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Abstract
Wireless charging of electric vehicles can be achieved by installing a transmitter coil into the ground and a receiver coil at the
underbody of a vehicle. In order to charge efficiently, accurate alignment of the charging components must be accomplished,
which can be achieved with a camera-based positioning system. Due to an air gap between both charging components,
foreign objects can interfere with the charging process and pose potential hazards to the environment. Various foreign object
detection systems have been developed with the motivation to increase the safety of wireless charging. In this paper, we
propose a foreign object detection technique that utilizes the integrated camera of an embedded positioning system. Due
to operation in an outdoor environment, we cannot determine the types of objects that may occur in advance. Accordingly,
our approach achieves object-type independence by learning the features of the charging surface, to then classify anomalous
regions as foreign objects. To examine the capability of detecting foreign objects, we evaluate our approach by conducting
experiments with images depicting known and unknown object types. For the experiments, we use an image dataset recorded
by a positioning camera of an operating wireless charging station in an outdoor environment, which we published alongside
our research. As a benchmark system, we employ YOLOv8 (Jocher et al. in Ultralytics YOLO, 2023), a state-of-the-art
neural network that has been used in various contexts for foreign object detection. While we acknowledge the performance
of YOLOv8 for known object types, our approach achieves up to 18% higher precision and 46% higher detection success for
unknown objects.

Keywords Computer vision · Electric vehicles · Wireless charging · Foreign object detection · Machine learning

1 Introduction

Deteriorating air quality due to air pollution is a serious
problem in many cities and can lead to an array of health
problems [15, 46]. Various studies, such as from Soret et
al. [60] or Li et al. [32] have shown that electric vehicles
have the potential to reduce air pollution in cities. In addition
to electric cars that are charged by cable, there are several
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upcoming approaches realizing wireless charging of elec-
tric vehicles [13]. Wireless power transfer in the context
of stationary wireless charging requires a transmitter coil
embedded into the ground and a receiver coil attached to the
underbody of the vehicle [49].

Efficient wireless charging requires an accurate align-
ment of the charging components within a given tolerance
range [16]. Considering the fact that the charging compo-
nents are not within the driver’s field of vision, reaching a
minimal deviation of the coils is a challenging task. Accord-
ingly, Birrel et al. [7] found in studies that only 5% of the
vehicles achieved an accurate position that allowed efficient
wireless charging. There are several techniques to reduce
misalignment of charging components, such as mechani-
cal [26], RFID [38], or wireless sensor-based methods [47].
Furthermore, there are camera-based positioning systems
that rely on a camera integrated into the vehicle [28] or stat-
ically attached to the charging station [55].
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To make wireless charging suitable for everyday use, it
is essential to consider various safety aspects. Particularly,
neither living beings nor objects should be exposed to any
harm in the context of wireless charging. The presence of
foreign objects during the charging process, such as metal
objects, canpose potential threats, such as highmagnetic field
exposure or fire [22]. In order to avoid hazardous situations,
several foreign object detection methods exist.

Motivated by the goal of increasing the safety of wireless
charging stations, we present a supplementary approach that
augments existing foreign object detection techniques. Since
there are charging stations that come with a camera-based
positioning system, we utilize the given positioning camera
to automatically analyze the state of the charging surface.
To reuse the existing hardware of the positioning system, we
propose a resource-friendly approach that can operate on an
embedded device.

To examine the capability of detecting foreign objects,
we evaluate our approach by conducting experiments with
images of known and unknown object types. Therefore, we
provide a dataset that contains images and labels of various
foreign objects that are placed on a charging surface and
recorded by a positioning camera.

To summarize the main contributions of our research, we
present:

• An approach that can successfully detect foreign objects
while reusing the existing hardware of the positioning
system

• A dataset containing labeled images recorded at an oper-
atingwireless charging station that operates in an outdoor
environment

• Experiments to examine the capability of successfully
detecting known and unknownobject types. Results show
that our approach achieves up to 18% higher precision
and 46% higher detection success for unknown objects.

