on one or two datasets. However,
the proposed method is generic to integrate with many
tracking frameworks and is demonstrated on six diverse
datasets using two popular and emerging frameworks.

• This method established an evaluation methodology
using annotated labels to analyze the tracker’s perfor-
mance under occlusion.

The proposed idea of supervised learning for occlusion
awareness is demonstrated on the Siamese and transformer
based trackers, as they are supervised and well-known state-
of-the-art frameworks.

In the Siamese region proposal class of trackers such
as SiamRPN [2], DaSiamRPN [3] and SiamRPN++ [1],
the framework has a region proposal network (RPN) mod-
ule trained by two branches, namely classification, and
regression. Keeping the recent works like ATOM [23], IOU-
SiamTrack [24], and SiamBAN [25], the regression branch
in RPN is replaced with intersection over union (IOU)
guided bounding box regression tomake the frameworkmore
generic. From these variants, SiamRPN++ [1], one of the
state-of-the-art RPN-based Siamese trackers, is used as a
baseline method for demonstrating the effectiveness of the
propositions. The proposed framework introduces additional
“occlusion classification” to the RPN module to effectively
learn and guide the tracking process. The proposed frame-
work, with SiamRPN++ baseline, is referred to as “GOA-Net
(RPN)”.

The recent transformer based trackers (such as discrimina-
tive transformer tracking [43], transformer tracking (TransT)
[4], STARK [5]) have attention-based transformer encoder
and decoder (TED) modules trained by two branches simi-
lar to classification and regression in RPN. TransT [4], one
of the state-of-the-art frameworks in the transformers-based
tracker, is considered the baseline method in this category.
The proposed framework introduces a new “occlusion clas-
sification” branch to the TEDmodule to effectively learn and
guide the tracking process. This proposed framework, with
TransT as the baseline, is referred to as “GOA-Net (TED)”.

The overall block diagram of the proposed generic occlu-
sion aware network for tracking framework, referred to as
GOA-Net, is shown in Fig. 2. From the first frame, a fixed
patch (z) of 127 × 127, referred to as the “target image,”
centered around the object is cropped. A fixed patch (×) of
255×255, referred to as the “search image,” centered around
the previous frame bounding box is cropped from the next
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Fig. 2 Block diagram of generic occlusion aware network for tracking (GOA-Net)

frame onward. These patches are separately passed through a
feature extraction network to obtain their embedded feature
maps, as shown in Fig. 2. These feature maps are then fed to
the RPN or TED to produce “occlusion status” along with
“classification response map” and “bounding box response
map,” based on which the tracking is performed.

3.1 Foreground-background classification

The classification response map results from a depth-wise
correlation between embedded feature maps of the “target
image” and “search image” [1]. All Siamese region pro-
posal frameworks use fixed bounding boxes (calledAnchors)
of size 8x8 with five aspect ratio variations (1/3,1/2,1,2,3)
throughout the feature map following baseline [1]. Then, cal-
culate the overlap of Anchor boxes with ground-truth bound-
ing boxes and prepare labels for the classification branch.
Label ‘1’ for foreground class is assigned if overlap ≥ th1.
Label ‘0’ for background class is assigned if overlap ≤ th2.
We note that the Anchor boxes with other overlaps are of no
interest for training the classification branch. Following the
same convention as in Refs. [1, 2, 22], we set th1 = 0.7 and
th2 = 0.3 for classification label preparation.

A similar classification response map to label preparation
is adopted in transformer trackers using baseline. A point to
note here is that while GOA-Net(RPN) produces five clas-
sification response maps corresponding to five aspect ratios,
GOA-Net (TED) produces only one classification response
map. This difference in Transformer trackers (like TransT) is
due to token-based query predictions of bounding box coor-
dinates for all scales and aspect ratios. Hence, while training
TED, label preparation is adopted from baseline [4]. Here,
feature vector prediction corresponds to pixels in the ground-
truth bounding box as positive samples; the rest are negative
samples. Binary cross-entropy is employed for calculating
classification loss (Lcls) as defined in the Eq. (1) for both

works.

Lcls = −{
M∗N∗k∑

j=1

g j ∗ log(p j ) + (1 − g j ) ∗ log(1 − p j )}

(1)

Where g j is the ground-truth label, g j = 1 denotes the
foreground, p j is the predicted probability (classification
response map) belonging to the foreground of the jth box.
Here, M, N, and k represent the width, height of the feature
maps and number of feature maps, respectively (applicable
for RPN and TED).

