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Abstract
Visual attention is one of the most significant characteristics for selecting and understanding the outside redundancy world.
The human vision system cannot process all information simultaneously due to the visual information bottleneck. In order
to reduce the redundant input of visual information, the human visual system mainly focuses on dominant parts of scenes.
This is commonly known as visual saliency map prediction. This paper proposed a new psychophysical oriented saliency
prediction architecture, which inspired by multi-channel model of visual cortex functioning in humans. The model consists
of opponent color channels, wavelet transform, wavelet energy map, and contrast sensitivity function for extracting low-
level image features and providing a maximum approximation to the low-level human visual system. The proposed model
is evaluated using several datasets, including the MIT1003, MIT300, TORONTO, SID4VAM, and UCF Sports datasets.
We also quantitatively and qualitatively compare the saliency prediction performance with that of other state-of-the-art
models. Our model achieved strongly stable and better performance with different metrics on natural images, psychophysical
synthetic images and dynamic videos.Additionally, we suggested that Fourier and spectral-inspired saliency predictionmodels
outperformed other state-of-the-art non-neural network and even deep neural network models on psychophysical synthetic
images. In the meantime, we suggest that deep neural networks need specific architectures and goals to be able to predict
salient performance on psychophysical synthetic images better and more reliably. Finally, the proposed model could be used
as a computational model of primate low-level vision system and help us understand mechanism of primate low-level vision
system. The project page can be available at: https://sinodanishspain.github.io/HVS_SaliencyModel/.

Keywords Visual attention · Redundancy · Multi-channel model · Opponent color channel · Wavelet energy map · Contrast
sensitivity function · Saliency prediction

Abbreviations
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ICL Incremental Coding Length
CNN Convolution Neural Network
DNN Deep Neural Network
WT Wavelet Transform
IWT Inverse Wavelet Transform
AUC Area Under Curve
NSS Normalized Scanpath Saliency
CC Pearson’s Correlation Coefficient
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SIM Similarity or Histogram Intersection
IG Information Gain
KL Kullback–Leibler Divergence
CSFs Contrast Sensitivity Functions
FT Fourier Transform
DWT Discrete Wavelet Transform
IDWT Inverse Discrete Wavelet Transform
LGN Lateral Geniculate Nucleus
GT Ground Truth

1 Introduction

The human vision system (HVS) uses visual attention to
extract information from the redundancy of the natural world
[1]. Redundancy in natural scene images is generally inef-
fective for scene classification or recognition. Focused visual
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attention can be used to identify and remove irrelevant infor-
mation from a cluttered natural environment, according to
Barlow’s efficiency-coding hypothesis [2]. Bottom-up and
top-down visual attentionmechanisms are themost common.
Models built from the bottom up are primarily motivated
by external stimuli. A variety of visual information (such
as color, frequency, texture, orientation, and motion) is pro-
cessed to extract image features using [3]. Contrast this with
bottom-up approaches that aim to achieve a specific goal,
which typically involve high-level information feedback and
modulate lower-level vision functions [4]. Saliency map pre-
diction has been successfully applied to both of the above
computational neural models, and long-term research has
been done on the visual attention mechanism [5].

Many studies have tried to carry out bottom-up or top-
down computational modeling to predict saliency maps. In
the following, I will briefly review some saliency predic-
tion models that have achieved remarkable performance
in saliency prediction. One of the earliest computational
models, proposed by Itti et al. [6], was based on the bottom-
up mechanisms of low-level vision systems. The model
structure contains linear filtering, center-surround differ-
ences, across-scale combinations, and linear combinations.
Achanta [7] devised a model for area segmentation that
generates saliency maps to identify standout objects with
clearly defined boundaries. Bruce and Tsotsos [8] proposed
a model based on Shannon’s self-information assessment
to identity saliency map. Based on an investigation of the
amplitude spectrum of natural images, Li [9] presented a
novel bottom-up computationalmodel for determining visual
saliency. Hou and Zhang [10] proposed a spatial-temporal
visual attention model based on feature rarity. Using the
incremental coding length (ICL) method, they figured out
each feature’s perspective entropy gain and then made a
saliency map. Murray et al. [11] showed a color appearance
model could be used for producing saliency maps because
it involves parameter selection and spatial pooling func-
tion. Boolean map-based saliency (BMS) is a novel Boolean
map-based saliency model created by Zhang and Sclaroff
[12]. According to Gestalt’s theory of figure-ground segrega-
tion, the BMS model computes saliency maps by examining
Boolean maps’ topological structure [13]. A simple image
descriptor known as the image signature was established
by Hou et al. [14]. They developed a saliency algorithm
based on the image signature. Goferman [15] described
a context-aware saliency approach that seeks to recognize
image regions that represent the scene. According to this
approach, instead of identifying fixation locations, the dom-
inating item is detected. Hou and Zhang [16] demonstrated
a straightforward approach for generating the correspond-
ing saliency map in the spatial domain by analyzing the
log-spectrum of an input image. Guo [17] proposed a fast
method that uses the spectral residual of the amplitude spec-

