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Abstract
Point cloud analysis has a wide range of applications in many areas such as computer vision, robotic manipulation, and
autonomous driving. While deep learning has achieved remarkable success on image-based tasks, there are many unique
challenges faced by deep neural networks in processing massive, unordered, irregular and noisy 3D points. To stimulate
future research, this paper analyzes recent progress in deep learning methods employed for point cloud processing and
presents challenges and potential directions to advance this field. It serves as a comprehensive review on two major tasks in
3D point cloud processing—namely, 3D shape classification and semantic segmentation.

Keywords 3D classification · Computer vision · Point cloud · Semantic segmentation

1 Introduction

The advancement of 3D point cloud acquisition techniques
combined with the accessibility of acquisition devices has
enabled the use of real-world 3D models in a variety of
robotic applications, including autonomous driving, aug-
mented reality, and robotics. 3D scanners, Light Detection
and Ranging (LiDAR), RGB-D cameras (such as Kinect,
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RealSense, andApple depth cameras) [1], andphotogramme-
try technologies allow the creation of very large and precise
point clouds. Point clouds are the raw output of most 3D data
gathering devices and serve as a versatile geometric repre-
sentation of 3D data [2].

Effective point cloud analysis techniques are therefore
essential to understanding of 3D targets. While hand-crafted
features on point clouds have long been discussed in graphics
and vision, the recent overwhelming success of convolutional
neural networks (CNNs) for image analysis suggests that
extending CNN insights to the point cloud domain could be
beneficial. However, 3D point clouds are collections embed-
ded in continuous space, unlike images, which are structured
on regular pixel grids. This makes effective feature aggrega-
tion andmessage carryingmethods among points in the cloud
difficult to design, preventing the use of traditional deep net-
work employed in computer vision. To form latent space
mappings between input point coordinates and ground truth
labels, pioneering research [3, 4] and subsequent work [5–
11] have developed specialtymodules for feature aggregation
andmessage passing and yielded suitable neural networks for
point cloud data.

The focus of this review is on the analysis of deep learning
approaches for processing 3D point clouds for shape clas-
sification and semantic segmentation. We will also discuss
some of the most prominent publicly available datesets used
to handle diverse point cloud processing challenges. These
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datasets include ModelNet40 [12], ScanObjectNN [13],
ShapeNet [14], S3DIS [15], Intra [16], Semantic3D [17],
SemanticPOSS [18], andSydneyUrbanObjects [19].Although
there exists previous surveys of deep learning for 3D data,
such as [20–25], this review specifically aims to bridge the
gap by addressing techniques that previous surveys haven’t
comprehensively covered. it offers an immersive exploration
of the latest frontiers in point cloud analysis. The primary
objective of this paper is to equip readers with an extensive
understanding of the diverse representations present in point
clouds, with a particular emphasis on recent advancements
within thefield of rawpoint-basedmethodologieswhich have
surged to the forefront of innovation. The key contributions
of our paper are as follows:

1. Deep learning models for shape classification and seman-
tic segmentation of 3D point clouds, covering the most
up-to-date (2015–2023) advancements in this domain.

2. Our review goes beyond existing papers by encompassing
all existingmethods for point cloud classification and seg-
mentation that havenot been extensively discussedbefore.

3. We present a comprehensive taxonomy that encompasses
both supervised and unsupervised approaches, including
previously overlooked mesh-based methods. Our paper
addresses the notable gaps in existing review papers by
incorporating these previously unexplored methods.

4. Our analysis classifies and briefly discusses the myriad
models available, each leveraging distinct representations
and methodologies. This enables readers to grasp the
diverse range of approaches within the context of their
specific strengths and applications.

5. We conduct comprehensive comparisons of existing
methods using multiple publicly available datasets and
thoroughly expound upon the inherent strengths and lim-
itations embedded within these diverse approaches.

6. Our paper includes a thorough discussion of the current
challenges in the field and offers insightful directions for
future research.

Our paper’s novelty is evident not only in its coverage
of recent advancements but also in its meticulous attention
to previously overlooked areas in the literature. Addition-
ally, the unique structure of our paper serves as a remarkable
resource, catering to readers of all backgrounds—from new-
comers seeking an approachable entry point to experts
seeking a comprehensive taxonomy and insights into the lat-
est deep learning methods for point cloud processing.

The structure of this paper is as follows: Sect. 2 introduces
the datasets and evaluation metrics for the respective tasks.
Moving forward, Sects. 3 and 4 reviews the state-of-the-art
methods for 3D shape classification, while Sects. 5 and 6 pro-
vide comprehensive insights into the cutting-edge methods
for semantic segmentation. Section7 contains a quantitative

assessment of several indicators as well as future research
directions in this field and Sect. 8 concludes the paper.

2 Datasets and evaluationmetrics

2.1 Datasets

A high quality dataset is crucial for both training and evalu-
ating the effectiveness of machine learning algorithms. With
the rise of deep neural networks, a reliable, well annotated
and large datasets is even more crucial. In contrast to fea-
ture engineering used in traditional machine learning, deep
network models rely on data and its annotations to extract
appropriate feature embeddings. The purpose of 3D shape
classification is to identify objects in a 3D point cloud [33–
36] and assign a label to each discrete point. Thus, a large
amount of well annotated training data is necessary for the
model to train effectively.

In this paper, we collected a significant number of datasets
to examine the performance of the state-of-the-art deep learn-
ing methods for various point cloud applications. Tables 1
and 2 lists some of the most common large-scale datasets
currently used for 3D point cloud shape classification and
segmentation.

The purpose of 3D shape classification is to identify
objects in a 3D point cloud [33–36] and assign a label to
each discrete point. Thus, a large amount of well annotated
training data is necessary for the model to train effectively.
For each dataset inTable 1,wepresent the establishment year,
number of samples, number of classes and a brief description.
We also categorize these datasets into two types: real-world
datasets [13, 30] and synthetic datasets [12, 14]. Objects in
the synthetic datasets exhibit no occlusion and are complete.
Objects in real-world datasets may be partially occluded
while background noise, outliers and point perturbationsmay
be present in the data. ModelNet10 andModelNet40 [12] are
the most popular datasets employed for point cloud shape
classification.

Table 2 provides an overview of commonly used large-
scale datasets for 3D point cloud segmentation. These
datasets are carefully curated and labeled to ensure repre-
sentation of real-world scenarios and a wide range of object
classes and scene types.

The datasets can be broadly classified into two groups:
indoor datasets and outdoor datasets. In Table 2, we pro-
vide details such as the establishment year, number of points,
number of classes, sensors used, and a brief description for
each dataset. The data collection process involves various
sensors, including RGB-D cameras [37],Mobile Laser Scan-
ners (MLS) [27, 31, 38], Aerial Laser Scanners (ALS) [39,
40], and other 3D scanners [15]. Photogrammetry is often

123



A comprehensive overview of deep learning techniques for 3D point cloud classification and… Page 3 of 54 67

Table 1 Available point cloud datasets for classification

Dataset Year Type No. of Samples No. of classes Description

McGill 3D Shape Benchmark [26] 2005 Syn 454 19 Most of the models in this dataset
were created using CAD modeling
software and rest came from the
Princeton Shape Benchmark

Sydney Urban Objects [19] 2013 RW 588 14 It contains scans generated by
mobile platforms equipped with
outdoor 3D scanner Velodyne
LIDAR. Raw Velodyne range
images are used for feature learn-
ing, and interpolated depth images
are used for feature evaluation

Paris-rueMadame [27] 2014 RW 642 26 Data were obtained by the Mobile
Laser Scanning (MLS) technology
and correspond to a 160m long
street portion

ModelNet40 [12] 2015 Syn 12311 40 It is a complete andwell-maintained
collection of 3D CAD object mod-
els. The related point cloud data
points are evenly sampled from the
mesh surfaces, and they are further
preprocessed by being moved to the
origin and scaled into a unit sphere.
It has 2468 meshes designated for
testing and 9843 meshes for train-
ing

ModelNet10 [12] 2015 Syn 4899 10 A subset of ModelNet40 dataset
which contains aligned orientation
of the CAD models from 10 cat-
egories.The shapes are split into
80-20 ratios for training (3,991) and
test (908)

ShapeNetCore [14] 2015 Syn 51190 55 ShapeNet, contains over 300 mil-
lionmodels, with 220,000 classified
into 3,135 classes. ShaperNetCore
is a subset of the ShapeNet dataset

IQmulus [28] 2015 RW – 22 This dataset contains 3D MLS data
from a dense urban environment in
Paris (France), composed of 300
million points

Object Scans [29] 2016 RW 398 9 This dataset includes more than
10,000 3D scans of real objects

ScanNet [30] 2017 RW 12283 17 ScanNet is an RGB-D video collec-
tion with 2.5M views across 1513
scenes annotated with mesh sur-
faces and 3D camera postures

Paris-Lille-3D [31] 2017 RW 2479 50 The dataset comprises of a point
cloud created by the Mobile Laser
System that was collected over
around 2kms in two French cities
(Paris and Lille)

ScanObjectNN [13] 2019 RW 2902 15 ScanObjectNN is based on scanned
indoor scene data. With 2902 dis-
tinct object instances, it has 15,000
objects that are divided into 15 cat-
egories. Due of the background,
missing pieces, and deformations, it
is a difficult point cloud classifica-
tion dataset
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Table 1 continued

Dataset Year Type No. of Samples No. of classes Description

Intra [16] 2020 Syn 2025 2 IntrA is an open-access 3D intracra-
nial aneurysm dataset of 103 3D
models of whole brain vessels and
1909 blood vessel segments, includ-
ing 1694 healthy vessel segments
and 215 aneurysm segments for
diagnosis

ModelNet40-C [32] 2022 RW 12308 40 ModelNet40-C is built using Mod-
elNet40 as a foundation. With 15
typical and realistic corruptions, it is
the first comprehensive dataset for
3D point cloud corruption robust-
ness

Syn synthetic, RW real world type dataset

employed to map the three-dimensional distance between
objects.

2.2 Evaluationmetrics

Many evaluation metrics have been proposed to evaluate
different point cloud Application. To evaluate classification
model usually the metric ‘Accuracy’ is used. In general,
“accuracy” refers to the proportion of the model that pre-
dicts the correct outcome.

Accuracy = T P + T N

T P + T N + FP + FN

Here, TP, TN, FP, FN represent true positive, true negative,
false positive and false negative respectively.

For 3D point cloud classification, overall accuracy (OA)
and mean class accuracy (mAcc) are the most commonly
used performance standards. “OA” evaluates the average
accuracy across all test instances, while “mAcc” is used to
evaluate the mean accuracy across all shape classes. Nowa-
days, dice coefficient (F1) score is also used as a criterion for
performance evaluation in classification of 3D point clouds.

mAcc = 1

C

C∑

c=1

Accuracy

F1 = 2 × precision × recall

precision + recall

The F1 score is defined as the harmonic mean of precision
and recall. Where,

Precision = T P

T P + FP
and Recall = T P

T P + FN

In 3D point cloud segmentation, several performance
metrics are commonly used for evaluation, including mean

intersection over union (mIoU), overall accuracy (OA), and
mean class accuracy [15, 17, 31, 38]. These metrics pro-
vide insights into the quality of segmentation results. The
IoU metric calculates the intersection over union between
two sets, specifically the predicted bounding box (A) and the
ground-truth bounding box (B). This overlap ratio is particu-
larly relevant in segmentation tasks. The mIoU is the average
IoU computed for each category, providing an overall mea-
sure of segmentation accuracy. The IoU can be computed
using the following equation:

I oU Score(A, B) = |A ∩ B|
|A ∪ B|

These metrics enable a comprehensive assessment of the
accuracy and effectiveness of 3D point cloud application
algorithms.

3 3D point cloud classification

The subject of a 3D point cloud shape classification is to pro-
duce a label for the entire point cloud determining the shape
of the object it contains. Analogous to 2D image classifica-
tion,methods for 3D shape classification tasks usually follow
twomain stages. First the embedding of each point is learned
in order to generate a global embedding with an aggregation
encoder. Next the embedding is passed through several fully
connected layers to obtain the final shape label.

Based on the input data type, point cloud classification
models can be generally divided into five major classes, i.e.,
mesh basedmethods, projection-based methods, volumetric-
based methods, hybrid methods, and raw point-based meth-
ods. Mesh data is a common method for representing 3D
shapes in computer graphics, consisting of interconnected
vertices, edges, and faces. While mesh data provides an effi-
cient way to store and render 3D models, it also presents
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Table 2 Available point cloud datasets for segmentation

Name Year #Points Classes Sensors Description

Oakland [41] 2009 1.61M 5 MLS The data set consists of two subsets (part2 and part3),
each having a unique local reference frame and
100,000 3-D points in each file. Filtered, labeled, and
remapped from44 into 5 labels, the training/validation
and testing data have 36932/91579 and 1.3 M points,
respectively

IQmulus [28] 2013 300M 22 MLS Thedatabase comprises 300million points of 3DMLS
data from a densemetropolitan setting in Paris, France

Paris-rue-Madame [27] 2014 20M 27 MLS The Paris-rue-Madame dataset contains 3D Mobile
Laser Scanning (MLS) data from rueMadame, a street
in the 6th Parisian district (France) which comprises
an approximately 160m long street section

ScanNet [30] 2017 – 20 RGB-D ScanNet is a dataset of 2.5 million RGB-D images
of 1513 scans collected in 707 different places. It
contains richly annotated RGB-D scans of real-world
surroundings

S3DIS [15] 2017 695.9M 13 Matterport The dataset is collected in 6 large-scale indoor areas
and covers over 6,000 square meter. It has over 70,000
RGB images. It contains 272 3D room scenes of 13
categories

Semantic3D [17] 2017 4B 8 MLS Semantic3D is a point cloud database of scanned
urban outdoor scenes with over 3 billion points. It
has 15 training and 15 test scenes with 8 class labels
annotated. This extensive set of 3D point clouds with
labels includes a variety of urban scenes

Paris-Lille-3D [31] 2018 143.1M 50 MLS Paris-Lille-3D is a metropolitan 3D point clouds
dataset with 140 million points spanning a distance
of 2kms in two separate cities. The items were manu-
ally segmented, and each one was assigned to one of
50 classes

DublinCity [42] 2019 260M 13 ALS The dataset contains about 260 million labeled laser
scanning points out of 1.4 billion points. These are
carefully annotated into approximately 100,000 items
from the Dublin LiDAR point cloud in 2015

SemanticKITTI [38] 2019 4549M 28 MLS SemanticKITTI is a large-scale outdoor-scene dataset
based on the KITTIVision Benchmark for point cloud
semantic segmentation. It contains 43552 scans of out-
door scenes of 28 classes, of which 23201 are used for
training, while the rest of 20351 are reserved for test-
ing

PreSIL [43] 2019 3135M 24 LiDAR It has more than 50,000 frames and includes high-
definition images with full resolution depth informa-
tion, semantic image segmentation, point-wise seg-
mentation, and in-depth annotations for every vehicle
and person

SensatUrban [44] 2020 2847M 13 UAV
Photogrammetry

The collection includes sizable portions of two UK
cities, covering around 6 square kilometers of the city
landscape. Each 3D point in the dataset is assigned to
one of 13 semantic classifications
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Table 2 continued

