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Abstract
While domain adaptation has been used to improve the performance of object detectors when the training and test data follow
different distributions, previous work has mostly focused on two-stage detectors. This is because their use of region proposals
makes it possible to perform local adaptation, which has been shown to significantly improve the adaptation effectiveness.
Here, by contrast, we target single-stage architectures, which are better suited to resource-constrained detection than two-stage
ones but do not provide region proposals. To nonetheless benefit from the strength of local adaptation, we introduce an attention
mechanism that lets us identify the important regions on which adaptation should focus. Our method gradually adapts the
features from global, image level to local, instance level. Our approach is generic and can be integrated into any Single-Shot
Detector. We demonstrate this on standard benchmark datasets by applying it to both the single-shot detector (SSD) and a
recent variant of the You Only Look Once detector (YOLOv5). Furthermore, for equivalent single-stage architectures, our
method outperforms the state-of-the-art domain adaptation techniques even though they were designed for specific detectors.

Keywords Domain adaptation · Object detection · Adversarial training · Representation learning

1 Introduction

Modern object detection methods can be grouped into two
broad categories: two-stage architectures [35], that first
extract regions of interest (ROIs) and then classify and refine
them, and single-stage ones [21,28,42], that directly output
bounding boxes and classes from the feature maps. While
the former yield slightly higher accuracy, the latter are faster
and more compact, making them better suited for real-time
applications or for mobile devices.

In any event, all object detectors reach their best perfor-
mancewhen the training and test data are acquired in the same
conditions, such as using the same camera, in similar illumi-
nation conditions. When they are not, the resulting domain
gap significantly degrades the detection results. Addressing
this is the focus of domain adaptation [15,18,29,30,37,46].
In this work, we focus on unsupervised domain adaptation,
whose goal is to bridge the gap between the source (training)
and target (test) domain without having access to any target
annotations.
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The recentwork on domain adaptation for object detection
[4,6,36,39,44,49] has focused mostly on two-stage detec-
tors. At the heart of most of these methods lies the intuition
that adaptation should be performed locally, focusing on the
foreground objects because the background contentmay gen-
uinely differ between the training and test data, whereas
the object categories of interest do not. This process of
local adaptation is facilitated by the ROIs used in two-stage
detectors. Unfortunately, no counterparts to ROIs exist in
single-stage detectors, making local adaptation much more
challenging. This has been tackled by [19] for the specific
detector of [42], which explicitly extracts objectness maps,
and by [5], which introduces complementarymodules specif-
ically designed for the SSD architecture [28].

In this paper, we introduce a domain adaptation strategy
able to perform local adaptation while generalizing across
different single-stage object detectors. Specifically, we intro-
duce an attention mechanism that allows adaptation to focus
on the regions thatmatter for detection, that is, the foreground
regions, as depicted in Fig. 1. In essence, our approach lever-
ages attention to perform local-level feature alignment, thus
following the intuition that has proven successful in adapt-
ing two-stage detectors. Our attention mechanism is generic
and can be incorporated into any single-stage detector. Fur-
thermore, and contrarily to [5,19], we gradually modulate
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Fig. 1 Leveraging attention for local domain adaptation. Top: target
image with predicted detections. Bottom: attention maps output by our
approach for feature maps at different scales, allowing us to focus adap-
tation on the relevant local image regions, ranging from small (left) to
large (right) objects. The attention maps are re-scaled to the same size
for visualization purpose. Best viewed digitally

the adaptation from global features to local features, which
lets us give increasingly more importance to foreground fea-
tures as training progresses. Consequently, this allows us to
use the same domain classifiers for both global and local
alignment, thereby leading to a simpler implementation than
[5,19]. While [24,50] also propose attention-based adapta-
tion mechanism, in contrast to our work, they are dedicated
to specific backbones and thus do not easily transfer to dif-
ferent single-stage architectures.

We demonstrate the benefits of our approach via a series of
experiments on several standard domain adaptation detection
datasets. Despite its comparative simplicity, our method out-
performs the state-of-the-art ones of [5,19]. Furthermore, our
results evidence the generalizability of our domain adapta-
tion strategy to different single-stage frameworks, including
SSD [28] andYOLOv5 [21], and the importance of local fea-
ture alignment over the global ones, particularly in the later
training stages. Our code is available at https://github.com/
vidit09/adass.