3.2 IOU guided bounding box regression

Inspired by the recent developments in SiamRPN variants
[24, 25]. Other trackers such as Refs. [23, 44], we do incor-
porate IOU loss term Liou as in Eq. (2) into the proposed
framework. In the baseline, Siamese RPN++ tracker learn-
ing relies only on the regression bounding box, in addition to
the classification scores, but does not explicitly employ the
bbox IOU information as in the other state-of-the-art track-
ers [23–25]. We note that trackers learning using IOU of
the ground truth and the predicted boxes had effective local-
ization capability and better tracking performance. Hence,
a similar IOU-guided bbox regression strategy is proposed
in this framework, and this loss term makes the framework
more generic for effective bounding box regression (refer to
Sect. 5 for the performance analysis).

Liou( j) = |pred j − gt j | (2)

where pred j = I OU (anchor_bb j , pred_bb j ), gt j =
I OU (anchor_bb j , gt_bb). Likeother regionproposal frame-
works, instead of directly regressing the object bounding
box (bbox), the center and size of the bbox are rela-
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tively regressed using Anchor boxes. Consider jth Anchor
box (Ax, j , Ay, j , Aw, j , Ah, j ) and ground-truth bounding box
(Tx , Ty, Tw, Th), we define

δ[0, j] = Tx − Ax, j

Aw, j
, δ[1, j] = Ty − Ay, j

Ah, j

δ[2, j] = ln
Tw

Aw, j
, δ[3, j] = ln

Th
Ah, j

Ll1 is l1-norm on relative regression bbox values δ[i, j], i =
0 : 3 as in Eq. (3).

Ll1( j) =
3∑

i=0

L1(δ[i, j]) (3)

Here, the IOU-guided bounding box regression loss is a
linear combination of two losses, Ll1 and L IoU . Thus, over-
all regression loss Lreg1 is defined as in Eq. (4) for training
GOA-Net (RPN). Here, λd = 1.2 (taken from baseline [1]),
λi = 1 are set as regularisation parameters.

Lreg1 =
M∗N∗k∑

j=1

1g j=1{λd ∗ Ll1( j) + λi ∗ L IoU ( j)} (4)

For training GOA-Net (TED), Lreg2 defined in Eq. (5) is
used and set λl = 2, λg = 5 following the baseline [4].
Here, Ll1 is the same as in Eq. (3), and Lgiou is Gener-
alised IOU loss (GIOU) introduced in Ref. [45] and used in
baseline [4]. Since TransT does not use Anchor boxes, the
predicted regression may have zero overlaps with the ground
truth bounding box.GIOU loss solves vanishing gradients for
non-overlapping cases; hence, it is considered over IOU loss
here.On the other hand,GIOU loss has slow convergence and
inaccurate regression, especially for the boxes with extreme
aspect ratios, thus not applied in the GOA-Net (RPN).

Lreg2 =
M∗N∑

j=1

1g j=1{λl ∗ Ll1( j) + λg ∗ Lgiou( j)} (5)

Only positive samples contribute to the regression loss in the
two equations above.

3.3 Occlusion classification

As discussed in the introduction, occlusion awareness is
crucial in understanding the tracking status and design-
ing trackers. To learn and use the occlusion status (pres-
ence/absence) in tracking, a binary occlusion classification
branch is proposed to the existing tracker (as a part of RPN
or TED) frameworks. This occlusion branch follows the
same architecture as the RPN or TED classification branch

and generates an occlusion response map. Occlusion label
data is used for training these frameworks in a supervised
learning strategy. Since the occlusion label is a single value
for the entire frame, the predicted occlusion status is cal-
culated as the average of the occlusion response map. The
required label information is obtained from various datasets
(refer Sect. 3.3.1). This work is the first deep neural network
tracker framework trained and tested using annotated occlu-
sion labels, paving a new direction for supervised occlusion
identification in tracking.

The proposed model incorporated an additional branch
for occlusion classification at the frame level. Supervised
learning of occlusion classification differentiates the current
work from the existing unsupervised occlusion identifica-
tion frameworks [39]. Further, differing from the prede-
fined masks used in Ref. [41] to mimic the occlusion, this
framework brings occlusion awareness to features through
supervised learning using annotated occlusion labels. While
learning the features, occlusion awareness is incorporated
into the network through a binary classifier and trained with
occlusion loss (Loccl ) as defined in Eq. (6).

