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Abstract
Surface defect inspection is a crucial step to ensure the quality of magnetic tiles. Recently, deep learning methods have shown
excellent performance on many vision tasks. Some deep learning-based methods have been applied to the surface defect
inspection of magnetic tiles as well. However, related methods are based on supervised learning, which requires plenty of
labeled samples to train deep neural networks. In industrial application scenarios, the annotation of large labeled datasets
is extremely expensive, time-consuming, and error-prone. A semi-supervised learning method based on pseudo-labeling is
proposed in this paper to address the problem of surface defect classification of magnetic tiles with limited labeled samples.
The proposed method consists of two models: the teacher model and the student model. The training procedure is divided
into two stages: pseudo-label generation and student model training. In the pseudo-label generation stage, the teacher model
parameters and the pseudo-labels of unlabeled samples are alternatively optimized based on the idea of transductive learning.
Curriculum learning is employed to reduce the impact of label noise so that high-quality pseudo-labels can be obtained.
In the student model training stage, labeled samples and unlabeled samples with pseudo-labels are jointly used to train the
classifier, with mixup to achieve information fusion and regularization. The experimental results show that the proposed
method outperforms the supervised-only and semi-supervised baselines. With only 4.4% of labeled samples in the training
set, the proposed method can still achieve the defect classification accuracy of 90.13%.

Keywords Defect inspection · Magnetic tile · Pseudo-labeling · Semi-supervised learning

1 Introduction

Magnetic tile is a kind of tile-shaped magnet mainly used in
permanent magnet motors. Its quality directly affects the per-
formance and life of the motor. Therefore, it is necessary to
assess the quality of magnetic tiles before they leave the fac-
tory. Currently, most factories still employworkers to inspect
the surface defects on magnetic tiles. Manual inspection is
characterized by inefficiency and expense, and it is difficult
to ensure the consistency and accuracy of the results due to
visual fatigue.

Many machine vision methods have been proposed to
improve the accuracy and automation of the surface defect
inspection ofmagnetic tiles.Most of thesemethods are based
on image processing [1], wavelet [2], curvelet [3], and shear-
let [4]. Due to the complexity of the surface texture, the
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diversity of defect shapes, and theuneven illumination caused
by the curved shape, these conventional methods usually
require carefully designed feature engineering and usually
work well under specific conditions.

Deep learning methods have achieved outstanding suc-
cess in a variety of computer vision tasks. For example,
Convolutional Neural Networks (CNN) have achieved the
best performance on visual tasks such as image classification,
object detection, semantic segmentation, etc. Comparedwith
manually designed feature representations, CNNs can learn
richer and higher-level representations directly from the data,
avoiding the laborious manual design. Therefore, some deep
learning-based methods [5–8] were proposed for the surface
defect inspection on magnetic tiles, achieving better results
than conventional methods.

Although deep learning methods can achieve better defect
inspection performance, current methods for magnetic tiles
are all based on supervised learning. Supervised deep learn-
ing methods require large amounts of labeled data to obtain
reliable performances. There is a risk of overfitting without
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sufficient training data, and thus the trained deep networks
may have poor generalization performance. In real-world
cases, unlabeled data are usually readily available, whereas
the annotation of large labeled datasets is extremely expen-
sive, time-consuming, and error-prone, especially in the
industrial and medical fields. It certainly hinders the appli-
cation of some deep learning techniques in real-world cases.
Semi-supervised learning (SSL) provides a solution for this
problem. Semi-supervised learning is a kind of learning algo-
rithm that can train models using both labeled and unlabeled
data, which aims to reduce the annotation cost. Therefore,
only a few labeled data are needed for model training, while
large amounts of unlabeled data are used to help improve the
performance.