2 Related work

2.1 Object detection

Two-stage object detectors, such as FasterRCNN [35], con-
sist of a feature extractor, a region proposal network (RPN),
and a refinement network. The RPN provides foreground
regions, via ROI pooling, to the refinement stage for bound-
ing box prediction and classification. Recently, one-stage

detectors [3,21,26,28,34,41,42] have emerged as an alterna-
tive, becoming competitive in accuracywhile faster andmore
compact than two-stage ones. Most of them [21,26,28,41]
rely on predefined bounding box anchors for prediction, and
thus do not provide region proposals likely to contain fore-
ground objects as two-stage detectors do. The only exception
to this anchor-based approach to single-stage detection is the
detectors of [3,42]. Specifically, [42] yields an object center-
ness map, and [3] learns object regions via a self-attention
[43]-based encoder–decoder. Arguably, YOLO [21,34] pre-
dicts an objectness score for each anchor box, which could
be leveraged to create an objectness map at the feature
level. However, we will show in Sect. 4.3.3 that our method
is superior to this approach. In any event, in contrast to
these approaches, we develop a self-attention framework for
domain adaptation. It can be integrated into any anchor-based
detector, which we illustrate using SSD [28] and YOLOv5
[21].

2.2 Domain adaptation for object detection

While the bulk of the domain adaptation literature focuses on
image classification, several works have nonetheless tack-
led the task of unsupervised domain adaptation for object
detection. In particular, most of them have focused on
the two-stage FasterRCNN detector. In this context, [6]
uses instance- and image-level alignment to improve the
FasterRCNN performance on new domains; [36] shows
that a strong local feature alignment improves adaptation,
particularly when focusing on foreground regions; [4] per-
forms feature- and image-level adaptation on interpolated
domain images generated using a CycleGAN [48]; [9] uses
CycleGAN-translated images to remove the source domain
bias in the teacher network and generate better pseudo labels
for the target domain; [49] clusters the proposed object
regions using k-means clustering and uses the centroids to
do instance-level alignment; [39] introduces a method to
improve the interaction between local and global alignment;
[44] learns category-specific attentionmaps for FasterRCNN
using memory modules. In essence, most of these works
leverage the RPN proposals to achieve a form of local feature
alignment, showing the importance of focusing adaptation on
the foreground features. Here, we follow a similar intuition
but develop a method applicable to single-stage detectors,
which do not rely on an RPN. In Sect. 4.3.2, we nonetheless
compare our approachwithmethods developed for two-stage
detectors [4,36], which we adapted to make them compatible
with one-stage detectors.

Only few works have tackled domain adaptation for
single-stage detectors. Some of these rely on generating bet-
ter pseudo labels for the target domain and train the detector
on them. In particular, [23] proposes to regularize highly con-
fident labels to reduce false positives; [33] develops a domain
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mixup strategy to gradually adapt the detectors using the gen-
erated labels. Pseudo labels, however, are orthogonal to our
work; we focus on feature alignment, andwhile our approach
could further benefit from pseudo labels, studying this goes
beyond the scope of this paper. Therefore, [5,19] constitute
the works closest to our approach. Specifically, [19] uses the
object centerness maps predicted by the single-stage detector
of [42] to perform local feature alignment. While effective,
this approach is therefore restricted to this specific detector.
Here, by contrast, we introduce a general approach to local
feature alignment in single-stage detection. [5] designs a set
of complementary modules, which help global- and local-
level alignment in the dissimilar domain setting, implicitly
learning foreground regions in the SSD architecture. They
formulate their category alignment loss for target domain
using the class probabilities of each anchor boxes. SSD, as
used in [5], uses softmax-based normalized prediction for
each anchor box whereas, YOLOv5 does multiclass pre-
diction using logistic classifiers. Hence, the approach in
[5] doesn’t translate directly with the multiclass prediction
framework of YOLOv5. By contrast, our approach is agnos-
tic to the kind of detection head. Furthermore, we also learn
foreground regions implicitly, but rely on a simpler, gen-
eralizable strategy, yet outperform both the approaches of
[5,19]. Specifically, while [5,19] continuously aim to adapt
the global and local features throughout the whole training
process, we gradually modulate adaptation from the global
to the local level. This lets us focus more strongly on the
foreground regions and use the same domain classifiers for
global and local adaptation.

