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Abstract
3D human pose estimation has achieved much progress with the development of convolution neural networks. There still
have some challenges to accurately estimate 3D joint locations from single-view images or videos due to depth ambiguity
and severe occlusion. Motivated by the effectiveness of introducing vision transformer into computer vision tasks, we present
a novel U-shaped spatial–temporal transformer-based network (U-STN) for 3D human pose estimation. The core idea of the
proposed method is to process the human joints by designing a multi-scale and multi-level U-shaped transformer model. We
construct a multi-scale architecture with three different scales based on the human skeletal topology, in which the local and
global features are processed through three different scales with kinematic constraints. Furthermore, a multi-level feature
representations is introduced by fusing intermediate features from different depths of the U-shaped network. With a skeletal
constrained pooling and unpooling operations devised for U-STN, the network can transform features across different scales
and extract meaningful semantic features at all levels. Experiments on two challenging benchmark datasets show that the
proposed method achieves a good performance on 2D-to-3D pose estimation. The code is available at https://github.com/l-
fay/Pose3D.

Keywords Human pose estimation · Spatial–temporal transformer network · Multi-scale and multi-level feature representa-
tions

1 Introduction

3D human pose estimation (HPE) aims to localize the 3D
keypoints in an input image or video. With the development
of the deep Convolutional Neural Networks, 3D HPE has
made great achievements in recent years [1]. However, it is
still a challenging task to estimate 3D poses from 2D coor-
dinates due to frequent occlusion, 2D pose prediction errors
and depth ambiguity from 2D projection. 3D HPE is a very
attractive research field that has a significant influence on
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many applications such as action recognition, human–robot
interaction and athlete motion analysis [2].

The current existing 3D HPE methods can be generally
classified into two classes: direct estimation method and 2D-
to-3D lifting method [1]. The former one directly regresses
the 3D pose joints from 2D images [3, 4], while the latter
one first estimates 2D keypoints and then projects them into
3D space [1, 5, 6]. Although 3D HPE achieve promising
progress on the basis of the excellent performance of 2D
pose estimation [7], some challenging problems still exist
when estimating 3D joint locations from monocular images,
such as (1) self-occlusions: some human poses cause joints
occlusion and may trigger information missing; (2) depth
ambiguity: many 3D poses can be projected to the same
2D poses from monocular images; (3) prediction errors:
incorrect 2D pose detector may cause inaccurate 3D pose
estimation.

To address those issues, several methods incorporate spa-
tial dependencies and temporal consistencies from videos
into graph convolutional networks (GCNs) to fit the specific
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needs for 3D pose estimation [8]. Since the spatial dependen-
cies naturally express the correlation between body joints
in intra-frame, it can reduce the probability of producing
physically impossible 3D structures and is helpful to solve
self-occlusions. The temporal information from videos can
capture global dependencies from inter-frames, so it is use-
ful for tackling the issue of depth ambiguity. Cai et al. [8]
explicitly integrated the specific prior knowledge of human
body to construct the spatial–temporal GCNs for 3D pose
estimation. Hossain et al. [9] exploited LSTM network with
shortcut connections to impose temporal consistency con-
straint on the predicted 3D poses. Pavllo et al. [10] utilized
temporal convolutions to capture the global dependencies
from consecutive frames. Though these approaches achieve
competitive performance in 3DHPE, there still exist inherent
limitations in spatial and temporal correlation. For instance,
theCNN-based temporal convolution or temporal correlation
windows typically rely on dilation temporal convolution to
model long-term dependencies of the nodes. Those are lim-
ited in temporal connectivity and are mainly constrained to
simply sequential correlation [1]. Additionally, most exist-
ing 3DHPE approachesmainly focus on incorporating either
spatial constraints or temporal correlations, without consid-
ering the complementary characteristics between these two
types of information. Furthermore, the topology of the graph
convolution in GCNs is a key factor to model the correla-
tions of the input graph nodes. However, once the topology
is generated, only single-scale features are extracted and only
one transformation exists in each layer of the networks [11].
As a result, the backbones of these methods that incorporate
spatial and temporal information into GCNs-based 3D HPE
have intrinsic limitations on extracting and synthesizing 3D
structure information.

Recently, the vision transformers have been widely intro-
duced into computer vision tasks. Since the transformer
architecture embeds the self-attention and position mecha-
nism, it can flexibly model long-range global consistencies
information with input sequences. Additionally, as described
above, the core factor that influences the performance of 3D
HPE is the features extracted by the model. The features with
great representation capabilities will boost the performance
of 3D HPE. These observations inspire us to devise a U-
shaped spatial–temporal transformer network (U-STN) that
focus on how to effectively extract spatial and temporal fea-
tures to improve the performance of 3D HPE. In our work,
a multi-scale and multi-level spatial–temporal transformer
model is developed for extracting human skeletal features,
where the multi-scale Spatial–Temporal Transformer archi-
tecture is modeled to learn the intra-frame interactions
between different joints and capture global dependencies
from inter-frames. Since the multi-scale feature representa-
tion can capture information from small to large resolutions
of the input data, it can bring rich local to global information.