trum to build the saliency map. Schauerte and Stiefelhagen
[18] firstly proposed employing Eigenaxes and Eigenangles
for models of spectral saliency dependent on the Fourier
transform. Murray [19] proposed a saliency model based
on a low-level spatial-chromatic function of HVS, which
successfully predicted chromatic induction phenomena and
generated a saliency map [20]. To detect both static and
spatial-temporal saliency, Seo andMilanfar [21] provided an
innovative, unifying computational framework for detecting
saliency. Wavelet transforms have also begun to be widely
used to estimate computational vision saliency maps [11].
Compared to the Fourier transform, it has a high resolu-
tion in both the frequency and time domains. Wavelet can
decompose signals at different scales, also known as multi-
resolution/multi-scale analysis or sub-band coding, which
can capturemore low-level information from the original sig-
nal [22]. On the other hand, the wavelet transform approach
can explain the primary visual cortex (V1) properties and
producemulti-scale andmulti-orientation features when pro-
vided with stimuli. The final estimated saliency map could
sum up all the processed wavelet coefficients through an
inverse wavelet transform [23]. When using the wavelet
transform to create saliencymaps, however, global contrast is
lost rather than local information. Spratling [24] proposed a
saliency prediction model based on predictive coding theory
[25].

In the last few years, some studies have attempted to esti-
mate saliency maps with deep convolutional neural networks
(CNNs),which have achieved impressive performances com-
pared to conventional methods [26–31]. Cornia et al. [32]
introduced a novel deep architecture for saliency prediction.
To predict saliency maps, current state-of-the-art models for
saliency prediction use fully convolution networks, which
utilize a non-linear combination of features extracted from
the last convolution layer. DeepGazeII [33] is a model which
forecasts where people will look in images. The model
employs features from the VGG-19 deep neural network,
which has been trained to recognize objects in images.
Compared to conventional methods, deep learning imple-
mentations are also easier to transfer to real-life applications
such as object detection, video understanding, and image
compression. In this study, our main contributions are four-
fold:

1. A psychophysically oriented saliency prediction model
was proposed, which was inspired by the multi-channel
model of human vision system function. The model has a
contrast sensitivity function, an opponent color channel,
a wavelet transform, a wavelet energymap, and a wavelet
transform energy map. The proposed model is a bottom-
upmodel, and it was tested on the different datasets using
certain metrics.
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Fig. 1 Architecture of the proposed saliency prediction model. The left
panel image was selected from the MIT1003 dataset. The flow chart
shows the framework of the proposed model, containing the chromatic
response in the retina and spatial feature processing in the visual cor-
tex. The natural image is first adapted, before decomposing it into
white-black, red-green, and yellow-blue opponent neural channels. In
the spatial component, a discrete wavelet transform is applied to each

opponent color channel, then the wavelet energy map is measured. In
the last step of the proposed model, the CSF is applied to each opponent
wavelet energy channel and combined with each opponent’s feature. i
and θ indicate image and model parameters, respectively. The details of
each component are described in the following section. The graph on
the right refers to the map of the left panel image’s saliency on the
inflated visual cortex using the proposed model

2. The spatial chromatic contrast sensitivity function was
implemented by Python,1 which is available at https://
github.com/sinodanishspain/CSFpy.

3. The proposed model achieved strongly stable and better
performance with different metrics on natural images,
psychophysical synthetic images, and dynamic scenes.
Beyond the accuracy of saliency prediction,we takemore
neuroscience concepts into account rather than statistical
concepts, and it is also another computational goal in the
study.

4. We suggested that Fourier and spectral-inspired saliency
prediction models outperformed other state-of-the-art
non-neural network and even deep neural network mod-
els on psychophysical synthetic images. The proposed
model can be successfully applied to explain the “pop-
out” effects in the visual search and attentionmechanisms
of primate vision systems and inspire the development
of better deep learning models. Furthermore, we also
suggest that deep neural networks require distinct archi-
tectures and goals in order to reliably predict salient
performance on psychophysical synthetic images.

The rest of this paper is organized as follows: Sect. 2
introduces the concepts of opponent color space, wavelet

1 https://www.python.org/.

decomposition, wavelet energy map estimation, and CSF.
Section3 introduces the saliency map prediction model,
along with different datasets and evaluation metrics. Sec-
tion4 presents the experimental results. The final section
provides discussions and conclusions for the paper.

2 The proposed saliency predictionmodel

2.1 Saliency predictionmodel

In this paper, we propose a biologically inspired visual
saliency predictionmap, based on the human low-level visual
system. The extraction of information from the retina, LGN,
andV1 is a critical component of visual neural networks. The
color opponent channel, wavelet transform, wavelet energy
map, and contrast sensitivity function are the main compo-
nents of the proposedmodel architecture. The color opponent
channel simulates the response of retinal cells to different
spectral wavelengths, and the wavelet transform presents
the multi-scale and multi-orientation properties of the V1.
The CSF is used to describe the human brain’s susceptibil-
ity to spatial frequencies. The details of each component are
described in the following sections. Figure1 depicts the com-
putational saliency prediction model architecture.
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Fig. 2 Opponent color processing. The first column represents the raw
RGB color space, followed by the white–black (WB) channel, red–
green (RG) channel, and yellow–blue (YB) channel, each with a gray

colormap. The final three columns depict the WB, RG, and YB chan-
nels in artificial color, in order to better visualize the opponent color
processing in the visual system

