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Abstract
This paper proposes a human body orientation estimation method using the Kinect camera depth data. The input of our system
consists of three one-dimensional distance-based signals which reflect the body’s surface contours of the human upper body
portion, i.e., the upper chest, upper abdomen, and lower abdomen. Such signals are then normalized using their distances to
achieve the same amount of the lower parts. All normalized signals are concatenated to provide a mix of contour features.
We used Support Vector Regression (SVR) to classify the feature and Kalman Filter to estimate the continuous orientations
instead of using discrete orientations. We also extend our work by adding human motion direction to the robust estimate of
human body orientation when walking. We conducted two evaluation schemes, i.e., body orientation at static position and
body orientation when moving. The experimental results show that our system achieves impressive results by achieving mean
average of angle error (MAAE) of 0.097◦ and 5.82◦ for estimating body continuous orientation at static position and estimating
body continuous orientation when moving, respectively. Therefore, it is very promising to be applied in real implementations.

Keywords Orientation estimation · Depth · Kinect · Support Vector Machine · Kalman filter

1 Introduction

Recently, the presence of social service robots cannot be
avoided in order to help or assisting everyday human life.
In some cases, to mutually working with humans, a robot
must be able to understand human intention [1] and atten-
tion [2,3]. Human intention can roughly be modeled as the
orientation of a human body when standing still or walking,
while a human attention can be estimated as the orientation
of human head due to limited field of view of human visual
sensor.

In terms of mobile robot, human body orientation has a
greater chance to be used since it can show the intention of
human directly from his motion directions. When the human
motion is inline with the robot motion direction, then, it
means the level of human awareness is high. Therefore, the
robot can keep its current action that is in accordancewith the
interaction task. On the contrary, if the human motion direc-
tion is different with the robot motion direction, it means the
human level of awareness is getting low. This should forces
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the robot to stop its current action and giving more attention
to the targeted human in order to plan another action that
must be taken to deal with the human activity.

The topics about estimating human body orientation have
gained special concerns of some researchers. The topics are
mainly decomposed into several focuses, i.e., sensor types,
features used, and static or moving objects. Based on the
sensor types, we can decompose it into four commonly used
sensors, i.e., Laser Range Finder (LRF) [4–6], RGB cam-
era [7–13], RGB-D camera [14–17], and ToF camera [18].
With respect to the features used, some researchers worked
on photometric image as presented in [10–12,14], whereas
the combination of RGB image and depth was proposed in
[15–18]. The other approaches like human body shape fea-
tures were also presented in [4–9,13,18] as the solution. And
finally, related to the static andmoving objects, we have eval-
uated some references as shown in [4,5,9,11,13,15,18], while
the rest use static image experiments from the dataset.

We have analyzed and evaluated some of the references
that we mentioned earlier and concluded the results in
Table 1. Based on the results of the comparison of references
from Table 1, in general, solutions related to the estimation
of human body orientation are divided into two sources of
information, namely images from the camera and distance
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from LiDAR. The methods that use information as a func-
tion of distance fromLiDAR [4–6], on average, have a longer
range, faster computation time and fairly good precisionwith
a fairly small mean of absolute error (MAE) compared to
images. However, LiDAR is an expensive device with lim-
ited functionality and usually still requires the help of other
devices such as cameras to get better functionality.

On the other hand, camera-based methods are divided
into twomodels, namely using photometric information from
RGB images and using a combination of photometric infor-
mation fromRGB images, and depth. Several methods based
on photometric information fromRGB images that use tradi-
tional features and classification methods [7–9,11,13] have
an average accuracy rate of below 70% with an MAE above
10◦, while some methods based on photometric information
from RGB images using Deep Learning or Convolutional
Neural Network (CNN) methods [10,12,14] get better accu-
racy results with a fairly small MAE. Unfortunately, the use
of Deep Learning and CNN is quite heavy so it requires
additional equipment in the form of a GPU which is quite
expensive. However, various backgrounds are still a weak-
ness of the photometric-basedmethod,while the combination
of RGB and depth images has a better solution for separating
objects from the background. By utilizing depth informa-
tion in addition to RGB, traditional classification methods
[15,16,18] are able to produce an average accuracy of above
75%.

This paper basically extends our work in [17] where we
have developed aRGB-D-based humanbodyorientation esti-
mation system in a static position. The extension is done by
combining our existing systemwith the humanmotionmodel
so that the system can be implemented to estimate human
orientation in motion. There are two main contributions in
this paper. First, we converted the human upper body con-
tours into a set of one-dimensional signals as the function
of distances. This technique is effective to robustly estimate
the human body orientation and efficient as well, by using a
Kinect camera only which is far cheaper compared to laser
range finder sensor. In addition, our system does not require
the help of other devices such as an expensive GPU. Second,
a combination with a humanmotionmodel was proven effec-
tive to estimate humanbody orientation inmotion. Therefore,
our system is ready to be used in real implementation.