The multi-level feature representation model is devised to
fuse different-depth intermediate features from the U-shaped
network, it can capture important semantic information at all
levels from shallow to deep layers. Additionally, with a skele-
tal constrained pooling and unpooling operations devised for
U-STN, the network can transform features across different
scales and extract meaningful semantic features at all levels.

To summarize, the contribution of the proposed method is
as follows:

(1) A U-shaped spatial–temporal transformer network is
devised for 3DHPE,which incorporatesmulti-scale and
multi-level spatial–temporal transformer feature rep-
resentations with a prior human skeletal topology to
construct the U-shaped network.

(2) The multi-scale Spatial–Temporal Transformer archi-
tecture is modeled to learn the intra-frame interactions
between different joints and global correlations from
inter-frames, where themulti-scale architecture consists
of three different scales based on the human skeletal
topology.

(3) The multi-level feature representation is introduced to
fuse different-depth intermediate features of the U-
shaped network, where a skeletal constrained pooling
and unpooling operations are performed for trans-
forming features across different scales and extract
meaningful semantic features at all levels.

2 Related works

2.1 3D Human pose estimation

3D human pose estimation (HPE) from monocular images
has been an attractive research area in computer vision in
recent years. The most existing 3D HPE methods can be
roughly classified into two classes: direct estimation meth-
ods and 2D-to-3D lifting methods. For the former one, some
researchers regress 3D pose directly from 2D images with-
out intermediately estimating the 2D pose representation. Li
et al. [12] proposed a deep convolution networks with mul-
titask framework to regress the 3D pose. Park et al. [13]
designed an end-to-end framework that directly uses a sin-
gle CNN for 2D joint classification and 3D joint regression.
Pavlakos et al. [14] calculated voxel likelihoods for each joint
and used them to predict the location of 3D pose. Zeng et al.
[15] designed a split-and-Recombine approach for rare and
unseen poses prediction, where the human body is split into
local groups of joints and then perform local pose configura-
tions in eachgroup.Conversely, the 2D-to-3D liftingmethods
first exploit 2D pose estimation results from input images
and then project them into 3D space. With the intermediate
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representation from 2D pose detectors, the 2D-to-3D lifting
approaches achieve promising highly accurate results for 3D
HPE. Our approach falls into this category. Martinez et al.
[16] exploited fully connected convolution based-network
to directly predict 3D positions from 2D joints. Xu et al.
[17] proposed a graph stacked hourglass model to construct
an encoder-decoder architecture for 2D-to-3D human pose
estimation. Cai et al. [8] embedded the spatial–temporal rela-
tionships into graph convolutionnetworks for 3Dhumanpose
estimation. The proposed model in the present study is dif-
ferent from the previous works. In our work, a U-shaped
spatial–temporal transformer network is designed for feature
extraction, where the multi-scale and multi-level architec-
ture is modeled to learn the intra-frame interactions between
different joints and global correlations from inter-frames,
aiming to enhance the feature representations capability of
the proposed U-STN model.

2.2 Spatial–temporal convolution

Since the spatial information from 2D input image naturally
expresses the correlation relationship among body joints in
each frame and the temporal information from videos can
capture global dependencies from adjacent frames. Both of
them are useful for tackling the problems of depth ambiguity
and self-occlusion in 3D HPE. Liu et al. [18] embedded spa-
tial–temporal information into graph network for 3D HPE,
which leveraged human kinematic constraints and dilated
temporal convolution to learn spatial–temporal features of
the input sequences. Pavllo et al. [10] constructed a fully
convolutional model and has introduced the temporal con-
volution and semi-supervised training for 3D HPE. Wang
et al. [6] introduced a motion model into a spatial–tempo-
ral graph convolution networks, aiming to better infer the
depth information for each frame. Li et al. [19] proposed
a Multi-Hypothesis Transformer (MHFormer) that learns
spatial–temporal representations of multiple plausible pose
hypotheses to solve the depth ambiguity and self-occlusion
in 3D HPE. Different from the above methods, our work
mainly via constructing a multi-scale and multi-level spa-
tial–temporal transformer model to capture the local and
global relationship among graph nodes, where not only the
spatial and temporal information were incorporated into the
feature extraction, but also the prior human skeletal topology
is introduced to construct the U-shaped network to meet the
specific demand for 3D HPE.

2.3 Transformer in HPE

As the transformer architecture embeds the attention mech-
anism, it can flexibly model long-range dependencies in
input sequences. Some works resort transformer architec-
ture to improve 3D HPE performance. Li et al. [20] designed

a strided transformer encoder network for lifting 2D joint
locations to 3D HPE. Zheng et al. [1] embedded the spa-
tial and temporal information into transformer architecture,
aiming to comprehensively model the local relationships
and the global dependencies information. Lin et al. [21]
constructed amulti-layer transformer encodermodule to cap-
ture the short-and-long-range interactions among body joints
and reconstructed 3D human joint coordinates from a sin-
gle image. With the self-attention and position mechanism,
the transformer model has powerful ability to model global
dependencies information of the input. While the multi-scale
and multi-level features take advantage of the benefits of
model depths and scales, they capture the features from small
to large resolutions and provide important semantic informa-
tion at all levels from shallow to deep of the model. Hence,
without the multi-scale and multi-level features from differ-
ent depths and different scales of the model, the extracted
spatial–temporal features by transformer model are less gen-
eralizable and limit the performance of model for 3D HPE.
In our work, we combine transformer model, multi-scale and
multi-level features together to let the network inherit the
advantages of them, makes the model more expressive.