Loccl = −{g ∗ log(os) + (1 − g) ∗ log(1 − os)} (6)

where ‘os’ is the occlusion status, computed as the mean
value of the occlusion response map (being ‘1’ for full occlu-
sion, ‘0’ for no occlusion), and g is the ground-truth label for
the status of occlusion. Themean value is considered because
of the availability of occlusion labels only at the frame level.
Occlusion response map size is on par with the classification
response map to ensure occlusion-aware effective learning
of features. Since the occlusion branch is trained and tested
from target and search features, this proposition is generic
and applicable to many supervised trackers.

3.3.1 Occlusion labels preparation

Since occlusion can cover the object of interest partially or
fully and the labeling for occlusion is subjective, the avail-
able information on occlusion status is not uniform across
these datasets. Customized approaches are followed for each
dataset, as described below.

1. VID [10] this is a detection dataset where the occlusion
label is available at the bounding box level in an XML
file [10], and was set to ‘1’ for occlusion.

2. LaSOT [9] this dataset has a supporting file with the sep-
arate label ‘1’ corresponding to occlusion at the frame
level.

3. GOT-10k [7] this dataset has ‘cover label’ files for each
video at the frame level. ‘cover label’ corresponding to
partial visibility (in terms of the visibility ratio, 0 being
full occlusion, seven being full visible) encoded into eight
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levels. Hence, the occlusion label ‘1’ is considered for
zero visibility (value 0).

3.4 Training and implementation

We have trained the models using NVIDIA Ge Force GTX
1080 Ti, and it took one week for GOA-Net(RPN) and three
weeks for GOA-Net (TED) for every single experiment. The
number of learnable parameters and operational speed of the
tracker in terms of frames per second are now included in
Table 1 (refer to Section 4.1, GOT-10k dataset results). How-
ever, the key advantage of these trained models is the ability
to work at very low inference times, which are of the order
of milliseconds/frame for the proposed trackers.

The baseline trackers and the corresponding GOA-Net
variants are trained and evaluated under same conditions such
as learning rate, number of epochs, and processor (Ge Force
GTX 1080 Ti in our case). This is to ensure fair compar-
ison and quantify the the performance improvements from
the proposed learning strategy with occlusion information in
the respective networks.

3.4.1 GOA-Net (RPN) tracker

This tracker is trained using four datasets as in baseline [1]
(COCO[46],DET [10],VID [10], andYOUTUBE-BB [47]).
Here, occlusion information is available in the VID dataset
only and utilized during training. ResNet50 [48] architec-
ture with pre-trained weights is used for feature extraction.
We have initialised the common parameters as in baseline,
while other perimeters are identified by empirical experi-
ments. From the literature and following regular practices in
the deep learning models training, we used Xavier and He
initializations for other model parameters. Total training loss
(Ltotal ) in Eq. (7) is a combination of three losses as defined
in Eqs. (1), (4) and (6).

Ltotal = Lcls + Lreg1 + Loccl (7)

This network is trained for 20 epochs.Adamoptimizer is used
with an exponentially decaying learning rate from 0.005 to
0.0005. After ten epochs, the feature extraction network is
also fine-tuned in the training processes as in baseline [1].

3.4.2 GOA-Net (TED) tracker

This tracker is trained using four datasets as in baseline
[4] (COCO [46], GOT-10k [7], LaSOT [9] and TrackingNet
[13]). Occlusion labels from LaSOT and GOT-10k datasets
are employed in training. ResNet50 [48] architecture with
pre-trained weights is used for feature extraction. Total train-
ing loss (Ltotal ) in Eq. (8) is a combination of three losses as

defined in Eqs. (1), (5) and (6).

Ltotal = Lcls + Lreg2 + Loccl (8)

This network is trained for 1000 epochs with 1000 iterations
per epoch. Adam optimizer is used, and the learning rate is
set to 1e-4 (1e-5 after 500 epochs) with a weight decay of 1e-
4. The feature extraction network is included in the training
with a learning rate of 1e-5.

To understand the contribution of the proposed super-
vised occlusion status identification,we present visual results
on a few occluded frames and their class activation maps
(CAM) in Fig. 3. Columns one to four of Fig. 3 shows
“target image” and “search image” pairs and correspond-
ing gradient class activation (grad-cam) of “classification
response map” (denoted with CR_CAM) and “occlusion
status” (denoted with OR_CAM), respectively. In the first
case, objects are directly visible in row-1 and row-2, so both
activation maps (CR_CAM and OR_CAM) respond some-
what similarly. However, in row-3 and row-4, where objects
are partially occluded cases, the corresponding CR_CAM
falsely represents the object localization. At the same time,
the OR_CAM is pointing at the object of interest, hidden
behind an occlusion. In summary, occlusion status provides
complementary information in tracking and, in particular,
identifies the object’s approximate location when occluded.