The rest of the paper is organized as follows. Section 2
describes our features extraction and processing the fea-
tures combination for estimating human body orientation.
Section 3 discusses an implementation of our combined-
feature for a real scene application of human body orientation
estimation. Section 4 presents the experimental results and
discussions. And finally, we conclude our work and describe
possible future work in Sect. 5.
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Fig. 1 Whole design of our proposed human body orientation estimation system based on depth image

2 Depth-based human body orientation
estimation

Based on our previous paper in Saputra et al. [17], our system
description is shown in Fig. 1. We can briefly explain that a
RGB-D camera is used to capture the scene and produces a
RGB image and a depth image. The depth image is used to
find human upper body based on the shape of upper half body.
Once the upper body detected, then, three projected horizons
are taken from human upper body segment. It produces three
distance-based signals to be concatenated to become a body
orientation feature. SupportVectorMachine (SVM) is used to
classify discrete orientation. With the help of face detection,
the front and rear body parts can be distinguished so that the
body orientation can be determined whether 0◦ or 180◦. For
other orientations, it is estimated directly using information
from three curves projected to the upper body assisted by a
Kalman Filter-based tracker.

2.1 Acquiring depth data from Kinect camera

In this work, a Kinect camera is utilized to capture scenes in
front of the camera. TheKinect camera produces twooutputs,
i.e., RGB image anddepth image.Weuse the depth imagedue
to its advantage to easily separate object from background,
so that the common problems that occur on the RGB image-
based detection due to a variety of backgrounds such as false
detection can be avoided. Figure 2 shows the result of depth
image of human in a real environment.

Figure 2 shows that the shape of human can be seen clearly
in silhouette even without human attribute details, like face
and clothing color. The background is also less in detail,
so that this advantage is actually very helpful to distinguish
foreground object like a human from background.
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Fig. 2 Result of depth image produced by Kinect camera. a the original
input images shown in RGB and b the depth images

2.2 Human upper body detection and tracking

We employed the same method as shown in [19] by utilizing
Histogram of Oriented Gradient (HOG) that is proposed by
Dalal et al. [20] to extract the features of human upper body
from the depth images. To train our human upper body detec-
tion system using HOG, we first cropped a frame which fits
to the human upper body shape. Since the cropped frames
may have different sizes, we resize all the depth images into
the same size of 72 × 96 pixels. We chose this size because
the human upper body shape can still be seen clearly and this
reduction can speed up the computation time.

The frame is then divided into 9 × 12 blocks where each
block contains 8× 8 pixels. The gradient calculation is then
carried out to each block to find 9 bins of gradient orienta-
tion, ranging from 0◦ − 180◦. The HOG feature extraction is
formulated as follows.

mx,y =
√

(Lx+1,y − Lx−1,y)2 + (Lx,y+1 − Lx,y−1)2, (1)

φx,y = tan−1
(
Lx,y+1 − Lx,y−1

Lx+1,y − Lx−1,y

)
,−π

2
< φ <

π

2
, (2)

where mx,y is a gradient at pixel (x,y), Lx,y is a luminance
value at pixel (x, y) and φx,y is a calculated angle at pixel
(x, y). The HOG feature of human upper body is visualized
using a histogram of φ that represents the overall character-
istics of a human as shown in Fig. 3.

We have collected 5400 HOG features of human upper
body as a positive samples dataset and 10,800 HOG features
of nonhuman upper body as a negative samples dataset. The
positive and negative samples datasets are used as a train-
ing dataset. We fed the training dataset to Support Vector
Machine (SVM) using a library by Chang et al [21], called
as LibSVM. The SVM’s parameters setting is summarized in
Table 2. All positive and negative samples are trained using
LibSVM to get a model of human upper body. In our real
implementation, we used the trained model to detect human

Fig. 3 HOG feature on a depth image of human upper body. a the
original image is shown in RGB and b the HOG feature of the depth
image

Table 2 Parameters setting of Support VectorMachine used to train the
model of human upper body

No. Parameters Value

1. Type Multiclass C-SVC

2. Kernel type Linear

3. C cost 1

Fig. 4 Result of human upper body detection. a the depth image and b
the detected human upper body is bounding boxed

upper body directly using a Kinect camera. The result of our
detection system is shown in Fig. 4.

