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Abstract
Neurodegenerative diseases, such as Alzheimer’s Disease or Parkinson’s disease, are unfortunately still incurable, although
there are many therapies that can slow down the progression of the disease and improve patients’ lives. An essential condition,
however, is the early diagnosis of these disorders to begin therapies as soon as possible: In fact, when the signs of the disease
become evident, damages may be already significant and irreversible. In this context, it is generally agreed that handwriting
is one of the first skills affected by the onset of cognitive disorders. For this reason, in a preliminary study, we considered
a database of handwriting and drawing specimens and proposed a method for selecting the most relevant information for
diagnosing neurodegenerative disorders. The basic idea was to generate, for each handwriting sample, a color image to exploit
the ability of convolutional neural network to automatically extract features from raw images. In the generated images, the
color of each elementary trait encodes, in the three RGB channels, the dynamic information associated with that trait. Starting
from the very encouraging obtained results, the aim of this study is twofold: On the one hand, we have tried to improve the
feature extraction phase, associating further dynamic information with each handwritten trait. On the other hand, we have
expanded the database of handwriting samples by adding specimen derived from more complex drawing tasks. Finally, we
carried out a large set of experiments for comparing the results obtained by using standard online features with those obtained
with our feature extraction approach.

Keywords Alzheimer’s disease prediction · Feature extraction · Convolutional neural networks · Transfer learning ·
Classification methods

1 Introduction

Alzheimer’s disease (AD) is an irreversible and progressive
neurodegenerative disease. Close monitoring and an early
diagnosis of AD are essential to prevent a rapid progression
of the disease. Therefore, prediction of a person’s cognitive
performance of participants is an important research topic in
the study of Alzheimer’s disease.

Usually, in themachine learningfield, EEGsignals orMRI
images are used for detecting cognitive impairment. How-
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ever, in recent years, it has become increasingly evident that
other signals can be useful predictors of cognitive status. For
example, it is generally agreed that early signs ofAlzheimer’s
disease produce alterations in handwriting [1–4], which is
based on an ensemble of kinesthetic and motor-perceptive
skills. Several steps forward have been made in this field,
starting from the definition of some handwriting protocols,
which specify the writing or drawing tests to be performed.
However, it should be noted that there is no general agree-
ment on the number and type of task to be adopted and that
there are few standard databases available collecting this type
of data, which generally refer to a very limited number of
participants.

This aspect represents a further difficulty in the context
of machine learning techniques, which typically require a
huge amount of information. Furthermore, there is no gen-
eral agreement on the types of features on which researchers
should concentrate [5,6]. Indeed, the problem of detecting
effective features that allow the system to distinguish the
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natural handwriting alterations due to age from those caused
by neurodegenerative disorders is still an open issue, which
strongly influences the obtainable results and the practical
applicability of early diagnosis support techniques. In the
large majority of cases, the sets of features are typically
selected by hand, generally considering the dynamics of the
handwritingprocess in order to detectmotor disorders closely
related to AD. Features directly derived from handwriting
generation models have also been used for AD diagnosis.

It should also be remarked that, to the best of our knowl-
edge, the feature sets considered in the studies published
in the literature do not include shape information of hand-
written traces, which may be very helpful in many cases.
(The only exception is the evaluation of micrographia1 that
is normally used in Parkinson’s disease detection.) The pres-
ence, for instance, of irregular or fragmented handwriting,
often associated with changes in the thickness of the strokes,
can indicate difficulties in fine motor control and possibly
the onset of neurodegenerative disorders. Furthermore, these
studies do not investigate the correlation between changes in
the shape of handwritten strokes and those in the dynamics
of the writing process that produced those strokes.

Moving on from these considerations, in a preliminary
study [7] we tried to verify if the combined use of both shape
features and dynamic features allows a decision support
system to improve performance for AD diagnosis. Starting
from a database of online handwriting samples, in which
the sequence of points acquired at a given frequency is
recorded in terms of x-y coordinates and pressure value of
each point, we generated a synthetic offline color image
(hereafter denoted as RGB) for each of them.The color of
each elementary trait encodes the dynamic information asso-
ciated with that trait in the three RGB channels. According
to our procedure, a synthetic offline color image is generated
by drawing an elementary trait for each pair of consecu-
tive points in the corresponding online handwriting sample:
The end points of each elementary trait have the same x-y
coordinates of the corresponding pair of points in the online
handwriting sample, while the color of the trait is obtained
by using as RGB values, velocity, jerk and pressure relative
to these points. Thus, in the obtained images, the shape of
each elementary trait is correlated with the information about
the dynamics with which that trait has been produced and the
pressure exerted when it was written.

Moreover, we exploited the capability of deep neural net-
works (DNNs) to automatically extract features from offline
color images. More specifically, we used convolutional neu-
ral networks (CNNs), because they are particularly suitable

1 A secondary motor symptom experienced by some people with
Parkinson’s disease, resulting in an abnormal small or cramped
handwriting

for processing raw images [8]. In this way, the presence
of significant differences among patients and healthy con-
trols, regarding the shape of the traits or the way in which
these traits were produced (speed, jerk, pressure), can be
automatically derived through the learning process of CNN,
which produces, for each handwriting sample, a feature vec-
tor representation. The results obtained employing two tasks
of the whole protocol presented in [9] and different CNNs
pre-trained on the public database ImageNet [10] and then
fine-tuned using the synthetic images generated according to
the above procedure, have been very promising. For com-
parison purposes, in the above study, we also considered
the results obtained by extracting standard dynamic features
from the same data.

Although the results obtained were very encouraging,
reporting an increase in performance compared to those
obtained by using standard dynamic features, the analysis
of the experimental data also showed that in some cases the
features obtained with the CNNs approach were not able to
distinguish healthy people (HC) from people with AD (PT),
especially in the initial phases of the disease: This is probably
due to the simplicity of the considered drawing tasks, which
do not allow the system to adequately capture the alterations
in the writing performance.

Moving from these considerations, we extended the set of
experiments presented in [7], by selecting other graphic tasks
belonging to our protocol with higher level of difficulty. In
particular, we considered tasks requiring a higher level of fine
motor control, as well as tasks that involve a higher cognitive
load and a greater complexity in spatial organization. Also in
this study, we have chosen to only consider graphic tasks that
require participants to produce handwritten graphic forms
that are not as familiar to them as characters and words in
their native language. Our rationale is that if people suffering
from neurodegenerative disorders write regularly this could
make less evident alterations in their handwriting, making
it more similar to that of healthy people who do not write
regularly. In other words, we have selected writing tasks that
the participants are not familiar with, and therefore not very
automated from the neuromotor control perspective. In this
way, the differences between the writing characteristics of
healthy participants and those affected by neurodegenerative
disorders should emerge more clearly [5,9].