A semi-supervised learning method based on pseudo-
labeling is proposed in this paper for the surface defect
classification of magnetic tiles with limited labeled sam-
ples. The proposed method consists of two models: a teacher
model and a student model. The training procedure is divided
into two stages: pseudo-label generation and student model
training. In the pseudo-label generation stage, the teacher
model and the pseudo-labels of unlabeled samples are alter-
natively optimized based on the idea of transductive learning
so that high-quality pseudo-labels can be obtained. During
the alternating optimization process, curriculum learning is
adopted to help the updating of the teachermodel parameters.
In the student model training stage, both labeled samples and
unlabeled samples with pseudo-labels are used to train the
student model, and mixup [26] is adopted to perform data
augmentation and regularization.

The rest of the paper is organized as follows: Sect. 2
introduces some related works; Sect. 3 presents the problem
definition and introduces pseudo-labeling; Sect. 4 illustrates
the proposed semi-supervised method for the surface defect
classification of magnetic tiles in detail; Sect. 5 shows the
experimental results of our method on public and our col-
lected datasets; Sect. 6 summarizes the work of this paper
and draws conclusions.

2 Related work

2.1 Surface defect inspection of magnetic tiles

2.1.1 Conventional machine vision methods

Machine vision methods have been proposed to improve the
accuracy and automation of the surface defect inspection of
magnetic tiles. Tao et al. [1] used a comparison of the fitting
and actual edge curves to detect defects on the end surface
of magnetic tiles. Yang et al. [2] used the smooth wavelet
transform (SWT) to perform surface defect detection onmag-
netic tile images with low contrast under various lighting

conditions. Li et al. [3] used fast discrete curvelet trans-
form (FDCT) and texture analysis to automatically detect
crack defects in magnetic tile images with dark color and
low contrast. The shearlet transform has higher orientation
sensitivity, which helps extract geometric features from the
data accurately. Based on this, Xie et al. [4] proposed a sur-
face defect extraction method for magnetic tiles based on the
shearlet transform.

2.1.2 Deep learning methods

A key step in traditional machine vision methods is to extract
features from the image that can effectively distinguish defect
regions from the background, known as feature engineering
in machine learning. The design of feature engineering in
industrial applications usually requires expertise and needs
to be oriented to specific working environments. In contrast,
deep learning methods can automatically learn useful fea-
tures from training data and can tackle tasks that are difficult
for conventional methods. On the other hand, the features
extracted by the deep learning method provide an excellent
generalization performance.

Huang et al. [5] proposed a real-time model called MCue-
Push U-Net for the saliency detection of surface defects on
magnetic tiles. They fused saliency cues into the U-Net [6]
through image arithmetic and embedded a Push network to
highlight the predicted defects with bounding boxes. Xie
et al. [7] proposed an end-to-end CNN architecture called
FFCNN to address the problem of defect detection using
multiple images from different perspectives of one magnetic
tile sample.Cui et al. [8] proposed a fast and accurate network
SDDNet for surface defect detection to address the challenge
of large texture variation and small size of defects.

2.2 Semi-supervised surface defect inspection

To the best of our knowledge, there are no works related to
the surface defect inspection ofmagnetic tiles based on semi-
supervised methods so far. However, there are related works
in the fields of rails [9], roads [10], steel [11–13], bearings
[14, 15], and soon [16–18]. For example,Hajizadeh et al. [10]
attempted to select potentially defect samples from a large
number of unlabeled samples using semi-supervised learn-
ing methods, thus helping to mitigate the imbalance between
the defect and defect-free classes. Di et al. [13] proposed
a semi-supervised learning method based on Convolutional
Autoencoder (CAE) and semi-supervised Generative Adver-
sarial Networks (SGAN) for the surface defect classification
of steel. He et al. [12] used GAN to generate unlabeled
samples and utilized both labeled and unlabeled samples by
multi-training of two models.
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3 Preliminaries