Once the human upper body is detected and bounding
boxed, then we employ a tracker based on the Kalman filter
[23] to stabilize the detection result. The state of our Kalman
filter utilizes the model of a constant velocity of the center
position of the bounding box, (ẋc, ẏc), and the person’s rela-
tive distance to the camera, ḋc. The constant velocity model
is applied to the center point of the bounding box, (xc, yc),
and the person’s relative distance to the camera, dc, includes
its width, w, and height, h, and their corresponding process
noises, (εxc , εyc , εdc , εw, εh, εẋc , εẏc ), which is formulated as
follows.

xc(t) = xc(t − 1) + ẋc(t − 1)Δt + εxc ,

yc(t) = yc(t − 1) + ẏc(t − 1)Δt + εyc ,

dc(t) = dc(t − 1) + ḋc(t − 1)Δt + εdc ,

123
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Fig. 5 Detectable face normally indicates a human frontal body part

w(t) = w(t − 1) + εw,

h(t) = h(t − 1) + εh,

ẋc(t) = ẋc(t − 1) + εẋc ,

ẏc(t) = ẏc(t − 1) + εẏc ,

ḋc(t) = ḋc(t − 1) + εḋc , (3)

where εxc = 0.1 and εyc = 0.1 are the noise’s values set for
the center point of the bounding box, εdc = 0.01 is the noise’s
value set for the person’s relative distance to the camera, and
εw = 0.1 and εh = 0.1 are the noise’s values set for the
width and height of the bounding box.

2.3 Face detection

The orientation of the human body can be easily determined
by the presence or absence of the face. His face would be vis-
ible if anyone looks forward as shown in Fig. 5. Conversely,
if the person faces backward, his face cannot be seen, while
the left and the right direction also reveals a few face appear-
ances that can be traced from the initial location of the face.

In this paper, we used the Haar-Cascade method [22] to
detect the human face. The Haar–Cascade was employed
inside the human upper body’s bounding box only, to reduce
the computation time. The detected face was useful for dis-
tinguishing human facing front or back, as it is difficult to
differentiate the human stomach and back only by using con-
tours.

2.4 Distance as a representation of feature

This section explains the core of our work. By utilizing the
bounding box area of the upper body, we measured the rela-
tive distance of the body surface from the camera.We take the

Fig. 6 Curves as the function of the distance of the projected horizontal
lines on the human upper body area at α = −30◦

distance at each point, from the left end to the right end of the
bounding box, from three horizontal projection lines on the
upper chest, upper abdomen, and lower abdomen. We man-
ually set the height of the three horizontal projection lines
at the beginning, namely 0.45 × h, 0.75 × h, and 0.95 × h.
By using the Kinect’s library, the visualization of the three
projected horizontal lines and their contour curves as the
function of distances is shown in Fig. 6.

After taking a set of sample features at a certain angle, and
the results confirmed can be used, we then collect distance
data based on the 12 discrete angular orientations needed for
SVM training. Figure 7 shows the results of the capture of
the three signals from the line projection results on the three
parts of the upper human body.

Themain reason for using three horizontal line projections
which represent the human upper body contours is to main-
tain the unique feature of orientation due to hand movements
when walking. When walking, the arm will swing, where
the upper chest does not change too much, the swing of the
upper arm changes slightly, and the swing of the forearm
changes a lot. By keeping the surface contours of the upper
chest unchanged, and enriching the amount of variation in
the upper and lower arm, this strategy makes our method
reliable even when people walk.

2.5 Features normalization and combination

Before using distance-based feature data, we normalize the
data to eliminate the effect of distance, d, on data.We subtract
all amplitude of points of the curves by the nearest point
distance value of the body from the camera. Therefore, we
will only get a contour curve with the lowest value on the y-
axis = 0. Then, to strengthen the characteristics of the curve,
we squared the values of each point so that we get a sharper
and clearer contrast amplitude difference. To standardize the
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Fig. 7 Examples of the curve as a function of the distance of the projected horizontal lines on the human upper body area for twelve orientation
angles

Table 3 Parameters setting for collecting training dataset

No. Parameters Value

1. Relative distance, d 1.5m, 2m, 2.5m, 3m and 3.5m

2. Type of clothes shirt or t-shirt, jacket, cloak and hijab

3. Orientation, α (moving) −150◦, −120◦, −90◦, −60◦, −30◦, 0◦, +30◦, +60◦, +90◦, +120◦, +150◦, +180◦

4. Orientation, α (stand still) −150◦, −120◦, −90◦, −60◦, −30◦, 0◦, +30◦, +60◦, +90◦, +120◦, +150◦, +180◦
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Fig. 8 Distance features normalization and combination of a human with orientation of −30◦

width of the data, we use the signal interpolation technique
with the following formulation.

y = (x − x1)(y2 − y1)

(x2 − x1)
+ y1, (4)

where (x1, y1) and (x2, y2) are the position of the first point
and the second point of linear equation, respectively. (x, y)
is a pair of input–output point between the first point and
the second point of a linear equation. Following that, three
rows of data will be merged into one row of data. Figure 8
provides an example of a distance feature normalization and
combination of a human when α = −30◦.