Name Year #Points Classes Sensors Description

Swiss3DCities [45] 2020 226M 5 UAV
Photogrammetry

Swiss3DCities is a new outdoor urban 3D pointcloud
dataset, covering a total area of 2.7 square kilometers,
and is sampled from three Swiss cities with different
characteristics. It is manually annotated for semantic
segmentation using per-point labels

LASDU [46] 2020 3.12M 5 ALS An enhanced large-scale geometric dataset based on
ShapeNetCore with accurate semantic region anno-
tations, and detailed per-point labeling. It includes
31963 models in 16 different shape categories

Campus3D [47] 2020 937.1M 24 UAV
Photogrammetry

It is a well annotated 3D point cloud dataset for
different outdoor scene comprehension tasks. The
dataset was created by photogrammetric processing
of unmanned aerial vehicle (UAV) images taken at
the National University of Singapore (NUS)

SemanticPOSS [18] 2020 216M 14 MLS A huge number of dynamic instances are included
in 2988 different and challenging LiDAR scans that
make up the SemanticPOSSdataset for 3Dpoint cloud
segmentation. It employs the same data structure as
SemanticKITTI and is acquired at Peking University

Toronto-3D [48] 2020 78.3M 8 MLS Toronto-3D is a large-scale urban outdoor point cloud
dataset that was collected for semantic segmentation
by an MLS system in Toronto, Canada. This dataset
has 78.3 million points and spans a distance of nearly
1km of road

DALES [40] 2020 505M 8 ALS The Dayton Annotated LiDAR Earth Scan (DALES)
data set is a new, extensive aerial LiDAR data set with
more than 500 million hand-labeled points covering
an area of 10 square kilometers and eight object cate-
gories

RELLIs-3D [49] 2021 176.1M 20 LiDAR RELLIS-3D is a multi-modal dataset for off-road
robotics. It was gathered in an off-road setting and
includes 6235 photos and 13,556 LiDAR scan anno-
tations

WADS [50] 2021 3.6B 22 MLS It is thefirstmulti-modal datasetwith densepoint-wise
labeled sequential LiDAR scans acquired in harsh
winter conditions

H3D [51] 2021 73.4M – ALS The H3D (Honda Research Institute 3D) dataset is a
large-scale RGB-D dataset which was released by the
Honda Research Institute and contains over 100,000
images of 244 objects in various cluttered scenes, with
6D pose annotations for each object instance

SynLIDAR [52] 2022 19,482M 32 Synthetic
LiDAR

SynLiDAR is a 19 billion point synthetic LiDAR
sequential point cloud dataset with point-by-point
annotations of 32 semantic classes

STPLS3D-Real [53] 2022 – 6 UAV
Photogrammetry

The dataset includes outdoor images taken at four
actual locations. The aerial images were taken using a
crosshatch-style flight pattern, with specified overlaps
of 75–85% and flight heights of 25–70ms

STPLS3D-SyntheticV1 [53] 2022 – 7 UAV
Photogrammetry

For semantic and instance segmentation applications,
STPLS3D is an extensively annotated synthetic 3D
aerial photogrammetry point cloud dataset. It contains
16 square kilometers of landscape and up to 18 fine-
grained semantic categories

ALS Airborne Laser Scanning; MLS Mobile Laser Scanning
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challenges due to its inherent complexity and irregular-
ity. Projection-based methods project the unstructured point
cloud into 2D images (rasterization) to extract features. These
features are then fed into 2D or 3D convolutional networks.
In volumetric-based methods, the point cloud is discretized
into a regular grid, creating a volumetric representation of
the data. In contrast, point-based methods directly work on
raw points in the cloud. Point-based methods have become
increasingly popular since they reduce the computational
complexity of the network without any explicit information
loss. Papers that combine the benefits of both point and pro-
jection methods are referred to in this review as “hybrid”
techniques.

In Sect. 3, we have discussed the various models for 3D
shape classificationwith a focus on input data representation.
Meanwhile, Sect. 4 presents an in-depth analysis of method-
ologies exclusively reliant on raw point clouds as their input.
Table 3 provides a comprehensive comparison of the afore-
mentioned methods for 3D point cloud classification across
various datasets. The methods have been categorized based
on the representation of the input point cloud utilized in
each approach. Furthermore, the methods are arranged in
chronological order within their respective categories. The
evaluation of each method’s performance is based on met-
rics such as overall accuracy (OA), mean accuracy (mAcc),
mean average precision (mAP), and F1 score.

3.1 Mesh-basedmethods

A mesh is the most widely used structure for representing
surfaces in computer graphics and is comprised of a set of
faces and vertices that define surfaces on a three-dimensional
shape. As a result, this representation carries structural infor-
mation about the object’s surface. Furthermore, by pruning
vertices in amesh and removing extraneous data,mesh-based
representations provide amemory-efficientway to store com-
plete geometry details. However, this representation is often
overlooked as a suitable input modality for deep learning
algorithms. This could be attributed to the fact that a 3Dmesh
does not provide a grid-like pattern for representing the data
to be used in CNNs. In addition, weight sharing in mesh-
based approaches presents a difficult challenge because of
changes in the number of vertices, the permutation of adja-
cent vertices, and their pairwise distances.

To learn 3D shape representation from mesh data, Feng
et al. introduced a mesh neural network as MeshNet in [54].
This approach introduces face-unit and feature splitting and
proposes a general architecture with usable and efficient
building blocks. The face unit takes as input the features of
the vertices and edges that make up a single face and applies
convolutional operations to learn representations of that face.
These representations are then combined to formhigher-level
representations of themesh.MeshNet can effectivelymanage
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Fig. 1 A taxonomy of deep learning methods for 3D point cloud classification

mesh irregularity and complexity concerns for 3D shape rep-
resentation. Alternatively, MeshWalker [55] directly learns
the shape from a given mesh without the need for changing
the mesh data representations. This is done by examining the
geometry and topology of the mesh by randomly traversing
its surface via a number of walks. Each walk is arranged as a
list of vertices and imposes some degree of regularity on the
mesh.

Instead of randomly processing vertices, PolyNet [56]
can efficiently learn and extract features from a polygon
mesh representation of 3D objects using continuous polyno-
mial convolution (PolyConv). A PolyConv is a polynomial
function with learnable coefficients that develops continuous
distributions about the features of vertices sharing the same
ploygonal face. These convolutional filters distribute appro-
priate weights among the vertices in the local patches formed
by each vertice and its neighboring vertices on the surface
of the polygon. This process is invariant with respect to the
quantity of neighboring vertices, their permutations, the pair-
wise distances between them and the choice of central vertex
in a local patch. Although mesh-based learning has gained
significant popularity in the field of computer vision, it still
poses some challenges. This can be attributed to the fact that
3D meshes do not conform to the grid-like structure that is
typically used for representing data in convolutional neural
networks (CNNs).

In order to address the challenges with meshes, recent
advancements in this area have drawn inspiration from trian-
gle meshes and curvature maps used in computer graphics.
Muzahid et al. [57] recently introduced a new approach,
called CurveNet, using curvature directions to capture geo-
metric features from polygon meshes as inputs to a 3D CNN.
The data structure of CurveNet enables object class label
prediction by learning perceptually significant and salient
features. Curvature directions provide detailed surface infor-
mation from3Dobjects, allowing themodel to generatemore
precise and discriminative features for accurate object recog-

nition. Similarly, Ran et al. [58] proposed a novel approach,
Triangular RepSurf, that draws inspiration from triangle
meshes in computer graphics. It can be computed by prede-
fined geometric priors after surface reconstruction. RepSurf
has two variants: Triangular RepSurf and Umbrella RepSurf.
Triangular RepSurf represents each local region as a triangle
mesh, while Umbrella RepSurf represents each local region
as an umbrella-shaped structure [59].

Table 3 shows that RepSurf-U [58] outperforms all other
mesh-based methods on ScanObjectNN [13] dataset, achiev-
ing an OA of 84.6% and an mAcc of 81.9%. PolyNet
(unsqueezed) [56] achieves the highest OA and mAcc scores
on ModelNet 40 [12] dataset with 92.4% and 82.86%
respectively. On the other hand, among all other methods,
CurveNet [57] achieves the highest F1 score of 79.3% on
SydneyUrbanObjects dataset.

3.2 Projection-basedmethods

Projection-based methods are popular approaches for ana-
lyzing unstructured 3D point clouds. By projecting the point
cloud onto multiple two-dimensional (2D) planes (or views),
the data can be more effectively analyzed using standard
image processing techniques. The resulting view-wise fea-
tures can be collected and concatenated to produce a more
precise classification of the point cloud’s shape. However,
one significant challenge faced by projection-based methods
is in combining multiple view-wise features into a distinct
global representation that accurately captures the overall
structure of the point cloud.

Su et al. introduced a novel approach for processing
point clouds called Multi-View Convolutional Neural Net-
work (MVCNN) [60]. This approach involves representing
point clouds as a collection of 2D images captured from
multiple views obtained at different angles. Features are
extracted from these different views and then combined
into a global descriptor through max-pooling. However, one
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potential drawback of max-pooling is that it only retains
the most important parts of each view, resulting in a loss
of information. While MVCNN does not explicitly differ-
entiate between various views, it is beneficial to have some
understanding of the relationships between them.

One such method that specifically attempts to etablish
relationships between views of a point cloud is Group-view
Convolutional Neural Network (GVCNN) [61]. GVCNN
splits the set of views into groups based on their discrimi-
nation scores, thereby leveraging the relationship between
them for better results. Other techniques such as Multi-
View Harmonized Bilinear Pooling Network (MHBN) [62]
use harmonized bilinear pooling to combine local convolu-
tional features into amore compact and discriminative global
descriptor. Meanwhile, Yang et al. proposed a method that
exploits the inter-relationships between views and regions
using a relation network to generate a more accurate 3D
object representation [63]. Unlike earlier techniques, Wei et
al. presented the View Graph Convolutional Network (View-
GCN) which employs a directed graph to consider many
views simultaneously [64]. Other strategies such as Dom-
inant Set Clustering Network (DSCN) [65], and Learning
Multi-View 3DObject Recognition (LMV3D) [66] have also
been proposed to improve recognition accuracy.

Despite the popularity of methods that utilize raw point
data such as PointNet [3], some projection-based methods
have yielded promising classification results. For instance,
Abdullah et al. recently introduced a differentiable mod-
ule that predicts the optimal viewpoint for a multi-view
network [67]. MVTN overcomes the static nature of exist-
ing projection-based techniques by utilizing adaptive view-
points, which it learns to regress. These viewpoints are ren-
dered with a differentiable module to train the task-specific
network end-to-end. This results in the most appropriate
views for the task at hand.

In another study, Wang et al. [68] presented a multi-view
attention-convolution pooling network (MVACPN) frame-
work using Res2Net [69] to extract features from several
2D views. MVACPN effectively resolves the issues of fea-
ture information loss caused by feature representation and
detail information loss during dimensionality reduction by
employing the attention-convolution pooling method.

The results in Table 3 demonstrate that the MHBN [62]
method outperformed other projection-based methods with
the highestmean accuracy on theModelNet 40 [12] andMod-
elNet 10 datasets, while [66] obtained the highest overall
accuracy on ModelNet10 among all other approaches.

3.3 Volumetric-basedmethods

Another approach to produce structured data for processing
in traditional CNN architectures is to convert the point cloud
into a regular 3D grid of cubic voxels using a process called

voxelization. Each point in the point cloud is assigned to the
closest voxel center in the 3D grid, resulting in a volumetric
representation of the point cloud.

Wu et al. [12] introduced 3D ShapeNet, a deep belief-
based convolutional network that learns the distribution of
points from diverse 3D shapes. The network represents the
points as a probability distribution of binary variables on
voxel grids. Despite promising results, these methods strug-
gle to scale to dense 3D data, as memory consumption
increases cubically with resolution.

To enable hierarchical learning of features, Ghadai et al.
in [71] presented a flexible multi-level unstructured voxel
representation of spatial data in their MRCNN framework.
This method uses a multi-level voxelization framework,
described as a binary occupancy grid at two levels. This is
done to represent a 3D object with two distinct user-specified
resolutions of voxel grids. Despite the lack of structure in the
multi-level data representation, MRCNN can successfully
learn features, allowing for more effective and efficient 3D
shape classification.

To exclusively take voxelized data as input in an end-
to-end encoder-decoder CNN architecture, Cheng et al.
suggested a similar technique called (AF)2-S3Net [72]. This
method uses a multi-branch attentive feature fusion mod-
ule to learn both global contexts and local features in the
encoder. To promote generalizability, an adaptive feature
selection module with feature map re-weighting is utilized
on the decoder side to actively emphasize contextual infor-
mation from a feature fusion module.

Table 3 illustrates that AF2M [72] achieved the highest
overall accuracy on the ModelNet40 dataset. However, they
did not report their mAcc result. On the other hand, VRN
Ensemble [73] only provided their mAcc results for both
ModelNet40 andModelNet10 [12], which are highlighted in
bold and underlined in the table as they represent the highest
results for those datasets among all other approaches. Nev-
ertheless, it is worth noting that none of the papers recorded
their findings for the ScanObjectNN dataset.

3.4 Raw point-basedmethods

To address information loss and maintain point cloud details,
Raw Point-based Methods offer a promising alternative in
point cloud processing. These methods operate directly on
the raw point cloud data, avoiding the need for transforma-
tion into other representations. PointNet [3] pioneered this
approach by consuming unordered point sets and achieving
permutation invariance through symmetric functions. This
novel approach has facilitated the accurate analysis of raw
point cloud data, eliminating the need for conversion into
other representations. Raw point processing has been amajor
focus of recent models. Since a substantial body of work
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Fig. 2 The Stanford Bunny [70] model in different three-dimensional representations

exists on raw point processing, we will explore the different
learning strategies employed in these methods in Sect. 4.

3.5 Hybrid methods

As discussed earlier, point cloud classification techniques
fall under three broad categories of projection-based, voxel-
based or point-based neural network(NN) models to handle
3D input. All these approaches, however, are computation-
ally inefficient. The memory usage and computation cost of
voxel-based models expand cubically with input resolution.
In point-based networks, the majority of the computational
cost is on processing the sparse input points to produce data
conducive for the remainder of the network. This process
often leads to poor memory localization, rather than effec-
tive feature extraction. Approaches that combine a variety of
input data modalities are known as Hybrid methods. These
methods are relatively new, and an increasing number of
researchers are investigating various challenging questions
in this domain.

Integrating voxel-based learning with point-based learn-
ing into a unified framework has been the subject of recent
developments in point cloud classification. For example,
PointGrid, presented in [74], is a hybrid network that com-
bines the point and grid representations. To retrieve the
specifics of local geometry, it uses a 3D CNN to learn the
grid cells with fixed points. The PointGrid model employs
the same transformation mechanism as VoxNet [75], but it
can better describe scale changes, minimizes data loss, and
takes up less memory.

The development of real-time algorithms for 3D point
cloud classification is highly challenging due to the large size
and complexity of point clouds. To overcome this challenge,
Ben-Shabat et al. [76] utilized the 3D modified Fisher Vec-
tor (3DmFV) approach to convert an input point cloud into
3D grids, followed by CNNs to extract features and fully
connected layer to classify them in real-time. The 3DMFV
method is an extension of the widely-used 2D modified
Fisher Vector (mFV) method for image classification.