2.4 Multi-scale andmulti-level feature
representations

Feature representation capability is a core factor that influ-
ences the image-based tasks. Someworks concentrate onhow
to construct a multi-scale and multi-level feature represen-
tation module to enhance the expressiveness of the model.
Feature Pyramid Network [22] is a typical multi-scale fea-
ture module used for object detector. It integrates small to
large resolutions features to achieve a better understanding
in the spatial domain. Stacked Hourglass network incorpo-
rated multi-scale features to learn rich image features from
local to global, which enables the model to preserve spa-
tial relationships among human joints for 2D HPE [23].
Sun et al. [24] fused multi-scale and multi-level features
from different branches and different depths of the HRNet
for keypoint prediction. Zhao et al. [25] embedded multi-
level features from shallow to deep layers into pyramid
network, aiming to capture better feature representations
for object detection. Hua et al. [26] designed a cross-view
U-shaped graph convolutional network (CVUGCN) for 3D
HPE, which take advantage of spatial configurations and
cross-view correlations to accurately refine the coarse 3D
poses in a weakly-supervisedmanner. Xu et al. [17] designed
a graph stacked hourglass network to extract multi-scale and
multi-level features for human skeletal representations. In
our work, a skeletal constrained pooling and unpooling oper-
ations is introduced to transform features across different
scales and extract semantic feature at all levels of U-shaped
network.
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3 The proposedmethod

3.1 Problem formulation

The proposed method follows the 2D-to-3D lifting archi-
tecture for 3D HPE in videos. Given a sequence of 2D
pose joint locations X � {

xt , j |t � 1 , . . . T ; j � 1, . . . J
}

estimated by an off-the-shelf 2D pose detector as input,
the goal of 3D HPE is to reconstruct 3D joint coordinates
S � {

st , j |t � 1 , . . . T ; j � 1, . . . J
}
for a center frame,

where xt , j ∈ R
J×2 and st , j ∈ R

J×3 denote the j_th joint
location of 2D and 3D at frame t ∈ T , respectively. T and J
are the number of video frames and the joints, respectively.
Different with the dominant CNN based 3D pose estima-
tion models, we have designed a U-shape spatial–temporal
transformer network for 3DHPE. The proposed network first
employs the spatial–temporal transformer model to learn the
intra-frame interactions between different joints and global
correlations from inter-frames. Then, a skeletal constrained
pooling and unpooling operations is introduced to construct
the U-shape model by transforming features across differ-
ent scales and extracting semantic features at all levels of
network. By combining the spatial–temporal transformer
model with multi-scale and multi-level features together
in a U-shaped architecture, we construct a U-shaped spa-
tial–temporal transformer network (U-STN), which inherits
the advantages of them andmakes themodelmore expressive
for 3D HPE.

3.2 Spatial–temporal transformer feature extraction
model

With the self-attention and position mechanism, the trans-
former model has powerful ability to model short-and-long
range relations of input sequences. As correlations among
nodes in intra-frame and inter-frame are crucial for 3D HPE,
we design a spatial–temporal transformer feature extrac-
tion model to comprehensively encoder the local and global
skeleton features both in space and time dimensions with
the spatial transformer model and the temporal transformer
model, respectively. The transformer self-attention encoders
the relations among surrounding joints,which efficiently cap-
tures the local joint correlation in intra-frame and global
dependencies of body joint among inter-frames. The frame-
work of the spatial–temporal transformer feature extraction
model is shown in Fig. 1.

3.2.1 Spatial transformer model (STM) for local correlation
feature extraction

The spatial transformer model (STM) employs self-attention
inside each frame to capture location relationship between
different joints. With the comprehensive connectivity of 2D

joints, the STM can learn stronger feature representations
for each frame by employing the spatial self-attention to
encode the spatial relations of joint-to-joint in each frame.
Let each 2D joint xtj ∈ R

J×2 at frame t as an input token,
the general vision transform architecture in [27] is employed
to extract high dimensional features for all input tokens
in spatial domain. Firstly, the spatial positional embedding
ESPos ∈ R

J×C is performed on 2D coordinate of each joint
by a linear projection, where the positional embedding is
used to retain spatial position information of the joints in
each frame as follows:

Zt
0 � [x1E ; x2E ; · · · ; xJ E] + ESPos (1)

where E ∈ R
(J ·2)×C is a linear projectionmatrix to transform

each path to a high dimension features, C is the dimension
of spatial embedding.

Then, the high dimensional features of joint Zt
0 ∈ R

J×C is
fed into the self-attention layer of spatial transformer encoder
model, which consists of the multi-head self-attention layer
(MSA) with multilayer perceptron (MLP) and normaliza-
tion layer (LN(·)).The MSA uses the multi-head attention
to model the relations from different positions of the input
with embedded features. After the L layers spatial trans-
former encoder to process the features Zt

0, the encoder output
Zt
L ∈ R

J×C of the STM can be represented as follows:

Z ′
l � MSA(LN(Zt

l−1)) + Zt
l−1, l � 1, 2, · · · , L

Zl � MLP(LN(Z ′)) + Z ′
l , l � 1, 2, · · · , L

Zt
L � LN(Zt

L )

(2)

where the output of spatial encoder features Zt
L ∈ R

J×C of
STM is fed into the temporal transformer model for extrac-
tion the global dependencies of input sequences.