Furthermore, in order to verify the relevance of the
dynamic information associated with each handwritten trait,
we generalized the procedure for generating the offline
synthetic images, adding a further channel, to the three pre-
viously considered ones. According to this new procedure, a
multi-channel TIFF image (hereafter denoted as MC) is gen-
erated for each handwriting sample, where the values of first
three channels encode the dynamic information used in our
previous study, namely velocity, jerk and pressure, while the
value of the fourth channel encodes the acceleration. Finally,
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we also exploited in this case the ability of CNN to automat-
ically extract features on TIFF images.

In summary, for each task we generated three different
datasets, namely the one based on standard dynamic fea-
tures [11–14], the one based on the features provided by
CNN applied to synthetic color images [7] and the one pro-
vided by CNN applied to theMC images. Moreover, for each
task and for each dataset, the performance was evaluated
using the same classification schemes, namely random for-
est, K-nearest neighbor, multilayer perceptron and support
vector machines. This choice allowed us to easily compare
the experimental results relative to the different feature vector
representations and, therefore, the role played by the shape
and by the combined use of both shape and dynamic informa-
tion. Finally, a further comparison was made by considering
the classification results directly provided by the fully con-
nected layer of CNN. The main contributions of the paper
can be summarized as follows:

– Assessing the contribution, in terms of performance of an
AD diagnosis system, of dynamic information encoded
as color values in the RGB channels of specifically gen-
erated images. We also compared the results achieved by
using these images with those achieved by using multi-
channel images, generated by encoding a further dynamic
feature in the fourth channel;

– Assessing CNNs ability as an automatic feature extractor
tool comparing their performancewith that achievedwith
widely used handcrafted features;

– Evaluating the effectiveness of the method presented in
[7] on more tasks; these new tasks allowed us to test
participant long-term motor planning ability;

– Comparing two different classification approaches. In
the first one, we classified the participants considering
handcrafted features and applying well-known machine
learning algorithms. In the second we classified the par-
ticipants considering the features automatically extracted
by CNNs, using both RGB and multi-channel images.
For comparison purposes, we also considered the classi-
fication results provided by the fully connected layers of
CNNs.

The remainder of the paper is organized as follows. Sec-
tion 2 discusses the relatedwork, whereas Sect. 3 presents the
architecture of our system. In particular, this section details
the data acquisition process (Sect. 3.1), the handcrafted fea-
ture extraction and the deep feature extraction (Sects. 3.2 and
3.3, respectively), and the classification step (Sect. 3.4). The
experimental results are shown in Sect. 4, while discussion
and future works are eventually left to Sect. 5.

2 Related work

As anticipated in the Introduction, to the best of our knowl-
edge, this is the first attempt to exploit information about
shape changes in handwritten traces, aswell as the correlation
between changes in the shape and changes in the dynam-
ics of the handwriting process, by means of a deep transfer
learning approach. In other words, the studies published in
the literature do not address the specific problem of veri-
fying if shape features extracted from handwriting through
deep learning techniques are more suitable for characteriz-
ing cognitive impairment then handcrafted features. Indeed,
deep learning techniques in the assessment of the AD are
usually employed starting fromMRI images as input signals
[15–17] or from EEG signals [18,19].

Although a lot of handwriting studies are still conducted in
the field of psychology, where standard statistical techniques
are used, increasing attention from themachine learning field
in the analysis of data from handwriting is visible, especially
for the PD diagnosis [20–23].

Regarding the AD diagnosis from handwriting, in [24]
the authors performed semi- or unsupervised learning to
uncover homogeneous clusters of participants, and analyzed
how much information these clusters carry on the cogni-
tive profiles. Furthermore, they introduced a new temporal
representation learning from handwriting trajectories that
uncovered a rich set of features simultaneously, like full
velocity profile, size and slant, fluidity and shakiness, reveal-
ing how these features jointly characterize the cognitive
profiles.

In [6], the authors performed kinematic measures of the
handwriting process to assess the importance of features for
differentiating groups and for assessing the characteristics of
the handwriting process across five different and functional
tasks of copying. The results showed that the kinematic mea-
sures together with theMMSE score were able to distinguish
effectively between the patients belonging to the different
groups considered. As for the feature analysis, pressure and
time-in-air obtained the best performances. Also in [25] the
authors analyzed the stability of the offline handwritten word
“mamma” (mum in Italian) to distinguish AD patients from
healthy controls. The stability of the word was computed by
splitting its image into elementary parts and measuring the
similarity of the adjacent parts. As a classification algorithm
the authors adopted the Yoshimura approach, based on the
comparison of the stability features among the sample to be
recognized and those of the training samples.

In [26], the authors presented a novel approach in which
handwritten signatures were analyzed for the early diagno-
sis of AD. Patients’ signatures were represented by using

123



49 Page 4 of 17 N. D. Cilia et al.

the Plamondon’s Sigma-Normal model, by means of twelve
features.

Finally, the goal of the work reported in [27] was to
distinguish participants belonging to three different groups
(AD, MCI and control group) by comparing their handwrit-
ing kinematics. The authors used discriminant analysis as
a classification algorithm and adopted a protocol consisting
of seven tasks, which included copying and drawing tasks.
In these experiments, the authors, for the same task, inves-
tigated which were the most discriminating features and the
best distinguished groups. They found that: (i) discriminating
features depended on the type of group to be discriminated;
(ii) some tasks, e.g., the clock drawing test, allowed some
groups, e.g., AD vs. MCI, to be well discriminated (100% of
specificity and sensitivity).