2.6 Classifying human body orientation

Following the main purpose of this study to estimate the
orientation of the human body, α, the normalized squared-
distance feature needs to be classified into several orientation
classes that have been previously designed. We discretized
the body orientation classes with step of 30◦, i.e., −150◦,
−120◦, −90◦, −60◦, −30◦, 0◦, +30◦, +60◦, +90◦, +120◦,
+150◦, and +180◦. We use Support Vector Machine (SVM)
as a classifier.

Before SVM can be used to estimate body orientation, it
must be trained first with the dataset of normalized squared-

distance feature-based body orientation data. We collected
5,400 training data as the dataset, where the data was
collected from 15 persons and divided into 12 discrete ori-
entation classes. Each orientation class consists of 450 data
taken based on mix between subject’s relative distances to
the camera, type of clothes and the human body postures
taken from twelve angles. The data parameters are summa-
rized in Table 3. Figure 9 shows the examples of a normalized
squared-distance of body orientation training data samples,
ranging from 0◦ up to 360◦.

Retrieval of the dataset with distance variations is per-
formed to see the impact of distance on body contour
changes. The closer the distance, the more apparent the con-
tours of the body, so that the fluctuation in the distance value
of each projected horizontal point is clearer. Conversely, the
farther the distance, the contours of the body, particularly the
front and back sides, would bemore difficult to discern, since
the difference in the distance value of each projected horizon-
tal point looks identical. On the other hand, clothes variations
are intended to let our system to deal with various shapes and
sizes of the body bywearing compact, loose, or thick clothes.
And finally, various of the human body postures, especially
hand swingings, are used to adapt our system for both stand
still and moving person.
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Fig. 9 Examples of a normalized squared-distance of the discrete body orientation training data samples, ranging from 0◦ up to 360◦

3 Estimating human body orientation in a
real application

3.1 Target person detection and tracking

In this system, if the number of people detected is only one,
that person will be automatically identified as the target part-
ner. If it turns out that there is more than one person in the
image frame, the target partner will be determined by the
size of the bounding box of the largest of all individuals that

can be detected by the system. This indicates that anyone
nearest to the camera has a greater capacity for interaction
than other people who are further away from the camera.
To strengthen identification, we have introduced the ability
of the system to track the displacement of the target partner
positions by using the Kalman filter as described in Eq. 3.
Figure. 10 demonstrates the effects of the identification and
control of someone with the largest bounding box size. Peo-
ple who are considered as not targeted will not be bounding
boxed.
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Table 4 Parameters setting of Support Vector Regression (SVR) for
smoothing the orientations

No. Parameters Value

1. Type epsilon-SVR

2. Kernel type Linear

3. C cost 1

4. epsilon 0.1

3.2 Orientation tracking and smoothing

To deal with the real implementation, we have changed SVM
with Support Vector Regression (SVR). This replacement
is because we want the estimation results to be shown in
a continuous form. So that the actual body orientation angle
can be obtained precisely. The SVR is also using the LibSVM
library by Chang et al. [21] with the parameters setting as
shown in Table 4.

3.3 Combining withmotion

There is a big difference when we try to measure the body’s
orientation as we remain in a position and walk. When the
position of the body remains in place, the orientation calcu-
lation focuses only on rotational movements, whereas while
walking, orientation is not only determined by rotation, but
also by translation. Therefore, we combine the orientation
estimation method that we discussed above by considering
the direction of body movement that is modeled from the
position shift in frame t − 1 and frame t . Figure 11 shows
our proposed online body continuous orientation estimation
system to dealwith humanmotion. Themotions of the human
body can be represented by the changes in position between
two consecutive frames, which are formulated as follows.

s =
√

(x2 − x1)2 + (y2 − y1)2, (5)

θ = tan−1 y2 − y1
x2 − x1

, (6)

where (x1, y1) is the body position at time of frame t − 1,
(x2, y2) is the body position at time of frame t . s is the length
of displacement, and θ is the walking direction. We fused
the body orientation, α, and the walking direction, θ , using a
Kalman filter [24]. To fuse these two variables, we focused
on the measurement update phase. The measurement update
obtained only taking the α data is:

x̂α(k|k) = x̂(k|k − 1) + Kα(k)
(
zα(k) − Hα x̂(k|k − 1)

)
,

(7)

Kα(k) = Pα(k|k)(Hα)T (Rα)−1, (8)

(Pα(k|k))−1 = P−1(k|k − 1) + (Hα)T (Rα)−1Hα, (9)

Fig. 10 Our systemdetects and tracks the target partner from the biggest
detected object. The green arrow represents the body orientation, while
the red ellipse is the roof and bottom of the tube which represents the
bounding box area of the detected human upper body in the planar plane

Fig. 11 Block diagram of our online body continuous orientation esti-
mation in motion

