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Abstract
Image denoising is crucial for enhancing image quality, improving visual effects, and boosting the accuracy of image analysis
and recognition. Most of the current image denoising methods perform superior on synthetic noise images, but their perfor-
mance is limited on real-world noisy images since the types and distributions of real noise are often uncertain. To address this
challenge, a multi-scale information fusion generative adversarial network method is proposed in this paper. Specifically, In
this method, the generator is an end-to-end denoising network that consists of a novel encoder–decoder network branch and
an improved residual network branch. The encoder–decoder branch extracts rich detailed and contextual information from
images at different scales and utilizes a feature fusion method to aggregate multi-scale information, enhancing the feature
representation performance of the network. The residual network further compensates for the compressed and lost information
in the encoder stage. Additionally, to effectively aid the generator in accomplishing the denoising task, convolution kernels
of various sizes are added to the discriminator to improve its image evaluation ability. Furthermore, the dual denoising loss
function is presented to enhance the model’s capability in performing noise removal and image restoration. Experimental
results show that the proposed method exhibits superior objective performance and visual quality than some state-of-the-art
methods on three real-world datasets.

Keywords Image denoising · Multi-scale information fusion · Generative adversarial network · Dual denoising loss

1 Introduction

Image denoising not only enhances visual perception, but
also ensure the integrity and authenticity of the image, which
is convenient for subsequent target detection [1], image clas-
sification [2] and medical image processing [3]. Especially,
with the rapid development of computer vision technology,
image denoising becomes more important.

Image noise can be broadly classified into two types: syn-
thetic noise and real-world noise (or real noise). Synthetic
noise refers to noise that follows a certain probability dis-
tribution and whose noise level can be set independently,
such as gaussian noise, salt-and-pepper noise, and gamma
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noise. However, the type and distribution of real-world noise
is often uncertain. It may originate from internal components
of the system or device as internal noise, or it may be exter-
nal noise caused by environmental factors. This type of noise
exhibits a diverse structure that is difficult to describe with
simple parameters. In order to solve the problem of image
denoising, researchers have proposed manymethods. Gener-
ally, these methods are divided into traditional methods and
deep learning methods. Traditional image denoising can be
roughly categorized into two types: filter-based methods and
model-based methods. Filter-based methods mainly perform
noise suppression in spatial domain and transform domain,
such as non-local means (NLM) [4], block matching and 3D
filtering (BM3D) [5]. Model-based methods mainly design
regularization with prior information for image denoising,
including k-means singular-value decomposition (KSVD)
[6], weighted nuclear norm minimization (WNNM) [7].
However, traditional methods still have some drawbacks,
either involving cumbersome feature extraction processes, or
having high computational requirements, or facing difficul-
ties in directly handling complex real noise. Therefore, these
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methods are difficult to meet the current practical require-
ments.

In recent years, due to the success of deep learning, image
denoising methods based on deep learning have achieved
superior performance compared to traditional methods and
have become the mainstream methods [8]. Among them, the
deep learning-based convolutional neural network (CNN)
model [9] has been widely used in image denoising. For
example, DNCNN [10] was the first method to use CNN
for blind denoising. It employed a residual learning strategy,
allowing the network to directly learn the difference between
the noisy input image and the clean image. This enabled
the network to focus more on learning the characteristics of
noise, rather than the entire image content. Additionally, it
applied batch normalization after each convolutional layer
to accelerate the training process and improve model perfor-
mance. However, DnCNN may have limited generalization
capabilities for certain specific texture or detail patterns. This
could result in the smoothing of these textures or detailswhile
removing noise. FFDNet [11] used adjustable noise level
maps as inputs to the model to achieve non-blind denoising.
Nevertheless, its noise level maps needed to be manually set
based on empirical knowledge. CBDNet [12] was an exten-
sion of FFDNet, which designed a network for estimating
noise and thus becoming a blind denoising model. RID-
Net [13] introduced feature attention modules to enhance
the information interaction of the network on channel fea-
tures, so as to achieve significant denoising performance. To
enhance the denoising performance of the model, MIRNet
[14] designed multiple novel modules with attention mech-
anisms to extract multi-scale feature information. MPRNet
[15] built a multi-stage architecture to exchange information
across different stages, reducing the loss of detailed infor-
mation and thus better balancing the competing goals of
spatial details and high-level contextual information during
the image restoration phase. Recently, some new denois-
ing methods have been proposed. For example, APD-Nets
[16] first attempted to introduce adaptive regularization and
complementary prior information into denoising networks,
thereby improving the generalization ability and image qual-
ity restoration of denoising networks. MSIDNet [17] utilized
a fusion mechanism to fully utilize multi-scale features,
enhancing the network’s information perception and thus
improving the image’s visual effects. MDRN [18] intro-
duced a multi-scale feature extraction module alongside a
dilated residual module, which are designed to extract multi-
scale features, thereby enhancing the performance of image
restoration. TSIDNet [19] employed a data sub-network for
denoising and a feature extraction network for global fea-
ture extraction, then aggregated the information from both
networks to enhance the model’s robustness and denois-
ing performance. To address the non-blind denoising and
noise estimation issues of many CNNmethods for real image

denoising, CFNet [20] designed a new conditional filter to
adaptively adjust the denoising manner and an affine trans-
formation block for noise prediction. Although CNN-based
methods could accomplish achieve noise removal, these
methods were purely end-to-end, without utilizing the neural
network to provide amore detailed evaluation of the denoised
images during the training process. From this analysis, these
methods not only led to the underutilization of the learning
capacity of CNN and the parallel computing capability of
GPU but also potentially resulted in inconsistent quality of
the denoised images.