2.3 Self-attention

Our approach exploits self-attention (SA). SA was intro-
duced in [43] for natural language processing and has
since then become increasingly popular in this field [2,10].
Recently, it has also gained popularity in computer vision,
for both image recognition [1,12,32] and object detection [3].
While other attention mechanisms have been proposed [14,
20,45,47], they typically require more architectural changes
than vanilla SA [43], which motivated us to rely on this strat-
egy in our method. [50] performs domain adaptation with the
self-attention-based detector [3]. By contrast, we develop an
attentionmechanism that can be integrated into a single-stage
detector to facilitate adaptation. This makes our approach
applicable to the nonattention-based backbones of SSD and
YOLOv5, thus making it more general than [50].

3 Method

Let us now introduce our attention-based domain adaptation
strategy for single-stage detection.

Fig. 2 General single-stage object detection architecture. Both SSD
[28] and YOLOv5 [21], used in our experiments, comply with this
architecture, and other methods [26,41] also do

Fig. 3 Overview of our approach. We compute self-attention from the
features extracted by the single-stage detector backbone.We thenmodu-
late these features with our attentionmaps so as to encourage the feature
alignment achieved by the domain classifiers (abbreviated above as Dis.
for discriminator) to focus on the relevant local image regions. The num-
ber of domain classifiers matches the number of detection heads in SSD
[28] and YOLOv5 [21]

3.1 Attention in single-stage detectors

Single-stage object detectors typically follow the general
architecture depicted in Fig. 2, consisting of a feature extrac-
tor followed by several detection heads. These detection
heads take as input the features Fs at different scales s ∈
[1, S], with the different scales allowing the detector to effec-
tively handle objects of different sizes. Such an architecture
directly predicts bounding boxes and their corresponding
class from the feature maps, via the use of bounding box
anchors at each spatial location. As such, it does not explic-
itly provide information about the features corresponding to
the objects. This contrasts with two-stage detectors, whose
region proposals directly correspond to potential objects.

To automatically extract information about the object
locations, we propose to incorporate a self-attention mech-
anism [43] in the detector. Intuitively, we expect the fore-
ground objects to have higher self-attention than background
regions because the detector aims to identify them, and thus
exploit self-attention to extract an objectness map. To this
end, we use an attention architecture similar to that of [3],
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but without attention-based decoder because wewant to keep
the same detector heads as in [21,28].

The attention module takes as input the feature map Fs ∈
R

Hs×Ws×Cs and produces an objectness map As ∈ R
Hs×Ws

and a feature map Gs ∈ R
Hs×Ws×Cs . Specifically, Fs is

flattened to R
HsWs×Cs and transformed into a query matrix

Q ∈ R
Dq×D , a key matrix K ∈ R

Dk×D and a value matrix
V ∈ R

Dv×Cs , with Dq = Dk = Dv = HsWs , using three
separate linear layers. We then compute

A′
s = so f tmax

(
QKT

√
D

)
∈ R

Dq×Dk (1)

which, intuitively, represents the similarity between the query
and the key at different spatial locations. To compute the
objectness map As , we then compute the maximum in each
row of A′

s , leading to a Dq -dimensional vector, which we
min–max normalize, so that each value falls in the range
[0, 1]. Finally, As is obtained by reshaping this vector to
R

Hs×Ws .
Given A′

s , we also compute

G ′
s = A′

sV ∈ R
HsWs×Cs (2)

which we reshape to R
Hs×Ws×Cs to obtain the feature map

Gs . We then pass Fs + Gs to the detection head. In addition
to this, and as will be discussed in more detail in Sect. 3.2,
we further leverage As to modulate the Fs + Gs features
for domain adaptation. This differs from previous SA works,
which do not explicitly exploit the learnt attention maps.

In practice, instead of the single-head attention mecha-
nism discussed above, we rely on the multi-head extension
presented in detail in [3,43]. In short, Eq. 1 is computed mul-
tiple times using unshared linear layers to obtain different
query, key, and value matrices. The resulting independent
A′
s matrices are concatenated and linearly transformed to a

single matrix of size R
Dq×Dk . Intuitively, and as discussed

in [3,43], the multiple heads can extract different represen-
tations for the same pair of locations.

