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Abstract
Cross-modality visible-infrared person re-identification (VI-ReID) aims to match visible and infrared pedestrian images from
different cameras in various scenarios. However, most existing VI-ReID methods only focus on eliminating the modality
discrepancy while ignoring the intra-class discrepancy caused by different camera styles. In addition, some feature fusion-
basedVI-ReIDmethods try to improve the discriminative capability of pedestrian representations by fusing pedestrian features
from different convolutional layers or branches. However, most of them only implement feature fusion by simple operations,
such as summation or concatenation, and ignore the interaction between different feature maps. To this end, we propose a
camera style-invariant learning and channel interaction enhancement fusion network for VI-ReID. In particular, we design a
channel interaction enhancement fusionmodule. It first computes and utilizes the channel-level similaritymatrix of two feature
maps to obtain two corresponding weighted feature maps that enhance the common concern information of the original two
feature maps. Then, it obtains more discriminative pedestrian features by fusing the two weighted feature maps and mining
their complementary information. Furthermore, in order to weaken the impact of camera style discrepancy of pedestrian
images, we design a camera style-invariant feature-level adversarial learning strategy to ensure that the feature extraction
network can extract camera style-invariant pedestrian features by the adversarial learning between the feature extraction
network and the camera style classifier. Extensive experimental results on the two benchmark datasets, SYSU-MM01 and
RegDB, demonstrate that the performance of CC-Net achieves the recent advanced level.

Keywords Cross-modality visible-infrared person re-identification · Channel interaction enhancement fusion · Camera
style-invariant learning · Feature-level adversarial learning strategy

1 Introduction

Person re-identification (Re-ID), a technique that captures
target persons from multiple cameras, has received a lot
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of attention due to its widespread use in security field [1–
5]. In recent years, single-modality person re-identification
[6–10] has achieved significant success.With the wide appli-
cation of infrared cameras in night surveillance and low-light
environment, how to match the images taken by visible cam-
eras and infrared cameras has received a lot of attention
from researchers [11–13]. However, in VI-ReID, pedestrian
images not only have large intra-class discrepancy that is
caused by different pedestrian poses [14–16] and different
camera styles, but also have large modality discrepancy that
is caused by the different reflection spectra of visible and
infrared cameras [17]. So, VI-ReID is more challenging than
single-modality person identification.

Convolutional neural networks have been widely used in
the field of machine learning [18–21] due to the development
of deep learning. At present, scholars have proposed many
VI-ReIDmethods.Among them, the global and local feature-
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based VI-ReID methods are simple and effective [22–25].
These methods directly extract the global pedestrian features
and the local pedestrian features, or fuse the global and local
pedestrian features as the final pedestrian discriminative rep-
resentations. However, most of them do not consider that the
global features may contain a lot of background interference
information, and the local features may have the problem of
pedestrian misalignment. In addition, some scholars [15, 26,
27] tried to guide their networks to mine more discriminative
pedestrian representations by fusing the pedestrian features
from different convolutional layers or branches. However,
most of these methods only achieve feature fusion by simple
operations, such as summation or concatenation, and ignore
the interaction between different featuremaps, which hinders
the improvement of person Re-ID model performance.

To ensure their networks to learn pedestrian representa-
tions that are robust to modality discrepancy, some scholars
[28–30] used some cross-modality metric losses to super-
vise the training of their networks. In addition, some works
[31–33] try to learn the modality-independent features by
some adversarial learning strategies to weaken the impact
of modality discrepancy. Specifically, most of these methods
establish the connection between two modalities by using
GANs to interconvert the pedestrian images of two modal-
ities and then guide their networks to mine the pedestrian
features that are more correlated with identities and less
correlated with modalities. However, most existing methods
only consider the modality discrepancy while ignoring the
intra-class discrepancy between different images of a same
pedestrian caused by camera style discrepancy, which results
in insufficient discriminative capability of the pedestrian fea-
tures extracted by these networks. It is worth pointing out
that the camera style discrepancy mentioned in this paper
refers to the differences in image styles caused by different
camera viewpoints, different lighting conditions, and differ-
ent backgrounds. As shown in Fig. 1, although both Cam1,
Cam2, Cam4, and Cam5 are visible cameras, the styles
of visible images captured by these cameras are markedly
different due to the different shooting angles of Cam1 and
Cam4, the different lighting conditions ofCam1 andCam5,
and the different shooting backgrounds of Cam1, Cam4,
and Cam5. Similarly, although Cam3 and Cam6 are both
infrared cameras, the styles of infrared images taken by them
are also very different due to their different lighting condi-
tions. We have found that the camera style discrepancy can
significantly degrade the performance of VI-ReID models in
our preliminary study. As a result, it is essential to design a
strategy to ensure that VI-ReID models can extract camera
style-invariant pedestrian features.