The generative adversarial network (GAN) model [21]
based on deep learning was proposed by Goodfellow. It uti-
lized neural networks to offer detailed assessments of the
processed data during training, leading to superior perfor-
mance compared to CNN in specific image processing tasks,
including image translation [22] and image inpainting [23–
25]. GAN model consists of two parts: a generator and a
discriminator. The role of a generator is to generate data that
is as consistent as possible with the original data distribu-
tion. The discriminator is more of an auxiliary generator in
the entire model, and its main task is to judge whether the
given data is the original real sample data or the fake sample
data forged by the generator model. In the training phase,
the two models compete with each other through the max-
min game. The objective function of GAN model [21] is as
follows:

min
G

max
D

V (D,G) =Ex∼pdata(x)[log D(x)]
+ Ez∼pz(z)[log(1 − D(G(z)))]

(1)

whereG is the generator, D is the discriminator. pdata(x) rep-
resents the distribution of real data, and pz(z) represents the
distribution of random noise. Ex∼pdata(x)[log D(x)] stands
for the expected loss of the discriminator on real data, and
Ez∼pz(z)[log(1 − D(G(z)))] represents the expected loss of
the discriminator on generated data. From Eq.1, we can see
that the objective function ensures that the discriminator per-
forms well on real data (minimizing misclassification of real
data), while the generator aims to produce fake data that
can “fool” the discriminator (maximizing the discriminator’s
misclassification of fake data). This constitutes a min-max
problem, as the discriminator attempts tomaximize its ability
to distinguish between real and fake data, while the generator
seeks to minimize the discriminator’s ability to distinguish
its generated data. WGAN [26] improved the stability of
the GAN model by replacing JS divergence or KL diver-
gence with wasserstein distance to measure the difference
between samples. WGAN-GP [27] added an additional gra-
dient penalty term to make the gradient of the model more
stable in training, thus solving the problem of pattern col-
lapse that both GAN andWGANwere prone to. At the same
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time, the gradient penalty term introduced by WGAN-GP
makes the discriminator have the ability to accurately distin-
guish the true and false samples by maintaining the smooth
gradient, making the generated samples more realistic.

Based on the above theoretical research of GAN, many
scholars have successfully applied GAN to image denoising.
For example, GCBD [28] was one of the earliest methods
to utilize GAN to model real-world noise for constructing
a noise dataset. Its approach involved the generator ran-
domly generating noise patches, which, when combinedwith
original images, could produce corresponding noisy images.
This augmentation of the model’s training dataset effectively
addressed the challenge of finding paired datasets in practical
applications. Similarly, ADGAN [29] utilizedGAN to gener-
ate noisy samples for dataset augmentation, and it introduced
a feature loss function to extract image features, thus improv-
ing the restoration performance of image details. To enhance
the blind denoising performance, BDGAN [30] utilized
the technology that improved the stability of training and
obtained improved image quality to modify the architecture
of the generator network. It also designed multiple discrim-
inators with different receptive fields to conduct multi-scale
evaluation on images, so as to obtain high-quality images.
GRDN [31] proposed a new GAN-based method for model-
ing real noise, addressing the challenge of obtaining paired
datasets. It also enhanced the denoising performance of the
model through extensive and hierarchical use of residual
connections. Subsequently, DANet [32] introduced an inno-
vative bayesian framework that simultaneously completes
the tasks of noise elimination and noise generation using
dual adversarial learning. DeGAN [33] harnessed the mutual
game between the generator network and the feature extrac-
tor network, along with additional training from the feature
extractor network, to enable the generator network to accom-
plish a direct mapping from the noisy image domain to the
noise-free image domain. Although this method effectively
removed mixed noise and restored damaged images, it was
not effective for more complex and realistic noisy images.
HI-GAN [34] build a deeper network structure through dense
residuals to improve the denoising effect. Nevertheless, this
approach also resulted in the accumulation and repetition
of information, leading to a decrease in feature propagation
efficiency and making the model training more challenging.
The recent DGCL [35] used two independent GANs to learn
from denoised images and image datasets separately, par-
tially addressing the issues of complex network structures
and training difficulties associated with single GAN-based
methods. However, DGCL did not perform adversarial train-
ing on the final fused results, leading to suboptimal image
quality.While these GAN-basedmethods have brought more
possibilities for image denoising, the practicability of many
of these denoising models still needs to be further improved,
especially on real noise images.

To solve above problems, in this paper, we redesign the
generator, discriminator and loss function in theGANmodel.
First, the design inspiration of the generator mainly comes
from references [36–41]. Specifically, literature [36, 37]
proposed a multi-scale network model based on convolu-
tional neural network, which verified that more information
could be learned by using multi-scale for feature extrac-
tion. MSGAN [38] designed a new multi-scale module and
added this module to the skip connections, so that the oper-
ation could improve the model performance. Literature [39]
extracts more high-level information by increasing the num-
ber of convolutional layers to the networkmodel, and utilized
the residual bottleneck proposed by He et al [40] in the
denoising network to solve the problem of gradient calcu-
lation caused by too deep network. DCANet [41] built a dual
CNN containing two different branches to learn complemen-
tary features to obtain noisy estimated images. According to
these studies, In our generator, we not only extracted multi-
scale features, but also fused the extracted features before
passing them through the skip connection. Our network
also used two branches, one of which employed the opti-
mized residual module that we improved, and two branches
directly dealt with the noise without estimating the noise.
Then, the design of discriminator was primarily inspired by
PatchGAN [42]. One of the key contributions of PatchGAN
was designing a discriminator that could focus on multiple
regions to evaluate the images. Nevertheless, the original
PatchGAN discriminator utilized downsampling for multi-
scale feature extraction, which resulted in the loss of certain
information and thereby limited the discriminator’s ability to
capture and differentiate subtle details in the images. So we
made improvements to the discriminator to address this issue.
Finally, there are some other works that can help us to design
the loss function. For example, references [29, 30] introduced
the perceptual loss proposed in image super-resolution [43]
to enhance the detailed information of denoised images and
improve the visual effect. The total variation algorithm [44]
and literature [45] directly provided regularization loss func-
tion with denoising performance to achieve image denoising.
These loss functionswere adoptedbyus to constrain the train-
ing of our network, and inspired by them, we proposed a new
function to improve the performance of the model.