Specifically, it extends themFVmethod to 3Dpoint clouds
by encoding the gradient information of the 3D grids using a

Gaussian mixture model (GMM) and computing the Fisher
vector (FV) representation of the point cloud. In contrast
to the 3DmFV approach, PVNet [77] uses an embedding
network to project high-level global features collected from
multi-view images into the subspace of point clouds, which
are then blended with point cloud features using a soft atten-
tionmask. Finally, for fused features andmulti-view features,
a residual connection is used to achieve shape recognition.
To further improve accuracy, You et al., proposed to leverage
the relationship between a 3D point cloud and its multiple
views through a relation score module in PVRNet [78].

In DSPoint [79], Zhang et al. introduced a dual-scale
point cloud recognition approach that combines local fea-
tures and global geometric architecture. Unlike conventional
designs, DSPoint operates concurrently on voxels and points,
extracting local and global features. The network disentan-
gles point features through channel dimensions, enabling
dual-scale processing. It utilizes pointwise convolution for
fine-grained geometry parsing and voxel-wise global atten-
tion for long-range structural exploration. To align and blend
the local–global modalities, a co-attention fusion module
is designed for feature alignment, facilitating inter-scale
cross-modality interaction by incorporating high-frequency
coordinate information. In contrast, PointView-GCN [80]
uses multi-level Graph Convolutional Networks (GCNs) to
hierarchically aggregate shape features from single-view
point clouds. It captures geometrical cues andmultiview rela-
tions for 3D shape classification by leveraging partial point
cloud data from multiple views.

Voxel-based models have regular data locality and can
efficiently encode coarse-grained features. On the other hand
point-based networks preserve the accuracy of location infor-
mation with the flexible fields. Inspired by this, Zhang et al.
in [81] proposed a hybrid point cloud learning architecture,
called PointVoxel Transformer. The authors used the Sparse
Window Attention (SWA) module to gather coarse-grained
local features from nonempty voxels. The module not only
bypasses the expensive irregular data structuring and invalid
empty voxel computation, but also obtains linear computa-
tional complexity with respect to voxel resolution. In another
recent work by Yan et al., called PointCMT [82], both image
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and point cloud data is used to train the model for shape
analysis tasks. This approach combines the advantages of
both modalities, leveraging the rich texture information from
images and the geometric structure from point clouds.

In [83], the authors introduced the Embedding-Querying
(EQ-Paradigm), a unified approach for 3D point cloud under-
standing. EQ-Paradigm combines different task heads with
existing 3Dbackbone architectures, offering advantages such
as a unified framework for tasks like object detection, seman-
tic segmentation, and shape classification. It seamlessly
integrates with diverse 3D backbone architectures and effi-
ciently handles large point clouds.

Table 3 Shows the qualitative evaluation of classifica-
tion results of hybrid methods on various publicly available
datasets. The best-performing method on ModelNet 40
dataset was PointView-GCN, which achieved an OA of
95.40%, while PointCMT achieved the highest mAcc and
F1 scores among other methods on ScanObjectNN dataset.

4 Learning strategies for point based
methods in classification

Since the development of PointNet, numerous models have
emerged that can process raw point data directly without
information loss [3, 95–97]. These models employ diverse
techniques and network architectures to handle unstructured
data. In this section, we will discuss about the learning
strategies that these models have adopted for processing raw
points. We provide a detailed discussion of each category
and highlight their key differences and commonalities. Gen-
erally, methods in this category can be broadly categorized
into two groups depending on the type of supervision used
during training. Figure3 provides a comprehensive catego-
rization of raw point-based approaches for point cloud shape
classification.

Supervision in training Supervision in point cloud pro-
cessing involves training neural networks with labeled point
clouds to make predictions on unlabeled ones. It can be
divided into two categories: supervised and unsupervised
training. Supervised methods use labeled data to teach the
model how to predict outputs for new point clouds. Unsu-
pervised methods, on the other hand, identify patterns and
structures in the input data without prior knowledge of the
output. Both supervised and unsupervised methods are cru-
cial in point cloud processing, depending on the availability
and quality of labeled data. More details about supervised
and unsupervised methods of raw point cloud processing are
discussed in Sects. 4.1 and 4.2 respectively.

Table 4 presents a comprehensive comparison of raw
point-based methods for 3D point cloud classification across
various datasets. The methods are organized chronologically
within their respective categories. The table includes the

number of parameters reported by each paper and specifies
whether the model used only the point cloud or also incorpo-
rated point features such as normals as input. The evaluation
of each method’s performance is based on metrics such as
overall accuracy (OA), mean accuracy (mAcc), and F1 score.
Notably, the results for the Intra dataset are showcased and
obtained from [98].

4.1 Supervised training

Supervised learning for point cloud is a powerful approach
for processing and analyzing 3D data. It involves training
the system on labeled point clouds to extract meaningful
information such as object classification, semantic segmen-
tation, and registration [3, 99]. The algorithm is continuously
improved as it compares its predictions with the desired
output, allowing for more accurate results with each itera-
tion. However, supervised learning requires large amounts
of labeled data, which can be costly to obtain.

Supervised learning approaches can be classified into
seven categories: pointwise MLP, hierarchical-based, con
volution-based,RNN-based, graph-based, transformer-based,
and other methods. These categories can be further grouped
into feedforward and sequential training based on the model
architecture and data processing method.

Feed-forward training It is an extensively used technique
for processing point clouds, where the individual points of
the point cloud are passed through multiple layers in a neural
network to generate activation maps for successive layers.
This allows the model to capture complex relationships by
transforming the data through non-linear transformations.
Based on the operations performed on points in each layer,
this group encompasses the following methods: multilayer
perceptron (MLP)-based, convolution-based, hierarchical-
based, and graph-based architectures.

Sequential training It is a type of training method, the
model is trained on a sequence of input data. In point cloud
processing, the input data is treated as ordered points or
patches, processed in sequence. Unlike feed-forward train-
ing,where data flows from input to output, sequential training
uses the output from one time step as the input for the next.
This approach is beneficial in point cloud processing as it
allows the model to process local patches and predict fea-
tures for the next point. Sequential training is commonly used
in recurrent neural networks (RNNs) and transformer-based
architectures designed to process sequential data.

Supervised learning is a crucial element of point cloud
processing pipelines, particularly in cases where high accu-
racy is essential. In the following sections, we will provide
an in-depth discussion of the various network architectures
that are utilized for feature learning of individual points, with
supervised learning being the primary technique.
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Fig. 3 A taxonomy of deep learning approaches for raw point-based 3D point cloud classification

4.1.1 Multi-layer perceptron (MLP) methods

This method is based on fully connected layers that process
each point independently. The network takes a point cloud
and applies a set of transforms and shared MLPs to generate
features. These features are then aggregated to yield a global
representation using max-pooling that describes the original
input cloud. Another MLP classifies that global representa-
tion to produce output scores for each class.

PointNet [3], in particular, uses multiple MLP layers to
learn pointwise features independently and a max-pooling
layer to extract global features. The local structural infor-
mation between points cannot be captured since features are
learned independently for each point in PointNet. As a result,
Qi et al. presentedPointNet++ [4], a hierarchical network that
captures complex geometric patterns in the neighborhood
of each point. PointNet++ is inspired by standard CNNs,
which use a stack of convolutional layers to capture fea-
tures at different scales. The points within a sphere centered
at x are defined as the local region of the point x. In par-
ticular, one set abstraction level contains a sampling layer, a
grouping layer to identify local regions, and a PointNet layer.
PointNet [3] and PointNet++ [4] prompted a lot of follow-up
work due to their easy implementation and promising perfor-
mance. Mo-Net [100] has a similar design to PointNet, but it
takes a fixed collection of moments as input. SRINet [101]
uses a PointNet-based backbone to extract a global feature
and graph-based aggregation to extract local features after
projecting a point cloud to generate rotation invariant repre-
sentations.

Yan et al. [7] used an Adaptive Sampling (AS) module in
their work, PointASNL, to adaptively adjust the coordinates
and attributes of points. They sampled these points using

the Farthest Point Sampling (FPS) technique and presented a
local-non-local (L-NL)module to capture the local and long-
range relationships of the sampled points. Duan et al. [97]
proposed utilizing MLP to learn structural relational prop-
erties between distinct local structures using a Structural
Relational Network (SRN). Lin et al. [102] used a lookup
table to speed up the inference process for both the input and
function spaces learned by PointNet. On a consumer grade
computer, the inference time for theModelNet and ShapeNet
datasets is 1.5ms and32 times faster thanPointNet. InRPNet,
Ran et al. [103] studied the capabilities of local relation oper-
ators and developed the group relation aggregator (GRA), a
scalable and efficient module for learning from both low-
level and high-level relations. The module calculates a group
feature by aggregating the features of inner-group points that
are weighted by geometric and semantic relations. RPNet
contains approximately a third of the parameters of Point-
Net++ and double the computation speed.

Previousworks havemainly focused onutilizing advanced
local geometric extractors such as convolution, graphs, and
other mechanisms to capture 3D geometries. However, these
methods can lead to increased computational costs and
memory usage. To address this challenge, Ma et al. [104]
developed PointMLP, a pure residualMLP network that does
not rely on “complex” local geometrical extractors. Despite
this simplicity, PointMLP performs well due to highly opti-
mized MLPs. They developed a lightweight local geometric
affine module that adaptively modifies the point feature in
a local region to boost efficiency and generalization ability.
PointMLP trains two times faster and tests seven times faster
than the current models. PointNext [105] overcomes the lim-
itation of PointNet++ [4] by utilizing a thorough analysis of
model training and scaling techniques. The authors add sep-

123



67 Page 14 of 54 S. Sarker et al.

Fig. 4 A simplified architecture
of PointNet [3] where
parameters n and m denote point
number and feature dimension,
respectively

arable MLPs and an inverted residual bottleneck design to
PointNet++ to facilitate effective and efficient model scal-
ing. In PointStack [106], the authors proposed a method
that utilizes multi-resolution features and learnable pooling
to extract meaningful features from point cloud data. The
multi-resolution features capture the underlying structure of
the point cloud data at different scales, while the learnable
pooling enables the system to dynamically adjust the pooling
operation based on the features.

Table 4 shows that PointStack achieves the best results for
both the ModelNet 40 and ScanObjectNN datasets, while
PointASNL achieves the best result for the ModelNet 10
dataset, and PointNet++ for the Intra dataset among all the
MLP-based methods.

4.1.2 Convolutional methods

The architecture of convolution networks is an emulation of
biological processes and is closely related to the organiza-
tion of the visual cortex in animals. In this architecture, each
cortical neuron primarily responds to inputs within its recep-
tive field. Multiple neurons with overlapping receptive fields
respond to the entire field at a particular location. To extract
features from low-level to high-level features, convolutional
networks are stacked with convolution layers, rectified lin-
ear units, and pooling layers. The strengths of convolutional
networks include shared weights, translation invariance, and
feature extraction, as demonstrated in several works, such
as ApolloCar3D [107], and Semantic3D [17]. VoxNet [75]
illustrated the use of 2D grid kernels for processing 3D point
cloud data. However, due to the irregularity of point clouds,
constructing convolution kernels for 3Dpoint clouds presents
greater challenges compared to 2D counterparts. Modern 3D
convolution methods can be categorized as discrete or con-
tinuous based on the nature of the convolution kernel used.

Discrete convolution Discrete convolution for point
cloud processing involves defining a convolutional kernel
on a regular grid based on a set of surrounding points that
are located within a certain radius from the center point.
This technique leverages the structural properties of point
clouds, which can be seen as sets of irregularly spaced points
in a high-dimensional space. The weights of the kernel are

associated with the offsets of these surrounding points with
respect to the center point, and the convolution operation is
performed by sliding the kernel over the input point cloud,
multiplying the weights of the kernel with the corresponding
features of the surrounding points, and summing the prod-
ucts. This process is repeated at each location of the point
cloud, resulting in a new set of features that represent the
convolved output.

Pointwise-CNN [108] employs a unique approach to
define convolutional kernels on each grid by transform-
ing non-uniform 3D point clouds into uniform grids, with
weights assigned to all points that fall within the same grid.
The output of the current layer is determined by comput-
ing the mean features of all the nearby points on the same
grid, which are weighted and aggregated from all the grids.
Meanwhile, Mao et al. [109] introduced the interpolated
convolution operator InterpConv to assess the geometric
relations between input point clouds and kernel-weight coor-
dinates by superimposing point features onto neighboring
discrete convolutional kernel-weight coordinates.

To achieve rotation invariance, Zhang et al. [110] intro-
duced the RIConv operator, which transforms convolution
into 1D using a clustering approach on low-level rotation
invariant geometric features. Another approach proposed
by Zhang et al. [111] is shellConv, an efficient permuta-
tion invariant convolution for point cloud deep learning. It
partitions the local point neighborhood into concentric spher-
ical shells, extracting representative features based on the
statistics of the points inside. ShellNet [111] utilizes Shell-
Conv as the core convolution, enabling it to handle larger
receptive fields with fewer layers. However, it may not cap-
ture long-range point relations and overlooks certain patterns
present in point cloud structures. To overcome this limitation,
Point-PlaneNet [112] introduces a new neural network that
leverages spatial local correlations by considering the dis-
tance between points and planes. The proposed PlaneConv
operation learns a set of planes in Rn space, allowing it to
extract local geometric features from point clouds. Addition-
ally, DeltaConv [113] introduces anisotropic filters on point
clouds by mixing geometric operators from vector calculus,
which allows the network to be split into scalar and vector
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streams that can expressively represent directional informa-
tion.

Continuous convolution Current 3D convolution meth-
ods differ from traditional discrete convolution by defining
convolutional kernels in a continuous space. Instead of fixed-
size kernels sliding over a grid structure as in 2D convolution,
these methods assign weights to neighboring points based
on their spatial distribution relative to the center point. This
allows for a more flexible and detailed feature extraction pro-
cess, as 3D convolution can be seen as a weighted sum over
a subset of points in continuous space.

In RS-CNN [115], the convolutional network is based on
relation-shape convolution. The input to an RS-Conv kernel
is a local subset of points around a given point. The mapping
from low-level relations like Euclidean distance and rela-
tive location is learned using an MLP to high-level relations
between points in the local subset.Using a collection of learn-
able kernel points, Thomas et al. [116] suggested both rigid
and flexible Kernel Point Convolution (KPConv) operators
for 3D point clouds. Liu et al. in their workDensePoint [117],
described comvolution as a Single-layer Perceptron (SLP)
with a nonlinear activator. To fully exploit the contextual
information, features are learned by concatenating all of the
previous layers’ features. The convolution kernel is divided
into spatial and feature components by ConvPoint [118].
The spatial part’s positions are chosen at random from a
unit sphere, and the weighting function is trained using a
basic MLP. In PointConv [119], convolution is defined as a
Monte Carlo estimation of a continuous 3D convolution with
regard to an important sample. A weighting function and a
density function are used in the procedure, which is accom-
plished using MLP layers and kernelized density estimation.
The 3D convolution is further simplified into two opera-
tions: matrix multiplication and 2D convolution, in oreder to
increase memory and computational performance. Its mem-
ory consumption can be lowered by 64 times with the same
parameter settings.

Several methods have been proposed to handle large-scale
point cloud scenes using feature fusion, such as Spider-
CNN [120]. SpiderCNN uses a unit called SpiderConv that
extends convolution operations on regular grids by combin-
ing a step function with a Taylor expansion defined on the k
nearest neighbors. The Taylor expansion captures the inher-
ent local geometric fluctuations by interpolating arbitrary
values at the vertices of a cube, whereas the step function
catches the coarse geometry by storing the local geometric
distance. PCNN[121] is another 3Dconvolution network that
utilizes the radial basis function for processing point clouds.
Its point convolution operator is derived from extension oper-
ators that enable the transformation of point data into a
continuous function space. SPHNet [122], which is based
on PCNN [121], achieves rotation invariance by integrating

spherical harmonic kernels during volumetric function con-
volution.