2 Application context

Within the scope of the TALAKO project [19], we enabled
wireless charging of electric vehicles in public urban environ-
ments. The systems are specifically designed for taxi drivers
who can charge their vehicles while waiting for customers.
To gain insights about the application context, our first pro-
totype has been deployed on the property of a taxi company.
Subsequently, we established a publicly accessible pilot sys-
tem next to the Central Station of Cologne in Germany.

Since wireless charging requires a precise alignment of
the transmitter and receiver coil, we designed a camera-
based driver guidance system that assists the driver to
precisely maneuver the vehicle to the charging zone. The
driver guidance system, which we describe more detailed

Fig. 1 Illustration of a charging station and camera-based positioning
system

in another article [55], is composed of mobile and station-
ary components. Figure1 illustrates the charging station and
camera-based positioning system.

In order to navigate the driver, we provide a smartphone
application that renders guiding visualizations [56]. When
the smartphone receives a signal from the charging station,
the application automatically triggers the start of the visual
driver guidance. Thus, the driver is not required to hapti-
cally interact with the smartphone while driving. For this
mechanism, the camera-based positioning system periodi-
cally emits BLE-advertisements, which contain information
about the vehicle’s current pose.

For seamless integration into the urban application envi-
ronments, we encapsulate the electronic components of the
charging station inside a compact control cabinetwith limited
capacity. The control cabinet shields the interior from envi-
ronmental conditions such as rain or snow. However, at the
same time, it provides limited ventilation due to the water-
proof enclosure. Accordingly, we embedded a low power
computer for positioning into the interior arrangement of the
control cabinet. Hence, additional functionality is limited to
the existing hardware resources.

3 Related work

In this section, we give an overview of foreign object detec-
tion techniques in the context of wireless charging, which
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typically rely onfield characteristics [20], sensors [59] or sys-
tem parameters [30]. While cameras are less expensive than
many other sensor types, they are also used to position elec-
tric vehicles before initiating the charging process [18, 55].
Thus, charging systems could increase their safety by incor-
porating the existing cameras for foreign object detection.
Accordingly, we also summarize computer vision techniques
for foreign object detection in various contexts.

3.1 Wireless charging

Foreign objects potentially impose significant safety haz-
ards in wireless charging. Accordingly, several approaches
exist to detect foreign objects. According to Zhang et al. [69]
there are system parameter-, field-, and wave-based foreign
object detectionmethods in inductive power transfer systems,
whereas Cheng et al. [12] refer to the latter two in the con-
text of wireless charging of electric vehicles. In the context of
systemparameter detectionmethods, various systemparame-
ters, such as temperature [27] or power loss [30]may indicate
the presence of a foreign object. Furthermore, field-based
detection methods observe field-based characteristics such
as capacitance [20] or inductance [21] variations to detect
foreign objects. Wave-based methods utilize sensors such as
radars [51], thermal- [59] or hyperspectral cameras [63] as
well as sensor combinations including video cameras [6, 17].
Depending on the hardware, wave-based methods can pro-
vide high precision, however they can also be costly [12,
69].

3.2 Computer vision

Cameras are less expensive thanmany other sensor types and
can be used for various tasks such as image classification [39]
and object detection [70] using computer vision algorithms.
Positioning systems can include a single camera that observes
the transmitting coil as well as the surrounding area [55].
Charging stations incorporating the aforementioned type
of positioning system could cost-effectively increase their
safety by utilizing the existing positioning camera for foreign
object detection instead of integrating additional sensors.
Hence, computer vision algorithms could detect various for-
eign objects before a vehicle approaches the transmitting
coil by employing the positioning system’s camera. Further-
more, existing systems based on e.g. system parameters or
field-based foreign object detection methods could be sup-
plemented with information from the mentioned approach.

Indoor

Indoor applications often provide suitable conditions to
detect foreign objects. For example, regions of interest will
be constantly illuminated and protected from external influ-

ences. The approach presented by Lu et al. [40] detects and
classifies falling objects in liquids inside transfusion bot-
tles as foreign objects. For detection the approach employs
background subtraction and an adapted mean-shift tracker.
Furthermore, Al-Sarayreh et al. [2] utilize a neural network
on footage recorded in a hypersprectral imaging system setup
to detect contamination by foreign objects on meat prod-
ucts. Moreover, X-Ray images of lungs may contain foreign
objects due to buttons of worn gowns. Based on the round
shape of the buttons, Xue et al. [67] try to detect circular
objects by utilizing Circle Hough transform [4] and Viola-
Jones algorithm [64].