2.2 Gain control with von Kries chromatic
adaptationmodel

Gain control exists in the visual information processing
pipeline in the retina and cortex. In other words, gain control
influences both top-down and bottom-up visual information
flows, as well as attention-related cognitive functioning [34].
Meanwhile, gain control always strives to maintain a steady-
state brain and self-regulation condition between the brain
and the natural environment. In the von Kries model, we
multiply each channel of the image with the gain value after
normalizing its intensity [35–37]. However, there are some
implications to this approach. The first is that the channels are
considered independent signals, which is why we use inde-
pendent gains. Second, this gain is added not in the RGB
space but, instead, in the tristimulus LMS space. Assuming
that the LMS is the same as our image’s tristimulus values,
the von Kries model can be written in math as:

L2 = L1

Lmax
Lmax 2,

M2 = M1

M max
Mmax 2,

S2 = S1
Smax

Smax 2, (1)

⎡
⎣
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0 1
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0
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⎥⎦
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⎣
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⎤
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⎡
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L2

M2

S2

⎤
⎦ =

⎡
⎣
Lmax 2 0 0
0 Mmax 2 0
0 0 Smax 2

⎤
⎦ , (3)

where L1 corresponds to the original image’s L val-
ues; LMax , MMax , and SMax , respectively, correspond to
the maximum value of each channel in the LMS image;
LMax2, MMax2, and SMax2 are the gain values with a set

value of 0.6 in the proposed model; and L2 is the corrected
L channel after adaptation.

2.3 Color appearancemodel

Representationof color in the brain can improveobject recog-
nition and identity. Trichromatic theory [38] and the color
appearance model proposed based on the functioning of
the sensors encode color information and have been widely
used in low-level image processing. Two functional types
of chromatic sensitivity or selectivity sensors were found—
single-opponent and double-opponent neurons—based on
the responses of long (L), mediate (M), and short (S) cones
in the physical world [39]. Most saliency prediction models
use CIELAB and YUV color spaces for the opponent color
spaces. In our case, we use another opponent’s color space
[40, 41], and the color space transform matrix from RGB to
O1O2O3 can be expressed as:

⎡
⎣
O1

O2

O3

⎤
⎦ =

⎡
⎣

0.2814 0.6938 0.0638
−0.0971 0.1458 −0.0250
−0.0930 −0.2529 0.4665

⎤
⎦

⎡
⎣
R
G
B

⎤
⎦ . (4)

The test natural scene images (of sizes 256×256 and 512×
512 ) were selected from the Signal and Image Processing
Institute, University of Southern California, 2 and the Kodak
lossless true-color image database 3(of sizes 512×768, 768×
512, and 768 × 512 ). The total natural color images were
resized into the same size (8 bits, 256× 256 ) as test images.
All natural chromatic images were converted from RGB
space to the O1O2O3 domain, based on the above conversion
matrix. As can be seen in Fig. 2, the chromatic information

2 http://sipi.usc.edu/database/database.php?volume=misc.
3 http://r0k.us/graphics/kodak/.
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Fig. 3 The modeling of V1 simple and complex cells in each opponent
channel. The red rectangle indicates hypercolumns in the visual cor-
tex. From left to right, the graph depicts WB opponent neurons with
different orientations and scales. The following zoomed out top/bottom
graphs with artificial color, for better visualization of features, in each

hypercolumn indicate RG/YB opponent neurons across different orien-
tations and scales. The V1 complex cells can be obtained from the sum
of squares of wavelet transform features across scales and orientations
in the simple cells

(white-black, red-green, and yellow-blue) was decomposed
into each channel.

2.4 Wavelet energymap

2.4.1 Visual cortex receptive fields with wavelet filters

The primary visual cortex contains neurons that reflect the
structure of the retinal image in terms of a wavelet basis, and
the visual simple and complex cells can be modeled with
wavelet filters. In our case, we did not consider the in-depth
details of each hypercolumn neuron’s interaction mecha-
nisms (e.g., Li’s model [42]). The simulated V1 complex
receptive fields sum all the squares of different scales and
orientations after the wavelet transform (see Fig. 3). The V1
simple receptive fields in each opponent channel are mathe-
matically defined as:

Viv = si ov (5)

Vih = si oh (6)

Vid = si od , (7)

where s indicates receptivefiled scales,o refers to orientation—

that is, vertical (v), horizontal (h), and diagonal (d)—and i
indicates the number of neurons/features. The V1 complex
cells can be formulated as:

Vcomplex =
i∑
1

(si ov)
2 +

i∑
1

(si oh)
2 +

i∑
1

(si od)
2. (8)