To solve the above-mentioned issues, we propose a novel
network for VI-ReID and name it as camera style-invariant
learning and channel interaction enhancement fusion net-
work (CC-Net). Specifically, we first obtain two feature

Fig. 1 Pedestrian images in the SYSU-MM01 dataset. Each line con-
tains different images of a same person taken by six cameras (Cam1,
Cam2, Cam4, and Cam5 are visible cameras, while Cam3 and Cam6
are infrared cameras)

maps of a visible pedestrian image and two feature maps
of an infrared pedestrian image using the backbone net-
work, respectively. Then, we design a channel interaction
enhancement fusion module (CIEFM), which first computes
and utilizes the channel-level similarity matrix of two feature
maps to obtain two correspondingweighted featuremaps that
enhance the common concern information of the original two
featuremaps and then obtainsmore discriminative pedestrian
features by fusing the two weighted feature maps andmining
their complementary information. Furthermore, to mitigate
the impact of camera style discrepancy of pedestrian images,
we design a camera style-invariant feature-level adversarial
learning strategy that enables the feature extraction network
to extract camera style-invariant pedestrian features by the
adversarial learning between the feature extraction network
and the camera style classifier. Extensive experimental results
on the two benchmark datasets, SYSU-MM01 and RegDB,
demonstrate that CC-Net can effectively improve the perfor-
mance of VI-ReID.

The major contributions of this paper are summarized as
follows:

(1) We propose an end-to-end CC-Net to extract camera
style-invariant discriminative pedestrian features for VI-
ReID.

(2) We design a channel interaction enhancement fusion
module (CIEFM) to obtain more discriminative pedes-
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trian features by enhancing the common concern infor-
mation of two feature maps and mining their comple-
mentary information.

(3) We design a camera style-invariant feature-level adver-
sarial learning strategy to weaken the impact of camera
style discrepancy of pedestrian images on the perfor-
mance of VI-ReID.

(4) Extensive experimental results on the two benchmark
datasets, SYSU-MM01 and RegDB, demonstrate that
the performance of CC-Net achieves the recent advanced
level.

2 Related works

2.1 Single-modality person Re-ID

For the past few years, some scholars have presented a
number of effective methods [34–39] to solve cross-camera
matching problems of single-modality pedestrian images.
Based on the loss functions that they use, these methods can
be classified as the representation-learning-based methods
[36] and the metric-learning-based methods [39]. Among
them, the representation-learning-based methods are fre-
quently used for person Re-ID tasks. They usually use ID
losses or attribute losses to train their networks. For exam-
ple, Zhang et al. [35] proposed an IDE network and used
an ID loss to supervise the training of their network. Lin
et al. [36] considered that only using an ID loss to train
networks is unable to capture more discriminative pedes-
trian representations. To solve this problem, they used an
ID loss and an attribute loss to jointly train their network,
which enables their network to learn more discriminative
pedestrian representations. The metric-learning-based meth-
ods aim to optimize the relative distances between different
images using metric losses so that two images with a same
identity have a relatively smaller distance than two images
with different identities. For example, Cheng et al. [37] used
an improved triplet loss to train their network so that the pos-
itive sample pairs have a relatively smaller distance than the
positive–negative sample pairs. Hermans et al. [38] proposed
a hard sample sampling triplet loss (TriHard loss), which uses
harder samples to train their network so that their network
has a strong generalization capability. Although the above
methods can solve visible pedestrian image matching prob-
lems well, they perform poorly in solving the cross-modality
pedestrian image matching problems.

2.2 Cross-modality person Re-ID

Cross-modality person Re-ID aims to match pedestrian
images captured by different kinds of cameras, such as visible
cameras and infrared cameras [40–42]. However, since there

are significant discrepancies between different modality
images, VI-ReID requires addressing not only the challenges
of pose variations, camera viewpoint variations, occlusions,
and cluttered backgrounds, but also the modality discrep-
ancy. Some researchers have tried to use feature-level-based
and image-level-based methods to learn the modality-shared
information of pedestrian images in different modalities [12,
43–45], or to design some new loss functions [28, 46, 47]
to weaken the impact of modality discrepancy on the over-
all performance of networks. For example, Ye et al. [44]
presented a MACE learning method, which can address
intra- and inter-modality variations at both the feature and
classifier layers. Liu et al. [46] presented a hetero-center
triplet loss, which enables their network to capture more
discriminative pedestrian representations by calculating the
distances between the anchor class feature centers and the
positive/negative class feature centers. Choi et al. [48] sepa-
rated ID-discriminative factors and ID-excluded factors from
cross-modality images and then combined them to generate
modality-different but identity-consistent images. Zhang et
al. [49] presented a dual-path cross-modality feature learn-
ing framework that takes the inherent spatial structure and
the discrepancy between cross-modality image pairs into
account. Wan et al. [50] proposed a geometrically guided
dual alignment learning method that weakens the discrep-
ancy between the two modalities by converting RGB images
and IR images into semantically aligned images. Sun et al.
[51] proposed a CAA strategy that reduces the discrepancy
between twomodalities by mining intra-modality attentional
information with counter-factual causality. In addition, some
adversarial learning strategies have been used to handle the
problems in VI-ReID [31, 32, 52, 53]. Specifically, most
of these methods reduce the modality discrepancy at the
image level by transforming the pedestrian images of two
modalities to each other. However, most existing VI-ReID
methods only focus on eliminating the modality discrepancy
between pedestrian images of two modalities, while ignor-
ing the camera style discrepancy, which can significantly
affect the performance of VI-ReID. To this end, we design
a camera style-invariant feature-level adversarial learning
strategy, which enables the feature extraction network to
have a certain capability of extracting camera style-invariant
pedestrian features by the adversarial learning between the
feature extraction network and the camera style classifier.