In summary, to address the limited performance of most
image denoising algorithms on real noise, this paper pro-
poses amulti-scale information fusion generative adversarial
network (MIFGAN) algorithm. The algorithm can be imple-
mented inmachine vision software in the future to effectively
eliminate real noise, thereby enhancing image quality. This
enhancement facilitates the machine vision system’s ability
to process and analyze image data more efficiently, ulti-
mately leading to improved performance and accuracy of
the machine system. For this paper, the main contributions
are as follows:
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Fig. 1 The architecture of the generator in MIFGAN, where k, n and s represent the kernel size, channel number and stride in the convolutional
layer respectively

(1) Utilizing the generative adversarial network model and
the concept of multi-scale information fusion, a novel
denoising algorithm is proposed that can significantly
enhance the quality of real image denoising.

(2) A novel encoder–decoder network branch is designed,
which extracts and fuses multi-scale features of images
with different resolutions in the encoder stage, enabling
noise reduction while preserving crucial image details.
Moreover, to address feature compression and gradient
calculation issues, an improved residual network branch
is introduced.

(3) To further improve the model’s denoising performance,
we design a discriminator with richer receptive field that
aims to effectively capture the global features and context
information of the image, thereby the denoised image can
be evaluated in more detail.

(4) The dual denoising loss function is presented. It can be
combined with other loss functions in the training phase
to further optimize the performance of the model.

2 Proposedmethod

2.1 Generator network architecture

The generator of MIFGAN is the core of the whole net-
work framework, which is an end-to-end denoising network.
Its input is a noisy image, and its output is a clean image.
The specific network architecture is shown in Fig. 1. By
integrating multi-scale contextual information, more fea-
ture information can be supplemented, thereby enhancing
the denoising performance of the model. The so-called
multi-scale feature means that the feature maps with differ-

ent resolution sizes contain different information. Typically,
higher-resolution images can provide richer details and
more precisely capture edge features, while lower-resolution
images can provide overall structure and global features.
Therefore, We process the noisy images at three different
scales: original resolution, four times downsampling, and
eight times downsampling. We extract features from these
images at respective scales and then combine the extracted
information at appropriate positions. The specific realization
process is as follows:

Due to the excellent image reconstruction capability, scal-
ability, and adaptability of the U-net [46] network, it has
shown good performance in many image processing tasks
such as image super-resolution [47] and image inpainting
[48]. So wemodify U-net to be the backbone of the encoder–
decoder branch of the generator. The encoder performs four
downsampling operations for feature extraction, reducing the
size of the feature maps by factors of two, four, eight, and
sixteen. Meanwhile, the decoder conducts four upsampling
operations for information recovery, successively increasing
the reduced feature maps by factors of two, four, eight, and
sixteen. Additionally, skip connections are used to transfer
information extracted from the downsampling to the upsam-
pling stage, enabling feature reuse. In order to obtain richer
information such as image structure and content in the down-
sampling stage, we use a 4×4 convolution with a step size of
2 to replace the pooling operation. The checkerboard effect
occurs during upsampling due to the use of deconvolution
[49]. Therefore, we use bilinear upsampling for image recon-
struction. After each downsampling and upsampling, two
3× 3 convolutions with step size 1 are used to extract infor-
mation on the feature map. In addition, we downsample the
noisy image by a factor of four and eight, respectively, result-
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Fig. 2 a The architecture of residual bottleneck in ResNet. b The archi-
tecture of residual module in MIFGAN

ing in images with a corresponding reduction in size. Then
extract shallow-level information using two 3 × 3 convolu-
tions. Then, the feature map information of different scales is
spliced and fused in the corresponding downsampling stage
of the encoder, which can improve the feature representa-
tion ability in the subsampling, and can also transfer more
information to the decoder through skip connections.

Additionally, the residual bottleneck proposed by ResNet
[50] can extract feature information by stacking and can well
solve the problem of gradient disappearance and gradient
explosion caused by the deepening of network layers in the
stacking process. Therefore, we design a new residual mod-
ule by combining the advantages of the residual bottleneck.
The specific architecture of the residual module designed
by us and the residual bottleneck proposed by ResNet is
shown in Fig. 2. In our residual module, we remove the
batch normalization (BN) layer used in the original resid-
ual network. This modification improves the training speed
of the model and prevents the degradation of information
in denoised images caused by normalization. At the same
time, we utilize the leaky rectified linear unit (LeakReLU)
as the activation function in the encoder–decoder branch,
because the model can still be trained stably when the acti-
vation function is negative. So, we also modify the activation
function in the original residual module from rectified lin-
ear unit(ReLU) to LeakReLU. A new branch of the residual
network is constructed by cascading the residual modules
designed by us. It achieves image denoising and restoration
by learning the residual transformation between the output
denoised image and the input noisy image. Unlike the fea-
ture extraction methods of downsampling and upsampling,
our residual network extracts shallow features from deep fea-
tures of context directly on the original size image, avoiding
the loss of detailed information caused by sampling opera-
tions. Its processing flow is that the noise image is first passed

Fig. 3 a The discriminator architecture in PatchGAN. b The discrim-
inator architecture in MIFGAN. The kernel size, channel number and
stride in the convolutional layer are denoted by k, n and s respectively

through a 3 × 3 convolution with a step size of 1 to change
the number of channels and obtain a feature map with rich
information, and then the feature map is input into the resid-
ual module for information extraction. At this stage, the size
of the feature map is always consistent with the input image.
The ablation study results in Sect. 3.5.1 show that we can
obtain improved results when using 3 residual modules in
the residual branch.