Designing efficient CNNs for point cloud analysis is
a challenging task, requiring a delicate trade-off between
accuracy and speed. Although CNNs have achieved remark-
able success in image and pattern recognition, increasing
the network complexity often results in decreased speed.
This challenge is further amplified when dealing with point
clouds, as they can contain a large number of points with
varying densities.

Table 4 includes models from both discrete and continu-
ous convolution methods. The results indicate that DeltaNet
attained the highest overall accuracy (OA) on both the Mod-
elNet40 and ScanObjectNN datasets. DensePoint, on the
other hand, achieved the best OA on theModelNet10 dataset.
Moreover, PointConv exhibited the highest F1 score on the
Intra dataset compared to other convolution-based methods.

4.1.3 Hierarchical methods

Hierarchical data structures like kd-trees and octrees are
commonly employed in point cloud processing to construct
networks. These networks represent the point cloud in a
structuredmanner and learn features hierarchically, from leaf
nodes to root nodes. By partitioning the point cloud into sub-
sets of points at different levels of detail, thesemethods allow
the model to capture local details at lower levels and global
context at higher levels. As a result, these methods are effec-
tive in reducing the computational complexity of point cloud
processing tasks.

In their paper, Lei et al. [123] introduced an octree
guided CNN with spherical convolutional kernels applied
to each layer corresponding to the octree layers. Compared
to OctNet [124], which relies on octree data structures,
Kd-Net [125] utilizes multiple K-d trees with different split-
ting directions, with non-leaf node representations computed
using an MLP. Parameter sharing based on node the splitting
type enables Kd-Net to efficiently learn hierarchical features
while managing memory consumption.

To achieve feature learning and aggregation, 3DCon-
textNet [126] utilizes a balanced K-d tree to learn and
aggregate features, leveraging both local and global contex-
tual cues. MLPs are employed to model the relationships
between positions, allowing feature learning at each level.
The non-leaf nodes compute features from their children
nodes using MLP and max pooling, enabling classification
until reaching the root node. SO-Net [127] establishes its
structure through point-to-node k-nearest neighbor search
and a Self-Organizing Map (SOM), ensuring permutation
invariance. The SOM simulates the spatial distribution of
point clouds by setting the positions of points, while individ-
ual point features are learned through fully connected layers.
Pre-training with a point cloud auto-encoder is proposed to
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Fig. 5 Different types of point convolution [114]

enhance network performance in various applications. How-
ever, processing large and complex scenes with this network
may encounter limitations due to themassive amount of point
cloud data involved.

DRNet [128] is another hierarchical network that learns
local point features from the point cloud in different reso-
lutions. The DRNet architecture consists of two branches: a
Full-Resolution (FR) branch and a Multi-Resolution (MR)
branch. The FR branch learns local point features from the
full-resolution point cloud. TheMR branch learns local point
features from downsampled versions of the point cloud. The
two branches are then fused to produce a final feature repre-
sentation.

Table 4 clearly illustrates that among the hierarchical
methods, So-Net consistently outperformed all others across
the assessed datasets.

4.1.4 Graph-based methods

Graph-based networks provide an alternative approach to
analyzing point clouds by representing points as vertices in a
graph connected by directed edges. These networks operate
in either the spatial or spectral domain for feature learning.
In the spatial domain, MLP-based convolutions are applied
to spatial neighbors, and pooling generates coarsened graphs
by aggregating neighboring features. In the spectral domain,
convolutions are achieved through spectral filtering using the
eigenvectors of the graph Laplacian matrix [129, 130]. Each
vertex is assigned features like coordinates, intensities, or
colors, while geometric properties between connected points
are assigned to edges. Numerous graph-based approaches
have been proposed for point cloud analysis, each with its

unique method of generating and manipulating graphs in the
feature space.

PointWeb [131], based on PointNet++ [4], uses Adap-
tive Feature Adjustment (AFA) to improve point features in
the local neighborhood context, generating a graph in the
feature space that is dynamically modified after each layer.
DGCNN [132] also generates a graph in the feature space,
and an MLP is used for feature learning for each edge in
EdgeConv’s core layer. Channel-wise symmetric aggrega-
tion is used for edge features associated with each point’s
neighbors. In addition, LDGCNN [133] improves the per-
formance of DGCNN [132] by removing the transformation
network and linking the hierarchical features from different
layers.

Liu et al. [134] presented a Dynamic Points Agglomera-
tion Module (DPAM) based on graph convolution to reduce
the process of point agglomeration that includes sampling,
grouping, and pooling to a single step. This is accomplished
by multiplying the agglomeration matrix and the points fea-
ture matrix. A hierarchical learning architecture is built by
stackingmultipleDPAMsbased on thePointNet architecture.
DPAM dynamically exploits the relationship between points
and agglomerates points in a semantic space, as opposed
to PointNet++’s hierarchical methodology [4]. On the other
hand, KCNet [135] takes a different approach by learning
features based on kernel correlation to exploit local geo-
metric structures. By defining kernels as a collection of
learnable points, KCNet characterizes the geometric types
of local structures, and subsequently determines the affilia-
tion between the kernel and a specific point’s neighborhood.

In RGCNN [136], a graph is built by linking each point
in the point cloud to all other points and updates the graph
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Laplacian matrix in each layer. The loss function includes
a graph-signal smoothness prior to improve the compara-
bility of features among nearby vertices. Alternatively, in
PointGCN [137], a graph is constructed from a point cloud
using k nearest neighbors, and each edge is weighted using
a Gaussian kernel. The graph spectral domain is utilized
to design convolutional filters using Chebyshev polynomi-
als. To capture both global and local properties of the point
cloud, global pooling and multi-resolution pooling tech-
niques are employed. Graph convolutional networks (GCN)
surpass other point-based models by preserving data gran-
ularity and utilizing point interconnectivity. However, data
structure operations such as Farthest Point Sampling (FPS)
and neighbor point querying consume a significant amount
of time in point-based networks, limiting their speed and
scalability.

To address this issue, Xu et al. [9] introducedGrid-GCN, a
fast and scalable method for point cloud learning. Grid-GCN
utilizes Coverage-Aware Grid Query (CAGQ), a data struc-
turing technique that enhances spatial coverage and reduces
theoretical temporal complexity by leveraginggrid space effi-
ciency.CAGQachieves a 50%speedup compared to common
sampling methods like FPS and Ball Query.

Additionally, Yang et al. [153] proposed PointManifold,
a point cloud classification method based on graph neu-
ral networks and manifold learning. PointManifold employs
various learning algorithms to embed point cloud features,
enhancing the assessment of geometric continuity on the
surface. By acquiring the point cloud nature in a low-
dimensional space and combining it with features in the
original 3D space, the representation capabilities and clas-
sification network performance are improved.

In [154], a novel method called Convolution in the
Cloud (CIC) is proposed for learning deformable kernels in
3D graph convolution networks. CIC involves dynamically
deforming a cloud of kernels to match the local structure of
the point cloud. It consists of two stages: randomly sam-
pling initial kernels and iteratively updating them based
on a loss function that measures the discrepancy with the
ground truth label. Meanwhile, Xu et al.’s Position Adaptive
Convolution (PAConv) [155] presents a generic convolution
procedure for 3D point cloud analysis. PAConv dynami-
cally builds convolution kernels using self-adaptively learned
weight matrices from point positions via the ScoreNet mod-
ule. This data-driven approach allows PAConv to handle
irregular and unordered point cloud data more effectively
than traditional 2D convolutions. CurveNet, a proposition
by Xiang et al. [156], enhances point cloud geometry learn-
ing through a novel aggregation strategy. CurveNet utilizes
a curve grouping operator and a curve aggregation opera-
tor to generate continuous sequences of point segments and
effectively learn features.

Table 4 presents a comparative analysis of multiple graph-
based techniques for 3D point cloud classification. Notably,
CurveNet [156] demonstrated remarkable performance with
the highest OA of 94.20% on the ModelNet 40 dataset,
outshining other graph-based methods. Meanwhile, Grid-
GCN [9] demonstrated exceptional performance by securing
the top OA and mAcc on the ModelNet 10 dataset among all
methodologies evaluated.

4.1.5 Recurrent neural network-based methods

RNNs are popular for processing temporal data and have
been applied in point cloud analysis to capture local context.
These neural networks utilize their internal state to handle
variable length sequences of inputs, making themwell-suited
for point cloud data. Various RNN-based techniques have
been developed, highlighting the significance of local context
in point cloud analysis.

RCNet [157] constructs a permutation-invariant network
for 3D point cloud processing using regular RNN and
2D CNN. After partitioning the point cloud into parallel
beams and sorting them along a specified dimension, each
beam is input into a shared RNN. For hierarchical feature
aggregation, the learnt features are used as an input to an
efficient 2D CNN. RCNet-E is proposed to ensemble multi-
ple RCNets with varied partitions and sorting directions to
improve its description ability. Another RNN-based model,
Point2Sequence [158], identifies correlations between dis-
tinct locations in local point cloud regions. To aggregate local
region features, it treats features learnt from a local region at
many scales as sequences and feeds these sequences from all
local regions into an RNN-based encoder-decoder structure.
Several other methods also learn from both 3D point clouds
and 2D images.

According toTable 4, Point2sequence achieves the highest
overall accuracy on the ModelNet 40 dataset, while RCNet-
E performs best on the ModelNet 10 dataset over all other
RNN-based methods.

4.1.6 Transformer-based methods

One of the most significant recent breakthroughs in natural
language processing and 2D vision is the Transformer [209],
which has demonstrated superior performance in captur-
ing long-range relationships. The success of Transformer
has also led to notable improvements in point-based mod-
els through the use of self-attention. With the attention
mechanism, the Transformer can weigh the relevance of
each point to the others, enabling better feature extraction
and discrimination. The development of Transformer-based
architectures [160, 162] has greatly enhanced performance.
Nevertheless, the bottleneck of these models still remains
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Fig. 6 Illustration of a
graph-based network

the time-consuming operation of sampling and aggregating
characteristics from irregular sites.

Point Attention Transformers (PATs) [159] learns high-
dimensional features by encoding each point’s absolute and
relative positions with respect to its neighbors. To extract
hierarchical features, it utilizes a trainable, permutation-
invariant, and non-linear end-to-end Gumbel Subset Sam-
pling (GSS) layer, which captures relationships between
points using Group Shuffle Attention (GSA). This unique
approach enables themodel to capture local structures within
each group while also considering the global context of
the entire point cloud. Zhao et al. [160] proposed a similar
model, the Point Transformer,which employs a self-attention
module to retrieve spatial characteristics from local neighbor-
hoods around eachpoint, and encodes positional information.
The network has a highly expressive Point Transformer layer,
which is invariant to permutation and cardinality, making it
ideal for point cloud processing.

Point Transformer V2 [166] is an enhanced version
of the Point Transformer architecture for 3D point cloud
processing. It introduces two innovations: grouped vector
attention and partition-based pooling. Grouped vector atten-
tion reduces computational cost by performing attention only
within groups of points, maintaining accuracy while learning
long-range dependencies. Partition-based pooling improves
accuracy on large point clouds by dividing them into smaller
partitions andpooling featureswithin eachpartition, enabling
global feature learning with reduced computational load.
Engel et al. [162] introduced another model called Point
Transformer, which operates directly on unordered and
unstructured point sets. The Point Transformer uses a local–
global attention mechanism to capture spatial point relations
and shape information, allowing it to extract both local and
global aspects of the point cloud. SortNet, a component of
Point Transformer, produces input permutation invariance by
selecting points based on a learned score. The Point Trans-
former produces a sorted and permutation invariant feature
list that can be utilized directly in standard computer vision
applications.

Perceiver, another attention-based architecture introduced
in [163] is a scalable attention-based architecture for high-
dimensional inputs, such as images, movies, and audio, with-
out domain-specific assumptions. It utilizes cross-attention
and latent self-attentionblocks to process afixed-dimensional
latent bottleneck. 3Dmedical point Transformer (3DMedPT)
[98] is an attention-based model specifically designed for
medical point clouds for examining the complex biological
structures that are vital for disease detection and treatment.
Insufficient training samples of medical data can lead to poor
feature learning. To enhance feature representations in med-
ical point clouds, it employs an attention module to capture
local and global feature interactions, position embeddings for
precise local geometry, and Multi-Graph Reasoning (MGR)
for global knowledge transmission.

Similarly, Berg et al. [164] propose the two-stage Point
Transformer-in-Transformer (Point-TnT) technique, which
combines both local and global attention mechanisms by
producing patches of local features via a sparse collection
of anchor points. Self-attention can then be used on both the
points within the patches and the patches themselves, result-
ing in a highly effective method for processing unstructured
point cloud data. LCPFormer [167] is a recent transformer-
based architecture for 3D point cloud analysis. LCPFormer
introduces a novel local context propagation (LCP) mod-
ule that enables the model to learn long-range dependencies
between points in a point cloud. The LCP module works by
first dividing the input point cloud into local regions. Then, it
propagates the features of each local region to its neighbor-
ing local regions. This allows the model to learn long-range
dependencies between points that are not directly connected.

To learn local and global shape contexts with reduced
complexity Park et al. introduced SPoTr [168], a self-
positioning mechanism that works by first randomly select-
ing a subset of points from the input point cloud. These points
are then used to create a local coordinate system. The remain-
ing points are then projected into this local coordinate system.
This allows the model to learn local shape contexts with-
out the need for global attention. Wu et al. [170] proposed
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Fig. 7 Illustration of the transformer based encoder architecture [210]

an Attention-Based Point Cloud Edge Sampling (APES) for
sampling points from a point cloud based on their importance
to the outline of the object. The attentionmechanism inAPES
is based on the self-attention mechanism used in transformer
models. The self-attention mechanism computes the atten-
tion weights between each point in the point cloud and all
other points in the point cloud. The points with the highest
weights are then selected to form a new, downsampled point
cloud.

Table 4 presents a comparison of various pointwise
transformer-basedmethods on different datasets. Here, PTv2
[166] achieved the highest OA and mAcc on the ModelNet
40 dataset, while SPoTr [168] showed best performance on
ScanObjectNN dataset.

4.1.7 Other methods

Apart from the methods discussed earlier, there are several
techniques that cannot be neatly categorized into a specific
class. Thesemethods utilizemultiplemodalities to learn intri-
cate representations of point clouds, thereby enabling them
to capture intricate patterns and relationships. Hence, in this
section, we will explore these unconventional methods that
transcend traditional classification boundaries, providing a
comprehensive overview of each.

With prior knowledge of kernel positions and sizes,
RBFNet [171] aggregates features from sparsely distributed
Radial Basis Function (RBF) kernels to explicitly charac-
terize the spatial distribution of points. PointAugment, an
auto-augmentation framework introduced by Li et al. [211],
optimizes and augments point cloud data by automatically
learning each input sample’s shape-wise transformation and
pointwise displacement. Prokudin et al. [212] transform the
point cloud into a vectorwith a short fixed length by encoding
the point cloud as minimal distances to a uniformly dis-
tributed basis point set sampled from a unit ball. Finally,
common machine learning techniques are applied to pro-
duce the encoder representation. Cheng et al. [175] present
the Point Relation-Aware Network (PRA-Net), comprising

two modules: intra-region structure learning (ISL) and inter-
region relationship learning (IRL). The ISL module can
adaptively incorporate local structural information into point
features, while the IRL module dynamically and effectively
preserves inter-region relations using a differentiable region
partition method and a representative point-based strategy.