3.1 Problem Definition

In semi-supervised learning, the training dataset D consists
of two parts: the labeled datasetDl � {xli , yli }Li�1 containing
L labeled samples and the unlabeled dataset Du � {xui }Ui�1
containing U unlabeled samples. For each labeled sample
xli ∈ Dl , yli ∈ {0, 1}C denotes its corresponding one-hot
label vector, where C denotes the number of classes. The
general form of the objective function for semi-supervised
learning can be described as:

min
θ

L �
L∑

i�1
Ls

(
fθ

(
xli

)
, yli

)
+ wLu(θ,Dl ,Du) (1)

where Ls is the supervised loss term, Lu is the unsupervised
loss term, fθ is the model to be optimized parameterized by
θ , and w is the weight of Lu .

In this paper, the surface defect classification problem of
magnetic tiles is considered as a binary classification task,
i.e., to determine whether there are defects in the magnetic
tile images. Therefore, C � 2 by default. It is noted that our
proposed method is not limited to the binary classification
problem, so the number of defect classes is always denoted
by C in order not to lose generality.

3.2 Pseudo-labeling

Pseudo-labeling is a class of SSL algorithms that generate
pseudo-labels on unlabeled data. These pseudo-labels are
then used as targets along with the labeled data to train the
model [19]. As a first attempt to use pseudo-labeling for deep
neural networks, Pseudo-Label[20] utilized pseudo-labels at
the fine-tuning stage ofDenoisingAuto-Encoder (DAE). The
pseudo-label ŷui for an unlabeled sample xui ∈ Du was gen-
erated as follows:

ŷuij �
{
1 if j � argmax

c
fθ

(
c|xui

)

0 otherwise
(2)

where fθ (c|xui ) is the probability that the model fθ predicts
xui as class c, ŷ

u
i � [̂yui1, ŷ

u
i2, ..., ŷ

u
iC ] ∈ {0, 1}C is the pseudo-

label of xui , which is a one-hot vector. The pseudo-labelswere
involved inmodel training in a supervisedmanner alongwith
the ground-truth labels. The overall loss function is

L � −
L∑

i�1

C∑

c�1

ylic log fθ
(
c|xli

)

− w(t)
U∑

i�1

C∑

c�1

ŷuic log fθ
(
c|xui

)

�Ls + w(t)Lu (3)

Fig. 1 Illustration of proposed SSL defect classification method

where w(t) is the weight of Lu . w(t) was adjusted according
to the following strategy to avoid poor local minima [20]:

w(t) �
⎧
⎨

⎩

0 t < T1
t−T1
T2−T1

w f T1 ≤ t < T2
w f T2 ≤ t

(4)

where t is the current training epoch, w f is the final value
of w(t). This strategy allows the value of w(t) to be 0 at the
beginning of training and then is slowly increased to w f .

The clustering assumption states that the decision bound-
ary should lie in low-density regions for better generalization
performance [21]. Entropy Regularization [22] achieved this
by minimizing the conditional entropy of the class probabili-
ties of unlabeled data. Thus, Pseudo-Label [20] is equivalent
to Entropy Regularization, which encourages the prediction
of class probabilities close to the 1-of-C code.

4 Proposedmethod

4.1 Overview

The proposed semi-supervised surface defect classification
method consists of two models: a teacher model gϕ and a
student model fθ . As shown in Fig. 1, the training procedure
comprises two stages: (1) pseudo-label generation and (2)
student model training.

In the pseudo-label generation stage, the labeled samples
Dl � {xli , yli }Li�1 are used jointly with the unlabeled sam-
ples Du � {xui }Ui�1 to train the teacher model to generate
pseudo-labels Ŷ � {ŷui }Ui�1 for unlabeled samples. After
that, each sample in the unlabeled dataset xui is assigned a
corresponding pseudo-label ŷui , i.e., Du � {xui , ŷui }Ui�1. In
the subsequent student model training stage, pseudo-labels,
which are treated as if they are the true labels of unlabeled
samples, are used together with the true labels of labeled
samples to supervise the student model.
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In ourmethod, the teachermodel and the studentmodel are
independent. The teachermodel is responsible for generating
pseudo-labels for unlabeled samples, and the studentmodel is
the resulting model for defect classification. In the following
sections, wewill introduce the two training stages mentioned
above in detail.

