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Abstract
Deep neural networks (DNNs) are key components for the implementation of autonomy in systems that operate in highly
complex and unpredictable environments (self-driving cars, smart traffic systems, smart manufacturing, etc.). It is well known
that DNNs are vulnerable to adversarial examples, i.e. minimal and usually imperceptible perturbations, applied to their inputs,
leading to false predictions. This threat poses critical challenges, especially when DNNs are deployed in safety or security-
critical systems, and renders as urgent the need for defences that can improve the trustworthiness ofDNNfunctions.Adversarial
training has proven effective in improving the robustness of DNNs against a wide range of adversarial perturbations. However,
a general framework for adversarial defences is needed that will extend beyond a single-dimensional assessment of robustness
improvement; it is essential to consider simultaneously several distance metrics and adversarial attack strategies. Using such
an approach we report the results from extensive experimentation on adversarial defence methods that could improve DNNs
resilience to adversarial threats. We wrap up by introducing a general adversarial training methodology, which, according to
our experimental results, opens prospects for an holistic defence against a range of diverse types of adversarial perturbations.

Keywords Adversarial examples · Adversarial training · Neural network security · Adversarial robustness

1 Introduction

Adversarial examples can be generated by inducing carefully
crafted noise into the input data of neural networks, so that
perturbed data contextually lead the machine learning algo-
rithm to misbehaviour. This effect is more easily evident into
image classification problems, where the misbehaviour takes
the form of image misclassification. We focus on adversar-
ial examples within the scope of neural network classifiers,
though our contributions can be adjusted and applied to other
neural network applications as well.

An adversarial example x ′ based on an image x , which
is classified with label l by a function f (neural network),
is defined as follows: x ′ is derived by applying a minimal
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perturbation to x , such that the image x ′ is classified by f
with label l ′ �= l. In other words, if ‖ . . . ‖p is an L p dis-
tancemetric (e.g. L1, L2 or L∞) between images in the input
domain of f and x − x ′ = η denotes a possible perturbation,
then x ′ is given as:

min
x ′ ‖x − x ′‖p,

such that f (x) = l,

f (x ′) = l ′,
l �= l ′

(1)

To better understand and explain the cause of misclas-
sification, we visualize the effects of adversarial examples,
in relation with the decision boundary of a neural network.
Let us call Task the ideal decision boundary (dashed line
curve in Fig. 1a), for a given classification problem. When
constructing an adversarial example x ′, the attacker tries
to “shift” some image x outside of the network’s decision
boundary (solid line curve). This is achieved by finding the
minimal perturbation minx ′ ‖x − x ′‖p, such that the neural
network model is more prone to misclassification, i.e. the
smallest projection of x to an hyperplane space, where the
gap between the model’s decision boundary and Task is as
large as possible.

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00138-024-01519-1&domain=pdf


35 Page 2 of 22 C. Eleftheriadis et al.

Fig. 1 Robustness of neural network models and the role of their decision boundary. A robust model limits the space that an attacker can exploit,
for crafting adversarial samples

This vulnerability exposes the robustness problem of neu-
ral network models, where robustness refers to how easy it is
to find adversarial examples x ′ that are close to their origi-
nal input x . Moreover, it raises concerns about how safe and
reliable can be the systems based on neural network com-
ponents, given their robustness against such security threats.
Practically, a robust model would reduce, as much as possi-
ble, the gap between its decision boundary and Task, thus
limiting the attacker’s capability to expose it into adversarial
examples. In Fig. 1b, the robust model’s decision boundary
represented with green line separates the hyperplane space
almost identically to Task, thus eliminating most possibili-
ties for generating successful adversarial examples.

Two main facets of robustness are considered: attacker
capabilities (attackmethods) anddefender capabilities (adver-
sarial defence methods). Regarding the latter, we invest on
improving adversarial training, as it seems to be the most
promising and successful approach to achieve neural net-
work robustness. This defence method aims to the direct
exposure of the neural network, during training, to suitably
selected perturbed data. As an outcome, the model forms a
decision boundary that hopefully reduces the gap from Task
(Fig. 1b).

Our motivation is to provide a practical framework for
holistic robustness improvement by incorporating in adver-
sarial training a representative ensemble of adversarial exam-
ples. Such a framework takes into account all characteristics
of the various classes of adversarial examples identified in
our taxonomy (Sect. 2.1).

More concretely, the contributions in this paper with
respect to the attacker capabilities are:

• An extensive experimentation with a representative set
of the most harmful adversarial attacks and a system-
atic evaluation of their effects (with respect to adversarial
image quality, attack success rate, classification accuracy,
confidence score and L p distance metrics) on deep neu-
ral networks of varying complexity (convolutional and
residual neural networkswith varying numbers of param-
eters).

• An Adversarial Robustness Evaluation Benchmark
(AREB), derived from our experimentation, capable to
support an holistic evaluation of adversarial defence
methods.

With respect to the defender capabilities, we rely on the
hypothesis that a model trained with adversarial examples,
suitably selected for representing all attack crafting strate-
gies, is more resilient to diverse types of adversarial attacks
that may arise in real-world scenarios. The model’s ability
to defend against such a multitude of attacks is enhanced
through including adversarial examples that are specifically
crafted to exploit diverse L p norms, most notably L1, L2,
and L∞. In light of this perspective, the two contributions of
this work are:

• Experimental insight for the effectiveness of various
input transformation methods (preprocess defences),
which aim to leave less available ground for adversar-
ial examples through “compressing” the models’ input
space.

• A road map comprised of techniques towards the holis-
tic adversarial robustness improvement of deep neural
networks and the evaluation of its effectiveness.
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The outlined contributions support a process flow with con-
crete steps for adversarial robustness improvement, while the
AREBbenchmark provides a framework for the holistic eval-
uation of the defence methods that may combine adversarial
training with preprocess defences.

In Sect. 2, we introduce a taxonomy of adversarial attack-
ing methods based on their vital characteristics, as well
as (experiments with) our Adversarial Robustness Evalua-
tion Benchmark. In Sect. 3 we focus on the effectiveness of
various preprocess defences on adversarial robustness and
we provide experimental results for classifiers based on the
MNIST and CIFAR-10 datasets. Section4 introduces the
adversarial training techniqueof our robustness improvement
approach. The effectiveness of our techniques is assessed for
the same datasets as the ones used in the experiments of the
previous section.Moreover, additional adversarial robustness
metrics are taken into account. Section5 presents the steps
of the process flow of our robustness improvement approach,
along with the associated costs for applying it in terms of the
needed human effort and computational resources. Finally,
in Sect. 6 we wrap-up the exposition of the outlined contri-
butions with insightful concluding remarks and suggestions
for future research prospects.

2 Adversarial attackingmethods

2.1 Taxonomy of adversarial attackingmethods

Adversarial attacks comprise a wide range of techniques that
aim to craft examples, with the goal to fool the machine

learning model under attack. In the related bibliography for
attacks during test/inference time, the first paper on adver-
sarial machine learning [1] introduced the notion of evasion
attacks and a gradient-based algorithm. Nevertheless, the
adversarial examples threat was not taken seriously until the
moment of publication of the results in [2].A countermeasure
technique that was called adversarial training was introduced
in [3], which made it possible to train robust models against
adversarial attacks.

Although adversarial examples can be created for all types
of machine learning models (decision trees [4], SVM [5]),
more emphasis is given to neural networks, as these models
exhibit top performance in various domains, including com-
puter vision (image classification [6], object detection [7, 8])
and natural language processing [9, 10]. The first challenge in
our research was to identify the most vital characteristics of
adversarial attacks, so as to build a taxonomy of them. After
having thoroughly surveyed multiple adversarial attacks, we
concluded to the most dominant categories, in Table 1, along
with the publication which is best known for each of them.

Two attack techniques are distinguished with respect to
the model knowledge, namely the white box and black box
attacks. In the former category, the attacker has complete
access to any information required, for generating adversarial
examples, like the model’s architecture, the weights and the
back-propagation derivatives, to name a few.On the contrary,
in blackboxattacks, the attacker has limited access only to the
input/output pairs (or generally the representation mapping
between input and output) created by the model.