2.3 Feature fusion-based person Re-ID

Feature fusion achieves promising achievements in image
semantic segmentation [54], face recognition [55], etc.
Recently, some scholars [26, 27] have introduced feature
fusion into the field of person Re-ID to improve the discrimi-
native capability of pedestrian representations. For example,
Zhao et al. [15] guided their network to mine pedestrian
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representations with robustness and discriminative capabil-
ity by fusing regional features at different semantic levels
using a tree structure feature fusion strategy. Xiang et al.
[27] proposed a deep multi-modality fusion network (DMF),
which significantly enhances the generalization capability
of models by introducing rich semantic knowledge and
multi-modality fusion strategy. Liu et al. [26] improved the
discriminative capability and robustness of pedestrian fea-
tures by fusing the output features of the middle layer with
the final output features of the backbone network. However,
most existing feature fusion-based methods achieve feature
fusion only by simple operations, such as summation or
concatenation, while ignoring the interaction between dif-
ferent feature maps, which limits the improvement of the
performance of VI-ReID. To this end, we design a channel
interaction enhancement fusion module (CIEFM) to obtain
more discriminative pedestrian representations by enhancing
the common concern information of two feature maps and
mining their complementary information.

3 Proposedmethod

The basic framework of CC-Net is shown in Fig. 2. CC-
Net is mainly made up of a two-stream backbone network
(ResNet-50), two channel interaction enhancement fusion
modules (CIEFMs) and a camera style classifier. Among
them, the two-stream backbone network and the two channel
interaction enhancement fusion modules together form the
feature extraction network M . Specifically, the first branch
of the two-stream backbone network is used to obtain the
feature maps of visible images, and the second branch is
used to obtain the feature maps of infrared images. The two
channel interaction enhancement fusion modules are used

to fuse the two feature maps output from each of the two
branches of the backbone network, respectively, which can
extract more discriminative pedestrian features. Specifically,
we utilize a camera style-invariant feature-level adversarial
learning strategy to perform the adversarial learning between
the feature extraction network M and the camera style classi-
fierWC , which finally enables the feature extraction network
M to extract camera style-invariant pedestrian features.

3.1 Two-stream backbone network

The two-stream backbone network contains a visible branch
and an infrared branch, as shown in Fig. 2. In the two
branches, the parameters of Stage1 of each branch are spe-
cific to capture the modality-specific information, while the
parameters of Stage2 ∼ Stage5 are shared to capture the
modality-shared information. In addition, we modify Stage5
of each branch into two convolutional blocks, which have the
same structure but different parameters.

We feed visible pedestrian images and infrared pedestrian
images into the corresponding branches of the backbone net-
work. For a visible pedestrian image xv , the two featuremaps
F1v and F2v output from the visible branch of the backbone
network, which are represented as follows:

{
F1v = φ1 ( f (xv))

F2v = φ2 ( f (xv))
, (1)

where f (·) denotes Stage1 ∼ Stage4 in the visible branch,
φ1 (·) and φ2 (·) denote the two convolutional blocks of
Stage5 in the visible branch. Similarly, for an infrared pedes-
trian image xt , the two feature maps F1t and F2t can be
obtained after processing by the infrared branch of the back-
bone network.

Fig. 2 The basic framework of CC-Net
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3.2 Baselinemodel

The baseline model (baseline) is mainly made up of ResNet-
50, ID loss, WRT loss, and GeM pooling. Specifically, we
use a two-stream network with ResNet-50 as the backbone
to process images of two modalities. In particular, for the
first convolutional block, the two branches of the dual-stream
network use the same structure but different parameters, with
the aim of learning modality-specific features of visible and
infrared images, respectively. For the remaining four convo-
lutional blocks, the two branches of the dual-stream network
share weights, aiming to extract modality-invariant features
of visible and infrared images. In addition, we use ID loss
L I D and WRT loss LWRT [2] as baseline loss LBase, i.e.,

LBase = L I D + LWRT . (2)

3.3 Channel interaction enhancement fusion
module

Most existing feature fusion-based person Re-ID methods
usually use simple operations, such as summation or con-
catenation, to achieve feature fusion, and do not consider
the interaction between different feature maps. Therefore, as
shown inFig. 3,wedesign a channel interaction enhancement
fusion module (CIEFM), which obtains more discrimina-
tive pedestrian features by enhancing the common concern
information of two feature maps and mining their comple-
mentary information. Specifically, the module first computes
and utilizes the channel-level similarity matrix of two feature
maps to obtain two correspondingweighted featuremaps that
enhance the common concern information of the original two

featuremaps. Then, it obtainsmore discriminative pedestrian
features by fusing the two weighted feature maps andmining
their complementary information.