3.5 Online tracking

In addition to the supervised learning for occlusion identifi-
cation, as discussed in the last section, we propose employing
this occlusion status information as explicit feedback for
guiding the bbox regression. It is incorporated as follows.
In each frame, the mean value of the occlusion response map
is used as the occlusion status (os). Along with methodology
from baseline works in updating the bounding box, using this
os information, GOA-Net (RPN and TED variants) addition-
ally uses occlusion status information as in Eq. (9).

bbox[t] = (1 − α) ∗ bbox[t − 1] + (α) ∗ bboxpred [t])
α = exp(−os)

here, os = occlusion status

= mean of occlusion response map (9)

Note that in full occlusion scenarios, the mean os value will
be high (close to 1), and thus this update encourages rely-
ing more on the previous bbox information. While for no
occlusion case os = 0, the current regressed bbox infor-
mation is used. Hence, the proposed framework facilitates
the frame-level identification of occlusion and its use in
improved estimation of object track even in occlusion. This
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Fig. 3 Visualising gradient class
activation maps of classification
(CR_CAM) and occlusion
branches (OR_CAM) in
GOA-Net. Rows 1 and 2 depict
visible objects, while rows 3 and
4 depict occluded objects [rows
1 and 3 for GOA-Net (RPN) and
rows 2 and 4 for GOA-Net
(TED)]. Observe the role of
occlusion status (column 4) in
providing complementary
information for identifying
objects in all scenarios

ability of the GOA-Net tracking framework offers robustness
to tracking failures due to occlusion.

3.5.1 Methodology for evaluation of the model
performance for occlusion status identification

Toour knowledge, there is no specific existingmetric to quan-
tify the performance of trackers under occlusion at frame
level. Identifying occlusion presence/absence can be con-
sidered as a classification task, and hence, accuracy is the
preferred metric for its measure. However, this classification
is a highly imbalanced task because the occlusion is absent
in most cases compared to its presence. In such cases, regu-
lar accuracy cannot capture the real performance. Hence, we
proposed the adoption of balanced accuracy as an appropriate
metric for occlusion performance analysis in this work.

The following definitions are considered in devising the
methodology for occlusion status evaluation. The perfor-

mance of occlusion classification is calculated by considering
occlusion presence as positive and absence as negative.

(a) True positive (TP): actual occlusion and the network pre-
dicts it (hit).

(b) False positive (FP): actual occlusion is not there, but the
network predicts it to be there (false alarm).

(c) False negative (FN): actual occlusion is there, but the
network misses it (miss).

(d) True negative (TN): actual occlusion is not there, and the
network also agrees with it.

(e) We define positives, Pve = (TP+FN) and negatives, Nve
= (TN+FP)

Based on the above notations, balanced accuracy (BA) is
defined in Eq. (10). Since the occlusion classification task is
highly unbalanced, balanced accuracy is adopted to quantify
and reflect the network’s performance in occlusion predic-
tion.
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Sensi tivi t y or True Posi tive Rate (T PR) = T P/Pve

Selectivi t y or True Negative Rate (T N R) = T N/Nve

Balanced Accuracy (BA) = [T PR

+ T N R]/2
(10)

This BA metric measures how well a tracker could perform
occlusion status identification at frame level. The higher the
BA, the better the tracker’s ability to identify the occlusion
status information.

4 Evaluation results and analysis

This section compares the proposedGOA-Net trackers (RPN
andTEDvariants)with respective baseline (SiamRPN++ [1],
and TransT [4]) trackers and other state-of-the-art tracking
networks. Given more data for training, deep learning-based
models are likely to improve performance. In the original
SiamRPN++ [1] and DaSiamRPN [3] works, the networks
were trained with four datasets (VID [10], YouTube-BB
[47], DET [10] and COCO [46]). Further, ATOM [23] and
SiamBAN [25] were trained with the above four datasets and
two additional datasets. SiamRCNN [36] also trained under
different datasets ([7, 9, 10, 47]). Other factors, such as the
number of epochs, batch size, and graphics cards, influence
performance. Hence, for fair evaluation, baseline work and
its correspondingGOA-Net variant are trainedand evaluated
under the same conditions. The proposed generic framework
GOA-Net’s (RPN and TED variants) performance is evalu-
ated on six diverse datasets.1 However, note that the ground
truth for occlusion status is available only in LaSOT and
VOT2018. Thus, performance evaluation in predicting occlu-
sion status is restricted to these two datasets only.