When adversarial attacks are classified with respect to the
attack target, we distinguish between (i) a targeted attack,

Table 1 Taxonomy of adversarial attack methods T: Targeted, NT: Untargeted

Attack method Model knowledge Attack target Attack strategy L p norm

Fast Gradient Sign Method (FGSM) [3] White box T/NT Sensitivity Analysis L∞
Basic Iterative Method (BI) [11] White box T/NT Sensitivity Analysis L∞
Iterative Least-Likely Class Method (ILC) [11] White box T Sensitivity Analysis L∞
Projected Gradient Descent (PGD) [12] White box T/NT Sensitivity Analysis L∞
Auto Projected Gradient Descent (APGD) [13] White box T/NT Sensitivity Analysis L∞
Elastic Net Attack (EAD) [14] White box T/NT Sensitivity Analysis L1

Jacobian Saliency Map Attack (JSMA) [15] White box T/NT Sensitivity Analysis -

Universal Adversarial Perturbation (UAP) [16] White box NT Optimization -

DeepFool [17] White box NT Optimization L2

Carlini & Wagner L2 Attack (CWL2) [18] White box T/NT Optimization L2

Zeroth-Order Optimization (ZOO) [19] Black box T/NT Optimization L2

Boundary Attack (BA) [20] Black box T/NT Optimization L2

HopSkipJump Attack (HSJA) [21] Black box T/NT Optimization L2

Sign-OPT Attack [22] Black box T/NT Optimization L2

Square Attack [23] Black box T/NT Optimization L2

Simple Black Box Attack (SimBA) [24] Black box T/NT Optimization L2
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where the model misclassifies a specific label given by the
attacker and (ii) a non-targeted attack, in which the model
misclassifies any label from the ones that it has been trained
on.

The attack strategy deployed by the attacker is another
discriminating characteristic that we took into account in
our taxonomy. Two main aspects capture the nature of the
attack strategy used [25]: (1) the type of perturbation (noise-
based or geometric transformation) and (2) the class of
algorithms/methods employed to find successful adversar-
ial perturbations. Regarding the first aforementioned aspect,
we focus on noise-based perturbation attacks, i.e. attacks
that add white noise to carefully selected areas of an image
(or more generally of any other input), as it is formulated
in eq. (1). Robustness against natural transformations (e.g.
rotations and translations) is beyond the scope of this work,
and for this reason, Table 1 does not include attacks based
on geometric transformations. Regarding the second afore-
mentioned aspect, there are three main techniques used to
generate adversarial examples:

• Sensitivity Analysis. This technique is based on algo-
rithms for analysing the gradient of the loss function with
respect to the input. The ultimate goal is to disclose the
importance of a given feature (e.g. pixel) in the overall
decision process.

• Optimization. According to this approach, the search of
adversarial perturbations is performed using optimiza-
tion algorithms and constraints.

• Generative. New adversarial examples are generated
from the probability distribution of successful adversarial
perturbations, which is captured through the use of vari-
ous generative models (e.g. Variational Auto Encoders—
VAEs [26] or Generative Adversarial
Networks—GANs [27]).

The last mentioned category of techniques is not represented
in Table 1, because the results in the related bibliography
seem to be not very competitive compared to those derived
from the use of the two other attack strategies. Moreover,
the associated cost (time and resources) for applying such
an approach seems to be significantly higher than the cor-
responding cost for any of the other techniques. Whereas
this category falls outside the scope of our study, intriguing
works, such as the one by [28], offer a systematic perspective
on the phenomenon, accompanied by practical and efficient
countermeasures.

Perturbations of adversarial attacks are quantified using
various norms, i.e. functions thatmap vectors to non-negative
scalars. The distance between two vectors is measured by the
norm of their difference ‖ x − x ′ ‖p that always returns a
positive scalar. Four norms are usually used for adversarial
attacks in the image classification domain:

• L0, which can be viewed as a cardinality function

‖ x ‖0 = #(i | xi �= 0) (2)

for the features (pixels) of the original image that have
been perturbed in an adversarial example.

• L1, also known as the Manhattan norm

‖ x ‖1 =
n∑

i=1

|xi | (3)

measures the sum of magnitudes of the vectors in a given
space.

• L2, also known as the Euclidean distance between two
vectors x and x ′:

‖ x − x ′ ‖2 =
(

n∑

i=1

|xi − x ′
i |2

) 1
2

(4)

• L∞ that is based on the maximum norm

‖ x − x ′ ‖∞ = max(|x1 − x ′
1|, . . . , |xn − x ′

n|) (5)

for quantifying the maximum change to any coordinate.
For images, this norm represents the maximum bound of
change for each pixel, i.e. the number of pixels that are
modified is not taken into account.

2.2 Physical-world attacks

The attack methods mentioned so far are applied on the pixel
space of images. Another emerging surface of adversarial
attacks is the so-called physical-world attacks. This research
field is focused on how adversarial attacks can be launched
in more realistic scenarios “in the wild”.

A first attempt of exposing state-of-the-art classifiers in
such threats was reported in [11], where attacks against
various images were created and then the original and the
distorted images were printed in paper. Next, a picture of
the printed images was taken using a cell phone camera,
in order to evaluate the classifiers performance. The whole
experimental context was realized indoors, in order to ensure
stable conditions with respect to the lighting and brightness
conditions, the distance and the angle with which the printed
pictures were captured by the camera. Nevertheless, reduc-
tions in the accuracy of the investigated models compared to
the digital images were noted, even for the printed samples
that did not contain distorted images.

Furthermore, in [29] the authors considered the prob-
lem of crafting effective physical-world attacks, for varying
physical conditions (distance, view angle, brightness, etc.),
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Fig. 2 Appropriate placement of stickers on stop signs, eventually leads
state-of-the-art image classifiers (2a) and object detectors (2b) to unpre-
dictable behaviour

by taking into account environmental factors and the fab-
rication error of the printing procedure. To this end, a
methodology called robust physical perturbations (RP2)was
proposed, according to which printed stickers are placed
strategically in appropriate spots of stop signs, as shown
in Fig. 2a. In this manner, it was possible to fool some top
image classifiers that are employed in autonomous driv-
ing applications. In [30], the authors have extended their
experimental approach to object detectors. More specifi-
cally, they launched two kinds of physical-world attacks
against state-of-the-art object detectors (YOLO [8], Faster
R-CNN [7]), namely the disappearance and creation attacks,
which resulted in reduced performance of the attacked mod-
els. An instance of a creation attack against the YOLO
algorithm is depicted in Fig. 2b.

There are notable related works on physical-world adver-
sarial attacks against systems with learning components, like
for example the research reported in [31, 32]. Especially for
safety-critical systems, it is essential to exclude potentially
catastrophic behaviours and therefore the robustness of learn-
ing components against any kind of possible perturbation has
to be shown. As a step towards this direction, in next sections
we introduce a systematic process for holistically improving
the models’ robustness against a wide variety of adversarial
attack methods. Still, the outcome of applying such an holis-
tic robustness improvement procedure has to be evaluated
with respect to the models’ resilience against physical-world
attacks, which is not within the scope of this article.

Finally, a noteworthy related work is the benchmark of
perturbations in [33] that are relevant to the physical world,
which in most cases are not adversarial in nature (mini-
mum projection out of the decision boundary). That work
is complementary to our benchmark, which is introduced
in Sect. 2.3. In a related context, there are studies like [34]
that systematically assess the relationship between adversar-
ial examples and diverse types of noise perturbations. Their
proposed framework integrates a Convolutional Denoising

Auto Encoder and a Classifier, demonstrating enhanced per-
formance against a spectrum of adversarial attacks.

2.3 Adversarial robustness evaluation benchmark

The diverse conditions, under which experimental evaluation
of adversarial machine learning takes place in related works,
make it hard to compare any improvements in the robustness
of neural networks. More concretely, a model’s robustness
is usually measured with respect to the adversarial attacks
selected for its evaluation. If there are adversarial defences
that were never tested, robustness will not reach an adequate
level, while, on the other hand, robustness may be easily
overestimated, if attacks that have not been taken into account
can potentially bypass the defence mechanism employed.

This problem highlights the need for a general frame-
work that could be justifiably considered as benchmark for
adversarial robustness. A framework based on a systematic
selection of attack crafting methods allows to test and eval-
uate a model’s adversarial robustness, from an holistic point
of view. A noteworthy methodology is the one in [35], which
resulted in theAutoAttack benchmark [13], an ensemble con-
sisting of four white box and black box attacks. According
to the authors, their benchmark is more systematically built
than the one in [36], which seems to have a narrow scope,
and it is computationally more feasible than the benchmark
in [37], which includes overlymany attacks for the evaluation
of adversarial robustness.