2.4.2 Wavelet transform and wavelet energy map

The wavelet image analysis can decompose an image into
multi-scale and multi-orientation features, similar to the
visual cortex representation. Compared to the Fourier trans-
form (FT), a wavelet transform can represent spatial and
frequency information simultaneously. Alfred Haar first pro-
posed thewavelet transformapproach, and it has alreadybeen
widely used in signal analysis [43]; for example, for image
compression, image denoising, and classification. Wavelet
transforms have already been applied in visual saliency map
prediction, and achieved good performance [44]. However,
wavelet energy maps remain barely used in visual saliency
map prediction, and they can be used to enhance local
contrast information in the decomposition sub-bands. In our
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Fig. 4 The different decomposition levels of the DWT (e.g., first, sec-
ond, and third levels): “a” indicates the original image, “h” indicates
the horizontal feature, “v” refers to the vertical feature, and “d” repre-

sents the diagonal feature. The bottom-left image is the original image,
and the following images represent the first-, second-, and third-level
decomposition features from the original image

proposedmodel, we use a discretewavelet transform (DWT),
which can be written in math as:

r [n] = ((I ∗ f )[n]) ↓ 2 =
( ∞∑
k=−∞

I [k] f [n − k]
)

↓ 2 (9)

where I indicates the input images, f represents a series
of filter banks (low-pass and high-pass), and ↓ 2 indicates
down-sampling until the next layer’s signal cannot be decom-
posed any more (see Fig. 4). A series of sub-band images are
produced after convolution with the DWT; then, the wavelet
energy map can be calculated from each sub-band feature
(see Fig. 5).

The wavelet energy map can be expressed as:

WE(i, j) = ‖I (i, j)‖2 =
3ind+1∑
k=1

|Ik(i, j)|2 , (10)

where 3ind indicates themaximum level of an image that can
be decomposed in the last level, e.g., 3 level decomposition,
and Ik(i, j)2 represents the energy map of each sub-band
feature.

2.5 Contrast sensitivity function

The human visual system is sensitive to contrast changes
in natural environments. The visual cortex function can be
decomposed into subset compositions, where one of the
significant features is the CSF, which can be divided into
achromatic and chromatic spatial CSFs [45]. In this proposed
computational model, an achromatic CSF (aCSF) and chro-
matic CSFs (rgCSF and ybCSF) were implemented, which
was first proposed byMannos and Sakrison in 1974 [46], and
further improved later [47, 48] (see Fig. 6). The achromatic
CSF mathematics is as follows:

CSF( fx , fy) = Q( f ) ∗ L( fx , fy), (11)

Q( f ) = g ∗
(
exp(−( f / fm)) − l ∗ exp

(
−

(
f 2/s2

)))
,

(12)

L( fx , fy)=
1−w ∗

(
4(1 − exp(−( f /os))) ∗ f 2x ∗ f 2y

)
/ f 4), (13)

where ( fx , fy) indicates a 2D spatial frequency vector (in
cycle/deg), f represents themodulus of the spatial frequency
(cycle/deg), g represents the overall gain (g = 330.74), fm
is a parameter that controls the exponential decay of the CSF
Tyler ( fm = 7.28), l represents the loss at low frequencies
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Fig. 5 Each channel’s DWT
map and the wavelet energy
maps corresponding to it. The
first column shows the DWT
maps for achromatic (WB) and
chromatic (RG, YB) channels.
The second column is the
wavelet energy map, obtained
by summing across scales and
orientation features for WB,
RG, and YB opponent channels,
respectively. The last column
shows the sum of squares
energy maps in each opponent
channel

(l = 0.837), s is a parameter that controls the attenuation of
the loss factor at high frequencies (s = 1.809), w indicates
the weighting of the oblique effect (w = 1), and os indicates
the oblique effect scale (os = 6.664). TheCSFswere applied
to the wavelet energy image in the Fourier domains. It can
be described by the following formula:

CSFWE = real(F(I(I(F(WE .real)) � CSF))), (14)

where F indicates the 2D Fourier transform, F indicates
the 2D inverse Fourier transform, I indicates fftshift, which
rearranges a Fourier transform by shifting the zero-frequency
component to the center of the image, andI indicates ifftshift,
which rearranges a zero-frequency-shifted Fourier transform
back to the original transform output. In other words, ifftshift
undoes the result of fftshift. The Python implementations of
the above CSFs (aCSF, rgCSF, and ybCSF) are available at
https://github.com/sinodanishspain/CSFpy.
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Fig. 6 Achromatic and chromatic CSFs. The images in the top row are 2D CSFs, and the bottom row shows 3D CSFs

3 Materials andmethods

3.1 datasets

The proposed model was tested on several well-known
datasets, including MIT1003, MIT300, TORONTO, and
SID4VAM. The following sections introduce the basic infor-
mation of each dataset.

• MIT1003 is an image dataset that includes 1003 images
from the Flickr and LabelMe collections. The fixation
map was generated by recording the eye-tracking data of
15 participants. It is the largest eye-tracking dataset. The
dataset includes 779 landscape and 228 portrait images
with sizes spanning from405×405 to 1024×1024 pixels
[49].

• MIT300 is a benchmark saliency test dataset that includes
300 images obtained by recoding a 39-observer eye-
tracking dataset. The MIT300 dataset categories are
highly varied and natural. The dataset can be used for
model evaluation [49].

• TORONTO includes 120 chromatic images free-viewed
by 20 subjects. The dataset contains both outdoor and
indoor scenes with a fixed resolution of 511×681 pixels
[8].

