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Abstract
In the field of medical applications, precise localization of medical instruments and bone structures is crucial to ensure
computer-assisted surgical interventions. In orthopedic surgery, existing devices typically rely on stereoscopic vision. Their
purpose is to aid the surgeon in screw fixation of prostheses or bone removal. This article addresses the challenge of localizing
a rigid object consisting of randomly arranged planar markers using a single camera. This approach is especially vital in
medical situations where accurate object alignment relative to a camera is necessary at distances ranging from 80cm to
120cm. In addition, the size limitation of a few tens of centimeters ensures that the resulting locator does not obstruct the
work area. This rigid locator consists of a solid at the surface of which a set of plane markers (ArUco) are glued. These plane
markers are randomly distributed over the surface in order to systematically have a minimum of two visible markers whatever
the orientation of the locator. The calibration of the locator involves finding the relative positions between the individual
planar elements and is based on a bundle adjustment approach. One of the main and known difficulties associated with planar
markers is the problem of pose ambiguity. To solve this problem, our method lies in the formulation of an efficient initial
solution for the optimization step. After the calibration step, the reached positioning uncertainties of the locator are better
than two-tenth of a cubic millimeter and one-tenth of a degree, regardless of the orientation of the locator in space. To assess
the proposed method, the locator is rigidly attached to a stylus of about twenty centimeters length. Thanks to this approach,
the tip of this stylus seen by a 16.1 megapixel camera at a distance of about 1 m is localized in real time in a cube lower than
1 mm side. A surface registration application is proposed by using the stylus on an artificial scapula.
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1 Introduction

The pose estimation of an object in a scene is a classical com-
puter vision problem. It is generally seen as a least-squares
optimization problem called Perspective-N-Points (PNP) in
which the reprojection errors of a number of points of inter-
ests (POIs) located on a target and observed on several images
are minimized [1–3]. For real-time applications, the use of
easy-to-detect fiducialmarkers provides excellent computing
time performance to detect them on the images. At the same
time, the use of a single camera, also referred to asmonocular
vision, reduces financial costs as well as the complexity of
the setup. Many applications presented in the literature take
place in this context ranging from positioning for augmented
reality, drone navigation, gesture recognition[4–7].
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The fiducial markers used in the literature are mostly pla-
nar and use the four corners of a square as POIs. While four
coplanars POIs are theoretically sufficient for a pose estima-
tion based on a single maker, in practice, the PNP problem
becomes ill-posed. Two different solutions of pose estima-
tion may exist, especially at large working distance and large
inclination. Figure1 presents two configurations illustrating
this problem of pose ambiguity [8] in a simple case, rotation
around the y axis of the marker. The first one (configuration
A) corresponds to a non-ambiguous observation of the pose,
the observed projections allow without difficulty to establish
a reliable pose using the classical pose estimation algorithms.
In the second configuration, the marker is far from the cam-
era. We observe that two different orientations of the marker
lead to an almost identical projection on the optical sensor. In
our application, the test conditions correspond to this second
configuration. In the absence of measurement noise on the
detection of the four corners of the marker, the two poses are
unambiguously discernible. In practice, measurement noise
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Fig. 1 Illustration of the pose ambiguity phenomenon. Two configura-
tions are presented where a marker of 12 mm side is seen by a camera
whose sensor is located at two distinct distances. In this illustration, the
camera has a resolution of 2048 px× 1536 px and a sensor size of 7.07
mm × 5.3 mm. The focal length is 12 mm. In each configuration, two
orientations of the marker differing from a simple rotation θ around
its axis Ym by ±36◦ are presented. In configuration A, the markers are
positioned at a distance of 20cm from the camera. The projections on

the images clearly show the perspective effect of the markers. Visually,
the vertical edges are of different lengths. In configuration B, the mark-
ers are positioned at a distance of 75cm from the camera. The images
observed for these two situations are almost identical despite the very
different orientations of the two markers. A small uncertainty on the
identification of the spatial position of the 4 points of this quadrilateral
can lead to strongly different pose estimation of this marker at the origin
of the pose ambiguity

exists and the solution obtained by optimization does not
always correspond to the real pose of the marker. The global
approach proposed here consists in making the placement of
the locatormore reliable by increasing the number ofmarkers
visible on the images.

1.1 Related work

The related work in the field of pose estimation and local-
ization spans various domains, including monocular and
multiview camera systems as well as algorithms both with
and without dedicated markers. In the realm of single-
view pose estimation, the DTAM framework proposed by
Newcombe et al. [9] enables real-time dense tracking and
mapping, while Kendall and Cipolla [10] address uncertainty
modeling in deep learning for camera relocalization. Expand-
ing to multiview scenarios, the seminal work by Hartley and

Zisserman [11] outlines the fundamentals of multiple view
geometry, and Snavely et al.’s concept of “photo tourism”
[12] introduces the notion of 3D exploration through photo
collections.

In the absenceof dedicatedmarkers,markerless approaches
have gained prominence. Newcombe et al.’s KinectFusion
[13] facilitates real-time dense surface mapping and tracking
through a depth sensor, and Mur-Artal and Tardós’s ORB-
SLAM2 [14] presents a versatile open-source SLAM system
catering to various camera setups.