We introduce anewbenchmark, calledAdversarialRobust-
ness Evaluation Benchmark (AREB), which supports a
different approach from [35] for testing models that are
robust against multiple types of adversarial attacks. AREB
is based on the taxonomy of Table 1 and therefore consists of
attacks that represent all diverse characteristics of adversarial
examples, including both white box and black box attacks,
as well as attacks based on all possible norms and attack
strategies for adversarial perturbations. The effectiveness of
each case of attack was evaluated in extensive experiments.
The set of attacks in the AREB was selected by taking into
account five criteria in order to find those that seem to have
the biggest impact on neural networks of different complexity
and size. Another difference of AREB from the benchmarks
in [35] and [13] is that the latter supportonly improvements in
the robustness against the worst-case perturbation out of the
four attacks of the benchmark, as opposed to our approach,
which takes into account simultaneously all the attacks of
the AREB. In this way, we aim to address the fact that a
model that happens to exhibit robust performance against a
given type of attack, it may happen to be much less robust
against another attack that leverages a different distance met-
ric and/or attack strategy.
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Fig. 3 Image Grid of
Adversarial Examples on
MNIST. From top to bottom,
one sample per class (all digits
(0 − 9) ) is depicted. From left
to right, commencing with the
original image and progressing
with the adversarial examples
generated by diverse attacking
methods. More precisely:
Original image, FGSM, BI,
PGD, EAD, JSMA, DeepFool,
CWL2, ZOO, BA, HSJA,
Sign-OPT and SimBA

To justify the selection of attacks that are included in
AREB, we note the following remarks in regard to the differ-
ent characteristics considered in our taxonomy (Sect. 2.1).

First the vast majority of attacks in the related bibliogra-
phy are White box attacks; therefore, Table 1 includes less
Black box attacks. Moreover, all attacks based on Sensitivity
Analysis are inevitably White box attacks, since a prerequi-
site for creating an adversarial example is being able to access
the model. On the other hand, all Black box attacks are based
on Optimization techniques. Sensitivity analysis techniques
adopt a simpler and faster approach towards creating adver-
sarial examples, and for this reason, they are preferred in
adversarial training schemes. Optimization techniques are in
general harder and more time-consuming, but they present
better performance in finding small imperceptible adversarial
perturbations.

The L p norm exploited is clearly correlated with the
Attack Strategy chosen: attacks that are based on Sensitivity
Analysis exploit the L1 and L∞ norms, while those based on
Optimization techniques use the L2 norm. We do not see a
specific technical reason behind this correlation, besides that
these are the common choice of norms within the machine
learning community when employing the Sensitivity Anal-
ysis and Optimization strategies. L2 is commonly used as a
regularization term in optimization problems to derive solu-
tions that are smooth and have small magnitudes. The L1

and L∞ norms quantify the difference between data points,

respectively, in terms of the magnitude and the maximum
budget of noise added. This renders them a natural choice
for evaluating the sensitivity of a neural network’s decision
with respect to deviations from the input data distribution.

In image classification problems the work reported in [38]
demonstrated that the L p norm used for crafting adversarial
examples, adds noise following particular patterns. These
patterns eventually create image features that have to be
learned, if we want to improve the robustness of models. We
assume that a model trained on perturbations derived from
all different norms and attack strategies, is more resilient to
diverse types of adversarial attacks.

To ensure that all characteristics of attacks in our taxon-
omy (Table 1) are represented in the AREB, a minimum of
four categories of adversarial attackswill have to be included,
namely:

• White Box L1 Sensitivity Analysis Attack
• White Box L2 Optimization Attack
• White Box L∞ Sensitivity Analysis Attack
• Black Box L2 Optimization Attack

The AREB set of attacks includes the most effective attacks
from each of the aforementioned categories that are selected
based on the findings of the experiments in next subsections.
These are the attacks with the highest misclassification rate
for the minimum distortion (i.e. visual difference, smallest
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perturbation). AREB is intended to serve as a benchmark for
assessing the robustness of a neural network model against
all types of attacks at the same time. Holistic robustness
improvement means that the model demonstrates improved
behaviour against all the four attacks in AREB. Since these
attacks seem to be the most effective in their category, evalu-
ating amodel’s robustness against them shows theworst-case
impact with respect to all other attacks in the same category.
For instance, if a defence technique delivers models that are
robust against PGD, then the model is supposed to exhibit
at least similar, if not better, robustness on average against
all other White Box L∞ Sensitivity Analysis attacks (e.g.
FGSM, BIM, ILC).

2.3.1 Criteria of effectiveness of adversarial attacks

We introduce the five criteria for evaluating the effectiveness
of adversarial attacks and selecting those that are included in
the AREB.
Visual difference The most dangerous attack crafting meth-
ods produce examples that do not affect the decision made
by humans regarding the class shown in the images. If the
noise induced is noticeable and it heavily deforms the orig-
inal inputs, then the attack method is disqualified, even if it
is effective with respect to the remaining criteria.
Attack success rate This metric refers to the percentage of
input data, onwhich the attackmethod can be deployed effec-
tively. If X is the set of input data for a neural network f and

X ′ = {x ′ : x ′ = x − η for x ∈ X

and η some perturbation}

let us call

Xadv = {x ′ ∈ X ′ : equation (1) is true}

i.e. the labels of elements in Xadv differ from the labels com-
puted by f , for the original data x ∈ X . Then, the attack
success rate is defined as

|Xadv|
|X ′| % , where |S| denotes the carnality of S

ClassificationaccuracyThismetric quantifies the difference
of amodel’s performance before and after the attack has been
deployed. Let us denote by lx the label of x ∈ X and l = f (x)
the label computed by f . Then, the classification accuracy
of the neural network f is given by

|x ∈ X : lx = f (x)|
|X | %

,whereas the classification accuracy for the adversarial exam-
ples is given by

|{x ′ = x − η : f (x ′) = lx for x ′ ∈ X ′}|
|X ′| %

Average confidence scoreEvenwhen the label computed by a
neural network is correct, the confidencequantifies the degree
of certainty for the decision made. The range of confidence
values is from 0 (no confidence) to 1.0 (full confidence). Let
us consider a binary classification problem and two neural
networks with the so f tmax function used as activation func-
tion of the output layer. The prediction made by these two
models will be in the form of a 2-size vector with the proba-
bilities computed for each of the two classes summing up to
1, e.g. [0.53, 0.47] and [0.98, 0.02]. In this example, while
both models predict the first label as correct, the confidence
of their decisions differs significantly (0.53 and 0.98). For a
set of test samples, we are interested to measure the average
confidence score over them.
Median L p distance metrics The L p metrics quantify in the
pixel space the distance between the pixels of the original
and the adversarial images. Low L p distance values show
“small” perturbations and indicate a more effective attack,
if they achieve their target. We use the L0, L2 and L∞ dis-
tance metrics, and for a set of test samples, we measure their
median L p distance. Thesemetrics are interpreted as follows.
L0 measures the percentage of pixels of original samples
altered. L2 quantifies the change in the pixel values and L∞
the percentage of noise added to any pixel in the worst case.

2.3.2 Experiments on the effectiveness of adversarial
attacks and selection of AREB attacks

For each one of the attacks in Table 1, we have taken into
account its risk based on the visual difference of adversarial
examples andwe have then evaluated its effectiveness (attack
success rate, classification accuracy, etc.) if it represents an
actual threat. The set of attacks in Table 2 that comprise the
AREB seem to be real threats that were found to be the most
effective in their category.At the same time, these attacks rep-
resent all diverse characteristics of our taxonomy in Table 1.
Experimental framework The values of attack parameters in
our experimental context were selected as follows. For the
FGSM and PGD attacks, we used the values proposed in the
original papers. For all other attacks, the values causing the
highest attack success rate, for a minimal perturbation were
selected. These valueswere foundbypreliminary experimen-
tation. This approach is fundamentally different from [16],
which advocates to find a fixed image-agnostic perturbation
vector causing label changes for most images sampled from
a data distribution. Such a perturbation vector would be inde-
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Fig. 4 Image Grid of
Adversarial Examples on
CIFAR-10. From top to bottom,
one sample per class (order:
ship, deer, truck, airplane, frog,
cat, automobile, dog, horse,
bird) is depicted. From left to
right, the order is identical with
the one presented in Fig. 3.
More precisely: Original image,
FGSM, BI, PGD, EAD, JSMA,
DeepFool, CWL2, ZOO, BA,
HSJA, Sign-OPT and SimBA

pendent of the attack method and the L p norm selected and
would not fit into the attack categories selected for theAREB.