4.2 Pseudo-label generation stage

The goal of this stage is to use the teacher model to gener-
ate pseudo-labels for unlabeled samples. A simple way to
achieve this is to train the teacher model using only labeled
samples in a supervised manner and then use the trained
teachermodel to predict pseudo-labels for the unlabeled sam-
ples. It is effective when there are sufficient labeled samples.
If the number of labeled samples is limited, only using labeled
samples is likely to prevent the teachermodel frombeingwell
trained, and there is a risk of overfitting. Therefore, we use
both labeled and unlabeled samples to train the teachermodel
in this stage.

4.2.1 Loss function

Inductive learning learns the rules with generalities from the
training samples and applying them to the test samples that
themodel has not seen before. In contrast, transductive learn-
ing attempts to apply the learned rules to the training samples
that themodel has already seen. Typically, transductive learn-
ing works better since it simply expects to achieve the best
performance on given samples, whereas inductive learning
expects to learn a decision function with a low error rate over
the entire sample distribution.

In the case of inductive learning, the optimization problem
can be expressed as:

min
ϕ

L(ϕ|X ,Y ) (5)

where ϕ are the parameters of teachermodel gϕ , X � {xi }Ni�1
is the set of training samples, Y � {yi }Ni�1 is the set of cor-
responding labels, and N is the number of samples.

As mentioned before, the teacher model in our method
is responsible for predicting pseudo-labels on the unlabeled
dataset, which means the teacher model does not need to
consider the generalization on unseen samples. Therefore,
we treat the pseudo-labels of unlabeled samples as opti-
mization variables based on the principle of transductive
semi-supervised learning and update them together with the
teacher model parameters during the training. Thus the opti-
mization problem in this stage can actually be expressed as:

min
ϕ,Y

L(ϕ,Y |X) (6)

Fig. 2 Alternating optimization method for the pseudo-label generation
stage

Compared with (5), the difference is that the labels are
also optimization variables. It should be noted that only the
pseudo-labels of unlabeled samples are updated during train-
ing, and the true labels of labeled samples remain fixed.

In this paper, the KL-divergence is adopted for (6):

L(ϕ,Y |X) �
N∑

i�1

DKL
(
yi‖gϕ(xi )

)

�
N∑

i�1

C∑

c�1

yic log yic −
N∑

i�1

C∑

c�1

yic log gϕ(c|xi )

(7)

4.2.2 Alternating optimization

For the optimization variables ϕ and Ŷ � {ŷui }Ui�1, we apply
the alternating optimization method as shown in Fig. 2. The
corresponding pseudocode is shown in Algorithm 1. The
optimization process is divided into the following two alter-
nating steps:

(a) Updating Ŷ with fixed ϕ. Since the training samples
in the dataset are independent of each other, the opti-
mization problem on Ŷ can be decomposed for each
ŷui . In semi-supervised learning, there are two types of
pseudo-labels: hard labels and soft labels. In the case of
hard labels, the pseudo-label ŷui ∈ {0, 1}C is a one-hot
vector that can be updated in the following way:

ŷui j �
{
1 if j � argmax

c
gϕ

(
c|xui

)

0 otherwise
(8)
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In the case of soft labels, the pseudo-label ŷui ∈ [0, 1]C

is a probability distribution. When yi � gϕ(xi ), the loss
in (7) will obtain the minimum value, so the pseudo-
label ŷui can be updated in the following way:

ŷui � gϕ

(
xui

)
(9)

Compared with hard labels, soft labels usually contain
less noise and more information. Unless otherwise indi-
cated, soft labels are adopted in this paper.