Starting from the results of this research, which high-
lights the lack of a unique handwriting protocol and the
limited number of participants involved,we started a research
activity in collaboration with relevant hospitals to define an
experimental protocol capable of capturing the most relevant
aspects of the onset of neurodegenerative diseases, involv-
ing a large number of participants on the basis of rigorous
recruitment criteria. A first result of this activity is the defi-
nition of an experimental handwriting protocol according to
which we collected the handwriting samples of one hundred
eighty participants, including both AD patients and healthy
controls. In particular, in [9] the experimental handwriting

protocol consisting of 25 tasks to record the dynamics of
handwriting, when different motor skills are employed, is
presented. Using a subset of the above tasks, in a first set
of experiments, whose results are reported in [11–13], we
tested 130 participants (both patients and healthy controls)
employing two classification algorithms. The tasks consid-
ered in the above-mentioned studies were selected in order to
evaluate the alterations on kinematic and pressure properties
in repeating complex graphic gestures, which have a seman-
tic meaning, such as letters and words of different lengths
and with different spatial organizations. To improve the per-
formance of these systems in [14], a genetic algorithm has
been used which selects the best subset of tasks among those
belonging to the above protocol.

3 The architecture of the system

The architecture of the whole system is reported in Fig. 1:
The figure shows that the acquired data are processed for gen-
erating both the set of standard dynamic features (denoted as
handcrafted features), and the two groups of RGB and MC
images: Each group of images is then forwarded to the cor-
responding CNN to extract a new set of features; thus, at
the end of this step, two further sets of features are gener-
ated, namely those obtained by the RGB images (denoted as
RGB-deep features), and those obtained by the MC images

Fig. 1 Chain of the whole system
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(denoted as MC-deep features). These three sets of features
are individually used by each of the considered classification
schemes to implement the classification stage. Note that this
stage also includes the classification results directly provided
by the fully connected layer of each CNN.

A detailed description of each stage of the proposed sys-
tem will be provided in the following sections.

3.1 Data acquisition

The first step of our system, as shown in Fig. 1, is devoted to
the acquisition and recording of participants’ handwriting,
produced by participants according to a given protocol, in
terms of x-y-z coordinates of each point, acquired at a con-
stant sampling rate equal to 200Hz. The first two coordinates
are the point position in the two-dimensional space repre-
senting the surface on which the writing is produced, while
the third is a measure of the pressure exerted by the person at
that point. This measure assumes a positive value when the
pen is resting on the sheet and a null value when the pen is
detached, up to a maximum distance of 3 cm from the sheet,
beyond which the system is not able to receive information.
The application developed using the C programming lan-
guage drives the graphic tablet and acquires the coordinates
of the movements of the participants while they are writing
on a A4 sheet fixed to the tablet surface. Furthermore, since
writing skills can be influenced by age, education level and
type of work, this information is also stored.

For the recruitment of participants involved in the study,
with the support of the geriatric ward, Alzheimer unit, of the
“Federico II” hospital in Naples, we used standard clinical
tests, such as the Mini-Mental State Examination (MMSE),
the Frontal Assessment Battery (FAB), the Montreal Cogni-
tive Assessment (MoCA) to distribute the participants into
two groups: healthy people (control group) and patients. All
participants were right-handed and comfortably positioned
approximately 70 cm from the sheet of paper.

Our database includes 180 participants (90 patients and
90 healthy control), each performing the 25 tasks defined in
our protocol. As anticipated in the Introduction, in this study
we only considered the handwriting samples relative to six
graphic tasks produced by all the participants.

Starting from the x-y-z acquired coordinates, three differ-
ent feature extraction approaches were implemented:

(i) Typical online features are extracted and used for imple-
menting the classification schemes described in Sect.
3.2.

(ii) The dynamic information relative to each stroke is con-
sidered for generating the images used for deep learning
classification experiments, as further detailed in Sect.
3.3.1.

(iii) Similarly, in the third approach, MC images are gen-
erated and used for deep learning classification experi-
ments (see Sect. 3.3.1).

We analyzed participants’ handwriting while drawing
lines to predict their cognitive status. In particular, we asked
the participants to perform six tasks, as detailed in the
following.

The first two tasks consisted of joining two points 5cm
apart with a straight continuous horizontal (task 1) or ver-
tical (task 2) line, continuously for four times. This kind of
tasks investigates elementary motor functions [28]. Horizon-
talmovements requiremovements of the arm, keepingfingers
in a fixed position. Vertical movements require small finger
and wrist movements. In addition, drawing a single continu-
ous line four times requires the execution of long-termmotor
planning, which is a typically compromised function in indi-
viduals with cognitive impairments.

The third and fourth tasks consisted of retracing a 3cm
(task 3) or 6cm (task 4) wide circle four times. These tasks
highlight the continuity of the line by retracing, a circular
shape of various dimensions. The continuity and distancing
from the background figure to be traced are indicative of
cognitive deterioration. These tasksmake it possible to check
the automaticity of the movements and the regularity and
coordination of the sequence of movements [29].

Thefifth task consisted of retracing a complex formspecif-
ically devised to test the participant’s motor control skills.
This task investigates the alteration of the handwritten traits
independently of any letter, word or the related semantic
usage. The handwriting movements needed to retrace the
form require a constant motor re-modulation. The shape of
the form consists of a continuous line that presents radii of
different curvatures with the aim of testing both fine control
and long-term motor motion planning [30,31].

Finally, the sixth task was the well-known clock drawing
test: The participant is asked to draw a clock face, including
the numbers, and then to draw the hands at five past eleven.
The clock-drawing test (CDT) is used for the screening of
cognitive impairments and dementia. It is also used to assess
participants’ spatial dysfunction and lack of attention. It was
originally used to evaluate visuo-constructive abilities but it
has been shown that abnormal clock drawing occurs in other
cognitive impairments. The test requires verbal understand-
ing, memory and spatially coded knowledge in addition to
constructive skills [32]. Moreover, in [33] the authors found
that CDT shows a high sensitivity for the diagnosis of mild
Alzheimer’s disease.

Examples of tasks are shown in Fig. 2.
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(a) Task 1 (b) Task 2

(c) Task 3 (d) Task 4

(e) Task 5 (f) Task 6

Fig. 2 Examples of tasks performed by a participant involved in the
experiments

3.2 Handcrafted feature extraction

From the acquisition phase, the handwriting trajectories,
in terms of x, y coordinates, are available. For each point
acquired a third piece of information representing the pres-
sure (z coordinate), is also provided. From these coordinates,
we have calculated the handcrafted features used for the clas-
sification step as detailed below.