• SID4VAM is a synthetic image database that is mainly
used to psychophysically evaluate the V1 properties.
This database is composed of 230 synthetic images,
including 15 distinct types of low-level features (e.g.,
brightness, size, color, and orientation) with different
target-distractor pop-out-type synthetic images [50].

3.2 Evaluationmetrics

As mentioned before, there are several approaches to evalu-
ate metrics between visual saliency and model prediction. In
general, saliency evaluation canbedivided into twobranches:
location-based and distribution-based. The former mainly
focuses on the district located in the saliency map, and
the latter considers both the predicted saliency and human
eye fixation maps as continuous distributions [51]. In this
research, we used AUC, NSS, CC, SIM, IG, and KL to eval-
uate the methods and details of each evaluation metric, as
described in the following.4

3.2.1 Area under the ROC curve (AUC)

The AUC metric is a popular approach for the evaluation
of saliency model performance. The saliency map can be

4 https://github.com/cvzoya/saliency.
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treated as a binary classifier to split positive samples from
negative samples by setting different thresholds. The true
positive (TP) is the proportion of salient map values beyond
a specific threshold at the fixation locations. In contrast, the
false positive (FP) is the proportion of salient map values
beyond a specific threshold at the non-fixation locations. In
our case, the thresholdswere set from the saliencymapvalues
and the AUC-Judd, AUC-Borji, and sAUC measures [52].

3.2.2 Normalized scanpath saliency (NSS)

The NSS metric usually measures the relationship between
human eye fixationmaps andmodel-predicted saliencymaps
[53]. The NSS can be formally defined as follows given a
binary fixation map F and a saliency map S:

NSS = 1

N

N∑
i=1

S̄(i) × F(i), (15)

N =
∑
i

F(i) and S̄ = S − μ(S)

σ (S)
, (16)

where N is the total number of human eye positions, μ(s) is
the mean value of saliency maps, and σ(S) is the standard
deviation.

3.2.3 Similarity metric (SIM)

The similarity metric (SIM) is a very famous algorithm
for measuring image structure similarity, which has already
been widely used in image quality and image processing
disciplines [54]. The SIM mainly measures the normalized
probability distributions of eye fixation and model-predicted
saliency maps. The SIM can be mathematically described as:

SI M =
∑
i=1

min(P(i), Q(i)), (17)

where P(i) and Q(i) are the normalized saliency map and
the fixation map, respectively. A similarity score should be
in the range between zero and one.

3.2.4 Information gain (IG)

Information gain is an approach to measuring saliency map
prediction accuracy from an information-theoretic view. It
mainly measures the critical information contained in the
predicted saliency map, compared with a ground-truth map
[55]. The mathematical formula for the IG can be expressed
as:

IG
(
P, QB

)
= 1

N

∑
i

QB
i

[
log2 (ε + Pi ) − log2 (ε + Bi )

]
, (18)

where P indicates the predicted saliency map, QB is the
baseline map, and ε represents a regularity parameter.

3.2.5 Pearson’s correlation coefficient (CC)

Pearson’s correlation coefficient (CC) is a linear approach
that measures how many similarities there are between the
predicted saliency map and the baseline map [56].

CC
(
P, QD

)
= σ

(
P, QD

)

σ(P) × σ
(
QD

) , (19)

where P indicates the predicted saliency map and QD is the
ground-truth saliency map.

3.2.6 Kullback–Leibler divergence (KL)

The Kullback–Leibler divergence (KL) is used to measure
the distance between the samples of two distributions from
an information-theoretic perspective [55]. It can be formally
defined as:

K L
(
P, QD

)
=

∑
i

QD
i log

(
ε + QD

i

ε + Pi

)
, (20)

where P indicates the predicted saliency map, QD is the
ground-truth saliency map, and ε represents a regularity
parameter.

3.2.7 Other metrics

We also evaluated the performance of different salient pre-
diction models through two main metrics: precision-recall
curves (PR curves) and the F-measure.5 By binarizing the
predicted saliency map with thresholds in [0,255], a series
of precision and recall score pairs were calculated for each
dataset image. The PR curve was plotted using the average
precision and recall of the dataset under different thresholds
[57].

4 Experimental results

4.1 Quantitative comparison of the proposedmodel
with other state-of-the-art models

To evaluate the performance of the proposed model, we
compared it with eight other state-of-the-art models. For

5 https://github.com/ArcherFMY/sal_eval_toolbox/.
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Table 1 Quantitative scores of
several models for the MIT1003
dataset. The baseline ITT model
is shaded in light blue and the
proposed model is shown in
green