4.1 GOT-10k dataset

GOT-10K [7] is the large-scale benchmark dataset cover-
ingmanycommonobject-tracking challenges. It uses average
overlap (AO) and success rateT (%of frameswith overlap >

T ) across all frames. Results from online server evaluation
(i.e., AO and SRT ) are reported in Table1. Here GOA-Net
(TED) has shown improvements of 1.7%, 1.5%, and 2.5%
in AO, SR0.5 and SR0.75 respectively over TransT. While the
GOA-Net (RPN), has shown 4.4% and 6.5% improvement
in AO and SR0.5 respectively. Hence the proposed GOA-Net
models show substantial improvements over the baselines,
demonstrating the generality of occlusion aware learning in

1 The top one, two, and three performers in each metric are indicated
by red, blue, and green colors for better comparisons.

Table 1 Performance comparison of state-of-the-art trackers on GOT-
10k

Tracker AO↑ SR0.5 ↑ SR0.75 ↑ FPS ↑ LP

ECO [16] 0.316 0.309 0.111 48 O(104)

SiamFC [22] 0.355 0.395 0.118 58 O(104)

SiamFC-SD [38] 0.361 0.402 0.129 55 O(104)

SiamRPN++ [1] 0.474 0.565 0.285 35 O(107)

GOA-Net (RPN) 0.495 0.602 0.285 33 O(107)

ATOM [23] 0.556 0.634 0.402 30 O(107)

PrDimp [44] 0.634 0.738 0.543 40 O(107)

TransT [4] 0.646 0.752 0.575 45 O(106)

SiamRCNN [36] 0.649 0.728 0.597 5 O(108)

GOA-Net (TED) 0.657 0.763 0.589 44 O(106)

STARK-S50 [5] 0.672 0.761 0.612 50 O(106)

AO: average overlap, SR0.5: % of frames with overlap > 0.5, SR0.75:
% of frames with overlap > 0.75, FPS: frames Per second, and LP:
learnable parameters

Table 2 Performance comparison of state-of-the-art trackers onLaSOT

Tracker AUC↑ Pnorm ↑
ECO [16] 32.4 33.8

SiamFC [22] 33.6 42.0

TLFF [49] 49.6 57.7

SiamRPN++ [1] 49.9 58.6

GOA-Net (RPN) 49.9 59.4

ATOM [23] 51.5 57.6

PrDimp [44] 59.8 68.8

TransT [4] 60.3 69.8

GOA-Net (TED) 63.1 72.6

STARK-S50 [5] 63.3 72.9

SiamRCNN [36] 64.8 72.2

AUC: area under the curve, Pnorm : normalised precision

boosting the tracker performance. Computational complex-
ity and processing speed of each tracker are tabulated for a
fair understanding cost involved in improving performance.

4.2 LaSOT dataset

LaSOT [9] is a large-scale tracking dataset with high-
quality annotations containing 1400 challenging videos:
1120 for training and 280 for testing. The one-pass eval-
uation (Success and Precision) method compares different
tracking algorithms on the LaSOT test set. Here, Success
measures overlap between predicted and ground-truth boxes,
andPrecisionmeasures the center distance betweenpredicted
and ground-truth boxes. Note that the Precision (P) metric
is sensitive to the target size and image resolution. Hence,
Normalised Precision (Pnorm) is introduced [9]. Compar-
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Table 3 Performance metrics for occlusion evaluation on LaSOT

Tracker TPR TNR Balanced accuracy

GOA-Net (RPN) 37.48 66.94 52.21

GOA-Net (TED) 49.02 85.64 67.33

ison of results using the metrics Success (also known as
Area Under the Curve (AUC)) and Normalised Precision
(Pnorm) scores are noted in Table 2. This table shows that
the GOA-Net (TED) performance is improved by 4.64% and
4% in terms of AUC and Pnorm , respectively. This signifi-
cant gain of the proposed framework is attributed to training
with occlusion data, which implicitly enabled the network to
learn only the true representations of the object features at
non-occluded regions (refer Fig. 3). Also, compared to base-
line SiamRPN++, GOA-Net (RPN) has shown improvement
in Pnorm with the same AUC. The success metric quantifies
the overall success of the target track. Thus, the consistent
improvements in metrics reflect the importance of training
with occlusion labels.