Each feature is computed referring to a stroke, defined as
the sequence of traits produced between a pen downpoint and
the following pen up or a change of direction on the y-axis
(see Fig. 3). As shown in this figure, from the starting point
(x1, y1) to the point (x2, y2) we detected a stroke since in (x2,
y2) there is a change of direction along the y-axis. Similarly,
from (x2, y2) to (x3, y3) we detected another stroke because
in (x3, y3) a pen up occurs. We denoted such strokes as on-
paper, since they are acquired by the system when the pen
tip is touching the sheet. Moreover, from (x3, y3) to (x1, y1)
the pen tip is lifted from the sheet but within the maximum
distance that allows the system to receive information: Thus,

Fig. 3 Example of generated strokes

we can detect a further stroke, traced between a pen up and
the following pen down, but keeping the pen tip close to
sheet. We denoted such strokes as in-air.

Many studies in the literature have shown that the anal-
ysis of in air traits can provide significant information for
identifying neurodegenerative disorders: In-air movements,
indeed, characterize the motor planning activities related to
the positioning of the pen tip between two successive written
traits. Moving from these considerations, in a previous study
[7] we decided to extract the features from both in-air and
on-paper strokes. On the other hand, in this study, we have
decided to eliminate the features calculated from the in-air
traits so that the comparison between the system with hand-
crafted features and the CNN system is more faithful. As we
will see in Sect. 3.3, the CNN system uses input images that
do not include in-air strokes.

For each stroke, we extracted twenty-two features, which
can be grouped into two categories, namely static and
dynamic, as detailed in Table 1. A feature vector is obtained
for each task performed by each person by averaging the
values for all the strokes relative to that task.

3.3 Deep feature extraction

In this step, the online handwriting samples, each represented
as sequence of points acquired at a given frequency, in terms
of x-y coordinates and pressure value of each point, are pro-
cessed for generating two groups of images, namely RGB
and MC images. The images of each group are forwarded
to the corresponding CNN, which operate as feature extrac-
tor. To this aim, CNN are pre-trained on the public database
ImageNet [10] and then fine-tuned using such images. The
result, is the production of two feature sets, each representing
the whole database of handwriting samples, but including the
features extracted from the corresponding group of images.
This process is detailed in the following sections.

3.3.1 Image generation

Starting from the same raw data used for handcrafted feature
extraction, stored in terms of x-y coordinates and pressure
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Table 1 Feature list

# Name Description Type

1 Duration Time interval between the first and the last points in a stroke D

2 Start vertical position Vertical start position relative to the lower edge of the active digitizer area S

3 Vertical size Difference between the highest and lowest y coordinates of the stroke S

4 Peak vertical velocity Maximum value of vertical velocity among the points of the stroke D

5 Peak vertical acceleration Maximum value of vertical acceleration among the points of the stroke D

6 Start horizontal position Horizontal start position relative to the lower edge of the active tablet area S

7 Horizontal size Difference between the highest (rightmost) and lowest (leftmost) x coordinates of
the stroke

S

8 Straightness error It is calculated estimating the length of the straight line, fitting the straight line,
estimating the (perpendicular) distances of each point to the fitted line, estimating
the standard deviation of the distances and dividing it by the length of the line
between beginning and end

D

9 Slant Direction from the beginning point to endpoint of the stroke, in radiant S

10 Loop surface Area of the loop enclosed by the previous and the present stroke S

11 Relative initial slant Departure of the direction during the first 80 ms to the slant of the entire stroke. D

12 Relative time to peak vertical velocity Ratio of the time duration at which the maximum peak velocity occurs (from the
start time) to the total duration

D

13 Absolute size Calculated from the vertical and horizontal sizes S

14 Average absolute velocity Average absolute velocity computed across all the samples of the stroke D

15 Road length length of a stroke from beginning to end, dimensionless S

16 Absolute y jerk The root-mean-square (RMS) value of the absolute jerk along the vertical direction,
across all points of the stroke

D

17 Normalized y jerk Dimensionless as it is normalized for stroke duration and size D

18 Absolute jerk The root-mean-square (RMS) value of the absolute jerk across all points of the stroke D

19 Normalized jerk Dimensionless as it is normalized for stroke duration and size D

20 Number of peak acceleration points Number of acceleration peaks both up-going and down-going in the stroke S

21 Pen pressure Average pen pressure computed over the points of the stroke D

22 #strokes Total number of strokes of the task S

Feature types are: dynamic (D) and static (S)

of the points acquired for each online handwriting sample,
we have generated two type of images to be submitted to the
CNN networks.

The traits of both types of synthetic images are obtained
by considering the points (xi , yi ) as vertices of the polygonal
that approximates the original curve.As regards the first type,
we also used kinematic information encoded in the RGB
channels. In particular, these synthetic images are obtained
by considering: i) the triplet of values (zi , vi , ji ) assumed
as RGB color components for the i th trait, delimited by the
couple of points (xi , yi ) and (xi+1, yi+1).

ii) the triplet of values are obtained as follows:

– zi is the pressure value at point (xi , yi ) and it is assumed
constant along the i th trait;

– vi is the velocity of the i th trait, computed as the ratio
between the length of the i th trait and interval time of
5ms corresponding to the period of acquisition of the
tablet;

– ji is the jerk of the i th trait, defined as the second deriva-
tive of vi .

The values of the triplets (zi , vi , ji ) have been normalized
into the range [0, 255] in order to match the standard 0-255
color scale, by considering the minimum and the maximum
value on the entire training set for these three quantities. An
example of a trait generated from these images is reported
in Fig. 4, where the color of the first trait corresponds to the

Fig. 4 Example of encoding for the trait generation in a RGB image
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triplet (z=127, v=127, j=0), while that of the second one to
the triplet (z=127, v=127, j=127).

As previouslymentioned, in order to improve the dynamic
information encoded, we also created multi-channel TIFF
images, storing four representations (frames) of the same
handwriting sample into a single image file. Each frame is a
grayscale representation of the traits obtained according to
a procedure similar to that previously described for RGB
images. More specifically, considering the points (xi , yi )
as vertices of the polygonal that approximates the original
curve, pixel values in each frame are assigned according to
the following criteria (see Fig. 5):

– The first frame implements the acceleration feature: The
acceleration of the i th trait is defined as the derivative of
vi ;

– The second frame implements the jerk feature: The jerk
of the i th trait is defined as the second derivative of vi ;

– The third frame implements the velocity feature: The
velocity of the i th trait is computed as the ratio between
the length of the i th trait and interval time of 5ms corre-
sponding to the period of acquisition of the tablet;

– The fourth frame implements the pressure feature that it
is assumed constant along the i th trait.