FG-Net [173] proposes a comprehensive deep learning
framework for large-scale point cloud understanding that
achieves accurate and real-time performance with a single
GPU. The network incorporates a noise and outlier filter-
ing mechanism, utilizes a deep CNN to exploit local feature
correlations and geometric patterns, and employs efficient
techniques such as inverse density sampling and feature
pyramid-based residual learning to address efficiency con-
cerns. Another recent work in this area is proposed by
Xu et al. in GDANet [176]. It introduces the Geometry-
Disentangled Attention Network, which dynamically disen-
tangles point clouds into contour and flat parts of 3D objects.
It utilizes the disentangled components to generate holistic
representations and applies different attention mechanisms
to fuse them with the original features. The network also
captures and refines 3D geometric semantics from the disen-
tangled components to supplement local information.

PointSCNet [177] captures the geometrical structure and
local region correlation of a point cloud using three key com-
ponents: a space-filling curve-guided sampling module, an
information fusion module, and a channel-spatial attention
module. The sampling module selects points with geometri-
cal correlation using Z-order curve coding. The information
fusion module combines structure and correlation informa-
tion through a correlation tensor and skip connections. The
channel-spatial attention module enhances critical sites and
feature channels for improved network representation. Lu et
al. [178] proposed APP-Net, a network that utilizes auxiliary
points and push and pull operations to efficiently classify
point cloud data. The auxiliary points guide the network’s
attention to important regions, while the push and pull oper-
ations allow for efficient computation and improved feature
representation.
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PointMeta [179] byLin et al. is a unifiedmeta-architecture
for point cloud analysis. It abstracts the computation pipeline
into fourmeta-functions: neighbor update, neighbor aggrega-
tion, point update, and position embedding. These functions
enable learning of local and global features, point refinement,
and encoding of spatial relationships. PointMeta offers flexi-
bility and efficiency in designingpoint cloud analysismodels.
However, a detailed computational complexity analysis is not
provided in the paper.

Table 4 shows that among the models in other methods,
APP-Net achieved the highest overall accuracy (OA) score of
94.00% on theModelNet 40 dataset. However, among all the
models across different methodologies, FG-Net emerged as
the leader in mean accuracy (mAcc) with a score of 93.10%.
On theScanObjectNNdataset, PRA-Net achieved the highest
mAcc score, and GDANet achieved the highest OA score.

4.2 Unsupervised training

Unsupervised representation learning is a technique that aims
to learn useful and informative features from unlabeled data.
In the context of point cloud understanding, this approach
involves training deep neural networks to extract latent fea-
tures from raw, unannotated point cloud data. Unsupervised
representation learning for point clouds has gained signifi-
cant attention in recent years due to its ability to reduce the
need for labeled data and improve the performance of various
point cloud applications including natural language under-
standing [213], object detection [214], graph learning [215],
and visual localization [216]. By pre-training deep neural
networks on unlabeled data, unsupervised learning uncovers
latent features without human-defined annotations, reducing
reliance on labeled data. It can be categorized into generative
modeling, where synthetic point clouds are generated, and
self-supervised learning, which involves predicting missing
information from partially observed point clouds. This active
research field holds promise for improving the accuracy and
efficiency of point cloud processing tasks.

4.2.1 Generative model-based methods

Unsupervised approaches like generative adversarial net-
works (GANs) [217] and autoencoders (AEs) [184] learn
representation of provided data [121]. AEs consist of an
encoder, internal representation, and decoder, and are widely
used for data representation and generation. They can cap-
ture point cloud irregularities and address sparsity during
upsampling. GANs, on the other hand, consist of a generator
and discriminator, aiming to generate realistic data samples.
GANs learn to produce new data with similar statistics as the
training set.

FoldingNet [180] is an end-to-end unsupervised deep
autoencoder network that uses the concatenation of a vec-

torized local covariance matrix and point coordinates as its
input. Hassani and Haley [184] suggested an unsupervised
multi-task autoencoder to learn point and shape features,
inspired by Inception module [218] and DGCNN [132].
Multi-scale graphs are used to build the encoder. The decoder
is built utilizing three unsupervised tasks: clustering, self-
supervised classification, and reconstruction, all of which are
combined and trained together with a multi-task loss.

Latent-GAN [182] is one of the first networks to use GAN
for raw point clouds. The authors discuss various methods
such as autoencoders, variational autoencoders (VAE) [219],
GAN, and flow-based models that have been proposed for
learning effective representations of 3Dpoint clouds and gen-
erating new ones. 3DAAE [220] can learn the representation
of 3D point clouds by using an end-to-end approach. This
model generates output by first learning a latent space for 3D
shapes and then using adversarial training. The inventors of
3DAAE created a 3D autoencoder that takes 3D data as input
and produces a 3D output.

3D point-capsule networks [122] have been developed to
address the sparsity issue in point clouds while preserving
their spatial arrangements. This network extends the 2D cap-
sule networks to the 3D domain and uses an autoencoder to
handle the sparsity of point clouds. In contrast, 3DPointCap-
sNet [185] incorporates pointwise MLP and convolutional
layers to extract point-independent features and employs
several maxpooling layers to derive a global latent represen-
tation. Unsupervised dynamic routing is then used to learn
representative latent capsules. In addition, Pang et al. [195]
introduced a novel approach using masked autoencoders for
self-supervised learning of point clouds. They addressed
challenges related to point cloud properties, such as loca-
tion information leakage and uneven density, by dividing the
input into irregular patches, applying random masking, and
using an asymmetric design with shifting mask token opera-
tion. This enabled a transformer-based autoencoder to learn
latent characteristics from unmasked patches and reconstruct
the masked ones.

Point clouds are discrete samples of a continuous three-
dimensional surface. As a result, sample differences in the
underlying 3D shapes are inescapable. The conventional
autoencoding paradigm requires the encoder to record sam-
pling fluctuations in the same way that the decoder must
recreate the original point cloud. Yan et al. [193] introduced
the Implicit Autoencoder (IAE) to overcome the challenge of
sampling fluctuations in point clouds. By using an implicit
decoder instead of a point cloud decoder, IAE generates a
continuous representation that can be shared across multi-
ple samplings of the same model. This approach allows the
encoder to focus on learning valuable features by ignoring
sampling changes during reconstruction.

Point-BERT [196] is a more advanced version of BERT
that employs transformers to generalize 3D point cloud
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Fig. 8 The general pipeline of unsupervised representation learning
on point clouds. Neural networks are trained on unannotated point
clouds using unsupervised learning, followed by transfer of learned rep-

resentations to downstream tasks for network initialization. Pre-trained
networks can then be fine-tuned with a small amount of annotated task-
specific point cloud data [221]

learning. A point cloud tokenizer with a discrete Varia-
tional AutoEncoder (dVAE) is intended to generate discrete
point tokens containing significant local information once
the network separates a point cloud into many local point
patches. Then it feeds some patches of input point clouds
into the backbone transformers, using random masking.
Under the supervision of point tokens obtained by the tok-
enizer, the pre-training goal is to recover the original point
tokens at the masked places. In [200], Zhang et al. intro-
duced Point-M2AE, a pre-training framework for learning
3D representations of point clouds. It utilizes a multi-scale
masking strategy, pyramid architectures, local spatial self-
attention, and complementary skip connections to capture
detailed information and high-level semantics of shapes.
This paper also highlights the significance of a lightweight
decoder in Point-M2AE, which contributes to the recon-
struction of point tokens and promotes the quality of shape
representation. [199] discusses another method for learning
representations for 3D point clouds using masked autoen-
coders. In the proposed method, a portion of the points in the
point cloud are masked out and the masked autoencoder is
trained to reconstruct the masked out points.

To addresses the challenge of limited 3D datasets for
learning high-quality 3D features, in [204], the authors pro-
posed Image-to-PointMaskedAutoencoders (I2P-MAE).By
leveraging 2D pre-trained models, I2P-MAE reconstructs
masked point tokens using an encoder-decoder architecture.

It employs a 2D-guided masking strategy to focus on seman-
tically important point tokens and capture key spatial cues
for significant 3D structures. Through self-supervised pre-
training andmulti-view 2D feature reconstruction, I2P-MAE
enables superior 3D representations from 2D pre-trained
models. In their paper [203], Dong et al. proposed ACT
(Autoencoders as Cross-Modal Teachers), a method for
training 3D point cloud models using pretrained 2D image
transformers. ACT involves two steps: pretraining a 2D
image transformer on a large image dataset and fine-tuning it
on a 3D point cloud dataset. The fine-tuning process utilizes
the 2D image transformer to generate a latent representation
of the 3D point cloud, which is then used to train the 3D point
cloud model.

4.2.2 Self-supervised methods

Self-supervised learning in point cloud processing is a pow-
erful technique that leverages unannotated data to improve
performance across various applications. By incorporating
geometric and topological priors, models can learn feature
representations. This involves training a model to predict
local geometric properties, such as normals or curvatures,
using the point positions as input.

Due to the complex nature of 3D scene understanding
tasks and the vast differences provided by camera per-
spectives, illumination, occlusions, and other factors, there
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are yet no effective and generalizable pre-trained models
available. In their paper, Huang et al. [192] address this
problem by proposing a self-supervised Spatio-temporal
Representation Learning (STRL) framework that learns from
unlabeled 3D point clouds. STRL utilizes two temporally
correlated frames, applies spatial data augmentation, and
self-supervisedly learns invariant representations.

Occlusion Completion (OcCo) is an unsupervised pre-
training method proposed by Wang et al. [190], which
comprises of three separate mechanisms. The first step is
to use view-point occlusions to create masked point clouds.
The second step is to complete reconstructing the occluded
point cloud, and the final step is to use the encoder weights
as the initialization for the downstream point cloud task. Sun
et al. [191] developed a novel self-supervised learning tech-
nique called Mixing and Disentangling (MD) for learning
3D point cloud representations in response to the enormous
success of self-supervised learning. The authors combined
two input shapes and demand that the model learn to distin-
guish the inputs from the mixed shape. This reconstruction
task serves as the pretext optimization objective for self-
supervised learning, and the disentangling process drives the
model to mine the geometric prior knowledge.

Xue et al. [208] introduced ULIP (Unified Language-
Image-Point Cloud) as a pre-training method for learning a
unified representation of language, images, and point clouds
in 3D understanding. ULIP learns a common embedding
space for these modalities, enabling various 3D tasks. By
leveraging the shared information about 3D objects, ULIP
creates informative and discriminative representations. It uti-
lizes a large-scale dataset of language, images, and point
clouds, generated with triplets describing the same object,
and trains the model to predict the missing modality in
each triplet. PointCaps [198] introduces a capsule network, a
structured representation learning approach for point clouds.
The method consists of two operations: learning local and
global features of the point cloud using the capsule network,
and subsequently classifying the point cloud into prede-
fined classes. Qi et al. [207] propose ReCon (Contrast with
Reconstruct), a self-supervisedmethod for 3D representation
learning. ReCon combines contrastive learning and genera-
tive pretraining in two stages. In the contrastive learning step,
ReCon learns local and global features of 3D point clouds
through pairwise comparisons. In the generative pretraining
step, ReCon learns high-level features by generating data
similar to the training set

Point2vec [206] extends the data2vec [222] framework
for self-supervised representation learning on point clouds,
overcoming the limitation of leaking positional information
during training. Point2vec unleashes the full potential of
data2vec-like pre-training on point clouds. In response to
the growing popularity of Large Language Models, Chen et
al. introduced PointGPT [205] that extends the GPT con-

cept to point clouds, addressing challenges such as disorder
properties and low information density. PointGPT pre-trains
transformer models using a point cloud auto-regressive gen-
eration task. The method employs a dual masking strategy
in the extractor-generator based transformer decoder, cap-
turing dependencies between points and generating coherent
and realistic point clouds.

Table 4 presents findings encompassing both generative-
based and self-supervised-based methods. The outcomes
illuminate that amid all models derived from diversemethod-
ologies, PointGPT-L secured the top OA for both the Mod-
elNet40 and ScanObjectNN datasets.

5 3D point cloud semantic segmentation

The task of 3D point cloud segmentation requires a com-
prehensive understanding of both the overall geometric
structure and the specific properties of each individual point.
Depending on the level of detail required, 3D point cloud
segmentation techniques can be broadly classified into three
categories: semantic segmentation at the scene level, instance
segmentation at the object level, and part segmentation at the
part level. In this paper, our exclusive focus has been on
semantic segmentation, rather than encompassing all forms
of segmentation.

While many classification models have been shown to
perform well on established benchmarks, they also rely on
segmentation datasets to showcase their unique contributions
and generalization capabilities. This section will primarily
focus on models that have not been previously discussed in
the classification part of this paper.

Semantic segmentation involves the partitioning of a
point cloud into distinct subsets, determined by the seman-
tic interpretation of individual points. Based on the input
data representation, this segmentation can be categorized
into four types, akin to the classification of 3D shapes:
projection-based, discretization-based, hybrid methods, and
raw point-based. Approaches such as projection [223, 224],
volumetric [225, 226], and hybrid representations [227, 228]
initiate the process by transforming a point cloud into an
intermediary regular representation.

5.1 Projection-basedmethods

The projection-based method is a widely adopted approach
for semantic segmentation of point clouds. It involves assign-
ing semantic labels to individual points in a 3D point cloud
by projecting it onto multiple 2D planes or views. Each pro-
jected view is processed using 2D segmentation techniques,
and the results are fused to obtain the final semantic seg-
mentation. This method offers advantages such as reduced
complexity and the utilization of existing image-based seg-
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Fig. 9 A taxonomy of deep learning methods for 3D point cloud semantic segmentation

mentation techniques. However, the choice of projection
views can impact segmentation accuracy, and complex point
cloud geometries or non-planar surfaces may pose chal-
lenges. Nonetheless, the projection-based method remains
a powerful tool for point cloud semantic segmentation. It
can be further categorized into multi-View, range-view, and
bird’s eye view approaches.

5.1.1 Multi-view basedmethod

Multi-view approaches in point cloud segmentation pro-
cessing harness a potent paradigm by integrating data from
diverse perspectives. This holistic strategy offers comprehen-
sive scene insights. These methods utilizes multiple sensor
viewpoints to capture a wide range of geometric details, bol-
stering resilience against occlusions and lighting variations.
The fusion of data from multiple sources mitigates limita-
tions tied to individual viewpoints. Yet, multi-view strategies
demand precise sensor calibration and view alignment for
accurate data integration and coherent segmentation out-
comes.

Lawin et al. [223] were the first to project a 3D point
cloud from several virtual camera views onto 2D planes.
Then, using synthetic images, a multi-stream fully connected
network is utilized to predict pixel-wise scores. The final
semantic label of each point is calculated by combining
the re-projected scores from various perspectives. Similarly,
Boulch et al. [229] used numerous camera angles to obtain
various RGB and depth pictures of a point cloud. They next

used 2D segmentation networks to do pixel-by-pixel tagging
on these samples. The residual correction [230] is used to
merge the scores predicted from RGB and depth pictures.