Notably, optimization plays a pivotal role in refining these
methods. The Levenberg–Marquardt algorithm [15] has been
a cornerstone, as Levenberg’s method [16] and Marquardt’s
algorithm [17] significantly contribute to solving nonlinear
least-squares problems. Additionally, bundle adjustment, as
elaborated by Triggs et al. [18], and alternative optimization
techniques such as those detailed by Lepetit and Lourakis
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[19, 20] continue to enhance the precision and efficiency of
pose and localization estimation algorithms by working on
a better mathematical representation of Rodrigues’ parame-
ters.

Some studies proposed solutions to solve the pose ambi-
guity by using a fifth or more POIs [21, 22]. In some
configurations, these approaches show low reliabilities, as
demonstrated by [23].

In a noise-free configuration, this second solution exhibits
a higher reprojection error than the true solution and can
therefore be easily discarded [8]. In practice, it is common
for the bad solution to have a lower reprojection error than
the good one and makes it impossible to differentiate them
directly [24]. Consequently, a single plane marker cannot
always be used to estimate the pose of an object with confi-
dence.

To avoid pose ambiguity, several markers can be posi-
tioned in a non-coplanar way on the object [25, 26]. In this
paper, this set of markers stuck on a rigid object is called
locator. A calibration is needed if the relative position of the
markers is not precisely controlled. The calibration of a loca-
tor can be seen as a Structure-from-Motion (SfM) problem
[12, 27] which can be solved offline to obtain an accurate
model of the relative position of the fiducial markers within
the locator [28, 29].

As before, this is an ill-posed problem which requires an
accurate enough starting point in order to converge toward
the solution. The pose ambiguity can jeopardize the estab-
lishment of a well-suited starting point. Thus, in some
applications, the markers must be placed according to a pre-
defined pattern (e.g., on a plane grid or on the faces of a
polyhedron) in order to make a direct resolution of the PNP
problem possible [26, 30, 31]. In the more general case con-
sidered here where the arrangement of markers is random, a
specificmethodmust be developed to build an initial solution
taking into account the pose ambiguity.

1.2 Our contributions

In this paper, we focus on the problem of ambiguity of the
pose as well as the identification of markers that are incor-
rectly detected or damaged but still detected (e.g., a bent
marker or partially occluded marker) as shown in Fig. 2. We
propose a new method to construct a reliable estimation of
the relative position of fiducial markers. This method allows
the elimination of ambiguous positions as well as bad detec-
tions. The paper is organized as follows. Section2 presents
the developed method after laying the mathematical foun-
dations. Section3 describes a series of experiments setup to
demonstrate the performance of the proposed method. Sec-
tion5 proposes a discussion and a conclusion regarding the
results and the overall performance of the method.

Fig. 2 Illustration of two configurations that can lead to incorrect pose
estimation. a Appropriate detection of the marker. b Bad marker: mis-
detection of the marker. In this case, it is bent but a stain could produce
the same effect. The associated poses are systematically wrong. c Bad
detection: a marker is detected incorrectly. In this case, the marker is
partially occluded but is still detected. One of its corners is detected in
the wrong position and the associated poses are erroneous

2 Proposedmethod

2.1 Initial concepts and definitions

2.1.1 Definitions

In our approach, a set of planar square fiducial markers M i

with i ∈ {1, . . . , nM } are randomly glued at the surface of
an object with an arbitrary geometry. It is assumed that the
markers are not in a coplanar position. This object, noted L,
is referred to as the locator.

In the present work, ArUcomarkers [32] are used, but this
approach could be similar to all type of square planar fiducial
markers such as AprilTag [33] or ARTag [34].

A set of images I j of the locator with j ∈ {1, . . . , nI }
is created from different viewpoints with a single camera.
Each marker M i and each image I j are associated with a
reference frame. The images are processed with the ArUco
method in order to detect the visible markers [35, 36]. The
pixel coordinates of the 4 corners of a marker M i visible
on the image I j are noted ũM i /R I

( I j ) ∈ R
2 × R

4. The sub-
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pixel position of these corners is refined using the “AprilTag
2 method” [37].

2.1.2 Affine transformations

When passing from one reference frame to another, the
coordinates of a point undergo a rotation r followed by a
translation t . For the sake of simplicity, we use notations con-
sistentwith the ones used by [24].Accordingly, such an affine
transformation is noted γ = (r, t), with r = [

rx , ry, rz
]T,

the rotation vector as defined by Rodrigues convention and
t = [

tx , ty, tz
]T, the translation vector. The rotation matrix

R, bijectively associated to r verifies:

R = I + r̄ sin θ + r̄2(1 − cos θ) (1)

Where θ = ‖r‖ and r̄ is the cross-product matrix:

r̄ = 1

θ

⎡

⎣
0 −rz ry
rz 0 −rx

−ry rx 0

⎤

⎦ , (2)

and θ ∈ [0, 2π ], due to the periodicity properties of rotations.
The affine transformation matrix �(γ ) ∈ R

4 × R
4 is then

defined by:

�(γ ) =
[

R t
0 0 0 1

]
(3)

Affine transformation matrices �a = �(γa) and �b = �(γb)

can be composed by matrix product so that �b,a = �b ⊗ �a .
By extension, it is assumed that the symbol (·) indicates the
composition for γ transformations so that γb,a = γb · γa .