As stated in Sect. 1 and better detailed in Sect. 3.3.2, we
adopted four CNN models that accept input images that are
automatically resized to 256x256 forVGG19, to 224x224 for
ResNet50, to 299x299 for InceptionV3 and InceptionRes-
NetV2, respectively. Taking into account these constraints
for both type of images, the original x, y coordinates have
been resized into the range [0, 299] for each image, in order
to provide ex ante images of suitable size and minimize the
loss of information related to possible zoom in/out.

Fig. 5 Example of encoding for the trait generation in a MC image

3.3.2 Deep transfer learning for feature extraction

Deep transfer learning is gaining much popularity nowadays
to solve image classification problems as it is possible to
employ different CNNs trained on public datasets like Ima-
geNet [10] reaching the highest classification performance
in many application fields. In this paper, we adopted four
different CNNsmodels: VGG19 [34], ResNet50 [35], Incep-
tionV3 [36], InceptionResNetV2 [37]. These models differ
one fromanother in several details, such as the introduction of
new structural elements (inception, residual, dropout) or the
number of layers and, consequently, the number of trainable
parameters. The VGG19, in fact, is a model of tens of lay-
ers and twenty-five millions of parameters, while the deeper
InceptionResNetV2 is made of hundreds of layers and con-
sequently the number of parameters increases to sixty-two
millions (see Table 2).

The adopted CNN are composed of a convolutional and
a classification part. The first part is conceived for feature
extraction (FE) from the images used to feed the network,
whereas the second part is for the classification (C) (see
Fig. 6).

The transfer learning (TL) step is followed by a retraining
of the network using the fine tuning (FT) approach, which
requires the retraining of both parts (FE and C) of the net-
work. In order to apply FT, the parameters of the feature
extraction are initialized with the weights obtained on Ima-
geNet, whereas the classification part is initialized with the
weights obtained during the previous TL step.

Table 2 Number of parameters and input/output size of the CNN used
in the experiments

Model Parameters Input size Output size (N)

VGG19 25M 256x256 512

ResNet50 32M 224x224 2048

InceptionV3 30M 299x299 2048

InceptionResNetV2 62M 299x299 1536

Fig. 6 The general structure of the networks used
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The original classification part of the network has been
replaced with a unique classifier for all the models, as
described in the next section.

After the training phase, the CNN networks were used for
both deep feature extraction, and classification with the final
fully connected layers (the classifier section of the deep net-
work). The output of the FE part of the network, for each
input, consists in a vector of features, denoted also as bottle-
neck (i.e., the last activation map before the fully connected
layers in the original model). This is a flattened vector of
extracted features and its size depends on the architecture of
the considered CNN (the number of features for each model
is shown in Table 2).

Once the CNN architectures are chosen, it is necessary to
assess them through an experimental phase with the aim of
maximizing the mean accuracy of every model by selecting
the following hyper-parameters and settings:

– Stochastic gradient descent (SGD) with learning rate
0.001,momentum 0.9: optimizationmethod used tomin-
imize the loss function.

– Categorical cross-entropy: is the adopted loss function.
– Batch size 16 and 20, respectively, for RGB and MC
images: number of training set images considered in each
iteration.

– Max epochs equal to 2, 000: One epoch is one pass on
the entire training set and contains a number of iterations
equal to (trainingsetsi ze)/batchsi ze.

– Patience 200: If the validation accuracy does not improve
for a number of 200 epochs, the training is stopped.

– Accuracy as a measure of performance.

During the training phase, a fivefold cross-validation strat-
egy was adopted, using a validation set to reduce or avoid the
undesired over-fitting phenomenon. Following the standard
cross-validation procedure, the data set was randomly par-
titioned into five equally sized folds. At each iteration, all
the samples belonging to a single fold were used as test set,
while the samples belonging to the other four folds were fur-
ther divided into two subsets: a validation set obtained by
randomly selecting 10% of these samples, and a training set
consisting of the remaining ones. In practice, at each iter-
ation, the training procedure exploits the validation set to
stop the learning if the performance on such data begins to
deteriorate, thus avoiding the over-fitting phenomenon. The
cross-validation process is repeated five times, with each of
the five folds used exactly once as a test set.

3.4 The classification step

The classification step was carried out considering nine dif-
ferent features sets, as already mentioned in the previous
sections. Specifically, the first set consists of the twenty-two

handcrafted features (see Sect. 3.2), while the remaining ones
are extracted from both for RGB and MC images, through
the FE part of each of the four CNNs described in Sect. 3.3.1.
Summarizing, the first feature set includes standard dynamic
features obtained from the online handwriting samples, four
feature sets are provided by CNN applied to RGB images,
and the remaining four feature sets are provided by CNN
applied to MC images.

The classification was conducted following two different
approaches. The first one involved the using of a standard
classifier, which takes as input the features provided by the
CNN feature extractor. The second approach, on the other
hand, consists in using an unique classifier composed of fully
connected layers for each CNN (see Fig. 6), properly mod-
ified for our purposes, i.e., classifying two classes (healthy
control or patient) instead of the thousands as is the case of
the ImageNet dataset.

Regarding the first approach, we decided to consider
four well-known classification schemes among the most
used: random forest (RF) [38], multilayer perceptron (MLP),
support vector machines (SVM) [39], and the K-nearest
neighbors (K-NN). Those classifiers have different charac-
teristics and each one represents a different kind of model,
more precisely RF is an ensemble of decision tree, MLP is a
connectionist network, K-NN is an instance based nonpara-
metric regression algorithm and SVM is kernel-based.

The second approach, instead, relies on the use of a classi-
fier, where the input layer comprehends a number of neurons
equal to the number of features reported in Table 2, while
the output layer has two neurons, each one corresponding to
the desired class (healthy controls and patients). There are
two hidden layers between the input and the output one, with
two thousand forty-eight neurons each and an intermediate
dropout layer.

4 Experimental results

The experiments reported in this section have been executed
on the following system architecture:

– CPU and RAM: Intel Core i7-7700 CPU @3.60GHz
equipped with 32GB of RAM;

– Graphics card: GPU Titan Xp;
– Software: Keras 2.2.2 and TensorFlow 1.10.0.