We focused exclusively on the untargeted attack scenario
that seems amore realistic setting given the complexity of the
classification problems (MNIST, CIFAR-10) in our experi-
ments. This choice directly excludes the ILC attack [11],
which would be appropriate for a targeted attack evaluation
scenario, for datasets with much more classes that are not
highly distinguishable (e.g. ImageNet [39]). However, the
experimental evaluation for a third dataset was left as future
research.

For evaluating the attack risk based on the visual differ-
ence criterion, we visually inspectedmultiple images derived
from adversarial perturbations, as the ones shown in Figs. 3
and 4. In most cases, the adversarial examples are visu-
ally identical to the original images, but for a few cases of
the MNIST dataset (e.g. second column of image grid in
Fig. 3—FGSMAttack) the added noise was visible. This was

not observed in images with slightly higher resolution (e.g.
CIFAR-10 cases), except of a single instance for all attacking
methods (7th column of the image grid in Fig. 4—DeepFool
Attack) where we observed occasionally very noisy exam-
ples. According to these findings, adversarial examples are
in most cases an invisible threat, especially in the domain of
image classification.

For the remaining evaluation criteria, 100 test samples
were randomly selected from each dataset, for which we
applied adversarial attacks on both the CNN andResNet neu-
ral network architectures. From these experiments, we report
here only the results obtained for the ResNet architectures,
since all other results for theCNNarchitectures do not exhibit
noteworthy differences. Although it is occasionally men-
tioned in the literature that the more complex and “deeper”
architectures can be a soothing factor for the attack effective-
ness,we found that this is not true, since deep neural networks
like ResNet are equally vulnerable to adversarial attacks, as

Table 2 Adversarial robustness
evaluation benchmark (AREB)

Attack methods Model knowledge Attack strategy Lp norm

Projected gradient descent (PGD) White box Sensitivity analysis L∞
Carlini & Wagner L2 Attack (CWL2) White box Optimization L2

Elastic net attack (EAD) White box Sensitivity analysis L1

HopSkipJump Attack (HSJA) Black box Optimization L2
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any other architecture. A more detailed description of the
experimental framework is given in Appendix 1, whereas
the attack parameters used are provided in Appendix 1.
Results for adversarial attacks The experimental results con-
cerning theResNetmodels for theMNIST and theCIFAR-10
datasets are shown, respectively, in Tables 3 and 4. The last
column in both tables displays the time (in seconds) taken
to successfully generate 100 adversarial examples for each
attack method.

As it is shown, all attacks exhibit nearly the highest pos-
sible success rate (∼ 100%). No neural network architecture
is adequate without any other robustness improvement mea-
sure, even if it is the relativelymore deep and complexResNet
architecture. Additionally, it is noteworthy that in some cases
the average confidence score for the adversarial examples is
higher than that for the original samples, indicating that the
model under attack may be more confident for the (wrong)
predictions, compared to the behaviour for the original data,
when the model is not attacked.

A matter of interest is also the extent to which an attack
impacts the original image. As it is shown in Table 3, the
PGD attack alters the image pixels to a relatively high extent
(74.88% for L0) with a moderate intensity (30% for L∞),
while the Carlini & Wagner L2 Attack alters the image pix-
els only up to 24.30% for L0 with a much higher intensity
(99.22% for L∞). For the CIFAR images that are more com-
plex (3 channels and larger in size, i.e. height×width) than the
MNIST images, we observe that a smaller perturbation suf-
fices to achieve comparable results. Given that both datasets
include tiny images, we can conjecture that for more real-
istic images similar to those found in everyday applications
(e.g. image size > 224 × 224 × 3), even when a fraction of
a pixel is altered, this may be enough to cause the model to
misbehave, as reported in [40].

Next we describe in detail each of the four attacks that
comprise the AREB and we explain the reason for having
been included in the benchmark.
Projected gradient descent (White Box L∞ sensitivity anal-
ysis) attack The PGD attack [12] was originally based on
the L∞ norm, but it has been also applied using other L p

norms (i.e. L1,L2). PGD can produce very effective adver-
sarial examples with limited computational cost that wrong
predictions with high confidence. Moreover, it can be seen
as an optimized version of the BIM attack: for every itera-
tion towards finding the gradient descent’s projection with
the maximum impact, a step is made towards the direction
of the negative loss function. As shown in Tables 3 and 4,
this is the only attack that can achieve up to 100% success
rate with average confidence score 1.0 and this is evident in
both datasets. Also, as can be seen in Table 4, the ResNet
model is more confident for the (wrong) predictions (1.0)
for adversarial samples, than it is, for the original inputs
(0.91). PGD demonstrates superior performance compared

to all other white box L∞ sensitivity attacks, across all eval-
uation criteria in both datasets. Therefore it is our choice in
this category of adversarial attacks.
Carlini & Wagner L2 (White Box L2 Optimization) attack.
Carlini & Wagner (CW) attack variants [18] have shown
very high success rates, and they are therefore considered
among the most powerful adversarial attacks. In this type of
attacks, the main goal is to find, through a binary search,
the optimal value for a constant that is added in the objec-
tive function to be maximized for computing the adversarial
sample. These attacks highlight the efficiency of the so-called
iterative attacks, which are based on optimization methods.
In Tables 3 and 4 we observe an attack success rate of 100%
for both datasets and very low classification accuracy for
adversarial samples. In all experiments, we applied the L2-
based version of the attack. The original sample is barely
altered by the attack, thus resulting in adversarial examples
that as shown in Table 4 differ with respect to the median
L2 and L∞ metrics by only 0.12 and 1.54%, respectively.
Compared to the other attack of this category, i.e. the Deep-
Fool, CWL2 is more effective with respect to all evaluation
criteria. Its main drawback is the relatively high computa-
tional costs (Table 3—2340s, Table 4—3447s) for crafting
adversarial examples, something that is observed in most
attacks based on optimization techniques (e.g. ZOO, Sign-
OPT Attack, SimBA). With DeepFool, on the other hand,
we can craft adversarial examples really fast (Table 3—67s,
Table 4—34s), but this is achieved at the expense of their
quality. More specifically, there are many occasions where
DeepFool introduces a significant amount of noise into the
original image (see 7th column of the image grids in Figs. 3
and 4), resulting in perturbed examples that cannot be con-
sidered as adversarial with respect to the visual difference
criterion.
Elastic Net (White Box L1 Optimization) attack.

The EAD attack can be seen as an amalgam of the CW
attack method combined with the elastic-net regularization
technique [14, 41] that is widely used in solving high-
dimensional feature selection problems. It aims to generate
examples as similar as possible with the original image,
through “penalising” the adversarial samples that differ sig-
nificantly. EAD is the only attack of our taxonomy (see
Table 1) that is originally based on the L1 norm. The results
in Tables 3, 4 highlight its effectiveness compared to the other
white box attacks under all evaluation criteria.
HopSkipJump (Black Box L2 Optimization) attack. The
HSJA attack [21] is an optimized version of the Bound-
ary Attack [20]. The principal “improvement” lies in the
algorithm’s capability to generate adversarial samples of
superior quality (reduced distortion) within a shorter time-
frame (fewer queries by the search algorithm). Tables 3 and
4 demonstrate that all black box attacks exhibit are particu-
larly effective, even though the information available to the
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attacker is limited and takes the form of input–output pairs
from the trained neural network. This finding is reflected in
the very high attack success rates and the very low values
of classification accuracy. While in most evaluation crite-
ria the performance of black box attacks is nearly identical,
there are two criteria in which HSJA dominates. These are
the Average Adversarial Confidence Score (Table 3—0.93,
Table 4—0.90) and the drastically reduced computational
cost (Table 3—41s, Table 4—57s).

3 Preprocess defences

A preprocess defence transforms a model’s inputs so that
it will be hard for an attacker to exploit any of them. Most
of these methods—except of label smoothing—lie on “com-
pressing” the input space, for limiting the available space
where the generation of adversarial examples is feasible.
The robustness of neural network models is thus indirectly
enhanced, while it is possible to combine this defence with
adversarial training. In this section, we report the experimen-
tal findings for the most promising preprocess defences in
two different contexts: when they are applied alone, as well
as when they are combined with other preprocess defences.

3.1 Experimental framework

The effectiveness of preprocess defenceswas studied for both
the CNN and the ResNet architectures, in the two datasets
used in our experiments.