Outdoor

Outdoor application setups are often exposed to unknown
events and circumstances caused by weather and chang-
ing illumination conditions. To increase safety and reduce
the risk of accidents, various outdoor scenarios demand the
detection of foreign objects. In the context of airports, it is
crucial to detect and remove various types of objects from
runways. Qunyu et al. [52] detect foreign objects on run-
ways by preprocessing an image, subtracting background,
postprocessing, and connected component labeling of the
foreign object regions. A preliminary experiment demon-
strated that all foreign objects were detected on an image.
However, several state-of-the-art systems in that context uti-
lize neural networks for foreign object detection, which are
trained beforehand to detect known objects. Systems that uti-
lize neural networks are, for example, the approach proposed
in [50] which utilizes Microsoft Azure Custom Vision [44],
the approach from [48] using YOLOv4 [8] as well as [33,
45] applying YOLOv3 [53] or SSD [37]. Energy infrastruc-
ture is another application field that demands a high level
of safety, when utilizing neural networks for foreign object
detection. Using, for example, FODN4PS proposed by Xu et
al. [66], intrusions of foreign bodies in power substations are
detected in order to be able to prevent potential failures of
power supplies. Furthermore, there is RCNN4SPTL [68] for
the inspection of power transmission lines, which can detect
entangled foreign objects like balloons or kites.

Across various contexts, like high-voltage transmission
lines [65], aviation [3, 14] and conveyor belts [34, 42], recent
research utilizes YOLOv8 [24] for foreign object detection.
YOLOv8 is a state-of-the-art neural network and the succes-
sor of previousYOLOmodels, which are designed to provide
speed and accuracy [23, 62].

4 Analysis

All of the aforementioned approaches that operate in an
indoor environment provide a suitable solution for the appli-
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cation scenarios in which they are designed and tested.
However, wireless charging stations often operate in an out-
door environment with challenging conditions. Typically,
weather and light conditions vary and the set of poten-
tially occurring foreign objects cannot be completely defined.
Thus, the foreign object detection system must be robust to
environmental conditions and unspecified foreign objects.

Based on the unpredictable appearance of foreign objects,
we conclude that techniques based on shapes such as cir-
cles [4], rectangles [25] or lines [1] would limit the system.
In contrast, background subtraction techniques as used by
Xu et al. [52] provide a higher flexibility with respect to the
potential object shape. However, generated masks contain
much noise if the environmental conditions vary, which can
produce false positives.

Many modern systems utilize neural networks, which can
be an effective tool for the detection of foreign objects in vari-
ous contexts. Foreign object detection using neural networks
performs effectively, especially when the set of potentially
occurring object classes is known in advance. Although neu-
ral networks provide highly accurate results, many of them
require extensive resources that are not available in our appli-
cation context.

Accordingly,we conclude that the foreign object detection
system should fulfill two fundamental requirements. While
many approaches are designed to provide detection of objects
with known characteristics, the system should be able to
detect unknown object types as well. Furthermore, due to
the space and heat constraints of the existing control cabinet,
our positioning system runs on an embedded system with
limited resources. Thus, the foreign object detection system
should be suitable for embedded devices to coexist with the
positioning system.

5 Approach

Detection of foreign objects can be facilitated by know-
ing the potentially occurring object types and their possible
states. This enables the application of various approaches like
neural networks that can be trained with object-specific data.
Since the wireless charging stations operate in an outdoor
environment, we cannot specify the set of potential foreign
objects. Thus, we present a procedure that enables object
type-independent foreign object detection without consider-
ing any depicted object features.

5.1 Training stage

Once the charging components are integrated into the ground,
we assume the charging surface will be maintained regularly
and will not be replaced by the operator. Thus, the appear-
ance of the charging surface will not change significantly,

and its appearance will be affected mainly by environmental
conditions.