The results for TransT and GOA-Net (TED) on the zebra-
14 sequence are shown visually in Fig. 4. Note that the
resumption after occlusion is improved by occlusion-aware
training of GOA-Net (TED) compared to the base work
(TransT).

4.2.1 Performance of occlusion status identification

The performance of the proposed framework under occlusion
[using the metric defined in Eq. (10)] is reported in Table3.
Note that GOA-Net (TED) is trained on the LaSOT training
dataset, while GOA-Net (RPN) is not trained on the same,
following baseline [1]. This dataset has rich background con-
text variations for each target and varied foreground class
target objects. Hence, GOA-Net (TED), which learns with
attention, performs well over GOA-Net (RPN) in occlusion
status prediction on the LaSOT testing dataset. While occlu-
sion presence is accurately identified by GOA-Net (TED) in
50% frames (TPR), occlusion absence is precisely declared
in 85% of frames (TNR). In a nutshell, GOA-Net (TED)
could identify the occlusion status (present or absent) cor-
rectly over 67.33% of frames, bringing the occlusion status
information into the base tracker (TransT).

4.3 OTB2015 dataset

The OTB2015 dataset, one of the standard benchmarks for
evaluating short-term single object trackers, consists of 100
videos with different challenges. It evaluates the tracker
performance using Success (a measure of overlap between
predicted and ground-truth boxes) and Precision (a mea-

Table 4 Performance comparison on OTB2015

Tracker Success↑ Precision↑
SiamFC [22] 0.597 0.809

SiamFC-SD [38] 0.610 0.808

SiamMFA [50] 0.618 0.818

OAPT [42] 0.624 0.851

SiamBAN [25] 0.624 0.853

IOU-SiamTrack [24] 0.635 0.862

SiamON [41] 0.644 0.854

SiamRPN++ [1] 0.647 0.855

GOA-Net (RPN) 0.664 0.874

ATOM [23] 0.669 0.883

TransT [4] 0.675 0.879

GOA-Net (TED) 0.679 0.883

ECO [16] 0.693 0.913

SiamRCNN [36] 0.703 0.894

sure of center distance between predicted and ground-truth
bounding boxes).

A comparison of different trackers with the proposed
GOA-Net on the OTB2015 dataset is reported in Table 4.
It can be noted that GOA-Net (RPN) has a 2% improvement
in both Success and Precision metrics compared to the base
tracker. Compared with baseline TransT, GOA-Net (TED)
has shown only 0.5% improvement in Precision and Success
values. A possible reason behind this difference in perfor-
mance improvements is due to low-resolution images in the
dataset and a deeper backbone network for TransT. The same
reason may be attributed to the better performance of corre-
lation filters like ECO [16] as compared to the deep trackers
on this dataset. However, ECO tracker performance is not on
par with the state-of-the-art on other datasets.

4.4 TrackingNet dataset

TrackingNet [13] is a large-scale tracking dataset that cov-
ers diverse object classes and has the same evaluationmetrics
as LaSOT (refer 4.2). Its test set contains 511 sequences with
ground truth. Based on the official online evaluation pro-
vided for this dataset, the Success (AUC) and Normalised
Precision (Pnorm) results are reported in Table 5. GOA-Net
(TED) surpassed the baselinemethodTransT in allmetrics by
achieving 80.6% and 86.2% as AUC and Pnorm , respectively.
It achieved state-of-the-art results in Pnorm . Also, GOA-Net
(RPN) has shown improved performance over SiamRPN++
in both AUC and Pnorm .
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Fig. 4 TransT (row-1) and
GOA-Net (TED) (row-2) on
zebra-14 sequence from LaSOT
dataset. Observer that TransT
failed to resume after occlusion.
At the same time, GOA-Net
(TED) successfully predicted
occlusion status and resumed
tracking after occlusion