To find the parameter value(s) that best fit(s) to a prepro-
cess defence, eachmethodwas applied in two different cases:
original input data and adversarial input data. The rationale
behind this is to ensure that any robustness gains are not
accompanied by significant reductions in accuracy, for the
original data, which has been observed in several studies of
the related literature. Using diagrams like the one in Fig. 5,
we found the optimal value for which a defence achieves
the “best protection” for the model, while minimizing a pos-
sible reduction in accuracy. More specifically, Fig. 5 shows
how the classification accuracy of a model is affected when
increasing the hyperparameter lambda (λ) for the Total Vari-
ance Minimization (TVM) defence. The blue line refers to
the model’s accuracy when TVM is applied to the original
data, whereas the red line shows the model’s accuracy when
the method is applied to adversarial data. In this particular
case, we chose λ = 0.09, a value for which we observe that
the model achieves 82% accuracy for the original data and
almost 60% for the adversarial data.

To study the impact of preprocess defences on adversar-
ial robustness, they were applied to the two datasets in this
“optimal configuration”. This means that the accuracy in this
preliminary tuning phase was not taken into account to judge

Fig. 5 Parameter tuning of Total VarianceMinimization under theHop-
SkipJump attack

on the adversarial robustness of the models under test. The
hyperparameters that were eventually chosen are specified in
Appendix 2.

3.2 Experimental results

Tables 5 and 6 summarize the results for the preprocess
defences under test, when we apply to the subject model two
very effective attacks of theAREB, namely PGDandHSJA, a
white box (sensitivity analysis) attack and a black box (opti-
mization) attack. No noticeable differences were found in
the parameter values of the preprocess “optimal configura-
tions” in the two aforementioned attack cases. Therefore, we
used the same hyperparameter value for both attack meth-
ods that were tested. On the other hand, we found significant
differences in the parameter values, when the same defence
method was applied to different data sets; for this reason we
report the related results in separate tables.

Based on the classification accuracy shown for a model
when it is and when it not under attack, the effectiveness
of preprocess defences is evident for the white box attack.
In the case of the black box attack, we do not observe the
same improvement. Furthermore, certain defences (e.g. Fea-
ture Squeezing) do not have any impact at all in the case of the
CIFAR-10 dataset, whereas for theMNIST dataset we notice
significant differences, for all defence methods. The results
for the ResNet models are omitted; in most cases—except of
Label Smoothing—they are inferior than the corresponding
results for the CNN models.

Finally, we also conducted experiments for testing all
possible combinations of preprocess defences. Some of the
results for the CIFAR-10 dataset are shown in Table 7. Only
the combinations of defences that included Label Smoothing
showed promising improvements. As a general observation,
it seems that the model’s accuracy for the original data
deteriorates when the number of defence methods that are
combined is increased.

Hereafter, the results of Tables 5, 6 and 7 are commented
separately, for all preprocess defences under test.

123



Adversarial robustness improvement for deep neural networks Page 13 of 22 35

Table 5 Preprocess defence
evaluation on MNIST (CNN)
under adversarial attacks

Preprocess defence Attack Methods
Projected Gradient Descent HopSkipJump Attack

Label Smoothing [42] 100% (100%) 1% (100%)

Feature Squeezing [43] 79% (100%) 0% (100%)

Spatial Smoothing [43] 25% (100%) 2% (100%)

JPEG Compression [44, 45] 0% (98%) 4% (100%)

Total Variance Minimization [46] 7% (96%) 3% (100%)

For every preprocess defence applied to the model, we report the classification accuracy when this “shielded”
model is under attack. The values in parenthesis correspond to the classification accuracy of the corresponding
model when deployed in original data

Table 6 Preprocess defence
evaluation on CIFAR-10 (CNN)
under adversarial attacks

Preprocess defence Attack Methods
Projected Gradient Descent HopSkipJump Attack

Label Smoothing [42] 64% (84%) 8% (84%)

Feature Squeezing [43] 0% (83%) 8% (83%)

Spatial Smoothing [43] 26% (81%) 4% (81%)

JPEG Compression [44, 45] 1% (84%) 7% (84%)

Total Variance Minimization [46] 0% (82%) 6% (82%)

For every preprocess defence applied to the model, we report the classification accuracy when this “shielded”
model is under attack. The values in parenthesis correspond to the classification accuracy of the corresponding
model when deployed in original data

Table 7 Evaluation of combined preprocess defences on CIFAR-10
(CNN) under adversarial attacks

Preprocess defences
combination

Attack Methods

Projected
Gradient
Descent

HopSkipJump
Attack

FS + JC 0% (81%) 4% (81%)

FS + TVM 0% (83%) 9% (83%)

FS + SS 0% (77%) 8% (77%)

FS + LS 58% (83%) 4% (83%)

SS + TVM 7% (81%) 3% (81%)

SS + JC 10% (72%) 9% (72%)

SS + LS 62% (81%) 7% (81%)

JC + TVM 4% (77%) 5% (77%)

JC + LS 48% (78%) 6% (78%)

TVM + LS 62% (82%) 5% (82%)

FS + SS + LS 57% (77%) 6% (77%)

FS + JC + LS 45% (81%) 3% (81%)

SS + JC + LS 45% (72%) 14% (72%)

SS + JC + TVM 8% (79%) 8% (79%)

FS + SS + TVM 0% (77%) 6% (77%)

FS + JC + SS + LS 43% (74%) 6% (74%)

FS + JC + SS + TVM 8% (73%) 9% (73%)

FS + JC + SS + TVM
+ LS

46% (73%) 5% (73%)

FS: FeatureSqueezing,SS: Spatial Smoothing,JC: JPEGCompression,
LS: Label Smoothing, TVM: Total Variance Minimization

Label Smoothing
This is a technique [42] for “smoothing” a model’s labels

so that it will not be overly certain for its predictions. This
is applied to the penultimate layer of the neural network, by
shrinking the differences between the logit of the correct class
and the logits of the incorrect classes. As shown in Table 5,
this defence is the only one that has the potential to protect a
model against the PGD. The same is also true in the case of
the CIFAR-10 dataset (Table 6).
Spatial Smoothing

This technique [43] is an input transformation that applies
a median filter, for smoothing all image pixels based on their
nearby pixels. Such a transformation eventually reduces the
overall variation of the pixels significantly. From the results
shown in Tables 5 and 6, it seems that spatial smoothing may
have only marginal impact, when it is used to defend against
adversarial attacks.
Feature Squeezing

This is an input transformation technique [43] that reduces
the bit depth of images, i.e. the number of bits used for the
colour representation of each pixel. As a consequence, it is
potentially harder to generate an adversarial image. From the
results in Table 5, Feature Squeezing seems to be effective
in the case of the MNIST dataset that includes 8-bit depth
images, but it is not effective at all, for the CIFAR-10 dataset
(Table 6) that includes 24-bit depth images.
JPEG Compression

This technique transforms the subject image by applying
factorization to its matrix representation; the compression
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ratio is negatively correlated with the resulting image qual-
ity. It has been proposed in [44, 45] as a means to restrain the
success rate of adversarial attacks. However, our experiments
suggest (and it has been also reported elsewhere) that the
accuracy for the original input data deteriorates, for higher
compression ratios. JPEG compression seems to be effec-
tive for low-distance perturbations of images, as opposed to
bigger perturbations, for which it is not equally effective. In
the results shown in Tables 5 and 6, it seems not to be par-
ticularly effective, since they refer to attacks with relatively
high success rates that mostly involve comparatively bigger
perturbations.
Total Variance Minimization (TVM)

According to [46], the total variance of pixel valuesmaybe
minimized when altering selected pixels randomly through
Bernoulli sampling using a parametrizable function. From
the experimental results in Tables 5 and 6, TVM seems not to
be particular effective for our attack settings, but it exhibits a
decent effectivenesswhen it is combinedwith Label Smooth-
ing (Table 7).

4 Adversarial training

Adversarial training was introduced in [3] as an approach
with the potential to build robust models against adversarial
attacks. Through including adversarial samples in training
data it was observed that the model could classify to some
extend correctly the perturbed inputs. Such an approach can
be implemented through merging into a single loss func-
tion the original objectives of the model with the adversarial
objectives; for an input x with label y the enhanced loss func-
tion is given as

∼
J (θ, x, y) = α J (θ, x, y)+

+ (1 − α) J (θ, x + ε sign(∇x J (θ, x, y)), (6)

where J (θ, x, y) denotes the loss function used in training
with model parameters θ , α is the ratio of original to adver-
sarial inputs during training, and ε is a parameter that adjusts
the perturbation magnitude. The adversarial crafting method
that is depicted on the right-hand side of equation (6) is the
FGSM.