Methods DNN AUC_Judd AUC_Borji sAUC NSS SIM

ITT B 0.674 0.655 0.610 0.629 0.291

Ours N 0.705 0.692 0.653 0.849 0.362

SR N 0.708 0.683 0.638 0.791 0.329

AIM N 0.706 0.696 0.639 0.780 0.282

BMS N 0.684 0.637 0.576 0.729 0.346

CASD N 0.747 0.731 0.651 0.977 0.350

DCTS N 0.746 0.732 0.650 1.000 0.322

HFT N 0.797 0.764 0.619 1.258 0.416

ICL N 0.769 0.713 0.617 1.048 0.420

PFT N 0.708 0.683 0.636 0.787 0.326

PQFT N 0.643 0.530 0.519 0.459 0.292

QDCT N 0.736 0.714 0.647 0.920 0.338

RARE N 0.777 0.755 0.665 1.198 0.380

SIM N 0.701 0.693 0.653 0.743 0.283

SUN N 0.665 0.647 0.601 0.629 0.287

Achanta N 0.534 0.526 0.526 0.174 0.240

Simpsal N 0.735 0.721 0.610 0.892 0.337

Spratling N 0.512 0.508 0.510 0.039 0.234

SIMgrouping N 0.724 0.716 0.668 0.873 0.308

SeoMilanfar N 0.710 0.688 0.633 0.808 0.351

ML_Net Y 0.836 0.743 0.689 1.928 0.565

DeepGazeII Y 0.886 0.837 0.779 2.483 0.527

The black-bold scores demonstrate the performance of our model’s saliency prediction. ”N” indicates NO,
”Y” indicates YES, and ”B” indicates Baseline. The results of ML_Net and DeepGazeII models for the
MIT1003 dataset are shown in pink, as this dataset was used to train ML_Net and DeepGazeII and, so, their
results could not be compared with those of the other models. Table 5 includes an appendix with model details

comparison of the quantitative results, we selected the
MIT1003 and SID4VAM benchmarks. These results are
reported in Tables. 1, 2, and 3. The superior performance,
in terms of saliency prediction, was achieved by models
based on biological/cognitive and Fourier/spectral founda-
tions. Our model achieved stable and superior performance,
in terms of different evaluation metrics compared to other
biological/cognitive- and Fourier/spectral-inspired models.
However, saliency map prediction based on a convolutional
neural network outperformed other models in natural scene
images, as more images were used to train the neural net-
work. Consequently, these cannot be compared to other
models, as they are based more on statistical than neurosci-
entific principles. In this paper, we emphasize understanding
saliency prediction from a neuroscience perspective, in order
to further help us understand the mechanism of visual atten-
tion cognitive function. Furthermore, biological/cognitive-
and Fourier/spectral-inspired saliency detectionmodelswere
outperformed by deep learning approaches (ML_Net and
DeepGazeII) in the SID4VAM dataset (see Tab. 3 and
Fig. 10). As previously said, SID4VAM is a synthetic image
database that is primarily used to psychophysically test the
V1 properties, which is also why we stated that deep learn-

ing models refer more to statistics than neuroscience in the
explanation of human visual attention mechanisms.

4.2 Qualitative comparison of the proposedmodel
with other state-of-the-art models

We qualitatively tested the proposed model using the
MIT1003,MIT300,TORONTO,SID4VAM,andUCFSports
datasets.6 We also compared the model’s performance with
that of other state-of-the-art saliency prediction models on
the MIT1003, TORONTO, and SID4VAM datasets. Fig-
ures7, 8, 9, 10, and 12 show the saliency map results when
the proposed model and other state-of-the-art models were
applied to sample images from the studied datasets. The
performance each of saliency prediction model was eval-
uated through AUC and PR curves, as shown in Fig. 11.
We can see that the proposed model could predict most
of the salient objects in the given images. Furthermore,
the proposed model could successfully detect the orien-
tation, boundary, and pop-out functions when the model
was applied to the SID4VAM dataset. In summary, our

6 https://www.crcv.ucf.edu/data/UCF_Sports_Action.php
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Table 2 Quantitative scores of
several models for the
TORONTO dataset. The
baseline ITT model is shown in
light blue and the proposed
model is shown in green

Methods DNN AUC_Judd AUC_Borji sAUC NSS SIM

ITT B 0.700 0.679 0.641 0.816 0.317

Ours N 0.701 0.686 0.674 0.844 0.365

SR N 0.744 0.722 0.683 1.019 0.343

AIM N 0.727 0.718 0.664 0.885 0.356

SIM N 0.754 0.744 0.707 0.951 0.361

SUN N 0.674 0.653 0.613 0.656 0.285

HFT N 0.820 0.792 0.659 1.548 0.522

ICL N 0.792 0.737 0.652 1.245 0.532

PFT N 0.742 0.717 0.684 1.001 0.339

CASD N 0.780 0.764 0.688 1.237 0.364

PQFT N 0.650 0.524 0.517 0.482 0.263

QDCT N 0.769 0.748 0.691 1.174 0.354

RARE N 0.806 0.774 0.693 1.514 0.402

Achanta N 0.551 0.541 0.539 0.249 0.305

Simpsal N 0.769 0.754 0.648 1.121 0.355

Spratling N 0.508 0.503 0.509 0.015 0.242

SIMgrouping N 0.769 0.760 0.710 1.090 0.326

SeoMilanfar N 0.769 0.744 0.695 1.185 0.382

ML_Net Y 0.823 0.803 0.750 1.824 0.536

DeepGazeII Y 0.846 0.827 0.756 2.199 0.620

The black-bold scores demonstrate the performance of ourmodel’s saliency prediction. The results ofML_Net
and DeepGazeII for the TORONTO dataset are shown in pink, as this dataset was used to train ML_Net and
DeepGazeII and, so, their results could not be compared with those of the other models. Table 5 includes an
appendix with model details

proposed biological/Fourier/spectral-inspired saliency pre-
diction model achieved superior and stable performance
on natural images, psychophysical synthetic images, and
dynamic scenes, compared with other existing models.