As the different detection heads focus on objects of dif-
ferent sizes, we add an attention module at each scale.
These modules are trained jointly with the feature extrac-
tor and detection heads. Because we do not have access to
supervisory signal for the attention/objectness maps, the loss
functionLdet to train the detector remains the same as that of
the original single-stage detector. Typically [21,28], such a
loss function incorporates a classification term to categorize
predefined anchor bounding boxes, and a regression one to
refine these anchors. It can thus be expressed in general as

Ldet (I ) = Lcls(I ) + Lreg(I ) . (3)

3.2 Unsupervised domain adaptation

Let us now explain how we exploit the above-mentioned
attention mechanism for unsupervised domain adaptation.
This process is depicted in Fig. 3. Let Is be a source image,
for whichwe have the ground-truth bounding boxes and class
labels, and It be a target image, for which we do not. The
source and target images are drawn from two different distri-
butions but depict the same set of classes. Domain adaptation
then translates to learning a representation that reduces the
gap between both domains.

An effective approach to achieve this consists of jointly
training a domain discriminator D in an adversarial manner
[15], encouraging the learnt features not to carry any infor-
mation about the observed domain. In our context, because
the detection heads act on features at different scales, we
use a separate discriminator Ds for each scale s. However,
we do not directly use the feature maps Fs as input to these
discriminators, but instead aim to focus the adaptation on
the foreground objects, accounting for the fact that the back-
ground can genuinely differ across the two domains.

To this end,we leverage the objectnessmaps fromSect. 3.1
to extract the weighted feature map

Ms = (1 − γ ) ∗ (Fs + Gs) + γ ∗ (Fs + Gs) � As , (4)

where � indicates an element-wise product performed inde-
pendently for each channel of (Fs+Gs), and γ ∈ [0, 1]. This
formulation combines the global, unaltered features with the
local ones obtained by modulating the features by our atten-
tion map. During our training, we then gradually increase γ

from 0 to 1, which lets us transition from global adaptation
to local feature alignment. Intuitively, this accounts for the
fact that, at the beginning of training, the predicted attention
maps may be unreliable, and a global alignment is thus safer.
We also observed such a strategy to facilitate the training of
the discriminators. In practice, we compute γ as

γ = 2

1 + exp(−δ · r) − 1 , (5)

where δ controls the smoothness of the change and r =
current iteration
max iteration .
Given the attention-modulated features Ms for each scale

s, we then write the discriminator loss as

Ldis(I ) = − 1

S

∑
s

t log(Ds(Ms))

+(1 − t) log(1 − Ds(Ms)), (6)

where t = 0, resp. t = 1, indicates that image I is a source,
resp. target image.
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During training, the discriminator aims to minimize Ldis

while the feature extractor seeks to maximize it. To facili-
tate such an adversarial training process, we use the gradient
reversal layer (GRL) of [15]. Hence, the overall loss function
minimized by the feature extractor for a source and a target
image can be expressed as

L(Is) = Ldet (Is) − Ldis(Is) , (7)

L(It ) = −Ldis(It ) , (8)

respectively. Note that, unlike [5,19], we do not use pixel-
wise domain discriminators, as we found our attention-
modulated feature maps to be sufficient to suppress the
background features. Moreover, the formulation in Eq. 4
allows us to use the same discriminator for global alignment
in the beginning of training and local alignment in the later
training stages.

4 Experiments

In this section, we discuss our experimental settings and ana-
lyze our results.

4.1 Datasets

We evaluate our method using the following four standard
datasets:
Cityscapes [8] contains 2975 images in the training set and
500 in the test set, with annotations provided for eight cat-
egories, namely, person, car, train, rider, truck, motorcycle,
bicycle, and bus. The images depict street scenes taken from
a car, mostly in good weather conditions.
Foggy Cityscapes [38] contains synthetic images aiming to
mimic the Cityscapes setting, but in foggy weather. It con-
tains 2965 training images and 500 testing ones, depicting
the same eight categories as Cityscapes.
Sim10K [22] consists of 9975 synthetic images, with anno-
tations available for the car category.
KITTI [16] depicts street scenes similar to thoseofCityscapes,
but acquired using a different camera setup. In our experi-
ments, we will only use its 6684 training images.