In order to address the information loss issue, Snap-
Net [231] takes some selected snapshots of the point cloud
to generate pairs of RGB and depth images. They then cat-
egorize each pair of 2D photos pixel by pixel using a fully
convolutional network. Finally, to complete the work, this
model projects the marked points into 3D space. SnapNet
attempts to solve the problem of information loss, but it runs
into issues throughout the image production process. Con-
sequently, SnapNet-R2 [232] is proposed as a solution for
SnapNet. It directly analysesmultiple views to produce dense
3D point markers, which improves the segmentation result.
The process of creating a labeled point cloud can be broken
down into two parts: the labeling of SnapNet 3D and the
2D labeling of RGB-D images extracted from stereo images.
Although themodel provides a technique thatmakes it simple
to implement, its segmentation accuracy on object bound-
aries still needs to be improved.

Viewpoint selection and occlusions impact multi-view
segmentation algorithms, but they also suffer from infor-
mation loss and blurring effects due to many-to-one map-
ping. The nearest predicted label (NLA) strategy improves
occluded locationprocessingoverK-nearest neighbor (KNN).
Processing point cloud data is computationally expen-
sive, and existing projection-based methods have accuracy
or parameter issues. The Multi-scale Interaction Network
(MINet) [233] balances resources across scales, enhancing
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efficiency and outperforming point-based, image-based, and
projection-based techniques in accuracy, parameter count,
and runtime.

5.1.2 Range-view basedmethods

Rangeviewmethods for point cloud segmentationprocessing
leverage the inherent spatial structure of the data to preserve
fine-grained geometric details, akin to human perception.
Processing the point cloud directly in its original form
enhances accuracy for tasks requiring precise distance and
angle measurements. While these methods minimize prepro-
cessing, they maintain local geometric context due to point
proximity, aiding analysis and classification. Range view
techniques also align well with diverse sensors and capture
devices, facilitating integration into real-world applications.
Yet, these methods may be sensitive to sensor viewpoint
changes, possibly introducing data inconsistencies and com-
promising robustness in processing and interpretation.

Wu et al. [224] developed an end-to-end network based
on SqueezeNet [234] and Conditional Random Fields (CRF)
to perform quick and accurate segmentation of 3D point
clouds. Later, they came up with another version named
SqueezeSegV2 [235], a segmentation pipeline that uses an
unsupervised domain adaption pipeline to solve domain
shift and increase segmentation accuracy. To process LiDAR
images, all of these methods use conventional convolu-
tions, which is problematic since convolution filters pick
up local features that are only active in specific portions
of the image. As a result, the network’s capacity is under-
utilized, and segmentation performance suffers. To address
this, the author presented SqueezeSegV3 [236], an updated
version of the previous SqueezeSeg [224] models that uses
Spatially-Adaptive Convolution (SAC) to apply various fil-
ters to different regions depending on the input image.

RangeNet++ by Milioto et al. [237] enables real-time
semantic segmentation of LiDAR point clouds. It employs
GPU-enabled KNN-based postprocessing to address dis-
cretization errors and blurry inference outputs after convert-
ing 2D range image labels to 3D point clouds. Spherical
projection preserves more information than single-view
projection, but itmay introduce issues like discretizationmis-
takes and occlusions. Lite-HDSeg [238] is another real-time
3DLiDARpoint cloud segmentationmethod. It utilizes a new
encoder-decoder architecture with light-weight harmonic
dense convolutions.Additionally, the authors introduce ICM,
an improved global contextual module capturing multi-scale
contextual data, and MCSPN, a multi-class Spatial Propaga-
tion Network refining semantic boundaries substantially.

Zhao et al. proposed a projection-based LiDAR seman-
tic segmentation pipeline with a unique network topology
and efficient postprocessing [239]. Their FIDNet incorpo-
rates a parameter-free FID module that directly upsamples

multi-resolution feature maps using bilinear interpolation. It
improves model complexity while preserving performance.
In contrast to previous methods, this approach maintains
neighborhood information more effectively and considers
temporal information in single scan segmentation tasks. To
address these issues, Wang et al. [240] presented Meta-
RangeSeg,which adopts a unique range residual image repre-
sentation to collect spatial-temporal information. To capture
the meta features, Meta-Kernel is used, which minimizes
the discrepancy between the 2D range image coordinates
input and the Cartesian coordinates output. The multi-scale
features were extracted using an efficient U-Net backbone.
Moreover, the Feature Aggregation Module (FAM) gathers
meta features and multi-scale features, enhancing the range
channel’s role.

GFNet [241] is based on a Geometric Flow Network
(GFN), which can learn the geometric relationships between
different views of a 3D point cloud. The GFN comprises a
feature extractor and a geometric flow network. The feature
extractor captures features from the 3D point cloud, while the
geometric flownetwork learns geometric relationships across
different views. These relationships facilitate fusion of fea-
tures, leading to enhanced semantic segmentation accuracy.
GFNet has several advantages over traditional methods for
semantic segmentation of 3D point clouds. It can accommo-
date the irregular and unstructured nature of 3D point clouds
by utilizing a deep learning model capable of learning from
non-grid data.

CeNet [242] is an efficient method for semantic segmen-
tation of LiDAR point clouds. It utilizes a compact CNN
architecture, resulting in faster training and inference due to a
reduced parameter count. CeNet consists of three main com-
ponents: a feature extractor to capture point cloud features, a
spatial attention module for emphasizing important features,
and a temporal attention module for integrating features
across LiDAR sequence frames. In [243], a novel range view
representation for LiDAR point clouds is introduced. Based
on a CNN architecture, RangeFormer extracts features from
the range view representation. These features are utilized
by the spatial attention module to learn spatial relationships
between points, while the temporal attention module fuses
features from different frames. Finally, a decoder predicts
the semantic label for each point in the range view.

LENet [244] is a compact and resource-efficient network
for LiDAR point cloud semantic segmentation. It incorpo-
rates a novel multi-scale convolution attention module that
captures long-range dependencies. By utilizing convolutions
with varying kernel sizes, features are extracted at multiple
scales.Attentionmechanisms are employed to assignweights
to features from different scales, improving the network’s
precision in learning semantic segmentation predictions.
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5.1.3 Bird’s eye view-basedmethods

Bird’s-Eye View (BEV) is a 2D representation obtained by
projecting a3Dpoint cloudonto a top-downplane. It provides
a flattened view of the point cloud, enabling the applica-
tion of 2D image-based segmentation techniques. BEV is
widely used in point cloud segmentation for tasks like object
detection and road segmentation in autonomous driving and
robotics. It facilitates the analysis of spatial relationships and
captures valuable geometric and contextual information in
the horizontal plane.

PolarNet [245] introduces a nearest-neighbor-free seg-
mentation approach for LiDAR data. By converting the
Cartesian point cloud to a polar bird’s-eye representation, it
balances points amonggrid cells in a polar coordinate system.
Polar convolution layers in a deep neural network architec-
ture are utilized to extract features and perform semantic
segmentation.

SalsaNet [246] presents an efficient and accurate method
for road and vehicle segmentation in LiDAR point clouds
for autonomous driving. Its lightweight network architecture
incorporates spatial and channel-wise attention mechanisms
to capture local and global contextual information. The
approach employs a two-step segmentation strategy, using
a novel focal loss function to handle class imbalance and
improve performance on rare classes.

DGPolarNet [247] addresses the challenges of captur-
ing long-range dependencies and modeling local context by
employing a dynamic graph convolutional network. This net-
work dynamically constructs a graph structure based on the
input point cloud, capturing spatial relationships between
points. Multi-scale features and graph convolutions are uti-
lized to extract discriminative features at different abstraction
levels.

Table 5 provides a comprehensive overview of non-
point-based methods for semantic segmentation outcomes
in 3D point clouds across diverse datasets. In the cate-
gory of projection-based methods, Rangeformer [243] and
MINet [233] achieved the highest results on the nuScenes
and SemanticPOSS datasets. However, amongmodels across
different methodologies, RangeFormer and DeePr3SS [223]
demonstrated superior performance in SemanticKITTI and
Semantic3D (red.) datasets.

5.2 Discretization-basedmethods

Discretization-based methods transform continuous point
cloud data into a discrete representation for efficient anal-
ysis while retaining geometric features. Such discretization
serves as a bridge between the raw point cloud and con-
ventional convolutional operations. These methods can be
further categorized into two main groups: dense discretiza-
tion and sparse discretization. Dense discretization involves

subdividing the point cloud space into a regular grid and
assigning points to corresponding grid cells. This enables
the application of standard 3D convolutions, similar to volu-
metric data. On the other hand, Sparse discretization targets
occupied cells, optimizing resource efficiency in line with
point cloud sparsity.

5.2.1 Dense discretization representation

DenseDiscretization Representation (DDR) converts contin-
uous point clouds into a structured and discrete form using
small voxels or grids. This structured representation enables
the use of standard 3D convolutional operations and simpli-
fies the handling of irregular and unstructured data. However,
it involves a trade-off between resolution, efficiency, and pos-
sible discretization artifacts or information loss.

Tchapmi et al. [248] proposed SEGCloud as a means
of achieving fine-grained, globally consistent semantic seg-
mentation. Different degrees of geometric relations are first
hierarchically abstracted from point clouds in the Fully-
Convolutional Point Network (FCPN) [249], and then 3D
convolutions and weighted average pooling are used to
extract features and incorporate long-range dependencies.
This approach can handle large-scale point clouds and has
strong inference scalability.

ScanComplete [250] proposed a method for 3D scan
completion and per-voxel semantic tagging. It utilizes fully-
convolutional neural networks that can adapt to different
input data sizes during training and testing. A coarse-to-fine
approach is employed to enhance the resolution of predicted
results. The volumetric representation preserves the neigh-
borhood structure of 3Dpoint clouds and allows for direct use
of 3D convolutions. These factors contribute to the improved
performance in this field. However, the voxelization stage
introduces discretization artifacts and information loss.

In Cylinder3D [251], a comprehensive analysis of various
representations and backbones in 2D and 3D spaces is carried
out to determine the usefulness of 3D representations and
networks in LiDAR segmentation. It proposes a 3D cylinder
partition and convolution-based framework to leverage the
3D topology relations and structures of driving-scene point
clouds. Additionally, a context modeling module based on
dimension decomposition is introduced to capture high-rank
context information progressively.

5.2.2 Sparse discretization representation

Sparse Discretization Representation (SDR) selects a subset
of points from point clouds for analysis, offering memory
efficiency and computational speed advantages. However,
it may struggle with preserving fine details and dense spa-
tial relationships. SDR techniques address these challenges
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through adaptive sampling and contextual information incor-
poration.

Choy et al. [252] proposed the MinkowskiNet, a 4D
spatio-temporal convolutional neural network for 3D video
perception. To properly process high-dimensional data, a
generalized sparse convolution is presented. To ensure con-
sistency, a trilateral-stationary conditional random field is
used. To encode the local geometrical structures within each
voxel,Meng et al. [226] proposed a kernel-based interpolated
variational autoencoder architecture. To generate a continu-
ous representation and capture the distribution of points in
each voxel, RBFs are used for each voxel instead of the binary
occupancy representation. A VAE is also used to map each
voxel’s point distribution to a compact latent space. Then, to
achieve robust feature learning, both symmetry groups and an
equivalence CNN are used. Volumetric based networks can
be trained and evaluated on point clouds of various spatial
sizes due to the scalability of 3D CNN.

Furthermore, Rosu et al. [253] introduced LatticeNet as a
way to analyze large point clouds efficiently. DeformsSlice,
a data-dependent interpolation module, is also included to
back project the lattice feature to point clouds. SPVConv by
Tang et al. [254] introduces a lightweight 3D module that
combines a high-resolution point-based branch with Sparse
Convolution. This module efficiently preserves fine details
in large outdoor landscapes. The authors further explore effi-
cient 3D models using SPVConv and conduct a 3D Neural
Architecture Search (3D-NAS) to discover optimal network
architectures for improved performance across a diverse
design space.

SVASeg [255] utilizes Sparse Voxel-based Attention
(SVHA) to capture long-range dependencies between sparse
points in point clouds. SVHA module points into local
regions, computes attention weights, and aggregates features
from neighboring regions to predict semantic labels. This
approach offers advantages in learning long-range depen-
dencies and is efficient, allowing training and inference on a
single GPU. Swin3D [256] is a pretrained transformer back-
bone for 3D indoor scene understanding. It is based on the
Swin Transformer [257] architecture capable of capturing
long-range dependencies among points within a 3D point
cloud. Swin3D performs self-attention on sparse voxels with
linear memory complexity and effectively captures the irreg-
ular nature of point signals through generalized contextual
relative positional embedding.

In Table 5, the results reveal that among discretization-
based methods, Cylinder3D [258], SVASeg [255], and
MS1_DVS [259] emerge as the top performers in
SemanticKITTI, nuScenes, and Semantic3D (reduced)
datasets. However, across various methodologies,
MS1_DVS [259] and Swin3D-L [256] excel, surpassing all
other approaches in the Semantic3D SanNet, S3DIs (area-5
and 6-fold) datasets.

5.3 Hybrid methods

DRINet++ [260] leverages the voxel-as-point concept to
enhance the geometric and sparse characteristics of point
clouds. It consists of two key modules: Sparse Feature
Encoder andSparseGeometryFeatureEnhancement, designed
for efficiency and performance improvement. The Sparse
GeometryFeatureEnhancement improves geometric attributes
through multi-scale sparse projection and fusion, while the
Sparse Feature Encoder captures local context information.
PIG-Net [261], proposed by Hedge et al., adopts a point-
inception-based deep neural network for 3D point cloud
segmentation. By incorporating an inception module-based
inception layer, PIG-Net effectively extracts local features,
leading to enhanced performance. To prevent overfitting,
Global Average Pooling (GAP) is employed as a regular-
ization technique.

To address the challenge of limited data availability Yan
et al. in [262] proposed JS3C-Net that leverages contextual
shape priors learned from scene completion and then uses
these priors to improve the segmentation of sparse point
clouds. JS3C-Net consists of two main components: a scene
completion network and a segmentation network. The scene
completion network is responsible for predicting a dense
point cloud from a sparse point cloud. The segmentation net-
work is responsible for predicting the semantic labels of the
dense point cloud.

(AF)2-S3Net [72] employs attentive feature fusion with
adaptive feature selection to enhance the segmentation accu-
racy of sparse point clouds. Comprising a feature extractor,
attentive feature fusion module, and segmentation network,
it extracts features from the point cloud, fuses them atten-
tively, and predicts semantic labels based on adaptive feature
selection using an attention mechanism.

RPVNet [274] is an efficient range-point-voxel fusion net-
work forLiDARpoint cloud segmentation. It consists of three
branches: range, point, andvoxel,which extract features from
the range image, point cloud, and voxelized point cloud,
respectively. These features are then intelligently fused using
a Gated Fusion Module (GFM) to achieve state-of-the-art
performance. The GFM selectively combines the relevant
features from the three branches for each point.

Hou et al. [277] proposed Point-to-Voxel Knowledge Dis-
tillation (PVD), a hybrid method for semantic segmentation
of LiDAR point clouds. PVD utilizes knowledge distilla-
tion by training a large teacher network on a large dataset
and using its point-level predictions to train a small student
network. The student network learns from the point-level
predictions of the teacher network to achieve accurate seman-
tic segmentation. 2DPASS [278] proposed another hybrid
method that combines 2D and 3D information for LiDAR
point cloud semantic segmentation. It extracts features from
both a 2D image and a 3Dgrid, fusing them to generate point-
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level predictions. These predictions are then used to perform
semantic segmentation on the LiDAR point cloud.