Given two feature maps F1 ∈ RC×H×W and F2 ∈
RC×H×W , in which C , H , and W denote the channel, the
height, and the width of the feature maps, respectively. We
first reshape the feature map F1 and the feature map F2 into
F̃1 ∈ RC×l and F̃2 ∈ RC×l , respectively, where l = H×W .
Then, we obtain the channel-level similarity matrix M of the
two feature maps by performing bilinear operation on F̃1 and
F̃2. Finally, based on the similarity matrix M , we calculate
the weight matrix W using the following formula:

Wi j = exp(−Mi j )∑C
k=1 exp(−Mik)

, (3)

where i denotes the i th channel of feature map F1, and j
denotes the j th channel of feature map F2.

We use the weight matrixW to enhance the common con-
cern information in F1 and F2, respectively, and then obtain
the corresponding weighted feature maps FW1 ∈ RC×H×W

and FW2 ∈ RC×H×W as follows:

{
FW1 = reshape(W × F̃1)
FW2 = reshape(W × F̃2)

. (4)

In addition, considering that the complementary infor-
mation between feature maps is essential to enhance the
discriminative capability of pedestrian features, we further
fuse the weighted feature maps FW1 and FW2 to obtain the
final output feature map F ∈ RC×H×W as follows:

F = F ′ ⊗ FW1 + (
1 − F ′) ⊗ FW2, (5)

Fig. 3 The architecture of CIEFM
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where F ′ denotes the fusion weight map, which is calculated
as follows:

F ′ = (FW1 ⊕ FW2) ⊗ σ (ϕ1 (GAP (FW1 ⊕ FW2))

+ϕ2 (FW1 ⊕ FW2)) , (6)

where ϕ1(·) and ϕ2(·) denote two convolutional blocks,
GAP(·) denotes the global average pooling operation, and
σ {·} denotes the Sigmoid function. It should be noted that
instead of adding FW1 and FW2 directly to get F ′, we further
process the result of adding FW1 and FW2 to better aggre-
gate multi-scale contextual information along the channel
dimension, which allows our network to concatenation on
both global and local discriminative information contained
in the two feature maps.

3.4 Camera style-invariant feature-level adversarial
learning strategy

Algorithm 1 The detailed training pipeline of the camera style-
invariant feature-level adversarial learning strategy

Input: Training images with camera information and ID
labels

X = {
xci |i = 1, 2, · · ·m; c = 1, 2, · · · n }

.
Total number of training epochs max _epochs.
Training batch size Batchsi ze.
Threshold T .

Initialization: The feature extraction network M .
The camera style classifier WC .
epoch = 1.

Output: The feature extraction network M .

1. while epoch ≤ max _epoches do:
2. Randomly selectBatchsize pedestrian images from X using the

PK sample strategy and extract the corresponding pedestrian
features using the feature extraction network M ;

3. if epoch < T do:
4. Make α = 0 in formula (8) and calculate the loss

Lcadv1 (M) using formula (8);
5. Update the parameters of the feature extraction network

M using the BP algorithm;
6. Calculate the loss Lcadv2 (WC ) using formula (9);
7. Update the parameters of the camera style classifier WC

using the BP algorithm.
8. else do:
9. Calculate the loss Lcadv2 (WC ) using formula (9);

10. Update the parameters of the camera style classifier WC
using the BP algorithm;

11. Make α = 1 in formula (8) and calculate the loss
Lcadv1 (M) using formula (8);

12. Update the parameters of the feature extraction network
M using the BP algorithm.

13. end if
14. epoch = epoch +1.
15. end while

Pedestrian images taken by different cameras vary greatly
in camera style due to differences in camera viewpoints,
lighting conditions and backgrounds, and the camera style
discrepancy can significantly affect the overall performance
of networks. Some scholars [31–33] weakened the impact
of camera style discrepancy on person Re-ID performance
using GANs to transform pedestrian images with different
camera styles to each other. However, using GANs to gener-
ate images not only requires huge computational resources,
but also may introduce additional noise.

To further weaken the impact of camera style discrepancy
of pedestrian images, we design a camera style-invariant
feature-level adversarial learning strategy. Specifically, we
introduce a camera style classifier WC . By the adversarial
learning between the camera style classifier WC and the fea-
ture extraction network M , the feature extraction network M
has a certain capability of extracting camera style-invariant
pedestrian features. In particular, the outputs of the camera
style classifierWC are the probabilities of a pedestrian image
belonging to the i th camera style Ci (i = 1, 2, · · · , n) and
uniform style Cn+1. In order to enable the feature extrac-
tion network M to extract camera style-invariant pedestrian
features, we should optimize the feature extraction network
M so that WC can classify all the pedestrian image features
extracted by the feature extraction network M into a uniform
style Cn+1, i.e., optimizing the following loss:

Lc (M) = ψce (WC (M(x)) ,Cn+1) , (7)

where x denotes the pedestrian image, and ψce (·) denotes
the cross-entropy loss. In addition, we also introduce the
weighted regularization triplet (WRT) loss [2] and the ID
loss to enhance the identity-related information in pedestrian
features. In summary, we need to optimize the following loss:

Lcadv1 (M) = L I D + LWRT + αLc, (8)

where LWRT and L I D denote theWRT loss and the identity-
related identity (ID) loss, respectively. In particular, we use
the cross-entropy loss as the ID loss.