For the four classification schemes mentioned in Sect. 3.4
(RF, MLP, K-NN, and SVM) we performed thirty runs and
used the fivefold cross-validation strategy to evaluate the
classification accuracy. The results reported in the follow-
ing have been computed averaging the accuracy achieved
on the thirty runs performed. However, since the use of the
fully connected layer of CNN as classifier needs to retrain
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Table 3 Training times,
expressed in seconds

Task 1 Task 2 Task 3 Task 4 Task 5 Task 6

VGG19 6000 6000 6000 5100 1860 1680

ResNet50 8100 6000 4500 3900 1740 1980

InceptionV3 8100 8400 12000 7200 2160 2400

InceptionResNetV2 9600 10800 9900 9000 3240 2700

Table 4 Values of the classifier parameters used in the experiments

Classifier Parameter Value

RF trees 100

K-NN K 3

MLP Learning rate 0.3

Momentum 0.2

Hidden neurons (#features + #classes)/2

Epochs 500

SVM Kernel RBF

C 1.0

γ 0.5

the whole network (see Fig. 6), thus involving a large amount
of time, the FC results were computed averaging the accu-
racy achieved on the five test folders, as detailed in Sect.
3.3.2. Table 3 shows the time needed to extract the features,
while the values of the parameters used in the experiments
are shown in Table 4.

The feature extraction procedure detailed above was
applied to the data of the six drawing tasks described in Sect.
3.1. Since the extraction of the deep features requires a train-
ing phase of the CNN, to avoid any bias with the fivefold
cross-validation strategy, we selected for each sample the
feature vector provided by the CNN, when that sample was
in the test fold, i.e., it was non included in the folds used for
training.

To assess the effectiveness of our system, we performed
three sets of experiments. In the first one, we evaluated and
compared the results achieved by the CNNs used on the six
tasks previously mentioned. In the second one, we compared
the classification performance achieved by RGB and MC
images. Finally, in the third set we compared the classifi-
cation performance of our approach with those achieved by
using the handcrafted features described in Sect. 3.2. The
results of these experiments are detailed in the following
subsections.

4.1 Tasks comparison

In this set of experiments, we tried to answer to the following
questions: Which is, if any, the best performing task among
those considered?Among the four CNNs usedwith RGB and

MC images, there is one that performs better than the others?
Do the CNNs exhibit similarities or differences on the tasks?

With the aim of reporting a detailed description of the
results achieved, Tables 5 and 6 show the results for each
task provided by the five considered classifiers, when using
both RGB-deep features and MC-deep features, extracted
with different CNNs. From both tables, we can observe that,
for each task, the performance of each classifier varieswidely
as the deep features used vary. Similarly, for each task, the
performance obtained by using the features extracted with
each CNN, varies widely changing the classifiers. Further-
more, for each classifier, the performance obtained by using
the features extracted with each CNN, significantly varies
changing the tasks.

To summarize the results shown in Tables 5 and 6, we
plotted two vertical bar graphs for each feature type. The
first graph displays the accuracy achieved by each classifier,
whereas the secondone that achieved by eachCNN.Theplots
of Fig. 7 refer to RGB-deep features, while those of Fig. 8 to
MC-deep features. In both figures, the left plot shows for each
task the mean accuracy of each classifier, averaged on the
results achievedwith the features provided by the fourCNNs,
while the right plot shows for each task the mean accuracy of
each CNN averaged on the results of the five classifiers. The
aim is to see “at a glance” if there is a CNN or a classifier
that performs better than the others. From the figures, we can
observe that task 2 achieved the worst performance, both for
RGB andMC features. This result is explainable considering
that task 1 requires a greater motor load than task 2. Indeed,
when joining the points vertically, it is easier to carry out the
task without moving the arm with small movements of both
fingers and wrist.

From the figures showing the classifier performances (left
plots), we can observe that RF and SVM outperform the
others in most cases. These results on one hand confirm the
effectiveness of the ensemble-based strategy of RF, as well as
that of the SVM kernel-based approach, specifically devised
for two class problems. On the other hand, they confirm that
the simple K-NN algorithm was not able to effectively esti-
mate the probability distributions underlying our data. These
results also highlight an important point: The effectiveness
of RGB features extracted by the CNNs is independent of the
classification algorithm used to implement the classification
layer. Furthermore, RF and SVM performance is better than
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Table 5 Classification results
achieved using RGB features

Task 1 Task 2 Task 3 Task 4 Task 5 Task 6

ACC SD ACC SD ACC SD ACC SD ACC SD ACC SD

VGG19

RF 67.6 2.3 62.8 2.8 70.0 2.4 68.2 1.6 63.7 2.4 73.2 2.1

K-NN 64.3 2.2 56.7 2.7 61.0 2.0 61.6 2.1 64.3 2.0 72.8 1.9

SVM 61.7 2.4 55.4 2.0 67.6 1.4 66.9 1.3 60.1 2.2 70.8 1.2

MLP 63.5 3.3 56.6 2.8 58.1 3.4 58.2 3.4 60.5 2.8 72.6 1.8

FC 64.1 15.2 59.0 5.1 70.7 7.5 64.7 11.0 64.8 11.7 70.4 13.5

ResNet50

RF 69.7 2.1 60.3 2.4 71.2 2.4 71.7 2.2 66.0 2.2 69.1 2.3

K-NN 66.8 2.1 57.0 2.4 66.3 2.6 57.9 1.4 59.6 2.0 62.5 2.0

SVM 72.0 1.7 58.9 1.9 67.3 2.2 72.6 1.6 65.1 1.4 67.9 1.8

MLP 53.8 2.1 50.6 3.4 60.3 8.7 52.9 3.5 53.0 2.7 56.2 4.2

FC 61.1 8.0 53.5 9.5 68.8 7.7 64.4 12.7 64.3 9.3 66.8 11.4

InceptionV3

RF 68.6 2.1 54.5 3.8 70.5 2.5 71.7 1.9 66.13 2.93 67.69 3.09

K-NN 66.5 1.8 56.0 2.8 62.7 2.5 66.8 2.0 64.79 2.06 58.58 2.43

SVM 71.1 1.5 55.4 2.7 71.1 2.0 73.1 1.9 69.18 1.32 69.84 2.28

MLP 67.5 2.5 53.5 1.5 63.9 1.7 62.8 4.7 58.12 5.55 63.24 3.87

FC 64.2 9.0 57.1 4.8 68.0 6.6 65.7 11.1 58.86 11.15 62.41 7.00

Inc.ResNetV2

RF 70.4 2.4 65.4 2.0 73.0 2.1 69.2 2.3 65.2 2.1 65.3 2.4

K-NN 68.4 1.8 62.8 2.4 65.0 2.0 64.6 2.0 64.5 2.0 64.1 2.3

SVM 71.1 2.2 61.2 2.4 71.8 1.6 67.5 1.4 68.7 1.9 58.6 1.7

MLP 74.6 2.3 63.3 1.5 70.4 2.1 52.6 2.1 57.3 4.9 51.6 2.0

FC 60.0 15.9 62.7 7.3 68.0 10.6 65.3 10.1 62.0 8.5 55.3 9.4

Bold values highlight the overall best performance achieved on each task.