Following [19], we present results for the following
domain adaptation tasks:
Sim→Cityscapes (S→C): This evaluates the effectiveness
of a method to adapt from synthetic data to real images.
All Sim10K images are used as source domain, and the
Cityscapes training images act as target domain. Following
[19], only the car class is considered for evaluation.
KITTI→Cityscapes (K→C): This task aims to evaluate
adaptation to a different camera setup. We use the KITTI
training images as source domain and the Cityscapes training

images as target one. Again, as in [19], we consider only the
car class for evaluation.
Cityscapes→Foggy Cityscapes (C→F): The goal of this
experiment is to test the effectiveness of amethod in different
weather conditions. We use the Cityscapes training images
as source domain and all Foggy Cityscapes images as target
data. For this task, all eight object categories are taken into
account for evaluation.

4.2 Implementation details

We evaluate our method on two single-stage detectors, SSD
[28]1 and YOLOv5 [21]2.We implemented our method in
Pytorch [31], and performed all our experiments on a sin-
gle Nvidia V100 GPU [7]. The batch consists of 8 images,
4 drawn from source and 4 from target domain. We set δ

in Eq. 5 to 5. We provide additional training details in the
supplementary material.

SSD relies on a similar VGG [40] backbone to that used
by the detectors employed in [5,19]. We will therefore focus
our comparison with [19] and with [5] to our SSD-based
approach. We employ an image resolution of 512 × 512
because it is the highest resolution available for the SSD
architecture. Note that, in [19], larger images were used, i.e.,
a short image side between 800 and 1333, and that [5] used
a lower, 300× 300 resolution. For the comparison to be fair,
we thus re-trained these methods with this 512× 512 image
resolution. To furthermake our SSD architecture comparable
to that of [19], we incorporated a Feature Pyramid Network
[25] to our SSD backbone. Following [5,19], all backbones
were initialized with ImageNet-trained weights.

YOLOv5 is also trained with input images of size of
512 × 512. This allows us to illustrate the generality of our
approach to other single-stage detectors. Specifically, we use
the YOLOv5s backbone, which is the smallest model out
of all YOLO configurations. We keep the default configura-
tion for preprocessing and data augmentation. We initialize
the backbone with COCO-pretrained weights [27] since [21]
don’t provide ImageNet-trained weights.

4.3 Results

4.3.1 Evaluation metric

Followingpreviouswork [5,19,36],we evaluate ourmethod’s
performance with the Mean Average Precision (mAP) [13].
Specifically, the precision of the detector is computed over
11 equally spaced recall values in the range [0, 1]. We then
compute theAverage Precision (AP) for each class as the area
under the precision–recall curve, and then use themean of the

1 https://github.com/lufficc/SSD.
2 https://github.com/ultralytics/yolov5.
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Table 1 Results on Cityscapes
to Foggy adaptation

Method mAP@0.5

Person Car Train Rider Truck Motorcycle Bicycle Bus Mean

[19] - w/o DA 18 28.3 1.6 18.3 6.5 6.6 15.5 16.5 13.9

[19] - global 25.1 43.3 5.4 27.6 17.8 11.9 22.1 33.5 23.3

[19] - global+local 26.6 44.5 4.8 26.2 21.2 12.3 19.1 33.9 23.5

I3Net [5] 19.7 37.9 9.6 22.9 12.5 18.3 22.7 21.1 20.6

SSD - w/o DA 15.1 28.8 0.2 12.9 2.2 5.8 13.7 13.5 11.5

SSD + our DA 23.4 49.1 4.9 27.8 16.9 17.6 24.2 34.0 24.8

SWDA [36] 16.6 30.3 0.6 17.9 6.2 9.3 18.5 16.9 14.5

HTCNψ [4] 11.5 28.8 0.9 9.8 1.7 4.5 12.7 6.4 9.6

Fig. 4 Qualitative results on C→ F. We show target images with
predicted detections, together with attention maps at different scales.
While this adaptation task is particularly challenging, our attentionmaps
nonetheless manage to correctly identify the objects at their different

scales. Note, when there is no object of interest activation map tends to
have activation everywhere. All predictions are with confidence 50%
and above