3.2.2 Temporal transformer model (TTM) for feature’s
global dependencies extraction

Since the self-attention in the temporal transformer model
(TTM) can effectively learn the correlations of each joint
among inter-frames by analyzing the embedding changes
in the same body joint along the temporal dimension. The
temporal transformer model (TTM) is used to extract global
dependencies among spatial feature representations across
the input sequences. We first flatten the spatial encoder fea-
tures of the STM Zt

L ∈ R
J×C at each frame into a vector

Zt ∈ R
1×(J×C), and concatenated them to from the input

Z0 � {Z1, Z2, . . . , ZT for TTM, where Z0 ∈ R
T×(J×C).

Then, the temporal positional embedding ETPos ∈ R
T×(J×C)

is performed for Z0 to retain the position information of the
input frames.Theprocess of temporal feature encoder is same
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Fig. 1 The spatial–temporal transformer feature extraction model

with STM, which is described in Eqs. (1) and (2). After per-
forming the L identical layers MSA and MLP, the output of
the temporal transformer can be represented as the temporal
encoded features Y ∈ R

T×(J×C).

3.3 Skeletal constrained pooling and unpooling
layer

The most existing 3D HPE methods take the 2D skeleton
joints as a whole graph data, and only use a single-scale
and single-resolution features to construct the topology rela-
tionship of the input data. These methods ignore the fact
that the joints of human body have different relative motion
space; for instance, the knee and elbow have large motion
space than adjacent joints like hip and shoulder. This may
limit the performance of model for 3D HPE. As the feature
representation capabilities is a core factor to influence the
expressiveness of the model, we extract the multi-scale and
multi-level features to form U-shaped network, where the
pooling and unpooling operation are essential for construct
the multi-scale features for our U-shaped network. Thus, we
introduce a skeletal constrained pooling and unpooling oper-
ations to transform features across different scales and extract
semantic feature at all levels, aiming to learn more com-
prehensive body-joints relationship features and enrich the
performance of our model.

3.3.1 Spatial pooling layer

Since the pooling and unpooling required for multi-scale fea-
tures are mainly defined for image, which ignores the nodes’
geography information of the graph and is not suitable for
graph-structured data, resulting in information loss for graph
representation. Hence, in our work, according to the con-
nection relationship among human body joints, we design a
multi-scale skeleton structure with 17, 11 and 7 nodes for
scale s � 1, 2 and 3 (s � 1, 2, 3 involves large-middle-small

S=1 S=2 S=3

Fig. 2 Multi-scale structure based on human skeletal topology

scales), respectively. As shown in Fig. 2, the large scale s � 1
with all 17 keypoints can extract local features of each key-
points within a small receptive field. The small-scale s � 3
with 7 nodes can capture global contour features within a
large receptive field. We exploit the spatial pooling layer
to transform the corresponding features into the lower-scale
skeleton structure features, it is important for reducing the
size of feature map and enlarging the receptive fields. Given
the feature matrix Xs ∈ R

V×2 at s-scale, we first construct
the pooling matrix Ms ∈ R

U×V to reduce v nodes in scale s
to U groups in s + 1 scale, then, 1*1 convolutions is used to
adaptively fuse the features as follows:

X ′
s+1 � conv2D((W

s � Ms) ⊗ Xs) (3)

where X ′
s+1 ∈ R

U×2, Ms ∈ {0, 1} denotes whether the v-th
joints in s scale belongs to the s+1 scale in u-th pooling group
or not. In our work, M2 ∈ R

11×17 and M3 ∈ R
7×11. Ws ∈

R
U×V is the trainable weight to measure the importance of

joint v in group u. � is the element-wise multiplication, ⊗ is
the matrix multiplication.
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3.3.2 Spatial unpooling layer

Since the unpooling operation is essential for restoring lower-
scale skeletal information from original resolutions, we have
designed a skeleton constrained spatial unpooling layer to
pass the lower-scale features and fused them to form higher-
scale features. With the U groups nodes proceed by spatial
pooling layer in s + 1 scale, the corresponding node features
matrix is X ′

s+1 ∈ R
U×C . Then, a 2D transposed convolution

convT (·) is used to recover the higher-scale skeletal repre-
sentations as follows:

X ′′
s � convT (([M

s]T � [Ws]T ) ⊗ X ′
s+1) (4)

where [·]T is the transpose matrix for Ms and Ws . After
implementing Eq. (4), we transform features X ′

s+1 from s +
1 scale to the features X ′′

s in s scale.

3.4 U-shaped spatial–temporal transformer network
(U-STN)

As shown in Fig. 3, the proposed U-shaped spatial–temporal
transformer network consists of three stages: (1) multi-
scale feature extraction with skeletal constrained pooling
and unpooling, (2) Multi-level features extraction with spa-
tial–temporal transformer model, and (3) multi-scale and
multi-level feature merging.