Hence, our approach is based on features extracted from
the charging surface that we obtain during a training stage
to fit a model for anomaly detection. Anomaly detection is
a helpful tool for identifying significant deviations in given
data [11]. Therefore, our approach bases on anomaly detec-
tion by classifying charging surface regions as normal and
diverging occurrences as anomalies.

We define F as the set of all training frames. To reduce the
computational effort in the next steps, each frame f ∈ F hav-
ing a size of w f × h f will be preprocessed by transforming
it into grayscale format. In the first step of feature extraction,
the granularity parameter γ ∈ N, where γ ≤ min

(
w f , h f

)

needs to be defined. During training stage, each frame f will
be divided into a set of patches P having a width wp and
height h p:

wp = w f

γ
h p = h f

γ
(1)

Higher values of γ enable the algorithm to detect the con-
tour of foreign objects more precisely. In contrast, lower
values of γ decrease the processing time. Hence, γ has an
impact on the granularity of the shape of detected objects
while affecting the performance. Each patch p that collides
with a bounding box of a foreign object is removed from the
set P, resulting in the subset P′ ⊆ P. All patches p ∈ P′ are
composed of multiple rows r and columns c with a size of
wp and h p, respectively, which can be defined as an array
PI containing pixels pi ∈ PI. Figure2 gives an overview of
the described components. As defined in Eq.2, we deter-
mine the arithmetic mean PI and the variance s2, resulting in
n = (

wp + h p
) ∗ |P′| tuples of (

PI, s2
)
.

PI =
∑|PI|

i=1 pii
|PI| s2 =

∑|PI|
i=1(pii − PI)2

|PI| − 1
(2)

According to Liu et al. [36], Isolation Forests [35] provide
low-linear time complexity, robustness aswell as smallmem-
ory requirement and outperform other approaches, including
LocalOutlier Factor [9],RandomForests [58] andORCA[5].
Thus, all extracted feature tuples

(
PI, s2

)
are then used to fit

a modelM for anomaly detection using an Isolation Forest:

M = fit
({(

PI, s2
)

1
, . . . ,

(
PI, s2

)

n

})
(3)

5.2 Detection stage

After the training stage, the gathered information can then
be used to identify foreign objects on target frames. Figure3
gives an overview of the steps of the detection process.
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Fig. 2 Illustration of the image
components and their
dimensions

As described in the training stage, the detection procedure
begins with an extraction of features from the input image.
Based on the granularity parameter γ the input frame f ∈ F
will be divided into patches p ∈ P. For each pixel array PI
given by the rows r and columns c of an individual patch
p, arithmetic mean PI and variance s2 will be calculated to
obtain tuples of (PI, s2).

For each given patch p all (wp + h p) tuples of (PI, s2)
will be classified by the trained model M. This results in
a set Cp containing all classifications for a patch p. Clas-
sification returns a Boolean value b ∈ B := {True,False},
whereas False indicates the absence and True the presence
of a foreign object in the region of a given row r or col-
umn c. In order to reduce the risk of misclassifying a specific
region of the charging surface, a patch-based majority vote
will be conducted, considering the results of the rows and
columns. Based on the set of all True classifications CTrue

and a majority vote threshold θ , Eq. 4 defines the function
FOp(CTrue) that determines if a patch p contains a foreign
object. Thus, a patch p is classified as a foreign object if at
least θ classifications result in True.

FOp(CTrue) =
⎧
⎨

⎩
True, if

|CTrue|
wp + h p

≥ θ

False, otherwise
(4)

Based on the information gathered by classifying all
patches, a binary mask can be generated. Consequently, the
binary mask indicates the presence as well as the location of
foreign objects, whereas the resolution of the object contour
can bemodulated by the granularity parameter γ . Optionally,
the object regions of the binary mask can be aggregated to
bounding boxes.