4.3 Ablation study

Here, we will explore the efficacy of the main components in
this ablation study, and we will only measure the model per-
formance with AUC_Judd metric on the MIT1003 dataset.
The color appearance model, wavelet transform, wavelet
energymap, and contrast sensitivity functions used for image
feature extraction arefirstly evaluated for their efficiency.Our
method’s performance has been stable and consistent. How-
ever, without using any of the modules, for example, remove
color opponent channels, wavelet transform, wavelet energy
map, and contrast sensitivity functions, performance degra-
dation occurs (see Tab. 4).

5 Discussion

Saliency modeling has become a well-known area of study
in computer vision and neuroscience. As a result, academics
have attempted to employ different architectures that have

not significantly increased model performance. Instead, we
should look into how humans perceive scenes; what draws
their attention is crucial. In this study, we addressed numer-
ous methods for going beyond the capabilities of such
models.

First, it is vital to comprehend the cognitive attention
mechanism. Visual attention is a selective cognitive process
that helps us deal with this issue successfully by focusing
on key information while disregarding unnecessary infor-
mation. Spatial attention is important in discrimination and
appearance tasks in saliency prediction studies. Investigating
the brain underpinnings of visual attention can help us design
better and more accurate saliency prediction models. On the
other hand, better saliency prediction models can assist us in
comprehending the cognitive process of visual attention in
the brain. Second, we require multi-model and multi-label
datasets to assess the effectiveness of saliency prediction
models. The MIT Saliency benchmark datasets were used to
evaluate the saliency prediction model. As previously stated,
the saliency prediction model should perform better on natu-
ral scene photographs and psychophysical synthetic images
(e.g., SID4VAM). This could aid in the improvement of the
model architecture and our understanding of the cognitive
attention process. Third, we offered extensive experimen-
tal findings demonstrating that our method consistently
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Table 3 Quantitative scores of several models for the SID4VAM dataset. The baseline ITT model is shown in light blue and the proposed model
is shown in green

The black-bold scores demonstrate the performance of our model’s saliency prediction. The Fourier/spectral-inspired models had the best prediction
scores, compared to the other start-of-the-art non-neural network (and even deep neural network) models on the SID4VAM dataset. The results of
ML_Net and DeepGazeII on the SID4VAM dataset are shown in pink, as this dataset was used to train them, and their results could not be compared
with those of the other models. Table 5 includes an appendix with model details

Fig. 7 Performance evaluation on the MIT1003 dataset. The first row shows color images, the second row shows ground-truth saliency maps, and
the last row shows the proposed model’s predicted saliency maps, respectively
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Fig. 8 Left: Performance evaluation on the MIT300 dataset. The first
and third columns are color images. The second and fourth columns are
the proposed model’s predicted saliency maps. Right: Performance

evaluation on the TORONTO dataset. The first and third columns
are color images. The second and fourth columns are the proposed
model’s predicted saliency maps

achieved steady and better results when compared to other
state-of-the-art technologies. It is worth noting that we used
biologically inspired visual model estimation to determine
saliency. Our proposed saliency prediction model incorpo-
rates more neuroscience notions than statistical concepts.

The proposed model incorporates opponent color chan-
nels, the wavelet transform, the wavelet energy map, and the
contrast sensitivity function, but our model ignores the fact
that natural images have been preprocessed multiple times,
from retinal response to LGN response, for better saliency
prediction accuracy and a close approximation of the human
visual system. In addition, other wavelet transform families
[22](e.g., Symlets, Morlet, Mexican Hat, Meyer, and Steer-
able pyramid etc.) may be worth investigating in the future.
Saliency prediction in dynamic videosmay benefit from con-
verting the spatio-chromatic contrast sensitivity functions to
a spatio-temporal one, for instance, white-black, red-green,
and yellow-blue channel. Most importantly, we must under-
stand how to properly optimize model parameters. This is
one of the most crucial things we can do to improve a
model’s ability to perform multiple tasks. Furthermore, the
suggested model contains a small number of parameters that
were essentially set and fixed for all tests. One of the most
important things that contributed to the suggested method’s
efficiency was the use of wavelet energy maps and opponent
CSFs as features. Furthermore, our extensive experimental
results showed that the proposed saliency prediction mea-
sure generated from a local image energy estimator is far
more successful and straightforward to implement than exist-
ing methods. Even though our method was built solely on
biologically inspired computational principles, the resulting
model structure showed significant agreement with the fixa-
tion behavior of the human visual system.