3.4.1 Multi-scale features extraction with skeletal
constrained pooling and unpooling

The U-STN starts from a high-resolution branch features
with 27*17*2 human body joints. A new branch is formed
by performing downsample with skeletal constrained spa-
tial pooling as described in Sect. 3.3. We have designed a 3
branch (s � 1,2,3 involves large-middle-small scales) based
on skeleton structures with three different nodes of 17, 11
and 7, respectively. With the spatial pooling and unpooling
inmulti-scale features extraction as calculated in Eqs. (3) and
(4), the multi-scale features learn to integrate features from
different resolutions at various scales, where more channels
are introduced at relatively low scales of theU-STN for skele-
ton representation. Thus,with the consecutive spatial pooling
performed in multi-scale, more channels are introduced and
gradual enlarged the receptive field for feature extraction.
This is useful for capturing information from small to large
resolutions of the input skeleton and reduces information loss
due to scale changes.

3.4.2 Multi-level features extraction with spatial–temporal
transformer model

Since the multi-level features from different depths of the
model can capture important semantic information at all
levels from shallow to deep, we design a U-shaped spa-
tial–temporal transformer feature extractionmodel to capture
the multi-level intermediate features from different scales.
With the multi-scale features from three different skeletal
structures, we first performer spatial transformer model as
described in Sect. 3.2 for each resolution feature. Let Xs

denotes the feature matrix at s-scale and is input to the STM.
Then, after performing Eqs. (1) and (2), the output of STM
[Zt

L ]s is fed into the temporal transformer model. The corre-
sponding output Ys of the TTM from s-scale is the features
of level s. By performing the spatial–temporal transformer
model for the multi-scale features from three different skele-
tal structures, we achieve three different level features with
different shapes and channels. Since the spatial–temporal
transformer model learns the features in intra-frame inter-
actions between different joints and inter-frame correlations
from adjacent frames, it brings valuable semantic informa-
tion for 3D HPE.

3.4.3 Feature merge model for multi-scale andmulti-level
features

Asmulti-scale features present informationwithin the spatial
domain of the graph-structured data and the multi-level fea-
tures provide semantic information at all levels from shallow
to deep, we have designed a feature merge model for con-
catenating them to obtain the final overall features for 3D
HPE.

For the three different resolution features processed by
spatial–temporal transformer model from three scales, we
first perform unsample operation by employing the skele-
ton constrained unpooling layer designed in Sect. 3.3 to
embed the lower-scale skeleton features into higher-scales.
Let Ys ∈ R

J×(C×T ) denotes the features processed by the
spatial–temporal transformer model in scale s, s � 2, the
corresponding node parts in three scale s � 2 are s � 2. The
features from the lower-scale are processed by the skeleton
constrained unpooling layer to achieve the higher-scale fea-
tures as follows:

X ′′
s−1 � convT (([M

s]T � [Ws]T ) ⊗ Y ′
s ) (5)

Then, to better embed multi-level intermediate features
from different depths of the U-STN network into the multi-
scale features for obtaining the final features for 3DHPE, we
design the feature merging model as shown in Fig. 3. With
the features X ′′

s recovered from Eq. (5) and Ys processed by
the spatial–temporal transformer model at each scale s, the
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Fig. 3 The framework of the proposed U-STN

final features in each scale are achieved by fusing the same
scale features from different levels of the network as follows:

Y ′
s � Ys � Sigmoid(ReLU(pool(Ys)W1)W2) ⊕ X ′′

s (6)

where pool(·) is the average pooling operation, which is per-
formed for all input sequences as well as skeleton nodes
in each channel at each scale, aiming to capture channel-
wise statistics information for Ys. W1 ∈ R

C×(C/r ) and
W2 ∈ R

(C/r )×(C×U ) represent the weights for two fully con-
nected layers, r is the reduction ratio.

Finally, the features from three scales with embedded dif-
ferent depths intermediate features from different levels are
used for 3D HPE. Those features are first transformed into
the same shape with the 1*1 convolution, which is used to
reduce the channels of lower-scale features. Then, concate-
nate those three scale features fromU-STN for overall feature
representations as follows:

Ycat � Concat(Y ′
1, Y

′
2, Y

′
3) ∈ R

J×C ∈ R
J×(C×T ) (7)

where J and C represent the number of nodes and feature
dimensions in each scale. Since the overall features are con-
catenated by the multi-scale and multi-level features across
different scales and different depths of the U-shaped net-
work, it enables the model to capture the features from
small-to-large resolutions and provide rich semantic fea-
ture representations among the intermediate features. Then,
Squeeze and-Excitation block (SE block) in [28] is used to
measure the channel-wise weight for all concatenated fea-
tures Ycat. Finally, the output of SE block is fed into one
linear layer for 3D regression, the corresponding output
st , j ∈ R

J×3|t � 1 , . . . T ; j � 1, . . . J is the estimated
3D pose for the center frame.

3.5 Loss function

With 2D pose joints P �{
pt , j ∈ R

J×2|t � 1 , . . . T ; j � 1, . . . J
}

in a sequence,

our model learns the mapping function F∗ :
R

J×2 → R
J×3 to estimate the 3D joint location

S � {
st , j ∈ R

J×3|t � 1 , . . . T ; j � 1, . . . J
}
. The pro-

posed model is trained with the Mean Squared Error (MSE)
loss, which is employed to minimize the errors between the
estimated and ground truth pose in T frames as follows:

F∗ � argmin
F

1

T

T∑

t�1

�(F(pt ), yt ),

� � 1

J

J∑

j�1

∥∥st , j − yt , j
∥∥
2

st � F∗(pt )

(8)

where �(·) is the MPJEP (Mean per Joint Position Error) loss
function, st , j and yt , j are the estimated and ground truth 3D
joint location of the j_th joint in t frame.