5.3 Reporting

While, the proposed approach enables to gain knowledge
about occurring foreign objects, there is a need to utilize
this information, to be able to prevent hazardous situations.
As part of our prior research [56], we introduced user inter-
faces for a driver guidance system. Within this scope, we
present a smartphone application that assists the driver with
navigating visualizations to reach a position that enables
efficient wireless charging. Alongside driver guidance, the

mobile application can inform users about the status of the
charging station,which can be affected by the presence of for-
eign objects. Drivers can therefore try to remove the foreign
objects before continuing to approach the charging station.
If drivers are unable to remove the foreign objects by them-
selves, the operator of the charging station can be notified.

6 Dataset

Aiming to expand contributions in this field of research,
we previously introduced the Foreign Objects in Wireless
Charging (FOWC) dataset [57]. The dataset contains 3652
images recorded at an operating wireless charging station.
The charging station was constructed as part of the TALAKO
project [19] and is frequently accessed by vehicles that are
equipped with a wireless charging interface. A transmitter
coil was integrated into the ground and embedded into a
robust concrete casing. The positioning system utilizes a D-
Link DCS-4602EV wide-angle camera, which is installed
at a height of approximately 2ms and focuses the position-
ing area, including the charging point. The camera records
frames with a resolution of 1920 × 1080 pixels.

The operation of the charging station was temporarily
interrupted to be able to capture the images using the posi-
tioning camera. Figure4 illustrates an example frame from
the positioning camera’s perspective. Foreign object detec-
tion is limited to the area of the transmitting coil. Hence, the
dataset focuses on the region of interest (ROI). We crop the
surrounding environment and perform a homography trans-
formation of the ROI to obtain a bird’s eye view perspective
as shown in Fig. 5. The resulting images have a resolution of
394 × 189 pixels.

There are three different categories of images in the
dataset. The first category includes images that do not contain
any foreign objects, such as depicted in Fig. 5. The sec-
ond category includes images that contain a single foreign
object from a set of predefined object types, namely can,
coin, glasses, hairpin, key, ring and wrench. Table 1 gives an
overview of the object categories and information about their
size in pixels.

The objects are systematically placed at seven predefined
positions, as illustrated with blue crosses in Fig. 6. Figure7
shows an example image from the third category that contains
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Fig. 3 Overview of the detection process

Fig. 4 Camera perspective

Fig. 5 Region of interest

an extension of the predefined object types and places them
at random locations and quantities.

The dataset is split into a test set and a training set con-
taining 1035 and 2617 images, respectively. For all 7 object
types, there are 15 images for each of the 7 positions that
were illustrated in Fig. 6. In addition, there are 200 images in
the random object category, as well as 100 images without
objects. The training set is amixture of all the categories, con-
taining the rest of the recorded images. All foreign objects
depicted in the dataset were manually labeled in the Darknet
format as used byYOLO [53]. The images and labels are pub-
licly available at https://www.nes.uni-due.de/research/data/.

Table 1 Overview about the approximate dimensions of the systemat-
ically placed objects in the dataset

Category Width Height Size (%)

Coin 9px 8px 0.09

Hairpin 7px 12px 0.11

Ring 10px 9px 0.12

Key 11px 20px 0.28

Glasses 22px 39px 1.15

Wrench 22px 65px 1.94

Can 36px 39px 2.28

Width and height are represented in pixels and size is the proportion of
the bouding box area in relation to the image area

Fig. 6 Single object

Fig. 7 Random objects
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7 Evaluation

In order to increase safety of an operating wireless charg-
ing station, the foreign object detection system should be
able to report the presence of foreign objects on the charg-
ing surface. Since wireless charging stations operate in an
outdoor environment, knowledge about potentially occurring
objects is limited. Accordingly, we conduct experiments to
examinewhether the system successfully detects both known
and unknown object types while being trained with a limited
amount of data. In addition to the success of the detection,
we also analyze the execution time on lightweight devices.

As a benchmark, we employ YOLOv8 [24], which is
a state-of-the-art neural network that is utilized in recent
research to detect foreign objects in various applications
and environments [3, 14, 29, 34, 41–43, 65]. Depending on
the model size and resources, YOLOv8 can be executed on
embedded devices with low latency [31]. Thus, we exam-
ine two different models sizes. On the one hand, we utilize
the YOLOv8mmodel, and on the other hand, the lightweight
YOLOv8nmodel. Correspondingly, for our approach, we set
a standard configuration of 100 trees for the Isolation Forest
(Our 100). However, we also explore the effect of utilizing 5
trees (Our 5), which reduce the required amount of resources.