We restore the feature maps obtained from the two
branches to a clean image using a 1× 1 convolution. We use
1 × 1 convolutions because they have fewer parameters and
computations, which can improve training time and reduce
memory usage. Finally, we perform pixel-wise addition to
fuse the images outputted by the two branches, resulting in
the final clean image. We will verify the validity of each part
of our generator in the ablation study in Sect. 3.5.2.

2.2 Discriminator network architecture

Our discriminator is improved based on PatchGAN [42].
Figure3 shows the network architecture of the two discrim-
inators. It was confirmed in the literature [42] that using
PatchGAN allowed for capturingmore high-frequency infor-
mation and improve the image processing capability of the
generator to a certain extent. The original PatchGAN can
evaluate image features at multiple scales through down-
sampling, but important information will be lost in the
downsampling process. So,we add a 4×4 convolution and an
8×8 convolution on the basis of PatchGANto extract features
directly from the image and resulting in feature maps that
are four times and eighth times smaller than the input image
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size, respectively. These extracted features are then aggre-
gate the extracted information at the corresponding positions
in the discriminator downsampling stage. This operation can
enhance the receptive field of the discriminator, so that the
discriminator can capture more global information and local
information, so as to make up for the loss of information
in the downsampling stage, and improve the discriminator’s
ability to judge each area of the image. Our discriminator
enhances the generator’s generation capability through the
adversarial relationship in GAN. Specifically, the new dis-
criminator allows the generator to achieve superior denoising
effects while also improving the restoration of the structure
and details in the denoised image. We will validate the effec-
tiveness of our discriminator in the ablation study Sect. 3.5.3.

2.3 Loss function

Our total objective function is composed of four loss func-
tions: adversarial loss, content loss, total variation loss and
dual denoising loss. In this section, wewill provide a detailed
explanation for each loss function. We will show the effects
of each function in Sect. 3.5.4.

Adversarial loss: In order to make the model training stable,
we use the objective function in WGAN-GP [27] as the loss
function of adversarial training in our model. The mathemat-
ical formula is shown in Eq.2.

min
G

max
D

L(G, D) =EG(x)∼Pg [D(G(x))]
− Ex∼Pr [D(x)] + λgp × Lgp

(2)

where EG(x)∼Pg [D(G(x))] represents themathematical expec-
tation of the scores given by the discriminator D to the
generated images G(x) when the generated images follow
the generated distribution Pg . Ex∼Pr [D(x)] represents the
mathematical expectation of the scores given by the discrim-
inator D to the real images x when the real images follow the
real data distribution Pr . Lgp represents the gradient penalty,
λgp is the weight of the gradient penalty. Compared to the
adversarial loss in Eq.1, the main difference in the adversar-
ial loss in Eq.2 utilizes the wasserstein distance to measure
the difference between two distributions and adds a regular-
ization term as a gradient penalty, in order to ensure that the
gradient changes smoothly between the real data distribution
and the generated data distribution. The specific mathemat-
ical formula for the gradient penalty Lgp is shown in Eq.3.

Lgp = Ex̂∼Px̂ [(‖∇x̂ D(x̂)‖2 − 1)2] (3)

In Eq.3, x̂ represents a linearly interpolated sample between
the real data distribution Pr and the generated data distribu-
tion Pg .

According to the game idea, Eq.2 can be divided into
the adversarial loss of the generator and the adversarial loss
of the discriminator. Specifically, the generator’s adversarial
loss is shown in Eq.4 and the discriminator’s adversarial loss
is shown in Eq.5.

Ladv = −EG(x)∼Pg [D(G(x))] (4)

Eq.4 demonstrates the adversarial loss of the generator. The
generator’s goal is to produce samples that are as close as
possible to the real data distribution.

LD =EG(x)∼Pg [D(G(x))]
− Ex∼Pr [D(x)] + λgp × Lgp

(5)

Eq.5 demonstrates the adversarial loss of the discriminator.
The discriminator’s goal is to correctly distinguish between
real samples and generated samples. It desires a high score
D(x) for real samples x (drawn from the distribution Pr )
and a low score D(G(x)) for the generated samples G(x)
from the generator G. One of the key differences between
this discriminator and a traditional GAN discriminator is the
introduction of a gradient penalty term in the equation, which
helps stabilize the training process and prevents mode col-
lapse.

Content loss: Our model cannot generate denoised images
with rich content by relying only on adversarial loss. So, to
constrain the MIFGAN denoised image can reach the same
standard as the ground-truth image, we construct the content
loss function. As Eq.6.