(b) Updating ϕ with fixed Ŷ . With pseudo-labels fixed,
the KL divergence in (7) degenerates to cross-entropy,
so the optimization of ϕ in this step can be solved by the
commonly used stochastic gradient descent algorithm
(SGD). As shown in the bottom part of Fig. 2, the loss
is calculated separately for the labeled and unlabeled
samples when optimizing ϕ:

L � −
L∑

i�1

C∑

c�1

ylic log gϕ

(
c|xli

)
− w

U∑

i�1

C∑

c�1

yuic log gϕ

(
c|xui

)

�Ls + wLu (10)

wherew is the weight ofLu , which is set to 1 by default.

A primary problem with semi-supervised learning meth-
ods based on pseudo-labeling is that the noise in pseudo-
labels can be amplified during the training process, resulting
in high-confidence but incorrect predictions from the model.
Zhang et al. [23] showed that deep neural networks could
learn any training dataset even if the labels in the training
set are completely random. Therefore, directly training the
model using noisy pseudo-labels will lead to complete over-
fitting of the model on noisy data. Although commonly used
regularization techniques (e.g., dropout [24], early stop, L1
and L2 regularization) can alleviate the overfitting to some
extent, all thesemethods prevent the reduction of training loss
and therefore do not guarantee the optimization of the train-
ing process. In contrast, we update pseudo-labels together
with the teacher model parameters, which is essential to mit-
igate the impact of noise in pseudo-labels on the training
process from the perspective of optimization.

4.2.3 Curriculum learning

Curriculum learning [25] is a training strategy in machine
learning that allows the model to learn easy samples at first
and then gradually learn hard ones. The human learning
process generally follows an easy-to-hard progression, and
curriculum learning is exactly based on this idea. Bengio
et al. [25] showed that curriculum learning could acceler-
ate the training process and allow the model to obtain better
generalization performance.

Compared with only optimizing the teacher model param-
eters, it is naturally more difficult to optimize pseudo-labels
at the same time. Therefore, to better carry out the alternating
optimization, we train the teacher model based on the idea
of curriculum learning.

Specifically, for each unlabeled sample xui , the maxima
of the softmax probability vector output by the model are
regarded as the confidence of its pseudo-label ŷui , and the
samples with high-confidence pseudo-labels are considered
as easy samples. After updating the pseudo-labels in step
(a), we first sort the unlabeled samples according to the con-
fidence of pseudo-labels in descending order. After that, the
unlabeled samples corresponding to the top p × 100% most
confident pseudo-labels are selected in each class. Finally,
the selected unlabeled samples are used along with labeled
samples to update the teacher model parameters ϕ.

The parameter p is adjusted according to the following
strategy:

p �
{
0 t < T0

p0 + (p1 − p0)e
−5(1− t−T0

T−T0
)2
T0 ≤ t

(11)

where p0 and p1 are the minimum and maximum values
of p, respectively, t is the current training epoch, and T
is the total number of training epochs. This strategy keeps
p � 0 when t < T0, meaning that no unlabeled samples are
selected to train the teacher model. After t ≥ T0, p gradually
increases from p0 to p1 according to a sigmoid-shaped func-
tion f (x) � e−5(1−x)2 , where x ∈ [0, 1]. When p0 � 0.2,
p1 � 0.5, T0 � 40, and T � 100, the value of p is adjusted
as shown in Fig. 3.

4.3 Student model training

This stage aims to train the student model using both labeled
and unlabeled samples. The key in this stage is tomake better
use of the unlabeled samples and corresponding pseudo-
labels. Instead of using all unlabeled samples, we select
unlabeled samples corresponding to the top p

′×100% most
confident pseudo-labels in each class to train the student
model. Unless otherwise specified, p

′ � 0.7 by default. The
training procedure in this stage is shown in Fig. 4, and the cor-
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Fig. 3 Value of p adjusted according to (11), where p0 � 0.2, p1 �
0.5,T0 � 40, T � 100

responding pseudocode containing implementation details is
shown in Algorithm 2.