In [281], Zhou et al. introduced Size-Aware Transformer
(SAT) for 3D point cloud semantic segmentation. SAT adapts
receptive fields to object sizes, incorporating multi-scale fea-
tures and enabling each point to select its attentive fields.
The model includes the Multi-Granularity Attention (MGA)
scheme for efficient feature aggregation and theRe-Attention
module for dynamic adjustment of attention scores. SAT
addresses challenges through point-voxel cross attention and
a shunted strategy based on multi-head self-attention. By tai-
loring receptive fields based on object sizes, SAT improves
object understanding and achieves enhanced performance.

Table 5 indicates JS3C-Net [262] andLidarMultiNet [280]
outperformed all other methods by achieving the highest
mIoU scores on the SemanticPOSS and nuScenes datasets,
while PMF [275] and Point Voxel Transformer [81] excelled
in achieving the highest OA scores on the Sannet and
S3DIS(6-fold) datasets.

6 Learning strategies for point based
methods in semantic segmentation

For semantic segmentation, we will adopt a similar frame-
work as shape classification. In this section, we have exclu-
sively examined approaches that utilize raw point clouds as
input. These methods can be further categorized into two
groups based on the type of learning supervision employed:
supervised and unsupervised methods. Figure10 provides a
comprehensive categorization of rawpoint-based approaches
for point cloud semantic segmentation. Additionally, Table 6
offers a detailed comparison of raw point-based methods for
point cloud semantic segmentation across various datasets.
The methods are organized chronologically within their
respective categories. The evaluation of each method’s per-
formance is based on metrics such as overall accuracy (OA)
and mean intersection over union (mIoU).

6.1 Supervised training

Similar to 3D shape classification, supervised learning meth-
ods for semantic segmentation can be categorized into
seven distinct groups: pointwise MLP, hierarchical-based,
convolution-based, RNN-based, graph-based, transformer-
based, and other approaches. These categories can be fur-
ther organized into feedforward and sequential training
paradigms based on the underlying model architecture and
data processing techniques.

6.1.1 Pointwise MLPmethods

Because of the high efficiency, these methods mainly use
shared MLP as the basic unit in their networks. Point-wise
features retrieved using shared MLP are unable to capture
the local geometry in point clouds as well as point-to-point
relations [3]. Several networks have been developed to cap-
ture a broader context for each point and learn richer local
structures, including methods based on neighboring feature
pooling, attention-based aggregation, and local–global fea-
ture concatenation.

Chen et al. [282] presented a Local Spatial Aware (LSA)
layer that learns spatial awareness weights based on the spa-
tial layouts and local structures of point clouds in order
to better represent the spatial distribution of a point cloud.
For large-scale point cloud segmentation, Hu et al. [6] sug-
gested RandLA-Net, an efficient and lightweight network.
This network makes use of random point sampling to attain
a remarkable level of computation and memory efficiency.
To collect and maintain geometric characteristics, a local
feature aggregation module is also provided. In order to
reduce the number of redundant ConvNet channels, Hu et
al. [128] proposed a novel concept. DRNet, which identifies
the most significant channels for each class (dissect) in an
interpretable manner and dynamically runs channels accord-
ing to classes in need (reconstruct). This significantly reduces
the network’s parameter usage, resulting in a lower memory
footprint.

Raw point cloud data inevitably contains outliers or noise
as it is generated through different reconstruction algorithms
using 3D sensors. Though the MLP method has proven
to be efficient, it still fails to capture the spatial relations
which is a major downside for this method. In order to
extract motion data from a series of massive 3DLiDAR point
clouds,Wang et al. [283] developedPointMotionNet, a point-
based spatiotemporal pyramid architecture. A key element
of PointMotionNet is a cutting-edge method for point-based
spatiotemporal convolution, which utilizes a time invariant
spatial adjacent space to detect point correspondences across
time and extracts spatiotemporal properties.

PS2-Net [284] is a locally and globally aware deep
learning framework for semantic segmentation on 3D scene-
level point clouds. It incorporates local structures through
EdgeConv and global context through NetVLAD, enabling
effective integration of local structures and global context.
PS2-Net is permutation invariant, making it suitable for han-
dling unordered point clouds. To capture contextual shape
information, Sahin et al. proposed ODFNet [285], which
utilizes local point orientation distributions around a point.
Cone volumes divide the spherical neighborhood of a point,
and statistics within each volume serve as point features. The
ODF neural network employs an ODFBlock with MLP lay-
ers to process the orientation distribution function, enabling
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Fig. 10 A taxonomy of deep learning approaches for raw point-based 3D point cloud semantic segmentation

representation of local patches considering point density dis-
tribution along multiple orientations.

Table 6 provides a detailed look at point-based methods
for segmenting 3D point clouds in various datasets. Within
the pointwise MLP methods category, RandLA-Net [6]
stands out with exceptional results in the Semantic3D (red.
and sem.) datasets. Meanwhile, PointNeXt-XL [105] and
RepSurf-U [286] secure the best Overall Accuracy (OA) in
the S3DIS area-5 and 6-fold datasets, respectively. Notably,
PointMotionNet [283] achieves the highest mIoU score
across all models and methodologies in the SemanticKITTI
dataset.

6.1.2 Convolution-based methods

Point clouds are a type of 3D data that can be difficult to
process with traditional convolution operators. To address
this challenge, several approaches have been proposed that
use efficient convolution operators specifically designed for
point clouds.

The impact of the receptive field on the performance of
aggregation-based approaches was demonstrated by Engel-
mann et al. [287], in their ablation studies with visualization
findings. Instead of using the k nearest neighbors, they pro-
posed using a Dilated Point Convolution (DPC) method to
aggregate dilated nearby features. This procedure has been
shown to be quite successful in boosting receptiveness. Based
on kernel point convolution, Thomas et al. [116] suggested a
Kernel Point Fully Convolutional Network (KP-FCNN). The
euclidean distances to kernel points determine the convolu-
tion weights of KPConv, and the number of kernel points
is not set. The best coverage places for the kernel points

in a sphere space are formulated through an optimization
problem. It’s important to acknowledge that the radius neigh-
borhood is employed to maintain a consistent receptive field,
and grid subsampling is used in each layer to achieve great
robustness under variable point cloud densities.

In order to simultaneously handle the instance and seman-
tic segmentation of 3D point clouds, Zhao et al. [288]
introduced a novel combined instance and semantic segmen-
tation approach called JSNet. It utilizes an efficient backbone
network to extract robust features from the point clouds and
a feature fusion module to combine different layer char-
acteristics for more discriminative features. A combined
instance semantic segmentation module converts semantic
characteristics into instance embedding space and fuses them
with instance features. Additionally, it aggregates instance
features into a semantic feature space to support seman-
tic segmentation. DPC [287] addresses the issue of limited
receptive field size in point convolutional networks for 3D
point cloudprocessing tasks.By expanding the receptivefield
size of point convolutions, DPC enhances the performance
of semantic segmentation and object classification. It can be
easily integrated into existing point convolutional networks.

The method proposed in [10], JSENet, is a two-stream
network with one stream for semantic segmentation and one
stream for edge detection. The two streams share a com-
mon encoder, which extracts features from the point cloud.
The features from the encoder are then fed into two separate
decoders that generate the semantic segmentation and edge
detection outputs. In [5], Liu et al. compared different local
aggregation operators for point cloud analysis. They explored
max pooling, average pooling, and voxel pooling on object
classification and segmentation tasks. The study revealed that
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each operator has unique strengths and weaknesses. Max
pooling captures discriminative features but reduces spatial
resolution, average pooling finds a balance, and voxel pool-
ing preserves global structures but may lose details.

To address these limitations, the authors introduced a
hybrid operator that combines max and average pooling,
resulting in improved performance across various tasks.
In [289] Li et al. proposed DenseKPNet, which is built on a
dense convolutional neural network with Kernel Point Con-
volution (KPConv).KPConv is a novel convolution operation
that is specifically designed for point clouds. It allows the net-
work to learn local features from neighboring points, as well
as global features from the entire point cloud.

Table 6 indicates that among pointwise convolution meth-
ods, DenseKPNet [289] achieved the highest OA and mIoU
in the S3DIS (area-5 and 6-fold) and Semantic3D (red.)
datasets. On the other hand, ConvPoint [118] delivered
optimal results for Semantic3D (sem.), and KPConv [116]
excelled on SemanticKITTI and ScanNet datasets.

6.1.3 Hierarchical methods

Hierarchical methods leverage the inherent structural rela-
tionships within point clouds to enhance segmentation accu-
racy and capture finer details. Hierarchical segmentation can
lead to improved object part delineation and better handling
of complex scenes with varying levels of detail. Given the
limited literature onhierarchical data structures in point cloud
understanding, and considering the papers covered in the
classification section, this discussion focuses on previously
unmentioned studies that utilize this approach for semantic
segmentation.

Xie et al. [142] developed a novel representation using
shape context as a fundamental element in their network
architecture. The model can capture and propagate object
part information without relying on a fixed grid, and fea-
tures a simple yet effective contextual modeling mecha-
nism inspired by self-attention based models. Attentional
ShapeContextNet (A-SCN) is an end-to-end solution for
point cloud classification and segmentation problems.

According to Table 6, 3DContextNet [126] emerged as
the top performer within the hierarchical methods category
on both the S3DIS datasets.

6.1.4 RNN-based methods

Recurrent Neural Networks (RNN) have also been uti-
lized for semantic segmentation of point clouds to capture
underlying context information. Bidirectional RNN has been
successfully applied to enhance the handling of point clouds
in methods like 3P-RNN [290] and RSNets [291], enabling
better context capture. RSNets leverage a lightweight local
dependencemodule to capture local structures, incorporating

a slice pooling layer, an RNN layer, and a slice unpool-
ing layer. The slice pooling layer projects features from
unordered point clouds into an ordered sequence of feature
vectors, which are then processed by the RNN layer. 3P-
RNN [290] addresses semantic segmentation using raw point
clouds, combining a pyramid pooling module and a bidi-
rectional RNN. The pyramid pooling module extracts local
spatial data, while the bidirectional RNN captures global
context. Inspired by PointNet, 3P-RNN employs pointwise
pyramid pooling for local feature acquisition, resulting in
faster processing compared to simple pooling in PointNet++.

To convert unordered point feature sets into an ordered
series of feature vectors, Huang et al. [291] introduced a
lightweight local dependency modeling module that used a
slice pooling layer. Addressing the limitations of rigid and
fixed pooling operations, Zhao et al. [292] proposed the
DynamicAggregationNetwork (DAR-Net), which considers
both the global scene intricacy and local geometric factors.
DAR-Net employs self-adaptive receptive fields and node
weights to dynamically aggregate inter-medium features.

Table 6 demonstrates that within the category of RNN-
based methods, 3P-RNN attained the peak OA and mIoU in
the S3DIS (area-5) dataset. Simultaneously, RSNet achieved
the highest mIoU for the S3DIS (6-fold) dataset.

6.1.5 Transformer-based methods

Lai et al. [320] introduced the Stratified Transformer, which
effectively captures long-range contexts while maintaining
good generalization and performance. The network samples
neighboring points within a window as keys for each query
point and sparsely samples remote points. This approach
allows for a larger receptive field with minimal additional
calculations, encompassing both denser local points and
sparser distant points. The method incorporates first-layer
point embedding to aggregate local information, acceler-
ating convergence and improving performance. Contextual
relative position encoding is employed to capture adaptable
position information. Additionally, a memory-efficient tech-
nique addresses the challenge of fluctuating point counts
in each window. Existing point transformers suffer from
quadratic complexity in generating attention maps, making
them computationally expensive.

Zhang et al. proposed Patchformer [165] which addresses
this flaw by combining Patch Attention (PAT) and the Multi-
Scale Attention (MST) module to progressively learn a
significantly smaller range of bases for computing atten-
tion maps. Through a weighted summation on these bases,
PAT captures the whole shape context while simultaneously
attaining linear complexity for the input size. In the mean-
time, the model receives multi-scale features from the MST
block, which creates attention among features of various
scales.
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[308] proposes a novel Window Normalization (WN)
module for 3D point cloud understanding.WN is a simple yet
effective module that can be easily integrated into existing
point cloud neural networks. WN works by normalizing the
features of each point in a local window to have unit length.
This helps to unify the point densities in different parts of
the point cloud, which can improve the performance of point
cloud neural networks on tasks such as semantic segmenta-
tion and object detection.

According to the results presented in Table 6, Stratified-
Former+PAGWN [308] emerged as the top performer for
both the S3DIS area-5 and 6-fold datasets among all models
from various methodologies.

6.1.6 Graph-based methods

Graphnetworks are used in avariety ofmethods to capture the
underlying forms and geometric features of 3D point clouds.

Ma et al. [321] suggested a Point Global Context Rea-
soning (PointGCR) module that uses an undirected graph
representation to capture global contextual information along
the channel dimension. PointGCR is a plug-and-play mod-
ule that can be trained from beginning to end. To boost
performance, it may be readily added into an existing seg-
mentation network. Furthermore, numerous recent studies
have attempted to perform semantic segmentation of point
clouds with less supervision. For semantic segmentation of
point clouds, Xu et al. [322] studied many inexact supervi-
sion techniques. They also presented a network that can be
trained with points that are only partially tagged.

Kang et al. developed PyramNet [323] using Graph
Embedding Module (GEM) and Pyramid Attention Net-
work (PAN). GEM transforms the point cloud into a directed
acyclic graph, using a covariance matrix for adjacent similar-
ity instead of euclidean distance. The PAN module extracts
features with different semantic intensities using convolution
kernels of four distinct sizes. Graph Attention Convolution
(GAC) was introduced in [300] as a way to learn useful
features fromanearby adjacent set selectively. This is accom-
plished by assigning attentionweights to various surrounding
points and feature channels depending on their spatial place-
ments and feature differences. GAC is similar to the widely
used CRFmodel in that it may learn to capture discriminative
features for segmentation.

For effective graph convolution of 3D point clouds, Lei
et al. [305] proposed a spherical kernel. It quantizes local
3D space systematically to capture geometric relationships.
The spherical CNN kernel shares weights for similar struc-
tures, providing translation-invariance, and supports precise
geometric learning through asymmetry. It eliminates edge-
dependent filter generation, making it efficient for large point
clouds. Vertices represent points, edges connect neighbors,
and coarsening is done using farthest point sampling. The

primary challenge in learning from point clouds is capturing
local structures and relationships.

The capacity of graph convolution to extract local shape
information from neighbors is very powerful. Inspired
by this, Lian et al. introduce the Hierarchical Depthwise
Graph Convolutional Neural Network (HDGCN) [301].
HDGCN employs a memory-efficient depthwise graph con-
volution, known as DGConv, along with pointwise convolu-
tion. DGConv enables local feature extraction and transfer
between points and their neighbors while being order-
invariant.

Zeng et al. introduced RG-GCN [306], a Random Graph-
based Graph Convolution Network for point cloud semantic
segmentation. It comprises two main components: a random
graph module that constructs a random graph for each point
cloud, and a graph convolution network based on a modified
PointNet++ architecture, known for its effectiveness in point
cloud semantic segmentation.

Table 6, demonstrates that among the graph-based meth-
ods, SPG [298] attained the best OA and mIoU for both
the Semantic3D datasets. Meanwhile, PAG [303] yielded the
optimal results for S3DIS (area-5), and SPH3D-GCN [305]
excelled in the S3DIS (6-fold) dataset.