Lcontent =λpixel × L pixel + λedge × Ledge

+ λvgg × Lvgg
(6)

In Eq.8, L pixel represents pixel loss, Ledge represents edge
loss and Lvgg represents perceptual loss. In addition, the coef-
ficients λpixel , λedge and λvgg represent the weights of these
three loss functions in the whole content loss respectively

The use of L1 loss in image denoising will lack the protec-
tion of relevant details, resulting in image detail texture loss
and edge sharpening after denoising. The use of L2 loss is
only the calculation of the sum of squares of all pixels of the
image, which will cause the image to become more blurred
and smooth. So L1 loss and L2 loss are not conducive to
image reconstruction in our denoising task. Therefore, we
use the charbonnier loss proposed in the literature [51] as
our pixel loss. This loss function addresses certain issues
inherent in L1 and L2 losses, resulting in an improved image
reconstruction performance. The specific form of this loss is
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given in Eq.7:

L pixel = 1

N

N∑

i=1

√
(yi − G(x)i )2 + �2 (7)

Where N denotes the total number of image pixels and i
denotes the image pixel index. y represent the ground-truth
image, and G(x) represent the denoised image produced by
the generator. In the equation, � is a small constant that con-
trols the smoothness of the loss function. When the pixel
difference is small, the behavior of the loss function resem-
bles L2 loss; whereas, when the pixel difference is large, it
behaves more like L1 loss. This way, the charbonnier loss
is able to better preserve image edges and details during the
denoising process while avoiding overly blurred results.

More high-frequency texture information in the image
content reconstruction process is what we need to focus on
preserving. So, we introduce edge loss [52, 53] to improve
the detail representation of our denoised images. The math-
ematical formula is expressed as follows:

Ledge =
√

(�(y) − �(G(x)))2 + �2 (8)

In Eq.8, the Laplacian operator [54] represented by� is first
used to calculate the gradient information of the ground-truth
image y and the denoised image G(x) to extract the edge
information. The difference between the tow images is then
calculated using the square root of the square including the
penalty coefficient.

In the denoising task, the result of more favorable quan-
titative evaluation criteria is the goal we pursue. However,
sometimes the denoised image can not meet our visual good
feeling when it has a high peak signal-to-noise ratio. There-
fore, in order to make the image more refined after noise
removal, the content is more clear, and meets the human aes-
thetic in a more pleasing manner. We introduce perceptual
loss [43] to enhance visual perception.

Lvgg = 1

CiWi Hi

∥∥Vggi (y) − Vggi (G(x))
∥∥2
2 (9)

Eq.9 is the mathematical symbolic form of perceptual loss.
We use the pretrained model of VGG19 [55] to extract the
features of the denoised image G(x) and the ground-truth
image y. These extracted feature differences are then used
to compute the perceptual loss. In the above equation Vggi is
represented as the ith feature layer in the VGG19 model. Ci ,
Wi and Hi are the number of channels, width and height of
the ith layer, respectively.

Total variation loss:Total variation loss [44]was success-
ful in previous denoising work. This function can effectively
remove noise and also promote the preservation of texture

details. The loss function is defined as follows:

Ltv = ‖∇h(G(x))‖22 + ‖∇ν(G(x))‖22 (10)

where ∇h(∇ν) is the gradient operator along the horizon-
tal (vertical) direction. The loss function makes full use of
the context information of the denoised image G(x), mea-
sures the change of pixel value in the vertical and horizontal
directions in the form of gradient, and smooths the noise of
the detected abnormal noise points. We introduce this loss
to promote the spatial smoothness of the output image and
avoid over-pixelation.

Dual denoising loss: To enhance the denoising capability
of the generator, we conduct a thorough study of the loss
function and design a novel loss function called the dual
denoising loss, which aims to further constrain and guide the
training process of the generator. The form of the function is
as follows:

Ldual = 1

N

N∑

i=1

S(yi − G(G(x))i ) (11)

where N denotes the total number of image pixels and i
denotes the image pixel index. S(·) represents the Smooth
L1 Loss, whose specific calculation form is shown in Eq.12.

S(m) =
{
0.5m2 if |m| < 1

|m| − 0.5 otherwise
(12)

The design idea of the dual denoising loss function is as
follows. Ideally, our denoising model only processes noisy
images. When a clean image passes through the denoising
network, the output image should remain consistent with the
original input. If the denoised image still contains noise, we
re-input the denoised image into our network, and the net-
work will process the remaining noise again. By passing the
noisy image through the network twice,we can further reduce
any residual noise left after the first pass. Therefore, based
on the above theoretical analysis, we propose the function
in Eq.11, which constrains the denoised image to be closer
to the standard clean image. In Eq.11 we use the Smooth-
ing L1 loss [56] to measure the difference between the image
G(G(x)) and the ground-truth image y. SmoothL1 loss com-
bines the advantages of L1 loss and L2 loss, enabling it to
address issues like gradient vanishing and gradient explosion
that arise in some special cases. Specifically, when the differ-
ence between the predicted value and the true value is small,
the Smooth L1 Loss uses the L2 loss (squared error), while
for larger differences, it employs the L1 loss (absolute error).
The above theoretical analysis demonstrates that employing
this design in our dual denoising function helps stabilize gra-
dients during training and makes the model more robust to
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outliers. To further prove that our proposed dual denoising
loss can constrain the network training to be more stable and
enhance denoising performance, we conduct ablation experi-
ments on this function in Sect. 3.5.4 to verify its effectiveness.

In summary, the total loss function constraining our gen-
erator is given by Eq.13.

LG =λadv × Ladv + λconten × Lcontent

+ λtv × Ltv + λdual × Ldual
(13)

where λadv , λconten , λtv and λdual represent the weights of
adversarial loss, content loss, total variation loss and dual
denoising loss respectively. The weight setting for the loss
function will be discussed in Sect. 3.2. Our discriminator is
only for evaluation. Therefore, the discriminator only needs
to be constrained by the adversarial loss, and the overall loss
function of the discriminator is the function in Eq.5.

3 Experiments

3.1 Datasets

Three datasets are used for the experiment, namely the SIDD
dataset [57], theDNDdataset [58] and thePolyUdataset [59].
We use these three datasets for the following reasons: First,
these three datasets are publicly available and have official
evaluation criteria. Second, these datasets are the collection
of complex noise in the world scene, which conforms to the
distribution standard of real noise. Third, the noise types in
these datasets are complex, so the performance of denoising
methods can be accurately gauged.