Table 2 Results on Sim10K to Cityscapes adaptation

Method mAP@0.5

[19] - w/o DA 31.5

[19] - global 33

[19] - global + local 32.8

I3Net [5] 35.1

SSD - w/o DA 29.1

SSD + our DA 36.7

SWDA [36] 31.5

HTCNψ [4] 29.9

APs for the different classes to indicate the overall detector
performance on a dataset. In this process, a prediction is
considered to be correct if it deemed to contain the right
class and has an intersection over union (IOU) score of at
least 0.5 with the ground-truth bounding box. We thus refer

to our metric as mAP@0.5. In the single-class setting, mAP
= AP, and hence we will generically use the term mAP.

4.3.2 Comparison with the state of the art

Let us first compare our SSD-based method with [5] and
with the global and local version of [19]. Following [5], we
also report the results of SWDA [36] and of HTCNψ [4],
originally developed for two-stage detectors, which wemade
compatible with single-stage ones. Specifically, we reimple-
mented bothmethodswithin our SSD framework, and further
modified the HTCN pixel and image-wise reweighting so as
not to use any context vector, as single-stage detectors don’t
provide access to foreground ROIs. Additionally, we did not
use CycleGAN-translated images as in [4] for the compari-
son to be fair. As a reference point, we also report the results
obtained without domain adaptation, as SSD - w/o DA.

Table 1 provides the results on C→F. Our method yields
the best results on average (last column). When looking at
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Fig. 5 Qualitative results on S→ C. We show target images with their
predicted detections, together with the corresponding attention maps at
different scales. Note that the finer map (left) correctly identifies the
small cars whereas the coarser one (right) focuses on large cars. Bot-
tom right: Because, this task focuses on cars only, this image does not

contain any object of interest. Hence, in this case, the attention maps
tend to have either no activation or activations everywhere. Note that
the fine attention map nonetheless highlights cars in the background,
which, by zooming in, can be verified to truly be present in the image.
All predictions are with confidence 50% and above

Table 3 Results on KITTI to Cityscapes adaptation

Method mAP@0.5

[19] - w/o DA 33.3

[19] - global 23.3

[19] - global + local 27.8

I3Net [5] 40.0

SSD - w/o DA 33.1

SSD + our DA 40.5

SWDA [36] 39.0

HTCNψ [4] 32.3

the individual categories, we observe that we outperform all
methods on car, rider, and additionally yield better results
than [19] on bicycle, with on par performance on train and
bus. In some categories, such as car, our approach yields an

increase in mAP by 10% compared to [19]. We attribute our
poor performance on train and truck to the fact that these
categories are under-represented in the source domain, and
that their similar elongated shapes creates confusion between
these classes. We outperform [5] on most of the categories
and increase the mAP score by 29.5% and 61% for car
and bus, respectively. This shows the effectiveness of our
method. Both SWDA and HTCNψ suffer from the lack of
rich foreground information in SSD, which contrasts with
the two-staged detector they were originally developed for.
HTCNψ additionally relies on context vectors trained with
ROIs and translated images to improve performance. The
unavailability of these leads to even worse performance than
our SSD - w/o DA.

In Fig. 4, we provide examples of detections and attention
maps predicted with our approach on theC→F task. Despite
the challengingnature of this adaptation problem, ourmethod
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Table 4 Results on Cityscapes to Foggy adaptation

Method mAP@0.5

Person Car Train Rider Truck Motorcycle Bicycle Bus Mean

YOLO - w/o DA 27.1 40.8 4.5 30.8 11.1 9.3 21 24.7 21.1

YOLO + obj w DA 31.8 50.3 4.9 33.9 18.5 12.7 25.8 34.3 26.5

YOLO + our DA 32.8 51.3 16.2 35.7 18.8 11.8 25.6 34.5 28.3

Table 5 Results on Sim10K to Cityscapes adaptation

Method mAP@0.5

YOLO - w/o DA 42.5

YOLO + obj w DA 43.5

YOLO + our DA 44.9

Table 6 Results on KITTI to Cityscapes adaptation

Method mAP@0.5

YOLO - w/o DA 29.1

YOLO + obj w DA 37.5

YOLO + our DA 37.7

correctly highlights the objects in the scene. The attention
maps at different scales focus on objects of different sizes.We
show additional qualitative results pre- and post-adaptation
in Fig. 6.