6.1.7 Unsupervised training

PointContrast [309] is an unsupervised pre-training method
for 3D point cloud understanding. It employs a contrastive
learning framework to learn representations from unlabeled
point cloud data. This two-stage method extracts local fea-
tures by grouping points into patches and encodes them
into fixed-dimensional representations. The contrastive loss
is then used to encourage similarity among representations
from the same patch and dissimilarity among representations
from different patches. PointContrast highlights the poten-
tial of leveraging unlabeled data for effective representation
learning in 3D point cloud analysis.

Authors in [311] proposed a novel Hybrid Contrastive
Regularization (HybridCR) framework forweakly-supervised
point cloud semantic segmentation. HybridCR leverages
both point consistency and contrastive regularization with
pseudo labeling in an end-to-end manner. Fundamentally,
HybridCR explicitly and effectively considers the seman-
tic similarity between local neighboring points and global
characteristics of 3D classes. In their work [314], a novel
weakly supervised framework called WeakLabel3D-Net is
proposed for understanding real-scene LiDAR point clouds.
This multi-task framework achieves state-of-the-art results
on various LiDAR datasets, even with limited labeled data.
WeakLabel3D-Net comprises a point cloud encoder, task-
specific decoders, and a weakly supervised loss function.
The encoder extracts features, decoders generate predictions,
and the loss function trains the network with labeled data.
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The framework utilizes amodified PointNet++ encoder, task-
specific decoders, and a combination of cross-entropy and
consistency losses to encourage consistent predictions for
neighboring points.

Zhao et al. [312] proposed Number-Adaptive Prototype
Learning (NAPL), a weakly supervised approach that learns
from a small number of labeled points. It learns prototypes
by clustering unlabeled points and then predicts the class of
a point by finding the closest prototype. What sets NAPL
apart is its adaptive learning of the number of prototypes
for each class. This is achieved using a novel loss function
that penalizes the classifier for assigning the same class to
nearby points, encouraging the learning of distinct proto-
types even for close points of the same class. For semantic
segmentation of large-scale 3D point cloud, Hu et al. pro-
posed Semantic Query Network (SQN) [313], a graph-based
method that leverages both point consistency and contrastive
regularization. Fundamentally, SQN explicitly and effec-
tively considers the semantic similarity between neighboring
3D points, allowing the extremely sparse training signals to
be back-propagated to a much wider spatial region, thereby
achieving superior performance under weak supervision.

According to the findings in Table 6, amidst models
employing unsupervised methodology [201] showcased the
most promising results on both the S3DIS area-5 and 6-fold
datasets. However, when considering models spanning all
methodologies, [201] outperformed the rest on the ScanNet
dataset, while SQN [313] achieved the highest Overall Accu-
racy (OA) for the Semantic3D (sem.) dataset.

6.1.8 Other methods

Fan et al. [315] proposed SCF, a learnablemodule for extract-
ing Spatial Contextual Features (SCF) from large-scale point
clouds. SCF consists of three components: a local polar rep-
resentation block, a dual-distance attentive pooling block,
and a global contextual feature block. The module con-
structs spatial representations invariant to z-axis rotation,
learns discriminative local features using neighboring repre-
sentations, and incorporates global context based on spatial
location and neighborhood volume ratio. Gong et al. [316]
proposedReceptive FieldComponentReasoning (RFCR) for
point cloud segmentation, utilizing Target Receptive Field
Component Codes (RFCCs) to guide a coarse-to-fine cate-
gory reasoning approach. The method incorporates a gradual
RFCR module that enhances neural network representation
by iteratively reasoning about receptive field components,
enabling the learning of progressively complex features.
Additionally, a feature densification technique employing
centrifugal potential is introduced to improve feature selec-
tion by separating positive and negative features.

[319] presented Multispatial Information and Dual Adap-
tive (MSIDA) module for learning point cloud semantic

segmentations.MSIDA addresses challenges posed by disor-
dered and unevenly distributed large-scale 3D point clouds.
It includes an MSI block to encode spatial information
using cylindrical and spherical coordinate systems, and DA
blocks for weighted fusion of local features and improved
local region understanding. By incorporating spatial infor-
mation and adaptive feature integration, the MSIDA module
enhances point cloud segmentation, enabling better compre-
hension of complex geometric structures in scenes.

To address the challenge of unsatisfactory segmenta-
tion performance on scene boundaries in 3D point cloud
data, [318] introduced metrics to quantify this issue and pro-
poses a Contrastive Boundary Learning (CBL) framework.
CBL quantifies the issue and enhances feature discrimina-
tion across boundaries by contrasting representations using
scene contexts at multiple scales. Camuffo et al. [258] intro-
duced LEAK, which clusters classes into macro groups
based on mutual prediction errors for point cloud semantic
segmentation. LEAK aligns class-conditional prototypical
feature representations for fine and coarse classes to reg-
ularize the learning process. This prototypical contrastive
learning approach improves generalization across domains
and reduces forgetting during knowledge distillation from
prototypes. Additionally, it incorporates a per-class fairness
index to ensure balanced class-wise results.

Table 6 shows that among the models categorized under
other methods, PointMetaBase-XXL [179] demonstrated
promising results across multiple datasets, including S3DIS
(area-5, 6-fold), and the ScanNet dataset. However, when
compared to models from all other methodologies, both FG-
Net [173] and [317] excelled in both Semantic3D datasets.

7 Discussion and future directions

Although extensive research has been conducted on point
cloud processing networks for 3D object classification and
segmentation, their performance still falls behind when com-
pared to RGB images. This disparity is due to the irregular
and sparse nature of the point cloud. As a result, there is still
considerable work to be done.

This section aims to highlight potential key research direc-
tions and future applications in a comprehensivemanner. The
following aspects will be explored to provide insight into the
possible directions of this field.

7.1 Algorithmic advances

Point cloud processing algorithms are critical to efficiently
process the vast amounts of data contained in point clouds.
Future algorithms may incorporate more advanced deep
learning techniques to better handle the complexities of
point cloud data. A possible strategy for dealing with raw
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Table 7 A summarization and comparison between existing methods for 3D point cloud understanding

Methods Strengths Weaknesses

Projection-based By leveraging 2D convolutional
architectures to solve a 3D task, pro-
jection based techniques eventually
make 3D learning more scalable by
bridging the gapbetween2Dand3D
learning

Generates quantization artifacts that
may make it difficult to see the
data’s inherent invariances. Multi-
resolution features and geometric
features are not exploited prop-
erly. Not appropriate for tasks
requiring per-point processing. Due
to repeated convolution proce-
dures, spatial information of small
instances is lost

Voxel-based Voxel-based models are compatible
with traditional 3D convolutions,
have regular data locality, and can
effectively encode coarse-grained
features

Voxelization results in the loss of
geometrical and spatial resolution
information. It is not scaleable
since the computational and mem-
ory footprints increase cubically
with resolution

Range view Range view methods directly pro-
cess raw point cloud data, preserv-
ing intricate geometry and offer-
ing an intuitive spatial represen-
tation akin to human perception.
By working with raw point coor-
dinates, they maintain underlying
geometric information, ideal for
tasks demanding precise measure-
ments of distances and angles

Range viewmethods are viewpoint-
sensitive, with changes in sen-
sor placement or orientation intro-
ducing data variability that can
undermine robust processing and
interpretation. Sparse data regions,
resulting from sensor characteris-
tics, can challenge these methods,
potentially impeding accurate anal-
ysis

Bird’s-Eye View Bird’s-eye view offers a top-down
perspective, simplifying tasks like
object detection by converting the
problem from 3D to 2D. It’s more
stable against sensor pose changes
than range view, which is beneficial
in scenarioswith varying sensor ori-
entation

Bird’s-eye view inherently lose
some of the fine geometric details
present in the range view, limiting
precision in geometric analysis. It
excels in horizontal plane under-
standing but struggles with accurate
vertical capture, potentially causing
ambiguity due to object overlap at
varying heights

Hybrid By integrating high-level image
semantics to points, the resolution
mismatch issue betweendenseRGB
and sparse depth can be resolved

High coupling between image
and LiDAR models lowers over-
all model reliability and raises
development costs

Point-based Point-based models directly learn
from sparse and unstructured point
clouds while maintaining the accu-
racy of point location

Usually requires a lot of computing
power, especially with the large-
scale point cloud dataset

Supervised based Supervised learning can produce
highly accurate results when trained
on a large dataset of labeled point
clouds. Once a model is trained,
it can be used to process new
point clouds quickly and efficiently.
This is especially useful in real-
time applications where processing
speed is critical

The amount of labeled data needed
for supervised learning is signifi-
cant, and it may struggle with new
or unseen data. It can also be biased
towards the training data, leading to
incorrect results and prone to over-
fitting
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Table 7 continued

Methods Strengths Weaknesses

Unsupervised based Unsupervised learning can be used
to identify patterns and structures
in point cloud data without the
need for labeled data. It helps to
cluster similar objects or segments
within point clouds and can iden-
tify outliers and anomalies in point
cloud data, whichmay bemissed by
supervised learning methods

Unsupervised learning methods can
be more computationally intensive
than supervised learning methods,
which can be a limitation when
dealing with large point cloud
datasets. It lacks labeled data guid-
ance, which can potentially result in
less accuracy than supervised learn-
ing. The evaluation of unsupervised
learning models can be challenging
due to the absence of a clear objec-
tive function to optimize

point clouds could be distinct from traditional methods. In
comparison to CNN, transformer architectures have recently
demonstrated promising accuracy on point cloud learning
benchmarks. The self-attention operator, which is at the heart
of transformer networks, is invariant to the input elements’
permutation and cardinality. As a result, the transformer fam-
ily of models is admirably adapted to point cloud processing.
Self-supervised representation learning on point cloud data
has proven to be another promising solution. Self-supervised
representation learning analyzes how to properly pre-train
deep neural networks with unlabeled and raw input data.
Instead of creating representations based on human-defined
annotations, self-supervised learning learns latent features
from unlabeled data. It is commonly accomplished by cre-
ating a pretext assignment to pre-train the model before
fine-tuning it on subsequent tasks. Self-supervised learn-
ing has significantly enhanced computer vision by reducing
reliance on labeled data. The increasing volume of papers
on various methods published between 2015 and 2023
underscores the growing research interest in unsupervised
networks.

In addition, many researchers are currently interested in
optimizing neural network training and model compression.
Reducing the parameters of a network can speed up training
while also allowing deep learning techniques to be used on
devices with limited resources. These advanced algorithms
may also incorporate more sophisticated data fusion tech-
niques to integrate and be benefited fromdifferent point cloud
representation. To handle 3D input, previous research has
used either voxel-based or point-basedNNmodels. However,
both methods are computationally inefficient. With increas-
ing input resolution, voxel-based models’ memory use and
computation costs grow cubically. Rather than extracting fea-
tures, up to 80% of the effort in point-based networks is spent
shaping the sparse input, which has poor memory localiza-
tion. Hence, recent research has focused on maximizing the
benefits of both strategies while minimizing the drawbacks.
Liu et al. presentedPoint-VoxelCNN (PVCNN) [272],which

represents 3D input data as point clouds to take advantage
of sparsity and employs voxel-based convolution to produce
a contiguous memory access pattern. (DSPoint) extracted
local global features by simultaneously operating on voxels
and points, combining both local features and global geo-
metric architecture. A combination of projection and raw
point-based approaches is being studied by some researchers.
In PointView-GCN [80], the network uses multi-level GCNs
to record both the geometrical cues of an object and its
multiview relations, which hierarchically collect the shape
attributes of single-view point clouds. Table 7 summarizes
and compares different existing methods for 3D point cloud
understanding.

7.2 Improved sensor technology

Sensor technologyhaswitnessednotable advancements,with
lidar and photogrammetry systems showing great promise.
Lidar sensors, renowned for their precise distance measure-
ment and object detection capabilities, have become more
accurate, affordable, and accessible to diverse industries.
Multispectral and hyperspectral imaging techniques, com-
plementing point cloud data with material and chemical
information, offer opportunities in archaeology, geology, and
forestry, enabling detailed analysis and conservation efforts.

Although sensors have improved, there is room for fur-
ther enhancement. Higher accuracy can minimize errors and
enhance point cloud quality, leading to more precise mod-
eling and analysis. Fusion of data from multiple sensors
provides a comprehensive understanding of environments,
improving accuracy and reducing errors. For instance, the
combined use of lidar and photogrammetry systems captures
both geometric and textural information. Additionally, sens-
ing techniques like multispectral and hyperspectral imaging
provide insights into environmental composition and prop-
erties, benefiting various applications.

The ongoing evolution of sensor technology will signif-
icantly impact point cloud processing. The availability of
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more accurate, affordable, and capable sensors facilitates
the capture of high-resolution point cloud data, empower-
ing researchers and engineers to make informed decisions
and develop advanced solutions.

7.3 Advancement in datasets

Point cloud datasets play a vital role in various fields, includ-
ing autonomous vehicles, robotics, virtual reality, and 3D
modeling. While advancements have been made in dataset
creation, further developments are needed to enhance their
quality and usefulness.

Efficiency improvements in collecting and processing
point cloud data are key areas for advancement. Integrat-
ing data from multiple sensors, such as LiDAR, cameras,
or radar, can provide more comprehensive environmental
information and enable algorithms to handle complex sce-
narios. Diverse datasets that encompass a broader range of
environments and scenarios would enhance the performance
and accuracy of point cloud processing algorithms. Manual
annotation of datasets is time-consuming, and developing
automated annotation methods would expedite the process
and improve accuracy. Additionally, incorporating temporal
information, such as capturing data at different times or using
motion-capturing sensors, would enable algorithms to track
and predict environmental changes.

Advancements in these areas would greatly improve the
practicality and applicability of point cloud datasets in var-
ious industries. Ongoing development and improvement of
point cloud datasets are essential for advancing the field of
point cloud processing and facilitating new applications.

7.4 Cloud computing

Cloud computing has significantly impacted point cloud pro-
cessing, enhancing its accessibility and affordability. In the
future, advanced cloud-based processing tools are antici-
pated to incorporate real-time capabilities and distributed
computing, enabling efficient handling of large data vol-
umes in real-time. Real-time processing would facilitate
quicker decision-making for critical applications like disas-
ter response and autonomous systems. Evolving cloud-based
tools, with specialization and advancements, will unlock new
applications and use cases for point cloud data.

Advances in technology, algorithms, and applications will
shape the future of point cloud processing, fostering innova-
tion and the emergence of novel applications and use cases.

8 Conclusions

This paper presents current state-of-the-art methodologies
and recent advancements in 3D shape classification and

semantic segmentation. Because of the potential for practical
applications such as autonomous driving, robot manipula-
tion, and augmented reality, point cloud understanding has
recently gained a lot of attention. Specific deep learning
frameworks are designed to match point clouds from several
scans of the same scene, and generative networks are adapted
to enhance thequality of point clouddata in termsof noise and
missing points. Deep learning techniques that are correctly
adapted have been found to be effective in addressing the
unique challenges presented by point cloud data. A detailed
taxonomy is presented, accompanied by a performance eval-
uation of multiple approaches using widely utilized datasets.
The benefits and drawbacks of various methodologies, as
well as potential research directions, are also highlighted.
We believe that our work stands as a confident and impact-
ful addition to the field, providing a valuable resource for
researchers and practitioners alike.
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