Table 5 Performance comparison of state-of-the-art trackers on Track-
ingNet

Tracker AUC↑ Pnorm ↑
ECO [16] 55.4 61.8

SiamFC [22] 57.1 66.3

SiamRPN++ [1] 68.9 76.5

GOA-Net (RPN) 69.5 77.3

ATOM [23] 70.3 77.1

PrDimp [44] 75.8 81.6

TMSDA [51] 78.1 83.3

STARK-S50 [5] 80.3 85.1

TransT [4] 80.5 85.8

GOA-Net (TED) 80.6 86.2

SiamRCNN [36] 81.2 85.4

AUC: area under the curve, Pnorm : normalised precision

4.5 UAV123 dataset

UAV123 dataset consists of 123 videos for evaluating
short-term single object trackers. Like OTB2015, it also
evaluates the tracker performance using success (a mea-
sure of overlap between predicted and ground-truth boxes)
and Precision (a measure of center distance between pre-
dicted and ground-truth). This dataset is quite challenging
given the similar objects and their small sizes. A compari-
son of the proposed GOA-Net with various trackers on the
UAV123 dataset is reported in Table6 with one pass evalu-
ation (OPE). From Table6, infer that GOA-Net (RPN) has
a 0.6% improvement in Precision, with the same success
over base work. Compared with baseline TransT, GOA-Net
(TED) has shown 2.2% and 1.7% improvement in Success
and Precision, respectively. This table reiterates the substan-
tial performance improvement of bothGOA-Net frameworks
over the existing Siamese occlusion network (SiamON) [41]
framework.

Table 6 Performance comparison on UAV123

Tracker Success↑ Precision↑
ECO [16] 0.525 0.741

SiamFC [22] 0.523 0.731

SiamFC-SD [38] 0.535 0.736

IOU-SiamTrack [24] 0.549 0.748

SiamON [41] 0.568 0.774

SiamBAN [25] 0.584 0.772

SiamRPN++ [1] 0.584 0.780

DaSiamRPN [3] 0.585 0.795

GOA-Net (RPN) 0.598 0.791

SiamRCNN [36] 0.649 0.834

TransT [4] 0.663 0.860

TMSDA [51] 0.676 –

GOA-Net (TED) 0.678 0.875

4.6 VOT2018 dataset

The VOT2018 dataset, a popular benchmark for evaluating
short-term single object trackers, consists of 60 videos under
varying conditions such as shape change, illumination, and
occlusion. It uses metrics, namely accuracy (average over-
lap between predicted and ground-truth bounding boxes),
robustness (measure for track failures), and expected aver-
age overlap (a statistical measure combining both accuracy
and robustness) [11]. According to VOT evaluation protocol,
EAO metric is considered for ranking the tracker perfor-
mance. The comparison results of different trackers with the
proposed GOA-Net framework on the VOT2018 dataset are
reported in Table7. GOA-Net (TED) has improved perfor-
mance in all metrics over its baseline TransT. It can also be
observed that GOA-Net (RPN) achieved a significant 6.1%
improvement in Expected Average Overlap (EAO) over the
base tracker SiamRPN++ due to a reduced number of tracker
losses (measured by robustness). Visual results depicted in
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Table 7 Performance comparison of state-of-the-art trackers on
VOT2018

Tracker EAO↑ Accuracy↑ Robustness ↓
SiamFC [22] 0.188 0.503 0.588

SiamMFA [50] 0.221 0.531 0.542

ECO [16] 0.280 0.484 0.276

IOU-SiamTrack [24] 0.301 0.565 0.328

SiamBAN [25] 0.319 0.582 0.347

SiamRPN++ [1] 0.321 0.601 0.337

TransT [4] 0.324 0.593 0.290

SiamON [41] 0.326 0.508 0.200

ATOM [23] 0.329 0.591 0.204

GOA-Net (RPN) 0.333 0.576 0.267

GOA-Net (TED) 0.350 0.602 0.267

SiamRCNN [36] 0.405 0.612 0.220

EAO expected average overlap

Table 8 Performance metrics for occlusion evaluation on VOT2018

Tracker TPR TNR Balanced accuracy

GOA-Net (RPN) 22.97 73.89 48.43

GOA-Net (TED) 35.58 84.19 59.89

Fig. 5 confirm the same on an example sequence from the
dataset.

In VOT evaluations, once the tracker losses its track com-
pletely, the track will be reinitialized to the ground truth,
accounting for the tracker’s failure. As shown in Fig. 5, the
track is lost in Fig. 5c and reinitialized in Fig. 5d, while the
proposed GOA-Net (RPN) continued the track, without the
need for the reinitialization. Note that the loss of tracker is
indicated by the tracker_loss flag of ‘0’ in Fig. 5h against
tracker_loss flag equal to ‘1’ for baseline in Fig. 5d. These
results are attributed to the occlusion awareness incorporated
into the learned features.

4.6.1 Performance of occlusion status identification

Using metrics defined in Eq. (10), the performance of the
proposed framework in identifying occlusion is measured
and reported in Table8. From Table8, it is observed that
GOA-Net (TED) has shown dominant performance over
GOA-Net (RPN) in all metrics. Overall, the proposed GOA-
Net achieved accurate occlusion status identification in
50–60% of frames, as inferred by the BA metric.