7.1 Experimental setup

In the first experiment, we train our approach with training
images of the presented dataset. Thepresented dataset depicts
big objects like a wrench as well as small objects like a coin
in the wireless charging scenario. Our goal is to simulate the
limited knowledge about occurring foreign objects.

For each object category, we randomly sample 10 images
for a training set as well as 100 images for a test set. In addi-
tion, we create a condition called “All” with objects from all
categories. Accordingly, the training set of “All” contains an
image of each object type and three images with no objects,
whereas the test set contains 100 images of all object cate-
gories.

For each analyzed image, our approach generates a binary
mask, which semantically depicts the regions of foreign
objects and regions of the charging surface in contrast. How-
ever, our dataset provides bounding box labels, which many
object detectors [24, 37, 54] require for training. In order to
be able to compare the resulting binary mask to the ground
truth data of our dataset, we expand the detected foreign
object regions to the shape of a corresponding rectangular
bounding box. To measure the precision of the detection,
we compute the intersecting area of the predicted bounding
boxes Bp and ground truth bounding boxes Bgt in relation

to the area of the union of both:

IoU =
[
�Bp ∩ Bgt

]

[
�Bp ∪ Bgt

] (5)

While the intersection over union (IoU) measures the pre-
cision of a detector based on the reconstruction of the ground
truth shape, the focus of our application is to signalize the
presence of foreign objects. Thus, we examine the detection
success (DS) which indicates whether the detector correctly
reports the presence of foreign objects (FO) on the charging
surface:

DS =
{
1, FOpresent = FOdetected

0, otherwise
(6)

Since unknown object types might reduce the quality of
the detection,we analyze the capability of detecting unknown
objects in the second experiment. While we reuse the models
which have been trained for each object category, we exam-
ine their performance when analyzing images of untrained
objects types.

In addition to the detection, we explore the time and the
resources required to execute the studied techniques. For
comparison, we examine the average image processing time
for each algorithm while running on a powerful as well as on
a lightweight embedded device. Accordingly, the algorithms
are executed on an Intel NUC5CPYH with an Intel Celeron
N3060 CPU (2.48 GHz) and on a Raspberry Pi 3 B+ with a
Broadcom BCM2837B0 CPU (1.4 GHz).

7.2 Detection

In this section, we present the results of the experiments. To
get a deeper insight, we first explore the effects of the granu-
larity parameter γ and the majority vote threshold θ and the
time required for training. While we train YOLOv8 with a
default configuration based on the training data of each indi-
vidual object category, for the following experiments we also
optimize our approach by identifying the best configuration
of γ and θ . Accordingly, we examine multiple combinations
of γ and θ , whereas for γ we define the range [5, 90] with
steps of 5 and for θ the range [0.1, 1]with steps of 0.1. Thus,
we select for each category the best combination of parame-
ters to achieve the highest IoU.

Based on the training, we illustrate the effects of γ and θ

in Figs. 8 and 9, respectively. The Figures summarize the IoU
andDS across all object categories by showing the arithmetic
mean at each data point. In general, we observe, IoU and DS
increase strongly until γ = 25. However, for γ > 25, DS
grows slower while IoU remains at the same level. For the
majority vote threshold, we observe a peak at θ = 0.5 of
IoU, while DS increases with decreasing θ .
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Fig. 8 Observed effect of the granularity parameter γ during training
of our approach

Fig. 9 Observed effect of the majority vote threshold θ during training
of our approach

Figure 10 illustrates an overview of the training time
required for different γ configurations in the 10 training
images scenario. The training is conducted on a system with
an Intel Core i7 10700k (3.8 GHz) CPU. For both tree con-
figurations, we observe that training time increases linearly
with rising γ . While the training time for Our 100 takes up
to around 8s, Our 5 requires than 2s. At the same time,
both YOLOv8n and YOLOv8m train significantly longer
with more than 1100 and 240s, respectively.