Table 2 shows the results for the S→C adaptation. Our
method again yields the best results, outperforming both [19]
and [5]. Surprisingly, the global alignment of [19] yields
better performance than when further exploiting their local
alignment. This suggests that both should not be given equal
importance as training progresses. Our method also outper-
forms our baselinewithout any attention, hence validating the
importance of accounting for the foreground regions during
feature alignment. HTCNψ without instance-aware adapta-
tion performs worse than the other baselines, suggesting its
reliance on the foreground adaptation.

In Fig. 5, we provide qualitative results for the S→C task.
These results evidence that the attention maps we produce
correctly focus on the local regions of interest, i.e., the cars
in this case. Furthermore, themaps at different scales account
for objects at different sizes. Note that attentionmapswith no
activations or activations everywhere indicate the absence of
any object of that scale, and will typically lead to predictions
with low confidence because the model has learned to ignore
those cases during training. We show additional qualitative
results pre- and post-adaptation in Fig. 7.

We provide the K→C results in Table 3. Note that the
method of [19] fails to adapt to the target data, yieldingworse
performance than their own no-DA baseline. This difference

compared to the results provided in [19] arises from the use of
a smaller image size here, as discussed above. Note, however,
that the fact that the [19]- w/o DA baseline, which we also re-
trained, yields essentially the same performance as our SSD
- w/o DA baseline, and that the method of [19] yields reason-
able performance in the other source-target pairs evidence
that we correctly re-trained this model. For this adaptation
task, we achieve comparable results with [5] even though we
adopt simpler training and architecture choices. Again, the
worse performance of HTCHψ can be attributed to the lack
of instance-specific loss. We show qualitative results for this
task in Fig. 8.

4.3.3 Generalization to another architecture

To show the generality of our approach, we use it with the
YOLOv5 detector. We compare our method with an addi-
tional baselineYOLO+obj wDA. This baseline leverages the
fact that the YOLO architecture predicts an objectness score
for each anchor box at each feature map location. We thus
use the maximum score at each location to create an object-
ness map and replace our As , learned using self-attention,
with this map. Furthermore, we provide the results of the
YOLOv5 architecture without domain adaptation as YOLO
w/o DA.

The results on C→F, S→C, and K→C are shown in
Tables 4, 6, and 7, respectively. As in the SSD case, our
method consistently outperforms the baselines, illustrating
the generality of our approach. YOLO + obj w DA performs
worse than us on S→C, C→F and comparably on K→C.
This further shows that our attention scheme helps to learn
better objectness maps.

4.4 Ablation study

4.4.1 Global versus local alignment

As mentioned in Sect. 3.2, our formulation in Eq. 4 is moti-
vated by the intuition that one should initially perform a
global alignment to learn reliable features for the attention
module, but that the global features can be gradually dropped
to focus on local regions in the later training stages. To fur-
ther evaluate the benefits of local vs global alignment, we
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Fig. 6 Qualitative results on C → F. We show targeted images with
predicted detections, together with attention maps at different scales.
Recall that here we consider multiple classes. All predictions are with
confidence 50% and above. Bottom two rows: We show the predictions

and attention maps before (left) and after (right) adaptation. We are
able to reduce the false positives and improve the detection on smaller
objects in this case.
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Fig. 7 Qualitative results on
S→ C. We show targeted
images with predicted
detections, together with
attention maps at different
scales. All predictions are with
confidence 50% and above.
Bottom two rows: We show the
predictions and attention maps
before (left) and after (right)
adaptation. We can see we
suppress the false positives by
learning better attention maps
(middle)
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Fig. 8 Qualitative results on K → C. We show targeted images with
predicted detections, together with attention maps at different scales.
All predictions are with confidence 50% and above. Bottom row: We

show the predictions and attention maps before (left) and after (right)
adaptation. After adaptation, we see attention maps to be more focused
on the foreground objects

implemented three alternative strategies: (a) The global fea-
tures are maintained throughout the whole training process.
Concretely, this strategy computes a featuresmap of the form

Md = (Fs + Gs) + γ ∗ (Fs + Gs) � As , (9)

where γ follows the same rule as in our approach. (b)We set
γ = 1 in Eq. 4, which corresponds to performing adaptation
using only local features throughout the whole training pro-
cess. (c)We set γ = 0 in Eq. 4, which corresponds to a global
alignment where the attention block is nonetheless employed
via Gs but the attention maps are not used to modulate the
features.