Table 6 Classification results
achieved using MC features

Task 1 Task 2 Task 3 Task 4 Task 5 Task 6

ACC SD ACC SD ACC SD ACC SD ACC SD ACC SD

VGG19

RF 64.0 2.6 60.9 2.5 68.6 1.5 64.3 2.4 66.4 2.4 69.0 2.2

K-NN 56.9 2.5 55.5 2.3 59.7 2.4 59.5 2.0 62.6 2.9 65.4 1.8

SVM 59.7 1.8 55.1 2.5 64.5 2.1 62.5 2.0 61.9 2.0 68.3 1.7

MLP 58.2 3.3 56.6 2.8 61.5 2.9 62.1 2.4 61.3 2.3 65.6 2.9

FC 66.2 10.7 62.7 10.0 69.5 10.5 64.2 11.1 64.7 7.4 64.5 12.3

ResNet50

RF 60.1 2.6 56.3 3.0 72.0 2.4 66.8 2.7 65.0 2.2 66.0 2.7

K-NN 59.3 2.3 54.9 1.7 61.1 1.5 62.8 2.1 58.3 2.8 58.3 1.9

SVM 57.4 2.5 53.7 2.3 72.2 1.7 67.2 1.9 66.6 1.8 69.9 2.1

MLP 55.6 2.8 49.7 1.0 64.0 5.4 57.7 4.8 57.2 5.2 58.3 4.3

FC 61.7 12.1 59.0 8.8 72.8 9.0 67.7 13.7 65.6 10.3 68.6 8.3

InceptionV3

RF 67.5 2.2 57.9 2.5 68.8 2.5 67.6 2.2 65.6 3.0 62.2 2.8

K-NN 63.5 1.9 54.1 2.2 57.1 1.7 61.4 2.0 59.6 2.5 60.6 2.3

SVM 67.7 2.2 61.8 2.0 68.3 2.3 68.7 2.0 66.5 2.4 64.5 2.8

MLP 66.3 2.0 56.8 3.2 62.7 4.0 63.7 4.0 55.4 3.5 61.8 2.2

FC 67.2 8.9 58.9 13.1 70.5 2.6 71.2 13.0 61.1 7.1 65.4 13.6
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Table 6 continued Task 1 Task 2 Task 3 Task 4 Task 5 Task 6

ACC SD ACC SD ACC SD ACC SD ACC SD ACC SD

Inc.ResNetV2

RF 65.2 2.3 61.4 2.7 67.6 2.1 59.8 2.6 67.6 2.2 66.4 2.2

K-NN 58.9 2.9 56.9 2.1 63.0 2.1 57.9 2.2 59.6 2.5 60.7 2.2

SVM 63.3 2.7 59.9 2.6 65.6 1.8 58.2 2.6 67.9 1.7 66.8 1.7

MLP 66.7 2.5 58.5 2.3 59.7 3.0 58.2 3.3 68.4 2.8 61.4 2.6

FC 61.6 11.8 58.7 10.4 67.8 11.3 64.8 10.9 70.7 3.3 55.0 17.1

Bold values highlight the overall best performance achieved on each task.

(a) Classifiers (b) CNN

Fig. 7 Average accuracy achieved by the classifiers (a) and the CNNs (b) using RGB images

(a) Classifiers (b) CNN

Fig. 8 Average accuracy achieved by the classifiers (a) and the CNNs (b) using MC images
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that of the FC classifier trained during the process for feature
extraction. The same does not occur for MC features.

From Fig. 7b, showing the CNN performances using
RGB features, we can observe that InceptionResNetV2 (60M
parameters) achieved the best results on the first three tasks,
whereas for the remaining tasks different cases occur. In par-
ticular, for tasks 4 and6 the best performancewas achievedby
InceptionV3 (30M) and VGG19 (25M), respectively. Most
probably, this is due to the higher complexity of these tasks
when compared to the first three. Therefore, simpler CNNs
allowed a more effective training on the available data, thus
providing better results. On the other hand, on task 5 the
CNNs achieve similar performances, confirming that in this
case the number of parameters did not affect the training
process.

Looking at Fig. 8b (CNN performance on MC features),
we can see that, except for tasks 2 and 5, InceptionResNetV2

did not achieve the best performance. This result seems to
suggest that the use of CNNwith higher complexity does not
allow the system to achieve better performance.

4.2 Comparison of MC and RGB features

In the second set of experiments, we compared the classifica-
tion performance achieved by using RGB and MC features.
The aim was to evaluate, in terms of performance, the con-
tribution of the fourth channel in MC images.

Figure 9 shows the comparison between the classification
performance achieved using MC and RGB features. To this
aim,we averaged the accuracy achieved by the five classifiers
used and plotted a vertical bar per task. From the graphs,
we can observe that in most cases the performance achieved
using RGB features is slightly better than (or comparable
with) that achieved using MC features. This result confirms

(a) VGG19 (b) ResNet50

(c) InceptionV3 (d) InceptionResNetV2

Fig. 9 Accuracy for each task averaged over the results of five classifiers
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Table 7 Classification results
achieved by the FC classifier,
using RGB and MC features

Task 1 Task 2 Task 3 Task 4 Task 5 Task 6

RGB MC RGB MC RGB MC RGB MC RGB MC RGB MC

VGG19 64.0 66.2 59.0 62.7 70.7 69.5 64.7 64.2 64.8 64.7 70.4 64.5

ResNet50 61.1 61.7 53.5 59.0 68.8 72.8 64.4 67.7 64.3 65.6 66.8 68.6

InceptionV3 64.2 67.2 57.1 58.9 68.0 70.5 65.7 71.2 58.9 61.1 62.4 65.4

Inc.ResNetV2 60.0 61.6 62.7 58.7 68.0 67.8 65.3 64.8 62.0 70.7 55.2 55.0

Table 8 Results of classification
with the handcrafted features

Task 1 Task 2 Task 3 Task 4 Task 5 Task 6

ACC SD ACC SD ACC SD ACC SD ACC SD ACC SD

RF 61.3 2.5 66.4 1.7 53.0 3.2 68.2 1.5 64.9 2.9 55.9 2.4

K-NN 58.1 3.4 64.3 1.7 57.9 2.9 63.7 2.3 61.1 2.3 54.2 2.9

SVM 52.1 0.1 51.7 0.0 51.3 1.0 51.0 0.4 51.7 0.9 52.3 2.6

MLP 57.3 2.7 66.3 1.8 55.0 3.6 63.4 2.2 63.2 3.5 53.3 3.3

AVG 57.2 62.2 54.3 61.6 60.2 53.9

Bold values highlight the overall best performance achieved on each task

that the information added by the fourth channel (see Sect.
3.3) did not allow our system to significantly improve its
performance.