2.1.3 Single marker pose estimation

In its own reference frame RM i , the spatial homogeneous
coordinates of the corners ςk with k ∈ {0, . . . , 3} of a marker
M i are consolidated in matrix CM i /RMi

such as:

CM i /RMi
= 1

2

ς0 ς1 ς2 ς3
↑ ↑ ↑ ↑
⎡

⎢⎢
⎣

−d d d −d
−d −d d d
0 0 0 0
1 1 1 1

⎤

⎥⎥
⎦ , (4)

with d the side length of each marker. These coordinates can
be expressed in any reference frameR by their homogeneous
coordinates:

CM i /R = �R←RMi
⊗ CM i /M i = γR←RMi

· CM i /RMi
(5)

By composing the resulting coordinates of the corners of the
marker M i with a � operator, these points are projected into
the pixel space of the camera on the I j image. � is a unique
affine transformation obtained by calibrating the camera sen-
sor which integrates the change of reference frame from the
camera frameRc to the image frameRI by perspective pro-
jection and a change of scale operation. The coordinates of
the projected points will then be expressed as:

uM i /RI (γ ( I j )) = � (δ) · γ ( I j ) · CM i /RMi
(6)

Where δ = (
fx , fy, cx , cy, k1, . . .

)
is the tuple of intrinsic

camera parameters, ( fx , fy) are the focal lengths parameters,
cx , cy the optical center parameters and (k1, . . .) the distor-
tion parameters. The reprojection error of the marker M i on
the image I j , as a function of γ ( I j ), is then written:

eM i ,I j
(γ ( I j )) =

4∑

m=1

2∑

l=1

[
ΔuM i /R I

(γ ( I j ))
]2

l,m
, (7)

with l and m denote, respectively, the number of coor-
dinates and the number of corners of the marker M i .
ΔuM i /RI ∈ R

2 × R
4 are the reprojection residues in pixels

calculated from the difference between the measured corners
ũM i /R I

( I j ) and the projected corners uM i /R I
(γ ( I j )):

ΔuM i /R I
(γ ( I j )) = uM i /R I

(γ ( I j )) − ũM i /R I
( I j ) (8)

In theory, the pose of the marker M i relative to the camera
reference frameRc by an image I j can be determinedbymin-
imizing the reprojection error according to γ ( I j )Rc←RMi

:

γ ( I j )Rc←RMi
= argmin

∗
γ ( I j )R c←R Mi

∈ R3×R3

eM i ,I j (
∗
γ ( I j )Rc←RMi

) (9)

The knowledge of the pose of each individual marker allows
the locator structure to be determined. This structure is
retrieved by an optimization step called bundle adjustment
described in the paragraphe 2.1.6. In practice, some pose
estimation of individual marker can be wrong, due to pose
ambiguity or misdetected markers.

2.1.4 Pose ambiguity

Due to the coplanarity of the corners of each individual
marker, the reprojection error eM i ,I j

(γ ( I j )) can have two
minimums [See [3], Fig. 1–3]. When two solutions exist,
they are noted γ ( I j )Rc←RMi

,0 and γ ( I j )Rc←RMi
,1. One

is the real solution and the other is a bad solution. The pres-
ence of measurement noise implies that in some cases, the
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minimum of the reprojection error does not necessarily cor-
respond to the real solution. This problem is called pose
ambiguity [8, 38]. In the following, we systematically cal-
culate these two poses using the method proposed by [3].
If they are different, both are kept and the right one will be
identified afterward. We used markers of size d = 12.41 mm
at a typical working distance of L = 800 to 1200 mm. In
this configuration, the probability of presence of two poses
is almost systematic.

2.1.5 Badmarkers and bad detections

In practice, the following two configurations can also lead to
incorrect pose estimation illustrated in Fig. 2:

Bad marker: Adamagedmarker but still detected. It occurs
when a marker is no longer flat or if it is
stained or scratched. In this case, both poses
are systematically incorrect.

Bad detection: Poor marker detection typically caused by a
corner being detected at the wrong position.
This can happen on partially occluded mark-
ers or bad image quality. In this case, the
detection results also in two incorrect poses.

The detections from these configurations must be eliminated
before the bundle adjustment to allow convergence to the
correct solution. This implies eliminating the bad detections
and not considering the bad markers in the construction of
the locator.

2.1.6 Bundle adjustment

The pose and structure of the locator L are determined by
solving a bundle adjustment problem. Since the markers are
not coplanar, the locator is not affected by pose ambiguity
for a single marker. Firstly, among all the markers, a marker
M0 is arbitrarily taken as reference within the locator. The
structure of the locator will be fully defined by knowledge

of γ S =
{
γRM0←RMi

|i ∈ {1, . . . , nM }
}
. The pose of the

locator in the image batch I j is defined by:

γ I =
{
γ ( I j )Rc←RM0

| j ∈ {1, . . . , nI }
}

(10)

The reprojection error is defined as:

E(γ ∗
S, γ

∗
I ) =

nM∑

i=1

nI∑

j=1

ηM i ,I j (γ ( I j )Rc←RM0
·γRM0←RMi

),

(11)

where:

ηM i ,I j (γ ) =
{
eM i ,I j (γ ), DM i ,I j = 1

0, DM i ,I j = 0
, (12)

and D a detection mask defined as follows:

DM i ,I j =
{
1, ∃(i, j) | M i ⊂ I j

0, otherwise
(13)

Consequently, the optimal parameters γ S and γ I are the solu-
tions of:

γ S, γ I = argmin
γ ∗
S ,γ

∗
I

E(γ ∗
S, γ

∗
I ) (14)

The optimal result highly depends on the initial guess pro-
vided (γ S,0, γ I ,0). We propose a method based on graph
theory that is able to handle several problems prior to the
bundle adjustment. It is therefore essential to eliminate bad
poses beforehand by removing the pose ambiguity and by
eliminating bad detections of markers.