4 Experiments

4.1 Datasets and evaluationmetrics

4.1.1 Datasets

To evaluate the efficiency of the proposed U-STNmodel, we
conduct experiments on two widely used 3D HPE datasets:
Human3.6 M [29] and HumanEva-I [30]. Human3.6 M is
the most widely used 3D HPE dataset in indoor environment
under 4 viewpoints. It contains 3.6 million pose images with
11 professional actors performing 17 actions, such as dis-
cussion, smoking, taking photograph. Following the setting
in [1, 4, 8], the proposed model is trained on five subjects
(S1, S5, S6, S7, S8) and is tested on two subjects (S9 and
S11).HumanEva-I contains 7 calibrated video sequences that
are obtained from a motion capture system. It contains four
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Table 1 Ablation study the
influence of different scales for
3D HPE

Scales Node numbers J MPJPE(mm)

17 11 7 5 2

1
√

47.7

1,2
√ √

46.34

1,2,3
√ √ √

45.92

1,3,5
√ √ √

46.9

1,2,4
√ √ √

47.4

1,2,3,4
√ √ √ √

47.28

1,2,3,5
√ √ √ √

48.8

1,2,3,4,5
√ √

47.95

subjects performing six common actions (such as walking,
jogging, and gestures).

4.1.2 Evaluation metrics

Two common evaluation metrics (MPJPE and P-MPJPE)
[31] are used to evaluate the performance of our method.
The Mean Per Joint Position Error (MPJPE) is the mean
Euclidean distance between the estimated joints and the
ground truth over all joints inmillimeters,which is referred as
Protocol 1. P-MPJPE is used to compute the mean Euclidean
distance after alignment the estimated 3D pose and the
ground truth by rotations, translations and scale, which is
referred as Protocol 2.

4.2 Experimental setup

4.2.1 Implementation details

The experiments are conducted by Python 3.8.2 with Pytorch
framework on one NVIDIA RTX 2080 GPU. The proposed
model is trained using the Adam optimizer [32] for 200
epochs with weight decay of 0.1. The initial learning rate
is 0.00004 and the shrink factor is 0.99. The dropout [33]
is 0.2. The batch size is 512 for Human 3.6 M and 64 for
HumanEva-I. We employ stochastic depth [34] with a rate of
0.1 for transformer encoder layers. The 2D pose is achieved
by the cascaded pyramid network (CPN) for Human 3.6 M
dataset and the Mask R-CNN is adopted for HumanEva-I
dataset for a fair comparison.

4.3 Ablation study

To verify the effectiveness of each crucial component for the
proposed method on 3D HPE, we perform ablation experi-
ments on the Human3.6 M test dataset under protocol 1.

4.3.1 Effects of multiple scale feature representations

To better study how the multiple scale features affect the
3D HPE performance, we have conducted ablation studies
by removing multi-level features while reserving multi-
scale features in U-STN model. The multi-scale features
are achieved by pooling and unpooling in the U-STN model
that transforms features across different scales. We remove
all pooling and unpooling layers in our architecture, which
means the features processed at the highest scale, it denotes
as Scale 1. By gradually adding pooling and unpooling on
the basis of Scale 1 to form Scale 2 and Scale 3. Besides,
apart from the three scales are presented in our method, we
introduce two additional scales: S4 (Left arm, right arm, left
limb, left limb and torso) and S5 (upper body and lower
body). Then our model concatenates each scale’s features to
achieve the final features for 3D HPE. As shown in Table 1,
by using three scales, the model can achieve the lowest error,
with 45.92 mm MPJEP. It is obviously that combing two
scales has better performance than the case when only one
scale features are adopted. However, whenwe fuse S4 and S5
features together, the MPJPE is increased. This is caused by
that the redundancy features are introduced with multi-scale
from scale S1 to S5, which hurts the model’s performance.

4.3.2 Effects of multiple level feature representations

To validate the effects of features from different depths of
the U-STN model, we employ intermediate features from
different depths of U-STN for 3D HPE. Since it has vali-
dated in Table 1 that our model achieves the best result by
fusing multi-scale features from S1, S2 and S3, we only val-
idate the effects of features from three levels derived from
those three scales as shown in Table 2. We denote the inter-
mediate features from the Scale 1, Scale 2 and Scale 3 are
Level 1, Level 2 and Level 3, respectively. Table 2 shows the
results that (1) only intermediate feature of Level 1 is used;
(2) combining the intermediate features of Level 1 and Level
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Table 2 Ablation study the
influence of multiple level
features for 3D HPE

Scale 1 Scale 1,2 Scale 1,2,3 MPJPE

Level 1
√

47.00

Level 1,2
√ √

45.97

Level 1,2,3
√ √ √

45.51

Table 3 Ablation study the influence of different pool/unpool methods
for 3D HPE

Method MPJPE (mm)

Average pooling/unpooling 46.25

Maxpooling/unSampling 46.13

Skeletal constrained pooling/unpool 45.51

2; (3) all three intermediate features of Level 1, Level 2 and
Level 3 are used. As shown in Table 2, we can see the lowest
MPJPE achieved by combing three level intermediate fea-
tures. It is obvious that using two level intermediate features
is much better than using one intermediate features. This fur-
ther proves that the multi-level features from different depths
of U-STN boost the feature representation capabilities of the
proposed model, which is useful for improving the perfor-
mance of 3D HPE.