Fig. 12 Example of three participant images. Subject #1 using a jacket,
Subject #2 using a t-shirt and Subject #3 using a hijab

where x̂α(k) is the estimation value of the body orientation
at current state. Kα(k) is the Kalman gain for the body orien-
tation. Hα is the observation matrix of the body orientation.
Rα is the error covariance of estimation result of the body
orientation. zα is the scaling vector of the body orientation
at current state. Pα(k) is the mean of error value estimation
of the body orientation at current state. In the same way, the
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measurement update obtained only taking the θ data is:

x̂θ (k|k) = x̂(k|k − 1) + Kθ (k)
(
zθ (k) − Hθ x̂(k|k − 1)

)
,

(10)

Kθ (k) = Pθ (k|k)(Hθ )
T (Rθ )

−1, (11)

(Pθ (k|k))−1 = P−1(k|k − 1) + (Hθ )
T (Rθ )

−1Hθ , (12)

where x̂θ (k) is the estimation value of thewalking direction at
current state. Kθ (k) is the Kalman gain for the walking direc-
tion. Hθ is the observation matrix of the walking direction.
Rθ is the error covariance of estimation result of the walking
direction. zθ is the scaling vector of the walking direction
at current state. Pθ (k) is the mean of error value estimation
of the walking direction at current state. The measurement
update obtained by fusing α and θ data is:

x̂α+θ (k|k) = x̂(k|k − 1) + Kα|(α+θ)(k)(zα(k)

−Hα x̂(k|k − 1)) + Kθ |(α+θ)(k)(zθ (k)

−Hθ x̂(k|k − 1)), (13)

Kα|(α+θ)(k) = Pα+θ (k|k)(Hα)T (Rα)−1, (14)

Kθ |(α+θ)(k) = Pα+θ (k|k)(Hθ )
T (Rθ )

−1, (15)

(Pα+θ (k|k))−1 = P−1(k|k − 1) + (Hα)T (Rα)−1Hα

+(Hθ )
T (Rθ )

−1Hθ , (16)

where x̂α+θ (k) is the estimation value of the fusion at current
state. Kα|(α+θ)(k) and Kθ |(α+θ)(k) are the Kalman gain for
the fusion for the body orientation and the walking direction,
respectively. Pα+θ (k) is the mean of error value of fusion at
current state.

4 Experiments and discussion

4.1 Experimental setup

4.1.1 Computer and sensor specifications

In all our experiments, we used a computer equipped with
specifications: Intel Core i7-7700HQ @ 2.80 GHz, 16 GB
RAM, NVidia GeForce GTX 1050 GPU,Windows 10 64-bit
Enterprise, Windows 10, Visual C++ 2013 Ultimate devel-
oper program, and the OpenCV 3.1.0 and Kinect10 libraries.
The specifications of the Kinect sensor are Kinect for Win-
dows V1, USB 2.0 connectivity, and a resolution of 640x480
pixels at a frame rate of 30 Hz (RGB and depth).

4.1.2 Participants

For system testing requirements, we hired three participants
who we asked to use three types of clothing, namely shirt or

Fig. 13 Detecting the human upper body from the depth images with
distances ranging from 0.5m up to 3.5m. a the depth image, and b the
human’s upper body detection results on the RGB image

t-shirt, jacket, and hijab as shown in Fig. 12. Each partici-
pant in the clothing combination was asked to do several test
combinations taking into account seven kinds of distance, 12
orientation angles, and two actions, which are fixed in place
or walking.
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Fig. 14 Human upper body detection and tracking. a the detection, b
the detection and tracking run together, and c the tracker still working
even the detector failed to detect human upper body

4.2 Human upper body detection and tracking

In this section, the evaluation is carried out by asking the
participants to stand at certain distances, with various styles
of clothing, and to perform different angles of body orienta-

tion. The measured distance is a multiple of 0.5m, starting
from 0.5m to 3.5m. The resolution of the frame used for the
RGB image and the depth image is the same, 640× 480 pix-
els. Figure 13 shows the depth image and the human’s upper
body detection results on the RGB image.

The outcome of the evaluation is that the system can detect
the upper body of the subject at a distance of 1.5m, 2m,
2.5m, and 3m. The object is not observed at a distance of
0.5m and 1m because the head is not visible. For positive
training data, all data are depth images from the top of the
head to the lower abdomen. The data at a distance of 0.5m
are therefore not included in the positive training data so that
the upper body is not detected. The human body cannot be
tracked at a distance of 3.5m, as Kinect has limitations in the
object detection range above 3m, so that the human upper
body can be effectively detected at a distance of between 1.5
and 3m.

To maintain and improve the results of a human’s upper
body detection, an object tracking system is needed. We use
the Kalman filter to track the position of the human upper
body and the size of the bounding box. Figure 14 shows an
example of detection and tracking test results. The red box is
the result of a human’s upper body detection, while the green
box is the result of a human’s upper body tracking.