2.2 Proposed algorithm

2.2.1 Detection graph and cycle basis

We consider a graph Gs whose vertices are the markers
and the images. The sets of images and markers being inde-
pendent, each detection DM i ,I j = 1 corresponds to an edge
of this graph. A cycle basis {ξi |i ∈ {1, . . . , Nc}} is then gen-
erated from this graph [39]. A basic example is shown in
Fig. 3.

2.2.2 Pose classification using cyclic rotational errors

Let us consider the cycle ξ0 = (M1, I1, M2, I0) from Fig. 3
with length Ne = 4. For each edge of the cycle corresponding
to the detection of the marker M i on the image I j , the true
affine transformation is noted γ ( I j )Rc←RMi

. By compos-

ing these transformations, a residual pose γ̂ξ0 = (
r̂ξ0 , t̂ξ0

)

for this cycle is calculated as:

γ̂ξ0 = γ ( I1 )RM2←Rc
· γ ( I0 )Rc←RM1

· γ ( I1 )RM1←Rc
· γ ( I0 )Rc←RM2

(15)

If the pose estimations were free of errors, this residual
pose would be null. In practice, there is always some degree
of error in the pose estimations. In addition, in case of pose
ambiguity, there are two pose estimations γ ( I j )Rc←RMi

,0

and γ ( I j )Rc←RMi
,1. It follows that the residual affine
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Fig. 3 Simple example of construction of a graph Gs . a The sets of
three images and six markers are represented. Each detection DM i ,I j
of a marker M i on an image I j corresponds to an edge of the graph. For
example, the markers M1, M2 and M3 are here detected on the image

I1. b The cycle base allows to browse at least once each edge. Here,
three cycles ξi are necessary to build the base. The marker M0 was
observed only once, so it does not belong to any cycle and is therefore
excluded from the cycle base

transformation γ̂ k
ξ0
associated with a given cycle can be com-

puted according to Np combinations of estimated poses for
k ∈ {

1, . . . , Np
}
where 1 ≤ Np ≤ 2Ne . A priori, only one of

these combinations should be correct while the others should
produce large residual affine transformations. Since the pose
ambiguity predominantly affects the rotational component
of a transformation γ , the angular residual θ̂kξ0 = ||r̂kξ0 || is
used as the sole indicator of combination quality. The follow-
ing criterion is therefore used to validate the combinations
associated with a cycle of length Ne:

θ̂kξ0

Ne
≤ θ̂c, (16)

where θ̂c is the critical angle below which the angular error
per edge is considered negligible. This angle is arbitrarily set
up to 0.1◦ in our application.

In fact, we observe that several combinations of the same
cycle may often validate this criterion. This implies that
incorrect pose estimations can be involved in combinations
that validate the criterion of Eq. 16. There are two main
reasons for this observation. First, the presence of almost
identical images within the same cycle necessarily implies
that two combinations of the cycle will validate the angular
criterion. Secondly, fortuitously and due to the large number
of pose estimates, we sometimes observe validations of this
angular criterion for wrong cycles. A statistical approach can
separate the correct pose estimations from the incorrect ones.

A counter C I j ,M i ,k is associated with each pose
γ ( I j )Rc←RMi

,k for k ∈ {0, 1}, which can belong to one of
the following classes: bad (B), undetermined (U) and good
(G). The goal of our method is to move the poses from their

inital class (U) to classes (B) and (G). All the combinations
of each cycle are tested using Eq.16 and each time, one of
them is validated, the counters are incremented by 1. We
assume that incorrect validations of combinations involving
bad poses are in the minority. We thus assume that of two
poses associated with the same detection, the good one will
be validated at least α times more often than the bad one. The
α criterion is formalized by the following equation:

α = max(C I j ,M i ,0,C I j ,M i ,1)

min(C I j ,M i ,0,C I j ,M i ,1)
(17)

To secure the validation of good poses, the value α = 1.5
has been chosen.

Table 1 proposes an example of implementation of this
approach. The final value of this counter allows to treat
each detection associated with poses belonging to (U) indi-
vidually. In the absence of pose ambiguity, if C I j ,M i ,k >

0, the only pose is reclassified as (G), (B) otherwise. If
C I j ,M i ,0/C I j ,M i ,1 ≥ α, the pose γ ( I j )Rc←RMi

,0 is

considered as (G) and γ ( I j )Rc←RMi
,1 (B). Conversely,

if C I j ,M i ,1/C I j ,M i ,0 ≥ α, the pose γ ( I j )Rc←RMi
,1 is

considered (G) and γ ( I j )Rc←RMi
,0 (B). Finally, in the

remaining cases, neither pose is clearly better and both are
kept in (U). The graph Gs is updated from the detections
present in the classes (G) and (U) and a new basis cycle is
generated. The C I j ,M i ,k are reset to 0 for all the remaining
poses. Equation 16 is once again applied to increment the
counters.
This procedure is re-iterated until the size of the (U) class
does not decrease during an iteration. If the graph obtained
during the iterations is disjoint then the iterations are stopped.
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Table 1 Example of application of the proposed method in the case of
the graph of Fig. 3

Detection Valid. counter To class
Id. Mark. Img. γ0 γ1 γ0 γ1

0 M1 I0 1 0 G B

1 M1 I1 2 2 U U

2 M2 I0 2 8 B G

3 M2 I1 5 G

4 M3 I1 0 B

…

Only the poses which are in class (U) at the beginning of the current
iteration are represented. The column "To class" indicates towhich class
the poses are moved. Detections 3 and 4 have no pose ambiguity which
explains the absence of γ1 in these two cases. We can see that except
for the poses associated with detection 1, all the poses are initially in
(U) are placed in (B) and (G)

The remaining poses in class (U) are then placed in (B) then
all poses are classified as (G) or (B).
Consequently, each edge of the final graph Gs is associated
to a single pose belonging to the class (G).