To enhance the classification capability of the camera style
classifier WC as much as possible, we also need to optimize
the following loss:

Lcadv2 (WC ) = ψce (WC (M (x)) ,Ci ) , i = 1, 2, 3, · · ·n.

(9)

In the training phase, we use two optimizers to indepen-
dently optimize Lcadv1 and Lcadv2 to achieve the adversarial
learning between the camera style classifier WC and the fea-
ture extraction network M . Algorithm 1 shows the detailed
training process of the camera style-invariant feature-level
adversarial learning.As canbe seen fromAlgorithm1,weuse
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a threshold T to control when Lc (M) participates in network
training. When epoch < T, we set α = 0 in Lcadv1 (M).
At this time, Lcadv1 (M) and Lcadv2 (WC ) supervise net-
work training together, with the purpose of training a better
performing feature extraction network M and a better per-
forming camera style classifier WC . When epoch ≥ T, we
set α = 1 in Lcadv1 (M) to introduce Lc (M) in Lcadv1 (M).
In this case, the feature extraction network M and the cam-
era style classifier WC begin adversarial learning. With the
gradual updating of the feature extraction network M and
the camera style classifier WC , although WC has a strong
capability to classify camera styles, the pedestrian features
extracted by the feature extraction network M are still clas-
sified into a uniform style Cn+1. At this point, we think that
the feature extraction network M has the capability to exact
camera style-invariant pedestrian features.

4 Experiments

4.1 Datasets and experimental settings

4.1.1 Datasets and evaluation metric

We evaluate the overall performance of CC-Net on the two
benchmark datasets, RegDB [56] and SYSU-MM01 [11],
respectively. The detailed information of the two benchmark
datasets is listed in Table 1.

SYSU-MM01 dataset is the first publicly available
large-scale dataset for VI-ReID provided by Sun Yat-sen
University. The images in this dataset were captured by a
total of 6 cameras, which contains four visible cameras and
two infrared cameras. A total of 30,071 visible images and
15,792 infrared images of 491 pedestrians are included in
this dataset. According to the evaluation protocol in [11],
we randomly select 34,167 images of 395 pedestrians from
this dataset to form the training set, and 4104 images of the
remaining 96 pedestrians to form the testing set. In addi-
tion, we adopt two evaluation modes, i.e., all-search mode
and indoor-search mode. For the all-search mode, all images
captured by the six cameras are used. For the indoor-search
mode, only the indoor images captured by the first, second,
third, and sixth cameras are used.

RegDBdataset is a publicly available dataset forVI-ReID
provided by Dongguk University in Korea. This dataset con-
tains 8240 images of 412 pedestrians taken by 2 cameras, in

which 254 are females and 158 are males. According to the
evaluation protocol in [29], we randomly select 4120 images
of 206 pedestrians from this dataset as the training set and
4120 images of the remaining 206 pedestrians as the test-
ing set. In the testing phase, we adopt two test modes, i.e.,
visible-to-infrared mode and infrared-to-visible mode.

Evaluation metric. In this paper, all experiments use the
cumulative matching characteristics (CMCs) and the mean
average precision (mAP) as the metric of VI-ReID perfor-
mance. The mAP considers both accuracy and completeness
to assess the overall performance of the experimental results.
It reflects the degree to which the correctly identified pedes-
trian images are ahead of the other retrieval results.

4.1.2 Implementation details

We use the ResNet-50 [57] pretrained on the ImageNet [58]
as the backbone network. In particular, we change the orig-
inal stride size 2 to 1 in the two residual blocks of the
Stage5 in each branch of the two-stream backbone network
to obtain more rich pedestrian features. In the training phase,
we use data augmentation techniques such as horizontal flip-
ping, random erasing, random cropping, and random channel
exchange. In addition, the size of all pedestrian images is
resized to 288 × 144, and the batchsize is set to 64. We
use two SGD optimizers with momentum of 0.9 and weight
decay of 5 × 10−4 to optimize the parameters of the feature
extraction networkM and the camera style classifierWC with
a total of 200 epochs, respectively. Moreover, we initialize
the learning rate to 0.1, which decays to 0.01 and 0.001 at
the 20th and 50th epochs, respectively. It is worthmentioning
that, for the threshold T in Algorithm 1, we set it to 60 in our
experiments.

4.2 Comparison with some state-of-the-art methods

The experimental results of CC-Net and some state-of-the-
art methods on the SYSU-MM01 and RegDB datasets are
shown in Tables 2 and 3, respectively.