4.7 Comparison with the unsupervised occlusion
aware networks

In this subsection, we explicitly compare the proposed
tracker’s performances with two existing state-of-the-art
unsupervised occlusion aware networks [38, 41]. Regard-
ing absolute performance, GOA-Net(TED) has exceeded all
these trackers under consideration. Note that, SiamFC-SD
used SiamFC as a baseline, while SiamON and GOA-
Net (RPN) used SiamRPN++ as baselines, while GOA-
Net(TED) used the TransT tracker (one of the state-of-the-
art) as a baseline. Hence, the performance improvements of
these trackers over their corresponding baselines are reported
in Table9. All the entries represent percentage gain regarding
average overlap (or similar equivalent metric). SiamFC-SD
and GOA-Net (RPN) have around 2% gain on OTB2015
and UAV123 datasets, while GOA-Net (RPN) significantly
improves GOT-10k. An interesting comparison would be
GOA-Net (RPN) versus SiamON, which has the same base-
line. From Table9, it is evident that in all datasets for
which results are available, GOA-Net(RPN) outperformed
SiamON.Moreover, GOA-Net also quantifies occlusion per-
formance at frame level, clearly reflecting the importance of
supervised learning for occlusion status identification as in
the present work.

Fig. 5 SiamRPN++ (row-1) and
GOA-Net (RPN) (row-2) on
traffic sequence from VOT2018
dataset. While the SiamRPN++
method failed in the presence of
occlusion, GOA-Net (RPN)
tracker has continued tracking
without the tracker loss. In the
VOT2018 baseline evaluation,
tracker loss is declared when
IOU between predicted and
ground-truth bounding boxes is
zero. In such times, a tracker is
reinitialized after five frames
with a bounding box near the
ground-truth [11]
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Table 9 Percentage
improvement of unsupervised
trackers versus GOA-Net over
corresponding baselines on
various datasets

Data set SiamFC-SD SiamON GOA-Net (RPN) GOA-Net (TED)

GOT-10k 1.6 – 4.4 1.7

OTB2015 2.1 0.0 2.6 0.5

UAV123 2.2 −2.7 2.3 2.2

VOT2018 – 1.5 6.6 8.1

Table 10 Ablation study on
OTB2015 dataset

Tracker Success↑ Precision↑
Model-1 (SiamRPN++) 0.647 0.855

Model-2 (Model-1 with Liou) 0.649 0.857

Model-3 (Model-1 with Loccl ) 0.650 0.862

Model-4 (Model-1 with Liou and Loccl ) 0.658 0.868

Model-5 (TransT) 0.675 0.879

Model-6 (Model-2 with Loccl ) 0.679 0.883

5 Ablation study

This section studies the significance of each proposed loss
term in the GOA-Net framework. Here Model-1 is the base-
line (SiamRPN++ [1]) trainedwith only Lcls and Ll1,without
Liou , Model-2 is Mode-1 additionally trained with Liou ,
Model-3 is Model-1 trained additionally with Loccl . While
Model-4 is the proposed GOA-Net (RPN) trained with both
additional loss terms Loccl and Liou . Further, Model-5 is the
baseline (TransT [4]), replacing the region proposal network
with an attention-based feature fusion network. Model-6 is
Model-5 trained with Loccl . This ablation study results in
Table10 reflect the improvement of the model by including
these additional losses.

6 Conclusion and future work

In this work, a generic framework for visual object track-
ing (GOA-Net) is proposed by introducing the “occlusion
classification” branch to deep trackers for learning occlu-
sion status in a supervised manner. This branch helps in the
effective learning of features and also provides occlusion
status at the frame level. Two kinds of deep trackers with
the “occlusion classification” branch (in SiamRPN++ and
TransT) referred to as GOA-Net(RPN) and GOA-Net (TED)
are proposed. Six diverse tracking video datasets including
thousands of videos comprising various challenges are con-
sidered for evaluation of the performance of the proposed
supervised occlusion-guided tracking and occlusion status
identification. Experimental results of GOA-Net has shown
1–6% improvement in average overlap (AO) metrics across
different datasets. Occlusion performance at frame level is
exclusively quantified with balanced accuracy. This met-
ric and results of GOA-Net serve as a baseline and can be

used for a measure of performance under occlusion. Since
the proposed changes are generic for any supervised learn-
ing tracker, this occlusion-aware framework acts as the new
direction for the further evolution of the long-term trackers.
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