Moreover, as shown in Fig. 8a, in the case of MC fea-
tures, the FC classifier achieved slightly better or comparable
performance when compared with the other classifiers con-
sidered. This result confirms that during the training step,
to deal with the higher complexity of the MC images, it
was necessary to exploit the interaction between the feature
extractor and the classification layer (see Sect. 3.3). Note that
the results provided by the FC classifier show higher values
for the standard deviation than those provided by the other
classifiers (seeTables 5 and 6). This is probably due to the fact
that, as previously mentioned, the FC results were computed
by averaging the accuracy achieved over the five test folders,
while the results of the other classifiers were averaged over
30 runs.

To highlight these aspects, we compared the performance
of RGB and MC features achieved by using the FC classifier
only (see Table 7).

4.3 Comparing deep and handcrafted features

In the last set of experiments we compared the classification
performance achieved usingRGB featureswith that achieved
using the handcrafted features.

Table 8 shows the accuracy achieved using the handcrafted
features. The last row of the table shows, for each task, the
average accuracy computed over the four classifiers. From
the table, we can observe that using these features the best
performance is achieved by RF and K-NN. Thus, while con-

firming the effectiveness of the RF ensemble-based strategy,
K-NN, in contrast to the deep features case, obtained sat-
isfactory results. In this case, indeed, the K-NN algorithm
was able to effectively estimate the probability distributions
underlying our data represented through the handcrafted fea-
tures. From the table, we can also observe that, in this case,
task 2 allowed us to achieve good performance. These results
suggest that for this task, in contrast to the deep features case,
the information added by some of the handcrafted features
allowed us to effectively distinguish between the handwriting
of patients from that of the control group. On the contrary,
tasks 3 and 6 achieved poor performance with these features.
These results suggest that handcrafted features do not repre-
sent the shape and dynamics of handwriting in such a way
to effectively distinguish handwriting samples of cognitively
impaired people from those of the control group.

To summarize the comparison between deep and hand-
crafted features, we plotted a vertical bar graph showing the
best overall accuracy achieved on each task (see Fig. 10).
For each task, we plotted the best overall classification per-
formance achieved by using deep-RGB features (bold values
in Table 5) and handcrafted features (bold values in Table 8).
From the plot, we can observe that our deep-based approach
outperforms that based on the handcrafted features, except
for task 2. These results confirm the effectiveness of our
approach for combining shape and dynamic information. The
slight performance difference in task 2 is probably due to the
fact that the low complexity of this task does not allow the
selection of discriminant features, as also confirmed by the
poor classification results generally obtained by using both
deep and handcrafted features.
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Fig. 10 Comparison results between deep-RGB and handcrafted fea-
tures. The accuracy values shown are those highlighted in bold in
Table 5

5 Discussion and conclusions

In this paper, we presented a deep transfer learning approach
for feature selection applied toAlzheimer’s disease diagnosis
through handwriting analysis.

The rationale of our work was that of combining infor-
mation derived from the shape of online handwritten traits
with those related to the dynamics of the writing process
used to produce such traits. To this aim, we generated syn-
thetic offline multi-channel images, where each elementary
trait in the handwritten trace is represented in each channel
with a gray level encoding a single dynamic piece of infor-
mation associated with that trait. Moreover, we exploited the
capability of convolutional neural networks (CNNs) to auto-
matically extract features from offline images.

In this study, we compared the results obtained by gen-
erating both three-channel (RGB) images and four-channel
(TIFF) images. In the first case, the three channel encode for
each elementary trait, velocity, jerk and pressure applied for
producing that trait. In the second case, a fourth channel has
been added to the previous ones to encode the acceleration.
The experimental results obtained by exploiting the features
extracted from these images were also compared with those
obtained by using standard dynamic features directly derived
from the original online handwriting samples. For the sake of
comparison, the performance was evaluated using the same
classifiers: This choice allowed us to easily analyze the exper-
imental results relative to the different feature representations
and, therefore, the role played by the shape and by the com-
bined use of both shape and dynamic information. Finally, a
further comparison was made by considering the classifica-

tion results directly provided by the fully connected layer of
CNN.

As a first consideration, we can observe that the deep
features seem more promising than the handcrafted ones,
reaching the best performance in terms of accuracy. Indeed,
for each task and for each classification scheme, there is
always a CNN model whose features allow us to obtain bet-
ter results than those obtainable with the handcrafted ones.
The only exception is task 2, where the best performance
obtained by using handcrafted features was slightly better
than that obtained with deep features.

Regarding the comparison between RGB and MC deep
feature, the analysis of the results showed that the addition
of a further channel in the generation ofmulti-channel images
does not seem to allow better feature extraction: In fact, the
classification results obtained with the RGB deep features
are almost always better than those obtained with the MC
deep ones. The only exception is the case of task 5, where
the FC classifier, obtained by training Inc.ResNetV2 with
MC deep features, produced slightly better results. However,
it should be noted that these results were obtained using only
handwriting samples related to graphic tasks: Thus,we intend
to carry out, as a future work, a wider comparison using
the data of all the writing tasks included in our protocol.
Considering the whole set of tasks would also allow us to
improve the overall performance of the diagnostic system,
by combining for each participant the responses provided by
the classifiers for each single task [40,41].

Finally, as a future development of our system, we would
also like to include information related to in-air features:
As mentioned above, we did not exploit this information
because our aimwas to evaluate the combined use of dynamic
and morphological features. However, since in-air points are
acquired from the tablet during the execution of the writ-
ing tasks, we could add these in-air traits when generating
the synthetic images and evaluate their effects on the feature
extraction process.
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