4.3.1 Oversampling of labeled samples

There are usuallymore unlabeled samples in semi-supervised
learning than labeled ones, which could easily result in over-
fitting to the loss of unlabeled samples. While training the
student model, we address the problem of sample imbal-
ance by oversampling the labeled samples. Specifically, we
ensure that each mini-batch contains the same number of
labeled and unlabeled samples during the training process.
Since there are usually more unlabeled samples than labeled
ones, the labeled samples have been looped through several
times after themodel has gone through the unlabeled samples
once.

4.3.2 Loss function

As mentioned above, the labeled samples are oversampled
to ensure that each mini-batch contains the same number of
labeled and unlabeled samples. Let Bl � {xli , yli }M/2

i�1 and

Bu � {xui , ŷui }M/2
i�1 denote labeled and unlabeled samples in

a mini-batch, respectively, where M is the mini-batch size.
When training the student model, the loss in a mini-batch can
be expressed as:

L � − 1

|Bl |
M/2∑

i�1

C∑

c�1

ylic log fθ
(
c|xli

)

− w
1

|Bu |
M/2∑

i�1

C∑

c�1

ŷuic log fθ
(
c|xui

)

�Ls + wLu (12)

where w is the weight of Lu .

4.3.3 Augmentation with Mixup

Mixup [26] is a data augmentation method via interpolation
of training samples and their labels as follows:

x̃ � λxi + (1 − λ)x j
ỹ � λyi + (1 − λ)y j

(13)

where xi and x j are the two training samples, yi and y j are
their labels, x̃ and ỹ are the augmented training samples and
labels, respectively, λ ∈ [0, 1] and subject to the following
Beta distribution:

λ ∼ Beta (α, α) (14)

where α is the hyperparameter that controls the Beta distri-
bution, α � 0.75 by default.

We usemixup augmentation to achieve information fusion
between labeled and unlabeled samples. Specifically, for
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Fig. 4 Training procedure of the
student model

each unlabeled sample with pseudo-label (xu, ŷu) ∈ Bu in
a mini-batch, a labeled sample (xl , yl ) ∈ Bl is randomly
selected, and the interpolated sample and its label can be
obtained following (13):

xum � λxl + (1 − λ)xu

yum � λyl + (1 − λ)ŷu
(15)

As a result, a batch of samplesBum � {xumi , yumi }M/2
i�1 after

mixup augmentation between labeled and unlabeled samples
are obtained.

The pseudo-labels of unlabeled samples inevitably con-
tain noise. Compared with the original pseudo-label yu , we
believe that the interpolated label yum contains less noise.
For example, when λ � 0.5, yum is considered to contain
information from half of each of yl and ŷu according to (15).
In this case, the information from yl can be assumed not
containing any noise, and only the information from ŷu may
contain some noise.

Mixup [26] is an effective regularization method in super-
vised learning, which has the effect of label smoothing and
data augmentation. Therefore, we also apply mixup augmen-
tation between labeled samples hoping to make full use of
the labeled samples and regularize the model. Specifically,
for each labeled sample (xli , y

l
i ) ∈ Bl in amini-batch, another

labeled sample (xlj , y
l
j ) ∈ Bl is randomly selected, and the

interpolated sample is then obtained following (13):

x lm � λxli + (1 − λ)xlj
ylm � λyli + (1 − λ)ylj

(16)

Similarly, a batch of samples Blm � {xlmi , ylmi }M/2
i�1 after

mixup augmentation between labeled samples are obtained.
In summary, the final loss used for student model training

is:

Ls � − 1
|Bl |

M/2∑

i�1

C∑

c�1
ylic log

(
fθ

(
c|xli

))
(17)