Known objects

For eachobject category in the knownobject condition, the
detectors have been optimized with 10 training images and
evaluated with 100 test images of the same object category.
Figures11 and 12 depict the arithmetic mean of the IoU and
DS results in the known object condition, whereas Table 2
presents the selected parameter combinations.

Fig. 10 Comparison of the training time required for YOLOv8 and our
approach with different γ configurations on a computer with an Intel
Core i7 10700k CPU

Fig. 11 Performance of our approach and YOLOv8 in terms of the
intersection over union (IoU) in the known object condition

Fig. 12 Performance of our approach and YOLOv8 in terms of the
detection success (DS) in the known object condition

In terms of precision (IoU), YOLOv8m outperforms the
other detectors in most categories. However, YOLOv8n is
not able to detect any objects but wrenches, which are on of
the the largest objects in the dataset. In contrast, both config-
urations of our approach perform in a comparable manner.
While we observe that our approach performs less precisely
than YOLOv8m in categories with a single object type, in the
more generic case “All” our approach exceeds the precision
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Table 2 Granularity parameter
γ and majority vote threshold θ

selected during optimization for
each object category

All Key Ring Hairpin Coin Glasses Wrench Can

γ Our 100 45 20 65 30 45 70 55 20

Our 5 30 20 55 30 55 65 35 50

θ Our 100 0.5 0.4 0.7 0.4 0.6 0.6 0.4 0.2

Our 5 0.4 0.3 0.7 0.4 0.7 0.5 0.4 0.3

of YOLOv8m. With regard to detection success (DS), our
approach outperforms YOLOv8m across all categories.

Unknown objects

In the unknownobject condition,we simulate the presence
of unknown object types on the charging surface. Therefore,
we reuse the detectors of the known object condition, which
have been optimized to detect objects of a specific type.
Accordingly, we use each detector to detect objects of all
other categories. Figures13 and 14 visualize the average IoU
and DS achieved by the detectors that have not been trained
with data of the corresponding object category.

As in the known object condition, YOLOv8n can only
detect wrenches, while YOLOv8m detects objects of all
types. Both configurations of our approach provide in most
categories similar results andoutperformYOLOv8m in terms
of IoU as well as DS. Across all categories, YOLOv8m

Fig. 13 Performance of our approach and YOLOv8 in terms of the
intersection over union (IoU) in the unknown object condition

Fig. 14 Performance of our approach and YOLOv8 in terms of the
detection success (DS) in the unknown object condition

achieves a DS that is lower than 60%. At the same time, both
configurations of our approach score a DS, which is around
80% or higher in most categories. In general, we observe
that the precision is lower for unknown object types than for
known object types. However, in the generic category, which
contains all object types, our approach scores results that are
comparable to the known object condition.

7.3 Execution time

Figures 15 and 16 illustrate the average image process-
ing time of the examined detectors. We observe that the
results are comparable across both devices. Independently
of the tree configuration, the processing time grows linearly
with increasing γ . However, while γ is lower than 65, our
approachwith 100 trees is faster thanYOLOv8m.At the same
time, our approach with 5 trees is significantly faster than our
approach with 100 trees, YOLOv8m and partly faster than
YOLOv8n.

7.4 Benefits and limitations

This section discusses benefits and limitations based on the
insights gained from the evaluation and operation of the cam-
era system.

Fig. 15 Comparison of the average image processing time when exe-
cuting on an Intel NUC. The x-axis shows the γ configurations in the
interval of [5,90] in steps of 5
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Fig. 16 Comparison of the average image processing time when exe-
cuting on an Raspberry Pi 3 B+. The x-axis shows the γ configurations
in the interval of [5,90] in steps of 5

Performance

Table 3 presents an overview of the difference between
the detection scores of our approach and YOLOv8m. On
average, across all object categories in the known condition,
YOLOv8m scores the highest precision and surpasses our
approachwith up to 15%higher IoU.However, in all the other
cases that are presented in Table 3 our approach outperforms
YOLOv8m with up to 18% higher IoU.