4.3.3 Effects of skeletal constrained pooling and unpooling

By comparing the proposed skeletal constrained pool-
ing/unpoolingwith the traditional averagepooling/unpooling
and maximum pooling/unSampling, we have analyzed the
influence of the skeletal constrained pooling and unpool-
ing for the performance of 3D HPE. As shown in Table 3,
the maximum and average pooling achieve inferior results
compared with the proposed method. This is mainly caused
by that the maximum and average pooling are designed
for image, which only compute the node features by max-
imum or average values of the nodes and ignore the nodes’
geography information. Thus, they are not suitable for graph-
structured data. While the proposed skeletal constrained
pooling /unpooling method considers the nodes structure
features when downsample them into lower-scales and pass
them into higher-scales, learning valuable features for graph
representation, thus, the proposed skeletal constrained pool-
ing/unpooling method achieves the best performance with
the lowest MPJEP compared with other pooling and unpool-
ing methods. Further validates that the designed skeletal
constrained pooling/unpooling improves the feature repre-
sentations capability of the proposed model.

Table 4 Ablation study of attention part

Method Spatial
transformer

Temporal
transformer

MPJPE
(mm)

a
√ × 46.49

b × √
46.23

c × × 46.88

d
√ √

45.51

4.3.4 Effects of the spatial transformer and temporal
transformer

Weanalyze the impact of the spatial transformer and temporal
transformer for 3D HPE by conducting four possible combi-
nations of them: (a) performer spatial transformermodel only
in U-STN; (b) perform temporal transformer model only in
U-STN; (c) performance noneof temporal transformermodel
and spatial transformermodel inU-STNand (d) performboth
of the temporal transformer model and spatial transformer
model in U-STN. Experimental results in Table 4 show that
the best result is achieved by applying both of the spatial and
temporal transformermodel. As the spatial transformermod-
ule is designed to encoder local relationships between human
body joints from a single frame and the temporal transformer
module captures the global dependencies among frames of
the input sequence, the performance of only using the spa-
tial transformer model or the temporal transformer model is
inferior than applying both of them. This is also consistent
with the results in Table 4.

4.4 Comparison with state-of-the-art methods

4.4.1 Results on Human3.6 M

The comparison between results of the proposed method
and the SOTA methods on Human3.6M dataset are shown
in Tables 5 and 6. In Tables 5 and 6, we report the perfor-
mance of our model with receptive field T � 27 and T �
243 on protocol 1 and protocol 2, respectively. The last col-
umn is the average performance for all test sequences. Our
method achieves average performance of 45.5mm under pro-
tocol 1 and 34.8 mm under protocol 2 with receptive field T
� 27. With the same receptive field, the proposed method
outperforms the SOTA methods on Human3.6m dataset,
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achieving better performance of 3D HPE in most evalua-
tionmetrics. Comparedwith the temporal transformed-based
method, such as PoseFormer [1], strided Transformer [20]
and METRO [21], the proposed method has a better perfor-
mance with smaller MPJPE and P-MPJPE. For example, the
average MPJPE of the proposed method with receptive field
T � 27 on protocol 1 is 45.5 mm, which is 1.5 mm, 1.4 mm
and 8.5 mm smaller than that of method in PoseFormer in [1]
(47.0 mm with T �27), Strided Transformer [20] (46.9 mm
with T � 27) andMETRO in [21] (54.0mmwith T � 1). The
averageMPJPEof the proposedmethodwith receptive fieldT
� 27 on protocol 2 is 34.8 mm and is 1.3 mm less than that in
Strided Transformer [20] (36.1 mm with T � 243). Besides,
the proposed method also has better performance than many
GCN based 3D HPE, such as Graph stacked hourglass net-
work in [17] (51.9mmonprotocol 1 and 35.8mmonprotocol
2 with T � 64), Cai et al. method in [8] (48.8 mm on protocol
1 and 39.0 mm on protocol 2 with T � 7). Additionally, the
proposedmethodoutperforms theU-net based3DHPEmeth-
ods, for example, the MPJEP and P-MPJEP of our method
are all smaller than UGCN proposed in [6]. The above com-
parisons clearly demonstrate that the proposed method has a
good performance. This is mainly attributed to the fact that
the proposed method has encoded the complementary char-
acteristic of local and global skeleton features in intra-frame
and inter-frames by the U-shapedmulti-scale andmulti-level
features extractionmodel, which not only bring rich informa-
tion from small to large resolutions of the input, but also take
important semantic information at all levels from shallow to
deep of the model. Moreover, a skeletal constrained pool-
ing and unpooling layer is designed to transform the features
from various scales and different depths of network, which is
beneficial for the proposed model to effectively integrate the
global and local features from full skeleton to local part via
shallow to deep layers of the network. This further boosts the
feature representation capabilities of the proposedmodel and
enables the model to achieve good performance for 3DHPE.