Evaluation on SYSU-MM01. Table 2 shows that CC-
Net achieves 67.74% Rank-1 accuracy and 62.81% mAP
in the all-search mode, and 73.85% Rank-1 accuracy and
77.42% mAP in the indoor-search mode. In the two search
modes, comparedwith the advancedVI-ReIDmethodSMCL
[59], the Rank-1 accuracy of CC-Net is improved by 0.35%
and 5.01%, and the mAP is improved by 1.03% and 1.86%,

Table 1 The detailed
information of the two
benchmark datasets

Dataset Cameras Training set (IDs/images) Testing (IDs/images)

SYSU-MM01 6 395/34,167 96/4104

RegDB 2 206/4120 206/4120

123



117 Page 8 of 14 H. Du et al.

Table 2 Comparison with some
state-of-the-art methods on the
SYSU-MM01 dataset

Settings All-search Indoor search

Method Rank-1 Rank-10 Rank-20 mAP Rank-1 Rank-10 Rank-20 mAP

Zero-Pad [11] 14.80 54.12 71.33 15.95 20.58 68.38 85.79 26.92

HCML [29] 14.32 53.16 69.17 16.16 24.52 73.25 86.73 30.08

cmGAN [31] 26.97 67.51 80.56 31.49 31.63 77.23 89.18 42.19

MAC [60] 33.26 79.04 90.09 36.22 36.43 62.36 71.63 37.03

AlignGAN [52] 42.40 85.00 93.70 40.70 45.90 87.60 94.40 54.30

BDTR [61] 27.32 66.96 81.07 27.32 32.46 77.42 89.62 42.46

DGD+MSR [30] 37.35 83.40 93.34 38.11 39.64 89.29 97.66 50.88

Xmodal [62] 49.92 89.79 95.96 50.73 – – – –

DDAG [43] 54.75 90.39 95.81 53.02 61.02 94.06 98.41 67.98

JSIA-ReID [63] 38.10 80.70 89.90 36.90 43.80 86.20 94.20 52.90

LZM [64] 45.00 89.06 – 45.94 49.66 92.47 - 59.81

MSPAC [65] 46.62 87.59 95.77 47.26 51.63 93.48 98.82 61.54

DTCL [66] 54.14 89.93 96.13 54.14 – – – –

HAT [67] 55.29 92.14 97.36 53.89 62.10 95.75 99.20 69.37

cm-SSFT [68] 61.60 89.20 93.90 63.20 70.50 94.90 97.70 72.60

HCT [46] 61.68 93.10 97.17 57.51 63.41 91.96 95.28 68.17

AGW [2] 47.50 84.39 92.14 47.65 54.17 91.14 95.98 62.97

SMCL [59] 67.39 92.87 96.76 61.78 68.84 96.55 98.77 75.56

G2DA [50] 63.94 93.34 97.29 60.73 71.06 97.31 99.47 76.01

CAA [51] 59.46 91.84 96.75 58.83 65.23 96.64 99.21 71.42

CC-Net 67.74 94.61 97.96 62.81 73.85 96.57 99.11 77.42

“–” no available data
Bold values indicate the best performance

Table 3 Comparison with some
state-of-the-art methods on the
RegDB dataset

Settings Visible-to-infrared Infrared-to-visible

Method Rank-1 Rank-10 Rank-20 mAP Rank-1 Rank-10 Rank-20 mAP

Zero-Pad [11] 17.75 34.21 44.35 18.90 16.63 34.68 44.25 17.82

HCML [29] 24.44 47.53 56.78 20.08 21.7 45.02 55.58 22.24

MAC [60] 36.43 62.36 71.63 37.03 36.2 61.68 70.99 36.63

BDTR [61] 33.56 58.61 67.43 32.76 32.92 58.46 68.43 31.96

D2RL [33] 43.40 66.10 76.30 44.10 – – – –

DDAG [43] 69.34 86.19 91.49 63.46 68.06 85.15 90.31 61.8

LZM [64] 57.03 76.10 84.34 58.06 – – – –

Xmodal [62] 62.21 83.13 91.72 60.18 – – – –

NFS [70] 80.54 91.96 95.07 72.1 – – – –

HAT [67] 71.83 87.16 92.16 67.57 70.02 86.45 91.96 66.30

AGW [2] 70.05 86.21 91.55 66.37 70.49 87.12 91.84 65.90

cm-SSFT [68] 72.30 – – 72.90 71.00 – – 71.70

MCLNet [69] 80.31 92.70 96.03 73.07 75.93 90.93 94.59 69.49

G2DA [50] 73.95 89.47 93.67 65.49 69.67 86.41 91.38 61.98

CAA [51] 80.31 92.45 96.12 73.54 79.87 92.23 95.91 72.36

CC-Net 87.09 95.80 97.57 76.73 82.55 92.59 95.31 72.48

“–” no available data
Bold values indicate the best performance
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respectively. In the two search modes, compared with the
advancedVI-ReIDmethodG2DA [50], the Rank-1 accuracy
of CC-Net is improved by 3.8% and 2.79%, and the mAP
is improved by 2.08% and 1.41%, respectively. In the two
searchmodes, compared with the advanced VI-ReIDmethod
CAA [51], the Rank-1 accuracy of CC-Net is improved by
8.28% and 8.62%, and the mAP is improved by 3.98% and
6%, respectively. These results demonstrate that the perfor-
mance of CC-Net achieves the recent advanced level.