In [12], this training method was generalized to other
attack methods as well by adding an optimisation perspec-
tive to the aforementioned scheme. Thus, adversarial training
took the form of a robust optimisation problem that consists
an inner maximization problem and an outer minimization
problem; for x ∈ R with corresponding labels y ∈ [k] these
two problems are defined as

min
θ

ρ(θ), where ρ(θ) = E(x,y)∼D
[
max
δ∈S

J (θ, x + δ, y)
]

(7)

with D representing the data distribution (number of items
per feature) and δ quantifying the applied perturbation
depending on the L p norm used (S ⊆ R denotes the set
of allowed perturbations). The inner maximization problem
yields the “strongest” possible adversary (δ value) for x that
maximizes the loss, whereas the outer minimization prob-
lem expresses the need to minimize the loss function, given
this specific adversary. In essence, finding the adversarial
perturbation that maximises the loss function is a matter of
optimizing the benefits of adversarial training, in terms of the
robustness gains to be achieved.

Targeting to an holistic improvement approach against
all attacks in the AREB, we focus exclusively on ensem-
ble adversarial training methods, which were first described
in [47]. Our training strategy is accomplished through the
integration of attacks in equation (7), in the form of prop-
erly selected δ perturbations. Twomain approaches [48] have
been considered:

• “Max” strategy: for all inputs, the model is trained in
each epoch using only the “strongest” adversarial exam-
ple crafted from n different attack methods

• “Average” strategy: for all inputs, the model is trained
in each epoch using all adversarial examples crafted from
n different attack methods.

To the best of our knowledge, [49] is the only related work
that aims to an holistic improvement of adversarial robust-
ness. However, the adversarial training method in that work
targets the worst-case over the union of adversarial pertur-
bations (based on L1, L2 and L∞ norms), i.e. they follow a
slightly different approach of the “max” strategy, as opposed
to our approach that takes into account all types of pertur-
bations at each training epoch (“average strategy”). Through
this alternative approach, we increase the number of adver-
sarial examples, on which the model is trained on. Moreover,
our evaluation is based on the AREB benchmark, which is
an outcome of systematic experimentation, whereas in [49]
there is no systematic method for justifying the representa-
tiveness of the set of attacks selected. This can potentially
result in overestimating the robustness improvement, if there
are additional “powerful” attacks that have not been taken
into account.

The research question for the experiments carried out on
robustness improvement is:

Can we achieve resilience against all types of adversar-
ial attacks, if we encompass in adversarial training through
properly selected perturbations all the adversarial character-
istics?

To answer this question, we have integrated into our
ensemble adversarial training framework perturbations of all
different L p norms (L1, L2, L∞) and attack strategies (Sen-
sitivity Analysis, Optimization). Based on the experimental
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results presented in Sect. 2.3.2, we opted to prioritize the
selection of attack methods that maximize the loss function
J (θ, x + δ, y) in equation (7) compared to other adversaries.
For this reason, the attacks selected are:

• the PGD attack [12], one of the most effective L∞-based
attacks, which justifies why it is frequently used in most
adversarial training solutions;

• the EAD attack, which has been found to be the most
effective L1-based attack;

• the HSJ attack, which has been found to be the most
powerful black box optimization-based L2 attack.

4.1 Adversarial robustness metrics

In this section, we review the most widely used metrics
for adversarial robustness and then we explain the rationale
behind the selection of those used in our experimentation for
answering the research question posed.
Empirical Robustness In [17], the so-called empirical robust-
ness was proposed, for quantifying adversarial robustness.
This metric is based on the L2 norm and corresponds to the
minimum needed perturbation to be introduced in the input
data, so as the model will change its prediction.
CLEVERAnother metric for adversarial robustness was pro-
posed in [50], which is attack-agnostic. More specifically,
by relying on Lipschitz continuity, the authors search for the
local Lipschitz constant through applying extreme value the-
ory. It is then possible to estimate the lower bound of the
minimum adversarial distortion; any perturbation up to this
bound corresponds to perturbed examples that are not adver-
sarial ( f (x) = f (x ′) = l). Thismetric is calculated per input
sample, and it is known as the CLEVER metric.
ψ-metric based on KL Divergence In another proposal [51],
adversarial robustness for a given perturbation range is quan-
tified by the maximum divergence between the model’s
predictions for the original data and the worst-case adversar-
ial example within the considered perturbation range. This
approach is based on the Kullback–Leibler (KL) divergence
metric, denoted as DKL , which is a well-known way to mea-
sure the divergence of two probability distributions (in our
case, prediction distributions). For an input sample x and a
perturbation δ, the ψ(x) metric for adversarial robustness is
defined as:

ψ(x) = 1

maxδ DKL(P(x), P(x + δ))
, (8)

where P(x) denotes the prediction results for input x and
P(x + δ) the results for the adversarial input. Typically, a
low KL divergence value indicates high similarity between
the prediction distributions of a model for the original and
adversarial inputs. Therefore, for higher values of ψ(x) the

robustness of a model against adversarial attacks is getting
improved.
Loss Sensitivity

Although originally not proposed as a metric for assess-
ing adversarial robustness, it could provide valuable insights
into this topic. In [52], the metric was employed to evaluate
the extent of memorization displayed by Neural Networks
trained on real versus random input data. The metric simply
measures the norm of the loss gradient with respect to input
samples and is formally defined as:

gx =
∥∥∥∥

∂L

∂x

∥∥∥∥
1

(9)

where gx is the average norm of the loss gradient over a num-
ber of input samples x , referred as loss sensitivity. Higher
metric values indicate a steeper average gradient over the
input samples, while lower values suggest a loss gradient
more resilient to changes concerning data that the associ-
ated model has not been trained on. Regarding adversarial
robustness, lower metric values are connected with models
exhibiting resistance to changes, as adversarial examples typ-
ically deviate from the data distribution on which the model
was trained.

In regard with the research question posed, empirical
robustness is not relevant, since the question refers to poten-
tial robustness improvement against all types of adversarial
attacks. We remind that empirical robustness is based on the
L2 norm, whereas our AREB benchmark includes attacks
that are based on L1 and L∞ metrics, as well. Moreover, as
it was noted in Sect. 2.3.2, we have already configured the
selected adversarial attacks with the parameters resulting in
the minimum perturbation that can cause as high attack suc-
cess rate as possible. Therefore, since empirical robustness
refers to the minimum needed perturbation for the model to
change its prediction, we do not expect that it can provide
additional valuable information. To sum up, when focusing
on the holistic improvement of adversarial robustness, like
in our case, the CLEVER, ψ and loss sensitivity metrics are
the most appropriate to assess it.

4.2 Experimental results

To answer the research question posed, we compare two
“adversarially robust”, namely one with using only PGD
in adversarial training and another one trained by combin-
ing the PGD, EAD and HSJA attacks. Both models were
trained for 390 epochs and integrated the label smoothing
preprocess defence, which seems to be less effective for
the CIFAR-10 dataset than the MNIST dataset (especially
in the case of the HSJA L2-based attack - cf. Sect. 3). The
training took place using exclusively adversarial perturba-
tions, as opposed to other approaches that mix adversarial
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and original data in ratios 0.5 or more. This choice was
preferred due to preliminary experimental findings suggest-
ing that when using only adversarial perturbations we can
achieve optimal results with respect to the model’s robust-
ness, without undermining significantly the accuracy for the
original data. The accuracy figures shown in the results give
the average of 10 measurements taken from 100 test sam-
ples that each time were randomly selected among the test
data.

Table 8 shows the classification accuracy of our adversar-
ially trained neural networks, for the MNIST dataset, when
they are attacked by all methods in the AREB. The second
column refers to the accuracy of the adversarially trained neu-
ral network using the PGD L∞-based attack, while the third
column shows the corresponding accuracy for the adversar-
ially trained neural network using the PGD, EAD and HSJA
attacks. Finally, the last table row shows the classification
accuracy of the two adversarially trained neural networks,
for the original MNIST data. It is evident that our approach
for holistic improvement of adversarial robustness results in
significant gains (shown in bold) with respect to the classifi-
cation accuracy, for all attacks of the AREB. Moreover, the
accuracy of the robust neural networks for the original data
has been preserved.