From the evaluation results, Fig. 14a shows that only the
red box is visible at the system’s startup, because, in the
initial conditions, the system performs detection first, while
the tracking result has not yet appeared because the Kalman
filter is still initializing. In Fig. 14b, a red box and a green
box appear together to indicate that the tracking system has
been running in conjunction with the detection system. In
Fig. 14c, a green box still appears which means that the

Fig. 15 Result of the human
upper body orientation at
d = 2.5m and α = 0◦. The
green arrow represents the body
orientation, while the red ellipse
is the roof and bottom of the
tube which represents the
bounding box area of the
detected human upper body in
the planar plane
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Fig. 16 Confusion matrix of discrete classification result performed by
three different persons

tracker is trying tomaintain the boundingbox even though the
detection system failed to detect the upper body. This shows
that the tracking system successfully defended the object and
improved the detection results of the human upper body so
that later the object would not be easily lost from detection.

4.3 Estimating body orientation in static position

4.3.1 Classifying body orientation in discrete angles

In this section, experiments are carried out to evaluate the
accuracy and precision of the system by knowing the number
of correct orientation classifications and how big is the angle
errors when the body forms a certain orientation angle. At
this stage, we involved three participants using three differ-
ent types of clothes. We ask each participant to stand 1.5m
away from the camera and face a certain orientation angle
according to the marking line on the floor. The angles tested
have a step of 30◦, starting from 0◦ to 360◦. The experiment
was repeated for distances of 2m, 2.5m, and 3m. Figure 15
is an example of the results of testing the orientation of the
body orientation at a distance of 2.5m and α = 0◦. The per-
formance of the discrete classification of body orientation is
shown by confusion matrix in Fig. 16.

The outcomes of the human body orientation evaluation
are shown in Table 5. Our system successfully achieved
96.53% of the classification accuracy with the mean abso-
lute of angle error (MAAE) of 1.041◦. The highest accuracy
of 100% can be achieved at most distances, while the low-
est accuracy of 83.33% at d = 1.5m achieved by the third

Table 5 Results of the human body orientation evaluation

Subject
No.

Distance (d)
(meter)

Number of correct
classification

Accuracy (%)MAAE (◦)

1. 1.5 11 of 12 91.67 2.5

2 12 of 12 100 0

2.5 12 of 12 100 0

3 11 of 12 91.67 2.5

2. 1.5 12 of 12 100 0

2 12 of 12 100 0

2.5 12 of 12 100 0

3 12 of 12 100 0

3. 1.5 10 of 12 83.33 5

2 12 of 12 100 0

2.5 11 of 12 91.67 2.5

3 12 of 12 100 0

The average value 96.53 1.041

person. This occurs due to variation in body posture because
the third person using a hijab (please refer to Fig. 12), so that
it has little effect on the contour of the body because it is
covered by cloth.

4.3.2 Estimating body orientation in continuous angles

In this section, we conduct experiments to obtain the accu-
racy and precision of static body orientation with continuous
values. To stabilize detection, we involve tracking using the
Kalman filter. Evaluation is done to determine the MAAE of
the system by calculating the difference in the value of the
actual orientation of the body with the orientation value of
the estimated system. We tested the orientation angle with a
step of 30◦ ranging from 0◦ to 360◦. The experiment was car-
ried out by three persons at d = 1.5m, 2m, 2.5m, and 3m.
Figure 17 shows an example of static continuous orientation
precision test results at d = 2.5m and α = −30◦.

The outcomes of the human body continuous orienta-
tion evaluation are shown in Fig. 18. The MAAE values
are the average difference between the ground truth of body
orientation angle with the estimated continuous orientation
angle from the 12 orientation angles. Our system success-
fully achieved 0.097◦ of the MAAE in total. By achieving
the MAAE value of less than 0.1◦, it indicates that our con-
tinuous orientation estimation system is working effectively.
The best MAAE value of 0.0003◦ is achieved by the sec-
ond person with d = 3m, while the worst MAAE value of
0.2995◦ is achieved by the third person with d = 3m. This
occurs because of differences in body posture that is different
from other subjects, and the distance of objects that are too
far away from the camera.
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Fig. 17 Result of the human upper body continuous orientation at d = 2.5m and α = −30◦

Fig. 18 Mean absolute errors of the human body continuous orientation
that were obtained by three participants at four relative distances

4.3.3 Comparing the performance with the other methods

In this section, we compared ourmethodwith the othermeth-
ods proposed by the other researchers. We have compared

our work with the works in [5,9–11,18]. The results of the
comparison may not be truly fair due to the different types
of sensors, data sets, and step of angle used. At least, how-
ever, these results will give us an idea of the performance
of each method, particularly for use in the actual implemen-
tation. Table 6 shows the comparison results of the human
body orientation in static position.