In terms of detection success, our approach achieves sig-
nificantly higher scores than YOLOv8m. For the generic cat-
egory “All”, we find that the improvement over YOLOv8m
ranges between 37 and 40%. Considering the average across
all object categories, we observe a delta with up to 46% DS
for Our 5.

In terms of foreign object detection, which is based on a
limited amount of data, YOLOv8n can only detect wrenches,
which are one of the largest objects examined. However, with
approximately 0.6 s on the Intel NUC and around 1.5 s on the
Raspberry Pi 3 B+, YOLOv8n provides substantially faster
image processing time than YOLOv8m with more than 4s
and close to 8 s respectively. At the same time, Our 5 with

Table 3 Difference between the detection scores of our approach and
YOLOv8m in the experiments with known and unknown object condi-
tions

Known IoU Known DS Unknown IoU Unknown DS
All ∅ (%) All (%) ∅ (%) All (%) ∅ (%) All (%) ∅ (%)

Our 100 11 −15 40 14 8 16 39 43

Our 5 13 −14 38 12 6 18 37 46

“All” represents the generic object category, and∅ represents the average
across all object categories

the configuration for the generic case “All” with γ = 30 and
θ = 0.4, provides a comparable execution timeasYOLOv8n.

Operation

The charging stations are located in areas that provide per-
manent illumination. While the light makes the taxi more
accessible for passengers during the night, it also enables
the vehicle tracking of the camera-based positioning sys-
tem. Since the evaluation images of the dataset have been
recorded by the camera of a positioning system, they do not
depict significant deviations with respect to the brightness.
We acknowledge that the presented approach may perform
less robust in a different application scenario. However, as an
integral part of the camera system, appropriate illumination
is continuously available during operation.

To summarize, YOLOv8n provides fast execution time.
However, it can only detect wrenches in our dataset. In con-
trast, YOLOv8m is significantly slower but can detect known
objectswith the highest precision.When it comes to unknown
objects,YOLOv8mperforms considerably less effective than
our approach, which learns the features of the charging sur-
face instead of specific objects characteristics. While our
approach detects unknown objects significantly more suc-
cessfully than YOLOv8m, we observe that fewer trees lead
to similar results but accelerate image analysis, which makes
it suitable for our embedded device scenario.

8 Conclusion

Wireless charging stations should not endanger persons or
objects in the environment. To avoid hazardous situations,
there are various systems that detect foreign objects that may
potentially pose a risk.Motivatedby the goal of increasing the
safety of wireless charging stations, we propose an approach
to augment existing foreign object detectionmechanisms. As
there are charging stations with a camera-based positioning
system, our approach utilizes the existing positioning camera
to automatically analyze the state of the charging surface.
We aim to provide an approach that can run on an embedded
device, to not extend the hardware of the existing positioning
system. Thus, the system should be resource-friendly, while
effectively reporting the presence of foreign objects.

In advance of utilizing the proposed technique, a training
stage is required. During training, target frames depicting
the charging surface will be divided into patches based on a
granularity parameter. In order to fit an Isolation Forest for
anomaly detection, features will be extracted from all rows
and columns of patches not containing a foreign object. After
training stage, a target image can be analyzed by dividing it
into patches according to the defined granularity parameter.
Then, all features of the rows and columns of each patch will
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be analyzed with the fitted Isolation Forest to detect anoma-
lies. Finally, a majority vote is used to determine whether a
foreign object exists in a certain patch by checking if more
than a defined threshold of the rows and columns contain a
foreign object.

To evaluate the capability of detecting foreign objects
on the charging surface, we conduct experiments with
known and unknown objects.We compare our approach with
YOLOv8, which is a state-of-the-art neural network utilized
in various application scenarios to detect foreign objects.
While our approachdetects foreign objectsmore successfully
than YOLOv8m, its image processing time is comparable to
that of YOLOv8n.

In addition to foreign objects, other hazards can arise,
e.g., people inserting their hands between the charging com-
ponents. Accordingly, there are several approaches that can
detect living objects [10, 20, 51, 61] in the context of wire-
less charging. To augment existing solutions, futureworkwill
focus on designing a camera-based approach that utilizes the
available hardware resources of the positioning system.
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