2.2.3 Formalization of the educated guess initial solution

The formulation of the initial solution requires the selec-
tion of a reference marker from which the locator structure
is described. Among the markers, the one with the lowest
eccentricity is chosen as the reference marker and noted M0

as in Sect. 2.1.6.
The relative pose of eachmarker γ S,0 and each frame γ I ,0

is then estimated by looking for the shortest path between the
reference marker and each other node of the simple graph Gs

[40].
The main interest of this algorithm lies in the quality of

this initial solution. Indeed, it is close enough to the optimal
solution and thus represents an excellent starting point for a
bundle adjustment procedure described in Sect. 2.1.6 which
allows to further refine this solution to obtain γ S and γ I from
Eq.14.

2.3 Locator pose estimation from a single image

After the proposed structural calibration, the pose of the loca-
tor can be estimated from a single image. The coordinates of
the marker corners are then known relatively to the chosen
reference marker M0. The locator’s reference frame RL is
then equal to the reference frameRM0 . Knowing the locator
structure γ S , the coordinates of the corners of the markers
are expressed in the locator’s reference frameRL such as:

CM i /RL = γ S · CM i /RMi
(18)

Consequently, the coordinates of the markers in the camera
reference frameRc are given by the following expression:

CM i /Rc ( I j ) = γ ( I j )Rc←RL
· CM i /RL (19)

The coordinates of the projections of the corners of themark-
ers visible to the camera (DM i ,I j = 1) projected onto the
image I j can be expressed in the image reference frameRI

as:

uM i /RI ( I j ) = � (δ) · γ ( I j )Rc←RL
· CM i /RL (20)

The reprojection error residualsΔuM i /RI ∈ R
2×R

4 give the
difference between the projections uM i /RI and themeasured
detections ũM i /R I

( I j ). Therefore, if at least twomarkers are
visible, then the reprojection error of the composite marker
on an image I j can be defined as:

EL (γ ( I j )Rc←RL
) =

nm∑

i=1

4∑

m=1

2∑

l=1
(
ΔuM i /RI (γ ( I j )Rc←RL

)
)2

l,m,i
(21)

By optimization, the locator pose on this image is
calculated by minimizing this error by a transformation
∗
γ ( I j )Rc←RL

such as:

γ ( I j )Rc←RL
= argmin

∗
γ ( I j )R c←R L

∈R3×R3

EL(
∗
γ ( I j )Rc←RL

)

(22)

3 Experiments and results

This section presents the experimental validation of the
proposed method. A first part is focused on the calibration
and measurement uncertainties of locators made from two
different shapes of the host objects. A second one concerns
the use of these locators as stylus where their respective tip is
tracked. The last part is dedicated to the surface registration
on an artificial scapula with points digitized by one of the
presented styli. All tests were performed on a laptop using
an Intel Core i9-9880H processor with 32 GB of RAM and
Ubuntu 18.04 as the operating system. An SVS-VISTEK
EXO542 MU3 camera with a resolution of 5320 × 3032
pixels, 23 fps max and a 16mm focal length PENTAX TV
lens were used. The scene is lit by a ring light. The intrinsic
camera parameters were identified by the chessboard cor-
ner method [41]. An overview of the experimental setup is
provided in Fig. 4a. The working distance (distance camera-
object) is in the range of 800–1200 mm. The aperture of the
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Fig. 4 Experimental setup equipments. a Camera, ring light and
micrometric stage. The camera reference frame is represented. The
micrometric stage allows to perform rotations and translations close
to camera x and z axis. b.1 Locator made from stone, ArUco were
glued on glass. b.2 Stylus made from stoned-based locator. c.1 The
double-dodecahedron used had the dimensions 9 cm × 7 cm × 7 cm.
ArUco markers glued on 21 faces of the solid. c.2 Stylus using the
double-decahedron. The spherical contact probe is shown

lens diaphragm is set to obtain a depth of field of about 400
mm.

3.1 Calibration andmeasurement uncertainties of
locators

The first proposed locator is composed by 12mm sided 6×6
ArUco markers placed on the surface of a stone of approx-
imate dimension of 70×70×60mm3 with a random shape,
see Fig. 4b.1. The ArUco markers are stuck on glass plates to
guarantee their flatness, themselves glued on the stone. These
markers were placed randomly on the surface of the object,
simply avoiding placing them in a coplanar orientation.
Depending on the geometry of the host object, the number of
markers visible to the camera can vary. We propose to ana-
lyze another geometry in the form of a double-dodecahedron,
see Fig. 4c.1. This geometry offers the advantage of present-
ing a minimum of 6 ArUco markers whatever the camera’s
observation point.

As shown in Fig. 5a, a continuous recording during about
20s of freehandmanipulations of the stylus is performedwith
great variety of poses. This provided a set of 423 frames.
Attention was paid to avoid motion blur, overexposure and
to respect the camera depth of field.