SIDD: Smartphone image denoising dataset (SIDD) pro-
vides 320 pairs of high-resolution color images for training
data. To ensure stable and efficient training of our model,
we crop each pair of training sets into 256 × 256 patches
for training our model. The dataset also provides 40 pairs of
images for validation, and each pair of validation images is
evaluated on 32 image blocks of size 256 × 256. Therefore,
there are a total of 1280 image pairs of size 256× 256 in the
40 validation datasets for validation.

DND: Darmstadt noise dataset (DND) provides 50 noisy
images for testing. Each test image does not provide a clean
image. Test results can only be obtained through the official
online test website. The official test benchmark is to divide
each piece of test data into 20 512 × 512 image boxes for
evaluation. So, the DND ended up evaluating 1000 images
of 512 × 512 size.

PolyU: The PolyU dataset is a collection of 40 indoor
scenes. The dataset provides 100 noise images in the size
of 512 × 512 for the denoising test, and provides a ground
standard image for each test data.

Algorithm 1 Training Procedure of MIFGAN
Input: Noisy image sets N = {n1, n2, ..., nm} and corresponding
clean image sets C = {c1, c2, ..., cm}
Initialization: Generator parameters θG , discriminator parameters
θD , optimizer parameters, learning rate, batch size B, number of
iterations T
Loss Functions: Define generator loss LG and discriminator loss
LD

1: for t = 1 to T do
2: Randomly select a batch of noisy images NB = {n1, n2, ..., nB}

and corresponding clean images CB = {c1, c2, ..., cB}
3: Generate denoised images G(NB) = {g1, g2, ..., gB} using gen-

erator G with parameters θG
4: Calculate the discriminator loss LD
5: Update the discriminator parameters θD using LD and Adam

optimizer
6: Calculate the generator loss LG
7: LG captures the difference between G(NB) and CB , driving the

generator to recover lost image information
8: Update the generator parameters θG using LG and Adam opti-

mizer
9: end for

Output: The trained denoising generator network G

3.2 Experimental settings

The training and testing of the experiment are based on
the pytorch1.7.0 deep learning framework on the Nvidia
GeForce GTX 3090 GPU. Both generator and discriminator
adopt the Adam optimizer.We set themomentum parameters
to β1 = 0.9 and β2 = 0.999. The learning rate is uniformly
set to 2e-4 during the whole training process. The batch size
is 16 and a total of 200 epochs are trained.

The parameters in the loss function are set as follows:
First, the value of penalty coefficient λgp in Eqs. 2 and 5
is set to 10 according to the research results in WGAN-GP
[27]. Then, the value of parameter �2 in Eqs. 7 and 8 is set
as 0.001 following the default setting in literature [51, 52].
Finally, we learn from the experience of weight setting for
pixel loss, edge loss, and perceptual loss in the literature [54–
56], and our work focuses on reconstruction of pixels. Before
fully training the model, we first take a small subset of the
dataset and conduct multiple training sessions. Before each
training session, we adjust the weights of our loss function.
Through multiple experiments, the results show that when
λpixel = 10, λedge = 0.5 and λvgg = 1, the model has
superior performance.Whenwe set the parameters to λadv =
0.01, λconten = 1, λtv = 0.01 and λdual = 0.1, the model
can be trained stably and effectively. The specific training
procedure of our proposed model is shown in Algorithm 1.

3.3 Evaluationmetrics

The evaluation of image denoising mainly includes quanti-
tative evaluation and qualitative evaluation. The qualitative
evaluation is mainly based on human visual intuition to
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Table 1 Quantitative
comparison results of different
denoising methods on the SIDD
dataset

Method BM3D MSIDNet APD-Nets CBDNet FFDNet MDRN RIDNet

PSNR 25.65 39.45 39.56 30.78 33.42 39.01 38.71

SSIM 0.685 0.911 0.955 0.754 0.874 0.953 0.914

Method CFNet MSGAN DANet DCANet TSIDNet MIRNet MIFGAN

PSNR 39.34 39.11 39.43 39.27 39.43 39.72 40.27

SSIM 0.955 0.945 0.956 0.956 0.910 0.959 0.960

The best results are highlighted in bold

Fig. 4 Visual comparison results of different denoising methods on SIDD dataset

judge whether the image quality is in line with people’s
aesthetic. Quantitative evaluation uses Peak Signal-to-Noise
Ratio (PSNR) and Structural Similarity (SSIM) [60] is the
most popular and recognized index at present.

PSNR is usually used to measure the noise removal effect
of denoising algorithm. The specific mathematical formula
is as follows:

PSN R = 20 × log10

(
MAX pixel√

MSE(G(x), y)

)
(14)

where MAX pixel represents the maximum pixel value of our
image, usually 255. MSE(G(x), y) uses the mean square
error to calculate the difference between a denoised image
G(x) and a clean image y, which should be as small as pos-
sible. Therefore, the larger the PNSR value, the higher the
image quality after denoising.

This evaluation index SSIM is more consistent with the
human visual perception of images. SSIM compares the dif-
ference between denoised image and clean image mainly
from three aspects: structure, brightness and contrast. The

formula for calculating SSIM is as follows:

SSI M = (2μG(x)μy + M1)(2σG(x)y + M2)

(μ2
G(x)

+ μ2
y
+ M1)(σ

2
G(x)

+ σ 2
y

+ M2)
(15)

where μG(x) and μy represent the mean values of the
denoised image G(x) and the clean image y, respectively.
σ 2
G(x) and σ 2

y represent the variances of the pixel values of
the denoised imageG(x) and the clean image y, respectively.
σG(x)y represents the covariance between the denoised image
G(x) and the clean image y. M1 and M2 are constants to
prevent the denominator from being 0 in the calculation. The
SSIM is calculated between 0 and 1. The closer the evaluation
result is to 1, the higher the similarity between the denoised
image and the clean image, and the more favorable the image
quality.