Evaluation on RegDB. Table 3 shows that CC-Net
achieves 87.09% Rank-1 accuracy and 76.73% mAP in the
visible-to-infrared mode, and 82.55% Rank-1 accuracy and
72.48% mAP in the infrared-to-visible mode. In the two
searchmodes, compared with the advanced VI-ReIDmethod
MCLNet [69], the Rank-1 accuracy of CC-Net is improved
by 6.78% and 6.62%, and the mAP is improved by 3.66%
and 2.99%, respectively. In the two search modes, compared
with the advanced VI-ReID method G2DA [50], the Rank-1
accuracy of CC-Net is improved by 13.14% and 12.88%, and
the mAP is improved by 11.24% and 10.05%, respectively.
In the two search modes, compared with the advanced VI-
ReID method CAA [51], the Rank-1 accuracy of CC-Net is
improved by 6.78% and 2.68%, and the mAP is improved
by 3.19% and 0.12%, respectively. These results show again
that our method has some advantages compared with most
advanced VI-ReID methods.

However, as can be seen fromTable 2, in the indoor-search
mode, the Rank-10 and Rank-20 of CC-Net decrease 0.74%
and 0.36%, respectively, compared with the Rank-10 and
Rank-20 of G2DA. As can be seen from Table 3, in the
infrared-to-visible mode, the Rank-20 of CC-Net is 0.6%
lower than that of CAA. This may be due to the fact that our
model cannot completely eliminate themodality discrepancy
caused by pixel-level changes in the images.

4.3 Computational complexity

In order to give an idea of the computational complexity of
our model, we conduct an experimental study on the SYSU-
MM01 dataset. The training time of our model is about 5.6
h. Although it takes a long time to train our CC-Net, we can
train it offline and use it online in real-world applications,
and its online inference time for a single image is only 0.008
s.

4.4 Ablation experiments

We conduct ablation experiments on the SYSU-MM01
and RegDB datasets, respectively, to evaluate the perfor-
mance of different modules of CC-Net. Specifically, the
baseline model (Baseline) is mainly made up of ResNet-
50, ID loss, WRT loss, and GeM pooling. We construct
Baseline + CIEFM, Baseline + CSIL, and Baseline +

Table 4 Performance of different modules of CC-Net on the SYSU-
MM01 and RegDB datasets

Baseline CIEFM CSIL SYSU-MM01 RegDB
Rank-1 mAP Rank-1 mAP

√
63.07 59.26 80.49 72.80√ √
66.00 61.50 84.61 75.38√ √
65.57 61.54 85.63 75.10√ √ √
67.74 62.81 87.09 76.73

CIEFM + CSIL to demonstrate the performance of different
modules of CC-Net. In particular, CSIL denotes the cam-
era style-invariant feature-level adversarial learning strategy.
The ablation experimental results are listed in Table 4. From
Table 4, we can find that, on the two benchmark datasets,
compared with the Baseline, Baseline + CIEFM achieves
improvements of 2.93% and 4.12% in Rank-1 accuracy, and
2.24% and 2.58% in mAP, respectively. We can see from
these results that CIEFM can extract more discriminative
pedestrian representations, which effectively increases the
performance of Baseline. On the two benchmark datasets,
compared with the Baseline, Baseline + CSIL achieves
improvements of 2.50% and 5.14% in Rank-1 accuracy, and
2.28% and 2.30% in mAP, respectively. We can see from
these results that training Baseline using the camera style-
invariant feature-level adversarial learning strategy enables
it to have the capability of extracting camera style-invariant
pedestrian features, which effectively weakens the impact
of camera style discrepancy on Baseline performance. On
the two benchmark datasets, compared with the Baseline +
CIEFM, Baseline+CIEFM+CSIL achieves improvements
of 1.74% and 2.48% in Rank-1 accuracy, and 1.31% and
1.35% in mAP, respectively. Compared with the Baseline +
CSIL, Baseline + CIEFM + CSIL achieves improvements
of 2.17% and 1.46% in Rank-1 accuracy, and 1.27% and
1.63% in mAP, respectively. These results demonstrate that
the combination of the camera style-invariant feature-level
adversarial learning strategy andCIEFMcan further improve
the performance of VI-ReID models.

To assess the effectiveness of the fusion weight F ′, we
conduct ablation experiments on the RegDB dataset, and the
ablation experimental results are shown in Table 5. As can be
seen fromTable 5, themodel that calculates the fusionweight
F ′ in the way of formula (6) performs better than the model
that calculates the fusion weight F ′ by directly adding FW1

and FW2, with the Rank-1 accuracy improved by 1.65% and
themAP improved by 1.66%. This shows that calculating the
fusion weight F ′ in the way of formula (6) is more effective.