Regarding the CIFAR-10 experimental results that are
shown in Table 9, we observe a comparatively lower clas-
sification accuracy for the original data by both adversarially
trainedmodels. However, this drop is comparatively less than
the drop observed for the original neural network, when
applying Label Smoothing (cf. Table 6). It is again evi-
dent that when using the adversarially trained model with
the ensemble of attacks (PGD/EAD/HSJA), the accuracy is

Table 8 Adversarial training on MNIST (CNN)

AREB PGD Adv.
Training [12]
(%)

Robust Neural
Network (%)

(PGD + HSJA +
EAD)

Projected Gradient
Descent (PGD)

87.3 98.4

Carlini & Wagner L2
Attack

14.0 58.6

Elastic Net Attack
(EAD)

12.6 27.5

HopSkipJump
Attack (HSJA)

10.1 20.8

benign 97.0 99.0

Bold indicates the improved performance of the proposed methodology
compared to the standard method for increasing adversarial robustness
Performance comparison for the two robust neural networks on AREB,
where the classification accuracy is reported. Both models integrate
Label Smoothing preprocess defence

Table 9 Adversarial training on CIFAR-10 (CNN)

AREB PGD Adv.
Training [12]
(%)

Robust Neural
Network (%)

(PGD + HSJA +
EAD)

Projected Gradient
Descent (PGD)

44.2 15.8

Carlini & Wagner L2
Attack

16.0 36.8

Elastic Net Attack
(EAD)

7.0 22.4

HopSkipJump
Attack (HSJA)

4.0 41.3

benign 74.0 69.0

Bold indicates the improved performance of the proposed methodology
compared to the standard method for increasing adversarial robustness
Performance comparison for the two robust neural networks on AREB,
where the classification accuracy is reported. Both models integrate
Label Smoothing preprocess defence

vastly improved, in all cases of the AREB, apart from the
case of PGD attack. This phenomenon can be attributed to
the limited impact of Label Smoothing on these specific data
(CIFAR-10).

Table 10 summarizes the evaluation of adversarial robust-
ness using the CLEVER metric. The figures shown provide
estimates for the lower bound up to which perturbed exam-
ples are not adversarial, with respect to the L p metric used
by the adversarial attack. Thus, it is possible to compare
the robustness of different models for the same attack or
even to compare the robustness against attacks that share the
same L p metric. For each AREB attack, we kept the same
parameter settings for CLEVER, with the ones used in the
original paper that first introduced thismethod. The estimates
shown for each model and attack are the average CLEVER
value from 100 test samples. The second row provides the
CLEVER values for the adversarially trained neural network
using the PGD L∞-based attack, while the third row shows
the corresponding values for the adversarially trained neu-
ral network using the ensemble of PGD, EAD and HSJA
attacks.

As it is shown in Table 10, the average lower bounds
given by the CLEVER metric are higher for the adver-
sarially trained model with the combined PGD/EAD/HSJA
attacks, in almost all cases. This implies that an attacker will
have to introduce larger perturbations to force the model
to misbehave; if more noise is needed for the attacker to
achieve his goal, then the visual difference from the orig-
inal sample is also magnified, which makes it more likely
for the attack to be detected [53]. As noted in Tables 8,
9, when HSJA is included in adversarial training, a higher
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Table 10 CLEVER values for the MNIST and CIFAR-10 datasets and
three different models

NN model AREB L p norm CLEVER
MNIST CIFAR-10

Original model PGD L∞ 0.003 0.007

CWL2 L2 0.082 0.017

EAD L1 0.62 0.159

HSJA L2 0.01 0.002

PGD Robust Model PGD L∞ 0.04 0.02

CWL2 L2 0.012 0.019

EAD L1 1.38 0.578

HSJA L2 0.05 0.015

Robust Neural
Network (PGD +
HSJA + EAD)

PGD L∞ 0.02 0.013

CWL2 L2 1.10 0.090

EAD L1 2.53 1.184

HSJA L2 0.28 0.10

original model: trained on benign data, PGD Robust Model: trained
using the PGD L∞-based attack, Robust Neural Network: trained
using the PGD, EAD and HSJA attacks

improvement of robustness is favoured against L2-based per-
turbations.

These experimental findings converge to the following
answer for our research question: when adversarial training
targets on properly selected ensembles of perturbations we
achieve increased resilience against all types of adversarial
attacks. This is also confirmed by the results in Table 11.
Significant improvements are achieved in ψ metric for the
adversarially trained model with the combined attacks, com-
pared to the adversarially trained model with the PGD attack

Table 11 ψ adversarial robustness estimates

NN model AREB ψ(x)
MNIST CIFAR-10

Original model PGD 0.06 0.07

CWL2 0.85 0.51

EAD 0.24 1.07

HSJA 1.17 0.96

PGD robust model PGD 166.79 41.61

CWL2 22.71 25.24

EAD 1.06 17.5

HSJA 51.10 6.25

Robust neural
network (PGD +
HSJA + EAD)

PGD 130.58 6.33

CWL2 96.92 49.45

EAD 22.18 108.9

HSJA 254.16 19.43

Table 12 Loss sensitivity

NN model AREB
MNIST CIFAR-10

Original
model

PGD 54.27 87.65

CWL2 19.56 38.92

EAD 20.87 32.29

HSJA 32.83 52.43

PGD robust
model

PGD 0.19 1.86

CWL2 0.29 2.37

EAD 0.90 2.28

HSJA 0.22 2.32

Robust neural
network
(PGD +
HSJA +
EAD)

PGD 0.37 3.68

CWL2 0.15 1.66

EAD 0.43 1.63

HSJA 0.17 1.58

only. The values for the ψ metric are estimates computed
out of 1000 test samples per case (resource demands for
computing ψ are less than those for the CLEVER metric).
Finally, the aforementioned observations are substantiated by
the results of the loss sensitivitymetric.As shown inTable 12,
the loss gradients are overly steep on average for the origi-
nal model when subjected to adversarial samples, something
that is corroborated by the high metric values. In contrast,
the two robust models result in shallow gradients with our
model demonstrating superior results in almost all cases.

5 Process flow and cost for robustness
improvement

The answer given in Sect. 4.2 for the posed research question
and the insight gained through the AREB benchmark give
rise to a process flow for holistically improvedmodels against
diverse types of adversarial attacks:

• Step 1: assess the adversarial threats for the dataset of
interest
The attack parameters with the highest success rate for
minimal perturbations (cf. Sect. 2.3.2) have to be fine
tuned, for all attacks of the AREB.When the same attack
is applied to diverse datasets, the parameter values result-
ing in the highest success rates may be very different.
Various hyperparameter optimization techniques may be
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applied, as well as common search procedures such as
random search, grid search and others.

• Step 2: assess the effects of preprocess defences on the
dataset of interest
The goal is to find out whether any (combination of)
preprocess defence(s) can contribute towards improv-
ing the robustness of the neural network with respect
to the attacks of the AREB. Label smoothing may be
an attractive choice, since it does not affect input data,
while exhibiting significant improvements according to
our experiments. To fine tune the parameter(s) of the pre-
process defence(s) under test, the methodology of Sect. 3
will be followed. It is essential to take into account that
potential gains in adversarial robustness may come at the
expense of classification accuracy for the original data.

• Step 3: create an adversarially trained model
An ensemble adversarial training scheme is to be used,
in order to combine attacks with different characteristics
and to eventually integrate the resulting model with the
preprocess defence chosen in Step 2.

• Step 4: check the robustness improvement with respect
to all attacks in the AREB
The adversarially trained model has to retain an ade-
quate level of classification accuracy for the original
data, when compared to a neural network that has not
been trained on adversarial perturbations. For the robust-
ness improvement, it is advised to use the three metrics
described in Sect. 4.1. Suchmetrics can provide adequate
assurance that the adversarially trained network exhibits
satisfactory resilience against all adversarial attacks in
the AREB.

• Step 5: repeat steps 3 and 4 until being able to achieve
the robustness expectations
If a more robust model is needed, alter the attack
methods used in adversarial training, while insisting in
combinations that represent all adversarial example char-
acteristics, as discussed in Sect. 2.3.

Our experimental work focused on two image classifi-
cation datasets. However, when the perturbed inputs are
visually indistinguishable from benign images, adversarial
attacks are very realistic threats for computer vision appli-
cations in the physical world. In other application domains,
adversarial attacks can be even more serious threats, since
the aforementioned condition may not be applicable. In gen-
eral, we do not see any technical limitations for applying our
process flow for improved adversarial robustness to other
application domains as well.