The proposed algorithm is applied to calibrate the locator
made from a stone. The structure of the locator is calculated
from the individual poses of each of the ArUco markers on
the set of images (2525 detections lead to 2 × 2525 poses
due to the pose ambiguity). Figure5b represents the graph
which connects all the images to the 15 markers glued on
the locator. Figure5c shows the corner positions detected
by the AprilTag 2 fiducial marker detection method [42].
The position of these same corners determined by projec-
tion with our method alone and after the bundle adjustment
are represented jointly on these four images. Some marker’s
detections, although visible on some images, are excluded by
our method because they do not reach the criteria defined by
Eqs. 16 and 17. Figure5.d presents the starting point given by
our method and the optimized state. The mean and standard
deviation values of these reprojection errors along x and y
axes are, respectively: X̄x = 3.73e−4 pixel, σx = 1.55e−1
pixel; X̄ y = −1.36e−3 pixel, σy = 1.61e−1 pixel. To sum
up, 98% of the points have a reprojection errors contained
in a square box of 1 pixel side. The points outside this area
are due to markers strongly tilted to the camera’s optical
axis (approximately greater than 60◦). Keeping or removing
them only marginally affects the result of the optimization.
In practice, the calibration time varies between 3 and 6min
depending on the number of images recorded and the number
of present markers.

Using Eq. 22, the pose of the locator obtained after cal-
ibration can be calculated from an image in lower than 0.1
second, examples are shown in Fig. 6. We propose to qualify
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Fig. 5 Workflow for the
calibration of a rigid body.
a Sample of four calibration
images of the locator object. The
stylus was moved manually in
front of the camera during image
acquisition. All faces of the
stone were presented so that all
markers are considered during
calibration. b Initial graph
obtained during the calibration
of the locator object, red and
blue nodes denote images and
markers, respectively. The edges
represent the detections. c
Positions of each corner of each
marker on the images. In red,
the positions obtained using the
AprilTag 2 fiduciary detection
method [42]. In blue, the
positions obtained after
projection of the poses
estimated by our method. And
finally, in green, the positions
obtained after the least-squares
optimization use the blue
positions as initial solutions.
d Residuals of reprojection
errors of the markers corners
from initial solution (blue) and
the results of least-square
optimization (green) on the all
image batch. The majority of the
points (98%) after optimization
presents an absolute value
reprojection error lower than 0.5
pixel

b

Initial graph

Markers Images

a.1

Image batch sample

c.1

Corner positions

a.2

c.2

a.3

c.3

a.4

c.4

Observed Proposed method Optimization

−80 −60 −40 −20 0 20 40 60 80
x [pixels]

−60

−40

−20

0

20

40

60

y
[p
ix
el
s]

d

Corner reprojection residues

Proposed method based starting point Optimization

−1.0 −0.5 0.0 0.5
−1.0

−0.5

0.0

0.5

123



17 Page 10 of 15 C. Elmo Kulanesan et al.

Fig. 6 Different poses of the locator. The pose of the locator can be
calculated in real time, regardless of its orientation, if a minimum of
two markers are visible. The reference frame associated to the locator
corresponds to center of the chosen reference marker M0. Note that
even if M0 is not visible on an image, the pose of the locator can be
still calculated and drawn using the other markers detections

the measurement uncertainties in translation and in rotation
of the resulting locator.
→ Translation uncertainties

From a reference position noted Q0, two successive trans-
lations of target distance Lt = 25 mm are performed on the
locator using a micrometric translation stage. The directions
of these two translations are orthogonal to each other. The
first translation moves the locator from the position Q0 to
position Q1 along a direction close to the camera optical
axis (z axis). The second translation brings the locator from
Q1 to Q2 with a direction close to the camera x axis. For
each position, Ni = 10 images are recorded. We calculate
the associated Euclidean distance noted L between the dif-
ferent positions. Note that the distances are calculated from
all the combinations of images between the two positions,
so there are N 2

i = 100 distances calculated between each
position. The whole procedure is repeated for 3 orientations
of the locator and the associated distances are noted Ll , with
l ∈ {0, 1, 2}. We impose that the visible markers between the
three orientations are different.

The results of these tests are shown in Fig. 7. For all the
movements made along the camera pseudo z axis, an average
distance of 25.08 mm is recorded. The associated standard
deviation dispersion is 0.06mm.Similarly, themeasurements
taken on the pseudo x camera axis give an average of 25.01
mm and a standard deviation dispersion of 0.03mm.Accord-
ing to these measurements, a positioning error of less than
one millimeter is possible. As expected, the standard devia-
tion dispersion is higher for the movements along the camera
optical than the orthogonal direction.
→ Rotation uncertainties

A qualification of the measurement uncertainties in rota-
tion of the locator is proposed. From an initial orientation,
successive imposed rotations of θt = 45◦ are performed on
the locator using a rotation plate. A total of Nr = 7 rotations
are thus imposed. For each orientation, Ni = 10 images are
taken. Between each rotation, the pose of the locator is esti-
mated and the value of the rotation angle θ performed is then
deduced.

Fig. 7 Translation uncertainties of the locator for l ∈ {0, 1, 2} given
orientations. aDistribution of the distances Ll calculated between posi-
tions Q0 and Q1, close to camera z-axis direction. bDistribution of the
distances Ll calculated between positions Q1 and Q2, close to camera
x axis direction

Fig. 8 Rotational uncertainties of the stone locator. From a initial ori-
entation, 7 rotations of θt = 45◦ are imposed

The results of these tests are given in Fig. 8. For the
imposed angles θ , a standard deviation of σθ = 0.33◦ and
σθ = 0.14◦, respectively, for the stone and the double-
dodecahedron locators.