To further demonstrate the effectiveness of the proposed
method, we have compared the MPJPE metric for individual
joints in some difficult actions, such as Photo, WalkDog and
Smoke in Human3.6M test set S11. Figure 4 shows the aver-
age joint error of action Photo on S11, which is a challenging
sequence with serious self-occlusion and rapid movement.
The action that moves quickly always needs long frames to
capture the correlations. It can be seen from Fig. 4 that our
method has smaller errors than compared methods, such as
Pavllo et al. [10] and Chen et al. [5]. For body joints, our
method achieves significant improvement, e.g., right wrist
(109.0mm), left wrist (95.4mm), and right elbow (86.3mm).
This further proves that the proposed method can effectively
encoder the global dependencies and local information for
3D HPE. It is particularly beneficial for our method to esti-
mation these difficult joints.

Fig. 4 comparation the average joint error of Photo action on S11

4.4.2 Results on HumanEva-I

To further evaluate the generalization performance of the pro-
posed method, we employ the model trained on the Human
3.6 M to the HumanEva-I dataset. The comparison results
of our method with SOTA method on HumanEva-I dataset
are shown in Table 7. Although the proposed model only
trained on Human 3.6 M, our method achieves promising
results, demonstrating that the proposed method has a good
generalization capability on unseen dataset.

4.5 Computational complexity analysis

Table 8 compares the total number of parameters, floating-
point operations (FLOPs) and the frame per second
(FPS) with SOTA methods in different receptive fields on
Human3.6 M under Protocol 1 with MPJPE. Compared
with SOTAmethods, our model achieves competitive perfor-
mance for 3D HPE with small receptive field and relatively
fewer parameters. The total number of parameters does not
increase much when the receptive field is increased. This is
caused by the fact that the length of the receptivefieldsmainly
affects the temporal positional embedding in temporal trans-
former layer, which does not require many parameters. As
shown in Table 8, the FPS of our model is lower than the
compared methods, it is still acceptable for real-time infer-
ence since our model follows the 2D-to-3D lifting method,
where the 2D pose detector provides the 2D pose coordinates
is usually below 80 FPS.

4.6 Visualization results

The qualitative results of our method on Human 3.6 m are
shown in Fig. 5. We only present some challenging exam-
ples on S9 and S11 to show the effectiveness of the proposed
method. Figure 5 shows the estimated 3D pose by the pro-
posed method and the corresponding ground truth 3D pose.
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Table 7 Comparison on HumanEva-I under protocol #2

Protocol #2 Walk Jog Box

S1 S2 S3 S1 S2 S3 S1 S2 S3

Martinez [16] 19.7 17.4 46.8 26.9 18.2 18.6 – – –

Pavlakos [14] 18.8 12.7 29.2 23.5 15.4 14.5 – – –

Lee [43] 18.6 19.9 30.5 25.7 16.8 17.7 42.8 48.1 53.4

Pavllo [10] 13.9 10.2 46.6 20.9 13.1 13.8 23.8 33.7 32

GAST [18] 13.7 9.2 46.2 20.1 12.5 12.7 21.8 27.8 27

Ours 12.6 10.1 45.7 20.9 12.0 12.8 21.2 20.2 27.1

Table 8 Computational
Complexity analysis on
Human3.6 M under Protocol 1
with different receptive fields

receptive field T Parameters (M) FLOPs (M) MPJPE(mm) FPS

Hossain [9] – 16.95 33.88 58.3

Pavllo et al. [10] 27 8.56 17.09 48.8 1492

Pavllo et al. [10] 81 12.79 25.48 47.7 1121

Pavllo et al. [10] 243 16.95 33.87 46.8 863

Chen et al. [5] 27 31.88 61.7 45.3 410

Chen et al. [5] 81 45.53 88.9 44.6 315

Chen et al. [5] 243 59.18 116 44.1 264

Zheng [1] 9 9.58 11.2 49.9 320

Zheng [1] 27 9.59 33.9 47.0 297

Zheng [1] 81 9.60 101 44.5 269

Li et al. [20] 27 4.01 128 46.9 118

Li et al. [20] 81 4.06 392 45.4 112

Li et al. [20] 243 4.23 1372 44.0 108

Ours 27 15.18 61.2 45.5 165

Ours 81 15.24 183 44.4 150

Ours 243 15.42 550.8 43.9 145

It can be seen that the proposed method can successfully
estimate the 3D pose.

5 Conclusion

In this paper, we have developed a U-shaped spatial–tem-
poral transformer network for 3D HPE from monocular
images. To better encoder the complementary characteristic
of local and global skeleton features in intra-frame and inter-
frames, we design a U-shaped multi-scale and multi-level
features extraction model based on spatial–temporal trans-
former architecture. With the skeletal constrained pooling

and unpooling layer to transform the features from various
scales and different depths of network, the proposed model
can effectively integrate the global and local features from
full skeleton to local part, which is useful for boosting the
feature representations of the proposed model. The exper-
imental results show that the proposed model achieves the
state-of-the-art performance on two benchmark 2D-to-3D
pose estimation datasets.
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Fig. 5 Visualization results of our method on Human3.6 M test set S9 and S11
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