According to the results presented in Table 6, we com-
pared the accuracy and precision of the orientation esti-
mation results for each method. Not all methods compare
the accuracy and precision simultaneously, such as the
HOG+LBP+PLS +movements [9] and the Depth Weighted
HOG [18], they do not display data regarding the precision of
the orientation angle. The other three, including our method,
test the precision of the orientation angle. As a result, our
proposed method can outperform Shape +Motion [5] and
Keypoints [11] with a high degree of precision, where the

Table 6 Comparison results of the human body orientation evaluation in static position

Method Sensor Type Dataset Step (◦) Accuracy (%) MAE (◦)

HOG+LBP+PLS +Movements [9] Monocular Camera TUD 45 64.00 N/A

Depth Weighted HOG [18] ToF RGB Camera Private (Real) 45 78.90 N/A

Shape+Motion [5] 2D LRF Private (Real) 10 93.66 0.83

Keypoints [11] Monocular Camera TUD and 3DPeS 45 96.80 15.30

CNN [10] Monocular Camera Private* (Real, RGB) 30 77.78 37.50

CNN [10] Monocular Camera Private* (Real, Depth) 30 43.06 49.59

Ours (discrete) Kinect Private* (Real, Depth) 30 96.53 1.041

Ours (continuous) Kinect Private* (Real, Depth) 30 100 0.097

(*) indicates the methods are compared using our dataset
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Fig. 19 Examples of the body position estimation using Kinect. The
first column is the ground truth positions in the real world coordinate.
The second column is the detected human upper body. The third column
is the estimated body positions in the real world coordinate

angular error is less than 0.1◦. As for the level of accuracy,
the Keypoints method can be the best with an accuracy of
96.8%. However, it should be noted that this method is tested
using a dataset, not using real data.

For a fairer test in terms of using the same dataset and
testing protocol, we replicated the CNN method proposed
by Kohari et al [10]. We retrained and tested with the same
dataset we used. Unfortunately the results obtained from the
replication are quite far behind from our proposed method.

4.4 Estimating body orientation inmotion

4.4.1 Estimating human body position in world coordinate

In experiments that require the position of people moving
from one place to another, then estimating the position of
the human body based on depth images is a crucial initial
step. The test is carried out with several coordinates in the
range of the Kinect sensor. Figure 19 shows examples of
the estimated position results from the Kinect camera. In
the first column, it contains ground truth position data on

Table 7 Results of the body position estimation

Ground truth position (x,y)
(meters)

Estimated position
(x,y) (meters)

Error (meters)

(0, 1.5) (−0.03, 1.52) 0.036

(0, 2) (0, 2.03) 0.03

(0, 2.5) (0.01, 2.59) 0.09

(0, 3) (−0.02, 3.07) 0.073

(0.5, 2) (0.5, 2.02) 0.02

(0.5, 2.5) (0.5, 2.51) 0.01

(0.5, 3) (0.51, 3.01) 0.014

(1, 2.5) (1.03, 2.57) 0.076

(1, 3) (1.09, 3.01) 0.09

(−0.5, 2) (−0.56, 2.02) 0.063

(−0.5, 2.5) (−0.58, 2.51) 0.08

(−0.5, 3) (−0.56, 2.99) 0.06

(−1, 3) (−1.09, 2.99) 0.09

The average of error position 0.056

Table 8 Results of the body orientation estimation when moving

Subject Pattern #Frame #Correct Acc. (%) MAAE (◦)

1 Square 283 252 89.05 4.93

Diamond 284 231 81.34 8.4

2 Square 305 269 88.197 5.31

Diamond 361 285 78.947 9.47

3 Square 466 391 83.90 7.24

Diamond 326 266 81.59 8.28

The average value 83.84 7.27

real coordinates in meters, whereas in the third column, it
contains position estimation data using Kinect depth data at
real coordinates in meters. Table 7 shows the results of the
estimated body position and error value. The error value is
calculated based on the distance between the actual position
(ground truth) and the estimation results.

From the test results, we obtained a relatively small aver-
age error value, which is 0.056m or 5.6cm. The biggest
error occurred at position (0, 2.5), (1, 3), and (−1, 3) which
is 0.09m. Large errors in position (1, 3) and (−1, 3) are
caused by body position that is close to the Kinect’s field
of view (FoV); the right and left bounds, respectively, while
the smallest error occurs at position (0.5, 2.5). According to
this experiment, we are very confident that our method is
very feasible to be used to estimate the position of displace-
ment in the real world coordinate, as long as it is within the
camera’s FoV limit.
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Fig. 20 Result of the human body continuous orientationwhenwalking
in the square pattern. Each participant was asked to walk following
the square pattern with the pattern’s midpoint at a distance of 2.5m.
The trajectory and body orientation results are recorded to measure the
performance of the position detector and orientation estimator

Table 9 Comparison results between our proposed method with LRF-
based method

Method Motion Pattern MAAE (◦)