We applied the same translations and rotations tests to the
double-dodecahedron locator geometry. The test results for
translational uncertainties along the camera z-axis and rota-
tional uncertainties from the two types of locator geometries
are given in Table 2.

There is a significant improvement in the results with the
use of the double-dodecahedron, since the number of visible
markers is systematically greater.
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Fig. 9 Stylus tip identification.
a Sample calibration images of
the locator tip. b Illustration of
the movements performed
during image capture, the tip of
the stylus is held in a conical
notch. The operator manipulates
the stylus while keeping contact
with the notch. At the same
time, the operator rotates the
stylus along the axis of the
stainless steel rod to present all
the faces of the locator object.
The range of motion of the
locator is about ±100 mm
around the vertical position. c
Photography of the tip of the
stylus. The origin of the drawn
reference frame is positioned on
the tip of the stylus

Table 2 Accuracy uncertainties in translation and rotation of the
double-dodecahedron shape locator compared to the locator made from
a stone

Host object |d̄z − dt | σdz d��
t |θ̄ − θt | σθ θ��

t

Stone 0.080 0.060 25 0.041 0.330 45

Dd� 0.002 0.041 0.010 0.140

Unit [mm] [◦]
�Double-dodecahedron, ��Target values

3.2 Stylus tracking

A steel rod of length 200mm with a spherical contact
probe (Ø2 mm) was embedded in the stone and the double-
dodecahedron locators see Fig. 4b-c.2.

The position of the stylus tipwas identified by usingmove-
ments inwhich the tipwas kept in contact with a fixed conical
surface relative to the camera. The performedmovements are
randomcombinations of rotations including rotations of 360◦
around the axis of revolution of the stylus to ensure observa-
tion of all markers. Twenty images are recorded as illustrated
by Fig. 9.

The center of the tip is determined by looking for a unique
point P A/RL in the locator frame of referenceRL that would
also be stationary in the camera’s reference frameRc during
the movements performed. This condition can be expressed
as theminimization of the variance of the coordinates of point
P A/Rc in the camera frame:

P A/RL = argmin
∗
P A/R L∈R3

(Var(

{
γ ( I j )Rc←RL

· ∗
P A/RL

}
))

(23)

The coordinates of stylus tip’s center are thus known in
the locator reference frame.

To quantify uncertainties in the position of the tip of
this stylus, we reuse the same types of movements as those
applied when the tip identification. These motions are per-
formed via amicrometric translation stage for three positions
Q0, Q1 and Q2 of the tip relatively to the camera. The dis-
placement between Q0 and Q1 corresponds to a translation
of dt = 10 mm in a direction close to the optical axis cam-
era (z axis). The second displacement Q1 to Q2 corresponds
to a translation of in a direction close to the x axis camera
with the same dt value. For each position, 100 images are
recorded.

In order to identify the stability of the process, the stan-
dards deviations of the tip coordinates are calculated for the
Q0 position. The results are shown in the following Table 3.
Then, we calculate the distances using the Euclidean norm

separating the positions Q0 and Q1 noted dzi and the posi-
tions Q1 and Q2 noted dx j . The results are shown in Fig. 10
for the stone locator.

It is thus possible to identify bymonocular vision the posi-
tion of the tip of a stylus observed at a distance of 1m with a
standard deviation of less than 0.2 mm and a mean deviation
of less than 0.1 mm.

The comparison of the uncertainties related to the two styli
is given in table Tab. 4.

3.3 Surface registration on an artificial scapula

In the context of surgical navigation, we need to identify the
position of a bone structure relative to the camera by simply
observing a locator rigidly attached to the bone structure. To
illustrate our approach, we propose to find the position of
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Table 3 Comparison of the stability of tip point identification for the
stone and the double-dodecahedron locators

Host object σx σy σz

Stone 0.120 0.040 0.240

Dd� 0.096 0.039 0.302

Unit [mm]

The results are obtained by calculating the standard deviations of the
coordinates of the tip point in the camera frame. �Double-dodecahedron

Fig. 10 Styli-tip distance of the locators dispersion where target value
is 10 mm. a) Distribution of distances dzi measured between positions
P0/R c and P1/R c along an axis close to the z-axis camera. b) Distri-
bution of distances dxi measured between positions P1/R c and P2/R c

along an axis close to the x-axis camera

Table 4 Comparison of the uncertainties on the position of the tip of the
styli between the localizers made from a stone and a double-decahedron

Host object |d̄zi − dt | σdzi | ¯dxi − dt | σdxi d��
t

Stone 0.063 0.344 0.058 0.169 10

Dd� 0.081 0.193 0.022 0.053

Unit [mm]

�Double-dodecahedron, ��Target distance value

an artificial scapula in relation to the camera using a surface
registration. The shape of the used locators were double-
dodecahedron geometry.

In the example presented here, a digital scapula model
(Fig. 11a) was obtained from a CT scan of a patient. This
STL model was used to reproduce an artificial copy of the
scapula by photopolymerization using the Form 3+ printer
from the manufacturer Formlabs. In this test, we propose to
use two locators, one attached to the stylus and the second
attached to the artificial scapula whom references frames are,
respectively,Rst y andRscp. The coordinates of the points of
the numerical model of the scapula are known in a reference
frame notedRst l . Using the stylus, scans of certain areas of

the artificial scapula are made during which Ni = 90 images
are taken (Fig. 11b).