The contribution of this study is limited, and there are
some limitations to this study. First, the proposed model is
inspired by the human low-level vision system, and each
component of the model is already used separately in var-
ious saliency models. The proposed model architecture is
based primarily on the simulated multi-channel coding prin-
ciple and integrates and separates image features at different
components; additionally, in the final stage of the model,
we applied spatio-chromatic CSFs to each channel, which
is the first time CSFs have been applied to each channel
rather than an achromatic channel. Moreover, as we stated
before, the traditional saliency prediction model includes
both non-neural network and deep neural network-based
saliency prediction models; all of these models only focus on
natural image saliency prediction and completely ignore psy-
chophysical synthetic images.As demonstrated in the results,
deep neural networks outperform traditional (non-neural net-
work) saliency prediction models in natural image saliency
prediction, but they have some limitations in psychophysical
synthetic images,where, surprisingly, traditional (non-neural
network) saliency prediction models outperform deep neural
networks. Furthermore, deep neural networks became more
unstable in the presenceof distractingnoise in natural images,
while non-neural network saliency prediction remainedmore
reliable [58]. Bowers et al. [59] showed more problems with
using deep neural networks to model the human vision sys-
tem, and all of these suggested that deep neural networks
have to be tested with more broadly defined tasks to improve
their generality.

The extension study can be examined in the future follow-
ing this study. First, the noise or other degradation processing
is applied to natural images or psychophysical synthetic
images to completely check how they affect the saliency pre-
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Fig. 9 Qualitative saliency prediction results on the MIT1003 dataset
with different models. The first row shows six stimuli images selected
from theMIT1003 dataset. The rows below show the predicted saliency

maps obtained with Achanta, AIM, HFT, ICL, ITII, SIM, and the pro-
posed model, as well as the ground-truth (GT) saliency, with artificial
color for better visualization
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Fig. 10 Qualitative saliency prediction results on the SID4VAMdataset
with different models. The first row shows six stimuli images selected
from the SID4VAM dataset. The rows beneath show the salience pre-
diction results obtained with Achanta, AIM, HFT, ICL, ITII, SIM, and

the proposed model, as well as the ground truth (GT) salience, with
artificial color for better visualization. The proposed model can be suc-
cessfully applied to explain the ”pop-out” effects in the visual search

diction results, and it is very important for us to improve
the performance of saliency prediction models in real com-
plex environments, for example, in a fog or rain situation.
Second, the saliency performance of both natural images
and psychophysical synthetic images can be checked with

vision transforms to see whether they have some similar
behavior compared to deep nets. Third, concerning training
psychophysical synthetic images with deep neural nets, we
need large psychophysical synthetic images, which will be
more fair for deep nets and can better help us check their
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Fig. 11 ROC curve (AUC) and PR curves. Comparison of the area under the ROC curve (AUC) and PR curves, with different thresholds between
our method and other state-of-the-art methods on three benchmark datasets

Fig. 12 Dynamic saliency
prediction. For these sample
frames from the UCF Sports
Action dataset, the model
clearly produced better results
and perfectly captured the text
information on the bottom-left

Table 4 Ablation study of the proposed model. The module’s role in
the saliency prediction model on the MIT1003 dataset

Modules GT O1O2O3 WT WE CSFs

AUC_Judd 0.705 0.603 0.502 0.563 0.456

performance in psychophysical synthetic images and give us
more evidence of the similarities and differences between
deep nets and human vision.

6 Conclusions

In this study, a computational psychophysical visual saliency
prediction model inspired by a low-level human visual path-

way was proposed. The model includes color opponent
channels, wavelet transform, wavelet energy map, and con-
trast sensitivity functions in order to predict the saliencymap.
The model was evaluated by classical benchmark datasets
and achieved strongly stable and better performance in terms
of visual saliency prediction, compared with the baseline
model. Furthermore, we found that models based on deep
neural networks outperformed ours in terms of natural image
salience prediction but underperformed for psychophysi-
cal synthetic images. In contrast, Fourier/spectral-inspired
models had the opposite effect, as Fourier/spectral-inspired
models simulate optical neural processing from the retina
to the V1. However, deep neural networks take statistics
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into account more than low-level vision system functioning,
and we argue that deep neural networks cannot reliably pre-
dict salient performance on psychophysical synthetic images
without using specialized architectures and goals. Lastly, we
added spatial-temporal saliency prediction to our model, and
it was able to pick out the most important thing in the videos.
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Appendix

See Fig. 5.

Table 5 Saliencypredictionmodels. Themodel function categories that
inspired the developed correspondingmodels are shownon the right side
of the table. Most saliency prediction models were inspired by biologi-
cal/cognitive, Fourier/spectral, information-theoretic, and probabilistic
principles

Models Year Inspiration

ITII [6] 1998 Biological

Achanta [7] 2009 Fourier/Spectral

AIM [8] 2005 Biological/Information-Theoretic

HFT [9] 2013 Fourier/Spectral

ICL [10] 2008 Information-Theoretic

SIM [11] 2011 Biological

BMS [12] 2013 Probabilistic

DCTS [14] 2011 Fourier/Spectral

CASD [15] 2010 Biological/Probabilistic

PFT [16] 2007 Fourier/Spectral

PQFT [17] 2008 Fourier/Spectral

QDCT [18] 2012 Fourier/Spectral

SIMgrouping [19] 2013 Biological/Cognitive

RARE [60] 2012 Information-Theoretic

SUN [61] 2008 Probabilistic

SeoMilanfar [21] 2009 Biological/Cognitive

Spratling [24] 2011 Biological/Cognitive

Simpsal [62] 2012 Biological/Cognitive

ML_Net [32] 2016 Deep Neural Network

DeepGazeII [33] 2016 Deep Neural Network
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