As shown in Table 7 for the S→C task and with an
SSD-based detector, our approach outperforms all of these
baselines. This confirms that maintaining a global alignment
term throughout training harms the overall performance, sug-
gesting that the transition from global to local is crucial. This
is further supported by the fact that local or global alignment

on their own performs better than combining both in a sub-
optimal fashion. Purely local adaptation yields worse results
than purely global adaptation because the attention maps do
not carry sufficient meaningful information at the beginning
of training, which compromises the rest of the training pro-
cess. This study shows that both global and local alignments
are important, and that their interaction affects the overall
performance.

4.4.2 Hyperparameter study

In this section, we further investigate the influence of atten-
tion on our results. To this end, we first study the effect of δ in
γ = 2

1+exp(−δ·r) −1 for S→Cwith SSD. Table 8 showsmAP
scores for strategies ranging from local alignment (γ=1) to
more global alignment (δ=0.5). Figure 9 depicts the evolution
of γ for different values of δ. For δ = 10, 5 we see that the
transition from global to local is relatively fast, which yields
better results than the slower transition δ = 1, 0.5 and γ=r3.
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Table 7 Global versus local
alignment on S → C

Method mAP@0.5

Ours w. Eq. 9 32.9

Ours w. γ =1 33.6

Ours w. γ = 0 34.2

Ours 36.7

Table 8 Hyperparameter study on S → C

Method mAP@0.5

Ours w. γ =1; large δ 33.6

Ours w. δ=10 35.6

Ours w. δ=5 36.7

Ours w. γ = x 35.7

Ours w. γ = x3 33.0

Ours w. δ=1 33.4

Ours w. δ=0.5 33.3

Fig. 9 Study of different variants of γ . We plot the evolution of γ

throughout training for different values of δ. We also study other func-
tions highlighted in orange

We attribute this to the fact that the network becomes biased
toward global features if the transition is slow. Moreover, for
δ = 1, 0.5, the local features are never given much impor-
tance as γ is always below 0.5. Finally, we see that a linear
function γ= r yields a similar score to that obtained with a
nonlinear function with δ = 10, suggesting that transition
leads to a better result, thereby validating our claim of the
importance of global adaptation in the initial training stages
and local adaptation toward the end.

Table 9 Effectiveness of our attention mechanism on different adapta-
tion tasks. We report the mAP@0.5 in the target domain

Adapt Method SSD YOLO

S→C w/o attn 35.1 42.7

attn 36.7 44.9

K→C w/o attn 39.9 37.4

attn 40.5 37.7

C→F w/o attn 24.1 25.9

attn 24.8 28.3

4.4.3 Importance of attention

To show the importance of attention, we trained both the SSD
and YOLO detectors without and with our attention mecha-
nism, along with domain adversarial training. As shown in
Table 9, our attention scheme consistently improves the per-
formance in the target domain for all the adaptation tasks.

5 Conclusion

To conclude, we have proposed to incorporate an attention
module acting on the features extracted by the detector back-
bone, and tomodulate these features so as to focus adaptation
on the local foreground image regions that truly matter for
detection.We have further developed a gradual training strat-
egy that smoothly transitions from global to local feature
alignment. Our experiments on several domain adaptation
benchmarks have demonstrated that (i) with a compara-
ble architecture, our method outperforms the state-of-the-art
domain adaptation techniques for single-stage detection,
despite the fact that they were designed for specific archi-
tectures; (ii) our approach remains effective across different
single-stage detectors; (iii) our gradual training strategy
effectively allows the network to benefit from global and
local adaptation. In the future, wewill study the use of pseudo
labels with our local feature alignment strategy. We will also
investigate the use of our method for multi-source domain
adaptation, similarly to the scenario studied in [11,17,51] for
image recognition and semantic segmentation.
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