For each image j ∈ {1, . . . , Ni }, the center of the spherical
tip of the stylus noted Pc j/Rscp is known in the reference
frameRscp by the following equation:

Pc j/Rscp = γ ( I j )Rscp←Rc
· γ ( I j )Rc←Rst y

· Pc/Rst y

(24)

Using the proximity.signed_distance() f function from
Trimesh module (Python3), we can calculate the signed
distance, noted l s, between any point expressed in Rst l ref-
erence and the surface S forming the numerical model. The
sign of l s is negative when the considered point is outside
the surface S.

During scanning, the actual probe point is shifted by the
radius of the contact sphere of radius r = 1 mm. Taking
into account the offset, we can write the following optimiza-
tion equation to identify the rigid transformation γRst l←Rscp

between the digital model and the scapula locator as:

γRscp←Rst l = argmin
∗
γR scp←R st l

Ni∑

j=1

[
f
( ∗
γRst l←Rscp

· Pc j/Rscp , S
)

+r ]2 (25)

Then, the coordinates of the points Pc j/Rst l can then be
expressed in the reference frame Rst l according to the fol-
lowing equation:

Pc j/Rst l = γRst l←Rscp · Pc j/Rscp (26)

We have repositioned these points in the STL reference frame
to represent them on the surface of the numerical model
(Fig. 11c). We evaluated the solution found by calculating
the obtained signed distance l s between the points Pc j/Rst l

and the surface S forming the numerical model.
The results obtained are presented in Fig. 12. The mean

value of the signed distance l s j + r = 0.011mm is observed
with a standard deviation σl s j = 0.26 mm.

4 Discussion

Based on the aforementioned results, we evaluate the qual-
ity of the following aspects: calibration of locator, the
enhanced value associated with the geometry of the double-
dodecahedron, positioning of the tip of the stylus, and surface
registration for the presented medical application.

A calibration step allows to find the relative positions of
the planarmarkers stuckon these objects by simply observing
images of them manipulated freehand in front of the cam-
era. This calibration method is based on graph theory. After
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Fig. 11 a Numerical model of the scapula from CT scan of cadaveric
scapula. b Scanning of the artificial scapula. One of the double-
dodecahedron shape locators is rigidly attached to the artificial scapula.
The scapula and pen are manipulated freehand. The digitalization of

the points is made using the stylus with a second double-dodecahedron
shape locator. c Registration of the scanned points on the artificial
scapula with the digital model of the scapula

optimization,we found the structure of the locator. The repro-
jection errors observed on the images were mostly contained
in a square of 1 pixel.

To test the found solution, controlled movements were
imposed on the locators alone. The analysis of the uncer-
tainties for these movements showed that the geometry of
double-dodecahedronwith at least 6 planarmarkers performs
best. For this locator, we obtain uncertainties of the order of
41μm in translation along the camera optical axis (the most
critical axis inmonocular vision) and uncertainties in rotation
of 0.14◦.

For the specific needs of shoulder surgery, a probing
device is necessary.A stylus of approximately 20 cm in length
consisting of a spherical tip and a double-dodecahedron loca-
tor is proposed. Tests fromparagraph 3.2 have shown that it is
possible to track the center of this sphere with an uncertainty
of about 0.2 mm.

This stylus was used to perform a surface registration
between an artificial scapula and its digital model based on
the scanning of a restricted area of this scapula (glenoid cav-
ity). The deviations between the set of scanned points and
the mesh of the digital model are all less than 1 mm This
accuracy is fully compatible with the expectations of ortho-
pedic shoulder surgery. The results obtained from cadaveric
shoulderswill be presented in a forthcoming publication. The
calibration time of the locators and the identification of the
stylus tip do not impact the operating time since these steps
can be performed preoperatively. However, the palpation of
the glenoid cavity and the surface registration are included
in the operating time (about 2min in total).

Improvement perspectives are possible for this monocular
localization. Currently, the calibration of the locator with a
hundred images in input takes about 1min. The cycle basis
obtained from the graph tool proposes short cycles but also
longer cycles, the latter penalizing the processing time. A
reflection to limit this type of long cycle has to be conducted.

Fig. 12 Distribution of the signed distance l s j + r between the mea-
sured points Pc j/R st l and the surface S of the digital scapula model
taking into account the offset of the contact sphere radius r

More generally, structural optimizations of the algorithm
should allow an improvement of the processing speed using
parallelization approaches.

5 Conclusion

In this work, a method to track in real time an object posi-
tioned at about 1m from the camera by monocular vision
was proposed. From a random shape object (stone) or from a
more controlled geometry (double-dodecahedron), 3D loca-
tors based on a cluster of planar markers were analyzed.

The resulting locators have translation uncertainties on
the order of one-tenth of a millimeter and orientation uncer-
tainties on the order of one-hundredth of a degree. We have
also shown that these locators can be used for surface regis-
trationwith sub-millimeter uncertainties. These uncertainties
are reachedwhatever the visible planemarkers of this locator.
These results, along with the locators’ geometric versatility,
show great potential for their implementation in orthopedic
surgical navigation applications. In this application, locators
can be customized for use with medical tools such as probing
styluses, drills, surgical saws, implants or prostheses.
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The freedom offered by this approach allows to imagine
applications for other types of surgeries but also for vari-
ous fields of applications requiring real-time sub-milimetric
localizations between different objects.
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