Shape+Motion [5] Forward 7.28

Circular 11.2

Ours Square 5.82

Diamond 8.71

4.4.2 Estimating body orientation while moving

In this section, we examined our proposed method of esti-
mating body orientation when the target person is walking.
We employed three participants as models to demonstrate
the walking movement by creating a certain pattern. Accu-
racy evaluation is performed by automatically counting the

Fig. 21 Result of the human body continuous orientationwhenwalking
in the diamond pattern. Each participant was asked to walk following
the diamond pattern with the pattern’s midpoint at a distance of 2.5m.
The trajectory and body orientation results are recorded to measure the
performance of the position detector and orientation estimator

number of correct angles of orientation (with a tolerance
of ±20◦) to the number of frames generated in each trial
sequence. The patterns to be performed by each participant
are a square and a diamond shape. The square pattern was
chosen to test the output of the system at several angles, such
as 0◦, +90◦, +180◦, and −90◦, while the diamond pattern
is used to measure device output at several angles, namely
+45◦,+135◦,−135◦, and−45◦. Data were recorded for two
rounds per participant. Figures 20 and 21 show the examples
of the results of a continuous orientation estimation test for
the square pattern displacement and the diamond pattern dis-
placement, respectively.

Table 8 shows the results of the evaluation of the continu-
ous orientation estimatewhen each episode of the experiment
is completed by the target person. From the test results,
we achieved an overall accuracy of 83.84%. With the best
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Table 10 Comparison results of the computation time between our
proposed method with others

Method Author’s
machine

Our machine Specifications

Liu [15] 338 ms - i7 2.3 GHz CPU,

8 GB RAM,

128 GB SSD,

Windows 7

Chen [13] 40 ms Intel Core-2 Duo

CPU 1.8 GHz

1 GB RAM

GPU NVidia

GeForce 8600 GT

Lewandowski [16] 74.46 ms - GPU NVidia

GTX 1080Ti

Kohari [10] 8.73 ms GPU GeForce

Titan X Pascal

Kohari [10] 38 ms i7 2.8 GHz CPU,

16 GB RAM,

128 GB SSD,

GPU MX940,

Windows 10

Kohari [10] 266 ms i7 2.8 GHz CPU,

16 GB RAM,

128 GB SSD,

Windows 10

Ours 83.33 ms i7 2.8 GHz CPU,

16 GB RAM,

128 GB SSD,

Windows 10

accuracy of 89.05% when the first participant carried out a
rectangle-shaped displacement, whereas the lowest accuracy
was 78.95%when the third participant carried out a diamond-
shaped motion. This is due to the decreased accuracy when
participants make a turn. As he turns, the speed at which the
angle changes is slower than the body’s speed as he turns.
This causes the estimated value produced by the Kalman fil-
ter to take time to change the actual orientation value.

4.4.3 Comparing the performance with the other method

To prove its performances, we compared our body orienta-
tion estimation method with the method proposed in paper
[5]. Both approaches used body contour features that were
evaluated for practical implementation. The description of
the comparative results obtained by the twomethods is shown
in Table 9. Although the two methods cannot be fairly com-
pared based on their different patterns of movement, at least

these results will provide a summary of the performance of
our proposed method.

The results shown in [5] were evaluated with motions that
have minimal sharp angles, whereas the patterns we use have
several sharp angle patterns that are very susceptible to esti-
mation errors when people are in the corner. However, with
the results of theMAAE that turned out to be smaller, we con-
clude that the method we are proposing is very promising to
be applied in a real system.

4.5 Computation time

Besides accuracy and MAAE, we also measure the compu-
tational time required by our method to complete the entire
process in it. The whole process starts from capturing RGB
images and depth, detection of the upper body with HOG,
taking body contour features and normalization, face detec-
tion, classification, and tracking with Kalman filters varying
from100msec to 83.33msec or 10–12 fps.We also compared
our computation time with the other methods as shown in
Table 10.

Based on Table 10, it can be seen that some of the previ-
ous works [10,13,16] have better computation time than our
method because they used a GPU. For methods that did not
use a GPU [10,15], our proposed method is superior with a
computation time below 100 msec.

5 Conclusion

We have presented our proposed method for estimating body
orientation. The combination of the three one-dimensional
distance feature-based signals which reflect the body’s sur-
face contours taken by Kinect camera was proved to be
effective to characterize the difference of each body orienta-
tion. This combination significantly strengthens our feature
to estimate the body orientation. improved the estimator
performances when using to estimate body orientation in
motion. Based on the experiments, our method outperforms
the other image-based baseline methods. A comparison with
LRF sensor-based method exhibits our method is also com-
parable.

The experiments in a real scene environment show that
our method is very promising and is applicable for an online
application. However, minimizing the step angle is crucial to
improve the continuous estimation results. Other than that,
improving the computation time for real-time application by
utilizing middleware-based programmings such as Robotic
Operating System (ROS) or Open Robotic Tool Middleware
(OpenRTM) will also be our next focus in the future.
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