To assess the impact of different loss combinations on
the performance of our model, we conduct ablation exper-
iments on the RegDB dataset and the experimental results
are presented in Table 6. As illustrated in Table 6, compared
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Table 5 Ablation experimental
results of fusion weight F ′
calculation on the RegDB
dataset

The computing of F ′ Rank-1 mAP

F ′ = FW1 + FW2 82.96% 73.72%

F ′ = (FW1 ⊕ FW2) ⊗ σ (ϕ1 (GAP (FW1 ⊕ FW2)) + ϕ2 (FW1 ⊕ FW2)) 84.61% 75.38%

Table 6 Ablation experimental
results of different loss
combinations on the RegDB
dataset

Model Rank-1 mAP

Model with L I D 54.81% 47.81%

Model with L I D and LWRT 80.49% 72.80%

Model with L I D , LWRT and Lcadv2 (WC ) 83.30% 73.09%

Our model 87.09% 76.73%

with the model that only uses L I D , the Rank-1 accuracy and
mAP of our model are improved by 32.28% and 28.92%,
respectively. Compared with the model with both L I D and
LWRT , the Rank-1 accuracy and mAP of our model are
improved by 6.6% and 3.93%, respectively. Compared with
the model using L I D , LWRT and Lcadv2 (WC ), the Rank-
1 accuracy and mAP of our model are improved by 3.79%
and 3.64%, respectively. These fully prove that our camera
style-invariant feature-level adversarial learning strategy is
effective.

4.5 Visualization

4.5.1 Visualization of feature maps

Wevisualize the featuremaps extracted byCC-Net andBase-
line using Grad-CAM [71] on the SYSU-MM01 dataset, as
shown in Fig. 4. In Fig. 4, the images in the first row are
the original pedestrian images, the images in the second row
are the feature maps of the corresponding original pedes-
trian images extracted by Baseline, and the images in the
third row are the feature maps of the corresponding origi-
nal pedestrian images extracted by CC-Net. From Fig. 4, it
can be seen that Baseline focuses excessively on the local
salient information of pedestrian images and ignores other
effective information. For example, for the first visible pedes-
trian image, Baselinemainly focuses on the pedestrian’s legs,
and for the first infrared pedestrian image, Baseline mainly
focuses on the pedestrian’s feet. However, it can also be seen
from Fig. 4 that CC-Net can focus on other effective infor-
mation while focusing on the local salient information of
pedestrian images. For example, for the first visible pedes-
trian image, CC-Net focuses not only on the pedestrian’s legs
but also on the pedestrian’ arms. For the first infrared pedes-
trian image, CC-Net focuses not only on the pedestrian’s feet,
but also on the pedestrian’s upper body.

Fig. 4 Visualization of feature maps: the images in the first row are
the original pedestrian images, the images in the second row are the
feature maps of the corresponding original pedestrian images extracted
by Baseline, and the images in the third row are the feature maps of the
corresponding original pedestrian images extracted by CC-Net

4.5.2 Visualization of retrieval results

As shown in Fig. 5, we visualize part of the retrieval results
of CC-Net, Baseline + CIEFM, Baseline + CSIL and Base-
line on the RegDB dataset. Figure 5a shows the retrieval
results in the visible-to-infrared mode, while Fig. 5b shows
the retrieval results in the infrared-to-visible mode. In Fig.
5a, b, the first image in each row is the query image, and the
rest are the 10 images retrieved from the gallery by Base-
line, Baseline + CIEFM, Baseline + CSIL and CC-Net.
In particular, the images marked with green boxes belong
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Fig. 5 Visualization of retrieval results: a the visible-to-infrared mode, and b the infrared-to-visible mode

to the same pedestrian as the corresponding query image,
and the images marked with red boxes do not belong to the
same pedestrian as the corresponding query image. Figure
5 shows that, compared with Baseline, CC-Net can signif-
icantly improve the ranking list. It can be also seen from
Fig. 5, compared with Baseline, both Baseline + CIEFM
and Baseline + CSIL effectively improve the accuracy of
pedestrian retrieval, while CC-Net significantly improves the

ranking list and basically achieves that the top 10 retrieved
images belong to the same pedestrian as the corresponding
query image. This demonstrates that CC-Net can still retrieve
images that belong to the same pedestrian as the query image
when the resolution of pedestrian images is low. However,
for the first query image in Fig. 5a and the third query image
in Fig. 5b, the images of other pedestrians also appear in the
top 10 images retrieved by CC-Net, respectively. This may
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be due to the limited ability of CC-Net to eliminate modality
discrepancy caused by pixel-level image variations.

5 Conclusion

In this paper, we propose a novel camera style-invariant
learning and channel interaction enhancement fusion net-
work (CC-Net) for VI-ReID. By using the channel interac-
tion enhancement fusion modules, the pedestrian features
extracted by our network are more discriminative. More-
over, by training our network using the camera style-invariant
feature-level adversarial learning strategy, our network has
a certain capability of extracting camera style-invariant
pedestrian features to weaken the impact of camera style
discrepancy of pedestrian images on the performance of VI-
ReID. Extensive experimental results on the SYSU-MM01
and RegDB datasets demonstrate that the performance of
CC-Net achieves the recent advanced level. However, the
ability of CC-Net to eliminate modality discrepancy caused
by pixel-level image variations is limited,whichmay result in
a poor performance in complex scenes with low foreground
and background contrast. In our future work, we will inves-
tigate effective strategies to eliminate the impact of modality
discrepancy on the performance of VI-ReID models.
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