3.4 Comparison with other methods

In order to evaluate the effectiveness and competitiveness of
our denoising algorithm. Our algorithm is evaluated quanti-
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tatively and qualitatively with some state-of-the-art methods
on SIDD, DND and PolyU datasets.

Evaluation results on the SIDD dataset: As shown in
the results in Table 1, MIFGAN has superior quantitative
evaluation metrics on this dataset compared to other meth-
ods. Specifically, compared with CFNet and RIDNet, our
PSNR and SSIM increased by 0.93, 0.005 and 1.56, 0.046
respectively. The quantitative evaluation results of MIFGAN
are significantly superior than BM3D, CBDNet and FFDNet.
Figure4 shows the results of the visual comparison. BM3D
and FFDNet are less effective in removing real noise. The
denoised images of RIDNet and DCANet produced artifacts.
DANet andMIRNet are more blurred thanMIFGAN in floor
texture details. In contrast, our method is more effective for
noise removal and superior for detail recovery.

Evaluation results on theDNDdataset:Table 2 presents
the results of quantitative evaluation.ComparedwithDCANet,
FFDNet and MDRN methods, the PSNR and SSIM of MIF-
GAN are increased by 0.25 and 0.001, 5.42 and 0.107, 0.39
and 0.002, respectively. Although our method is 0.004 lower
than ADGAN and 0.003 lower than MSGAN in SSIM, we
are far higher than them in PSNR. Figure5 shows the visual
results of the different methods. BM3D, CDNCNN-B, and
FFDNet still have a large amount of noise residual. FFDNet
and CBDNet generate blurred structures due to the excessive
smoothing operation during denoising, which makes the tex-
ture details disappear. In the gray texture in the black area,
the fine texture structure retained byMIFGAN is clearer than
that of DANet and DCANet. Experimental results show that
MIFGAN algorithm is more competitive.

Evaluation results on the PolyU dataset: The results of
quantitative evaluation are shown in Table 3. According to
the data results, the MIFGAN demonstrates the best perfor-
mance, the PSNRandSSIMof theMIFGANcompared to the
TSIDNet are improved by 1.3 and 0.027, respectively. Addi-
tionally, when compared to the DCANet, which exhibits a
higher performance, the MIFGAN still manages to improve
the PSNR and SSIM by 0.9 and 0.009, respectively. Fig. 6
shows the comparison of visualization. For easy observa-
tion, we enlarge the text part in the upper right corner of
the image without destroying the image. From the figures, it
can be observed that the texts in DANet and MIRNet appear
blurred. CBDNet still contains residual noise. The texts in
DCANet and MPRNet are not as clear as those in MIFGAN,
and the texture structure of the red brick inMIFGAN is more
detailed and clear. The experimental results demonstrate that
our algorithm possesses superior generalization ability.

3.5 Ablation study

To demonstrate the effectiveness of our algorithm, we con-
duct ablation studies on the SIDD dataset.

3.5.1 Ablation study of the residual modules

In the generator architecture, we use multiple residual mod-
ules on the original resolution of the image for denoising.
In order to determine the number of residual modules when
the effect is best. We performed ablation experiments for the
number of residual modules. The detailed results are shown
in Table 4. According to the data in the table, it can be con-
cluded that when the residual module is added on the basis
of the three residual modules, the values of PSNR and SSIM
do not increase, and even the index data becomes worse.
Although the PSNR is increased by 0.01 when using 7 resid-
ual modules compared to 3 residual modules, the number of
parameters of the model is more than twice as large, which
results in more time for our model to train and test. So, in
the end, we set the number of residual modules to 3, which
allows us to achieve good results in terms of PSNR and SSIM
with only 0.22 million parameters.

3.5.2 Ablation study for generator

In order to verify the effectiveness of the generator in MIF-
GAN, we perform ablation experiments for four structures
in the generator that deal with different scales. The results
of the ablation study are shown in Table 5. According to the
data results, the denoising effect is poor when we only use
the U-net architecture. After sequentially adding 4 times and
8 times downsampling architecture, both PSNR and SSIM
are gradually improved. When we add our residual network
structure, both objective metrics have the best performance.
Therefore, the results of the ablation study of the generator
architecture show that each part of the denoising network in
MIFGAN has an irreplaceable role.

3.5.3 Ablation study for discriminator

To verify the effectiveness of the discriminators inMIFGAN,
and we perform ablation study on the discriminator. Our spe-
cific operation is to replace the discriminators in MIFGAN
with those in DANet, PatchGAN and BDGAN respectively
to train our network. The specific results of the experiments
are shown in Table 6.