Lu � − 1
|Bu |

M/2∑

i�1

C∑

c�1
ŷuic log

(
fθ

(
c|xui

))
(18)

Llm � − 1|Blm|
M/2∑

i�1

C∑

c�1
ylmic log

(
fθ

(
c|x lmi

))
(19)

Lum � − 1
|Bum|

M/2∑

i�1

C∑

c�1
yumic log

(
fθ

(
c|xumi

))
(20)

Fig. 5 System diagram of the image acquisition device

L � Ls + w1Lu + w2Llm + w3Lum (21)

where Ls , Lu , Llm and Lum are the loss on Bl , Bu , Blm and
Bum, respectively, and w1, w2 and w3 are the weights for
balancing Lu , Llm and Lum.

5 Experiments

5.1 Image acquisition device

As shown in Figs. 5 and 6, an image acquisition device is
designed in this paper to collectmagnetic tile images from the
production line. The device is mainly composed of cameras,
light sources, conveyors, and controllers. Six cameras are
used to capture images from different directions to achieve
real-time performance. The light source is LED. The proxim-
ity switches and motors are controlled by a microcontroller.
ARM processors are used for image reading and processing.
All ARM controllers communicate with each other through
a network switch.

5.2 Datasets

Weconducted experiments on themagnetic tile defect dataset
collected by the Institute of Automation, Chinese Academy
of Sciences (MT-CAS) [5], and the dataset collected by us
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Fig. 6 Image acquisition device

Fig. 7 Examples of the defect samples in MT-CAS

(MT-Ours). MT-CAS contains five kinds of surface defects:
blowhole, crack, fray, break, and uneven, as shown in Fig. 7.
There are a total of 1344 grayscale images of variable size in
MT-CAS, including 392 defect images and 952 defect-free
images. In the subsequent experiments, 70% of the images
are randomly selected to form the training set and the remain-
ing to form the validation set. As a result, the training set
contains 939 images, of which 275 are defective, and 664
are defect-free. The validation set contains 405 images, of
which 117 are defective, and 288 are defect-free.

The images in MT-Ours were collected in a real industrial
scenario, containing three kinds of surface defects: break,
crack, and fray, as shown in Fig. 8. There are 3060 color
images of size 400 × 400 in MT-Ours, including 751 defect
images and 2309defect-free images. In the subsequent exper-
iments, 75% of the images are randomly selected to form the
training set and the remaining to form the validation set. As
a result, the training set contains 2296 images, of which 560
are defective, and 1736 are defect-free. The validation set
contains 764 images, of which 191 are defective, and 573
are defect-free.

5.3 Implementation details

In this paper, ResNet-18 [27] and DenseNet-121 [28] are
used as classifiers for defect classification. SGD is used as
the optimizer to train the classifier with a momentum of 0.9

Fig. 8 Examples of the defect samples in MT-Ours

and a batch size of 32. The initial learning rate is 0.002 and
is adjusted using a cosine decay policy:

lr � 1
2 lr0 · (

1 + cos
( t
T π

))
(22)

where lr0 is the initial learning rate, t is the current training
epoch, and T is the total number of training epochs. p0, p1
and T0 in (11) are set to 0.2, 0.5, and 40, respectively.w1,w2

and w3 in (21) are set to 1.0, 1.0, and 0.5, respectively.
In addition to the proposed SSL defect classification

method, two semi-supervised learning methods, Pseudo-
Label [20] and Mean Teacher [29] are used as the baselines
for experiments. The teacher model in our method is trained
for 100 epochs. Since the labeled samples are oversampled
when training the student model, there are more iterations in
each epoch. As mentioned before, the student model is used
for defect classification. For a fair comparison, the number
of training iterations for the student model is kept the same
as baselines, which will be detailed later.

The classifier is trained with the following data augmenta-
tions: (1) random horizontal and vertical flipping, (2) resize
the short edge to 256 while keeping the aspect ratio, (3) ran-
dom croppingwith a size of 224× 224, and (4) color jittering
(adjusting brightness, contrast, hue, and saturation).