5.1 Cost and computational resource demands

The cost of the process flow for holistic improvement of
adversarial robustness depends largely on the know-how and

the available tool support for the machine learning engineer.
We relied on the IBM Adversarial Robustness Toolbox,1 an
open-source framework that implements all state-of-the-art
adversarial attacks and defences. If such a tool/library is
available, we estimate that steps 1 and 2 can take up to a
few weeks, even if the engineer is not familiar with the tool.
On the other hand, if the engineer has already applied the pro-
cess flow at least once, then for any new attempt to improve
the adversarial robustness of a neural network model, steps
1 and 2 can be completed in a few days at most. The parame-
ters’ choice largely affects the interpretation of the results in
steps 3 and 4, and for this reason, it is essential beforemoving
to the next step to find out appropriate parameter values for
the attacks and defences under test.

The computational cost for holistic improvement of adver-
sarial robustness is affected by the fact that adversarial
training is in general more computationally demanding than
conventional training of neural networks. The computa-
tional resources needed depend on the dataset, whereas there
is a correlation between the amount of time invested and
the robustness improvement achieved. Indicatively, for the
MNIST dataset and the results shown in Table 8, it took
30h to train the PGD-based robust model and 150h to train
the combined PGD+HSJA+EAD-based robust model. The
experiments took place on a dedicated workstation with a 4-
core 3 GHz processor, 12GB RAM and the Nvidia RTX2070
graphics card.

6 Conclusion

Wepresented an approach for holistic improvement of adver-
sarial robustness of deep neural networks. The starting
point is our Adversarial Robustness Evaluation Benchmark
(AREB) set of attacks, which includes representative cases
of the most effective attacks for all aspects of adversarial
robustness.

Any approach with a similar focus is inevitably data-
dependent; therefore, it was necessary to apply techniques for
fine-tuning the parameters of attacks, in order to find those
with the highest success rates for minimal data perturbations.
An analogous approach was also followed for assessing the
effects of preprocess defences. The whole process ends up
with combining the most effective preprocess defence, with
a robust model obtained via adversarial training using an
ensemble training method.

In overall, for both theMNISTand theCIFAR-10 datasets,
our process flow resulted in an holistic improvement of
adversarial robustness. The achieved improvement has been
confirmed by appropriate adversarial robustness metrics;
minor exceptions found could be attributed to the preprocess

1 https://github.com/Trusted-AI/adversarial-robustness-toolbox.
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defence used.Adversarial robustness canbe further improved
through the iterative application of the process steps. To con-
clude, we believe that, if there are available libraries/tools
for applying an adequate range of adversarial attacks and
defences, as well as sufficient computational resources, our
approach to improving adversarial robustness is worth the
effort needed, especiallywhen themodel under test is a learn-
ing component in a critical application/system.

Future research prospects include, but are not limited, to
the following challenges. We intend to enrich the L p metrics
used, through including alternatives for quantifying adversar-
ial perturbations, such as the Wasserstein Distance [54] and
various computer vision algorithms [55] (Histogram of Ori-
ented Gradients and Edge Detectors). For the adversarially
robust models created, we intend to complete the improve-
ment processwith a formal robustness verification technique,
such as the one reported in [56]. Finally, it is also interesting
to explore the specificities for applying the approach to other
application domains, such as in natural language processing,
speech recognition, deep reinforcement learning and neural
controller design, since research on adversarial robustness in
these fields has not been advanced, as it has for the image
classification problems.2, 3
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Appendix A: Experimental setup

All the experiments were conducted on a computer with a
4-core 3GHz processor, 12 GB RAM and a single Nvidia
GeForce RTX 2070 8GB graphics card. We build our Deep
Neural Networks (DNNs) with TensorFlow4 and Keras. 5

We chose the two most popular datasets in bibliography
for image classification problems, in particular MNIST2 and
CIFAR-103, in order to expose image data to adversarial
threats and test methods that increase models’ robustness.
MNIST is consisted of 70.000 grayscale images of size
28× 28× 1(width× height× channels), CIFAR-10 is com-
posed of 60.000 RGB images of size 32× 32× 3, while the
data represent 10 object classes in both cases.

We train two models of different complexity per dataset,
one Convolutional Neural Network (CNN) with ∼ 200.000
parameters andoneDNNbasedonResNet [6] state-of-the-art
architecture. By that means, we aim to investigate if different
architecture and additive Neural Networks’ depth could be
a soothing factor against adversarial examples’ success rate,
as occasionally suggested in the literature.

The CNN for MNIST consists of 2 blocks of the follow-
ing structure, Convolutional Layer—Batch Normalization
Layer—Max Pooling Layer, followed by a Fully Connected
Layer of 256 nodes and an Output Layer of 10 nodes with
Softmax as the Output Activation Function. The first and
second Convolutional Layers’ filters depth is 32 and 64,
respectively, with no padding, while we keep Pooling filter
size of (2, 2) for both Max Pooling Layers.

TheCNN for CIFAR-10 consists of 2 blocks of the follow-
ing structure, Convolutional Layer—Batch Normalization
Layer—Convolutional Layer–Batch Normalization Layer—
Max Pooling Layer—Dropout Layer, and a block of the same
structure with Average Pooling Layer instead of Max Pool-
ing Layer. Then, there is a Fully Connected Layer of 512
nodes and an Output Layer of 10 nodes with Softmax as the
Output Activation Function. The first, second and third Con-
volutional Layers’ filters depth is 32, 64, 128, respectively,
with padding, while we keep Pooling filter size of (2, 2) for
both Max Pooling Layers and (8, 8) for the Average Pooling
Layer. The Dropout Layers have a dropout rate (the percent-
age of nodes to be set to 0 during each training step) of 20%,
20% and 30%, respectively.

All models are trained at batches of 32 assisted with call-
back functions that control learning-rate decay and Early
Stopping [57]. Additionally, we use Adam [58] as the opti-
mizer and Categorical Cross-Entropy as loss function. We
apply Data Augmentation as a means of improving generali-
sation of our models, using the Keras built-in method and by

4 https://www.tensorflow.org.
5 https://keras.io.
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keeping fixed the method’s parameter values for both models
per dataset as shown next:
MNIST:

rotation_range = 20, width_shi f t_range = 0.1,
height_shi f t_range = 0.1, shear_range = 0.1,
zoom_range = 0.1, hori zontal_ f li p = True
CIFAR-10:

rotation_range = 30, width_shi f t_range = 0.15,
height_shi f t_range = 0.15, shear_range = 0.1,
zoom_range = 0.1, hori zontal_ f li p = True

The MNIST models are trained for 30 epochs with the
CNN obtaining 99, 38% and the ResNet 99, 7% test accu-
racy, respectively. The CIFAR-10 models are trained for
100 epochs, with the resulting test accuracy be 84, 33% for
the CNN model and 89, 42% for the ResNet. For adversar-
ial training, we use the same CNN architectures described
above, and we add a Fully Connected Layer of 1024 nodes
just before the Output Layer, as suggested in [12].

Adversarial attacks

In Appendix B we present the parameter(s) choice for the
adversarial attacks of the AREB set, for both MNIST and
CIFAR-10 data.
MNIST
PGD: eps = 0.3, eps_step = 0.01, max_i ter = 40

CWL2: con f idence = 0.05, ini tial_const = 0.1,
binary_search_steps = 20
EAD: con f idence = 0.5, max_i ter = 10,
binary_search_steps = 20
HSJA: max_i ter = 10, max_eval = 100

CIFAR-10

Table 13 Preprocess defences hyperparameter choice on MNIST

Preprocess defence Hyperparameter Value

Label smoothing k 0.9

Feature squeezing Bit depth 1

JPEG compression Quality 6%

Spatial smoothing Window size 4

Total variance minimization λ 0.2

Table 14 Preprocess defences hyperparameter choice on CIFAR-10

Preprocess defence Hyperparameter Value

Label smoothing k 0.9

Feature squeezing Bit depth 5

JPEG compression Quality 85%

Spatial smoothing Window size 2

Total variance minimization λ 0.09

PGD: eps = 0.03, eps_step = 0.008, max_i ter = 7
CWL2: con f idence = 0.2, ini tial_const = 0.01,

binary_search_steps = 20
EAD: con f idence = 0.4, max_i ter = 10,
binary_search_steps = 20
HSJA: max_i ter = 10, max_eval = 100

Preprocess defences

In Appendix C we present the hyperparameter values for the
preprocess defences deployed in MNIST (see Table 12) and
CIFAR-10 (see Table 13). This particular selection is applied
for both models (CNN, ResNet) on these two datasets.
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