We can conclude from the data in Table 6 that MIFGAN
improves PSNRandSSIMby2.68 and 0.009, 1.25 and 0.005,
1.04 and 0.004, respectively, compared with the use of a
simple fully-connected layer discriminator in DANet, the
use of an ordinary PatchGAN discriminator in the literature
[34], and the use of multiple different scale discriminators in
BDGAN. Therefore, the experimental results show that our
proposed discriminator can effectively assist the model for
denoising.
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Table 2 Quantitative
comparison results of different
denoising methods on the DND
dataset

Method APD-Nets BM3D CDNCNN-B FFDNet CBDNet TSIDNet MSIDNet

PSNR 39.69 34.51 37.90 34.40 38.06 39.74 39.72

SSIM 0.952 0.851 0.943 0.847 0.942 0.954 0.954

Method ADGAN DANet MDRN MSGAN CFNet DCANet MIFGAN

PSNR 38.13 39.55 39.43 39.59 39.65 39.57 39.82

SSIM 0.958 0.953 0.952 0.957 0.952 0.953 0.954

The best results are highlighted in bold

Fig. 5 Visual comparison results of different denoising methods on the DND dataset

Table 3 Quantitative
comparison results of different
denoising methods on the PolyU
dataset

Method DGCL MSIDNet TSIDNet DANet DCANet

PSNR 38.11 37.23 37.44 37.17 37.84

SSIM 0.961 0.947 0.955 0.923 0.973

Method RIDNet MIRNet MPRNet CBDNet MIFGAN

PSNR 38.52 37.35 37.50 37.86 38.74

SSIM 0.980 0.956 0.971 0.971 0.982

The best results are highlighted in bold

Table 4 The effect of the
number of residual modules on
PSNR, SSIM and Params(M)

Number 1 2 3 4 5 6 7

PSNR 38.82 39.52 40.27 40.25 40.11 40.27 40.28

SSIM 0.949 0.953 0.960 0.960 0.956 0.958 0.960

Params(M) 0.076 0.149 0.224 0.297 0.371 0.445 0.519

“M” is short for million

Table 5 Ablation study of
network architecture in
generator for denoising effect,
where down indicates
downsampling, � indicates use
and ✗ indicates non-use

Generator U-net 4× down 8× down Residual network PSNR PSNR

MIFGAN � ✗ ✗ ✗ 34.72 0.930

MIFGAN � � ✗ ✗ 36.69 0.937

MIFGAN � � � ✗ 36.94 0.939

MIFGAN � � � � 40.27 0.960
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Fig. 6 Visual comparison results of different denoising methods on the PolyU dataset

Table 6 Ablation study of the effect of discriminator on model perfor-
mance, where DANet, PatchGAN, BDGAN and MIFGAN refer to the
discriminator in the corresponding methods

Discriminator DANet PatchGAN BDGAN MIFGAN

PSNR 37.59 39.02 39.23 40.27

SSIM 0.951 0.955 0.956 0.960

3.5.4 Ablation study for loss functions

There are a total of 6 loss functions used in MIFGAN to
train the generator. In order to prove the effectiveness of
each loss function, we conduct ablation studies on these 6
loss functions. The results of the quantitative evaluation are
shown in Table 7. Both PSNR and SSIM values are low
when we use only adversarial loss. After we successively
introduce pixel loss, total variation loss, and edge loss, the
quantitative evaluation results steadily improve. After intro-
ducing our proposed double denoising loss, PSNR and SSIM
reach 39.80 and 0.956, respectively. Finally, after we add the
perceptual loss, our SSIM and PSNR are further improved,
breaking through to 40.27 and 0.960 respectively. Figure7
shows the visual effects after denoising using different loss
functions. It is straightforward to see that our network relying

only on adversarial loss leads to unstable denoising train-
ing and makes it difficult to generate image structures. With
the introduction of pixel loss, the image can generate a
rough structure, but there is still noise and atomization phe-
nomenon. After adding the total variation loss, the image
achieves enhanced denoising quality. After adding the edge
loss, the image texture details are clearer. After the introduc-
tion of double denoising loss, it can strengthen the recovery
of some important detailed textures in the image. Finally,
the addition of perceptual loss makes the image more real-
istic and bright. So, the experimental results show that each
function in MIFGAN has an indispensable role.

4 Conclusion

In this paper, we propose a multi-scale information fusion
generative adversarial network (MIFGAN) for real-world
noisy imagedenoising.Our encoder–decoder network employs
a multi-scale information fusion strategy to enhance the
model’s capabilities for image denoising and restoration,
while our customized residual network further mitigates
noise and preserves image information. Additionally, By
incorporating convolutional kernels of various sizes into the
discriminator, we can increase its receptive field, enabling
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Table 7 Ablation study of the
effect of loss function on
denoising performance

Loss Ladv L pixel Ltv Ledge Ldual Lvgg PSNR SSIM

MIFGAN � ✗ ✗ ✗ ✗ ✗ 12.77 0.410

MIFGAN � � ✗ ✗ ✗ ✗ 32.87 0.915

MIFGAN � � � ✗ ✗ ✗ 35.08 0.922

MIFGAN � � � � ✗ ✗ 37.65 0.941

MIFGAN � � � � � ✗ 39.80 0.956

MIFGAN � � � � � � 40.27 0.960

Fig. 7 The visual effect of the proposed networkwith different loss functions. a noisy.b clean. c Ladv loss.d Ladv+L pixel loss. e Ladv+L pixel+Ltv
loss. f Ladv + L pixel + Ltv + Ledge loss. g Ladv + L pixel + Ltv + Ledge + Ldual loss. h Ladv + L pixel + Ltv + Ledge + Ldual + Lvgg loss

it to gather more comprehensive contextual information
and more effectively assist the generator in completing the
denoising task. Our proposed dual denoising loss com-
bined with other loss functions together constitutes a set of
multi-scale objective functions, which improves the image
denoising and restoration performance of the model. The
experimental results show that our method can effectively
remove complex noise in real images and the denoised
images are more clear and realistic. Compared with other
methods, our method exhibits superior practicability when
applied to real noisy images.

Our algorithm is not onlymeaningful for the imagedenois-
ing task, but can also be widely applied to other image
enhancement tasks such as image super-resolution and image
inpainting bymodifying the relevant parameters in themodel.
However, the number of parameters in ourmodel is relatively
large,which can lead to limitations on somemicro-embedded

devices. Conducting further research into developing more
lightweight denoising models is another research direction.
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