5.4 Results onMT-CAS

Tocarry out the semi-supervised surface defect classification.
experiments, we randomly divided the training set into

the labeled dataset and unlabeled dataset. Specifically, a por-
tion of the samples in the training set are randomly selected
to form the labeled dataset Dl � {xli , yli }Li�1 with true
labels. The remaining are used to form the unlabeled dataset
Du � {xui }Ui�1 and their true labels are ignored. To investi-
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Table 1 Defect Classification Accuracy on MT-CAS with ResNet-18

L � 939 L � 500 L � 250 L � 100

Supervised-only 99.11 97.53 94.07 92.10

Pseudo-Label – 98.07 95.06 92.99

Mean Teacher – 97.83 94.82 92.59

Ours – 98.91 95.80 93.73

gate the effect of the number of labeled samples L on the
defect classification performance, we divided the training
set with L� 939, 500, 250, and 100, respectively. Note that
there are no unlabeled samples when L� 939.We conducted
experimentswith different values of L and evaluated the clas-
sification accuracy on the validation set. All the experiments
were repeated five times with the same settings. Then the
averages were taken as the final results.

In the experiments, the supervised-only method, Pseudo-
Label [20], Mean Teacher [29], and the proposed method
were used to train the classifier, respectively. For the
supervised-only method, the classifier was trained for 3000
iterations when L� 939, for 1600 iterations when L� 500,
for 800 iterations when L� 250, for 400 iterations when
L� 100. For the semi-supervised method, including Pseudo-
Label [20],Mean Teacher [29], and the proposedmethod, the
classifier (the student model in our method) was trained for
6200 iterations when L� 500, for 3100 iterations when L�
250, for 1200 iterations when L� 100.

With ResNet-18 as the classifier, the experimental results
are shown in Table 1. Note that we use the same network
for the teacher and student model in our method. It can be
seen that the accuracy of all methods drops as the num-
ber of labeled samples decreases, indicating that the number
of labeled samples directly affects the performance of deep
neural networks. The accuracy of all semi-supervised meth-
ods is higher than that of supervised-only methods, which
proves that semi-supervised methods can indeed improve
the performance by using additional unlabeled samples. The
accuracy of our method is higher than that of Pseudo-Label
[20] and Mean Teacher [29], which shows the superiority
of our method. When L� 500, our method can achieve
98.91% accuracy, which is very close to the accuracy of the
supervised-only method when L=939 (99.11%). This means
that only 0.2% of the accuracy is lost while saving about half
of the labeling cost.

For a more intuitive comparison, the experimental results
in Table 1 are plotted as a line graph shown in Fig. 9. The
black horizontal dashed line represents the accuracy of the
supervised-only method when L� 939. The effectiveness of
our method and its superiority compared with baselines can
be intuitively illustrated in Fig. 9.

Fig. 9 Defect classification accuracy on MT-CAS with ResNet-18

Table 2 Defect Classification Accuracy on MT-Ours with ResNet-18

L � 2296 L � 1000 L � 500 L � 250 L � 100

Supervised-only 95.29 93.64 92.52 90.00 82.98

Pseudo-Label – 94.08 93.04 90.71 86.13

Mean Teacher – 94.19 92.77 90.60 85.52

Ours – 94.92 94.16 92.23 88.09

5.5 Results onMT-Ours

As in the previous section, the training set was randomly
divided into labeled and unlabeled datasets with L=2296,
1000, 500, 250, and 100. For the supervised-only method,
the classifier was trained for 7200 iterations when L=2296,
for 3200 iterations when L=1000, for 1600 iterations when
L=500, for 800 iterations when L=250, for 400 itera-
tions when L=100. For semi-supervised method, including
Pseudo-Label [20], Mean Teacher [29], and the proposed
method, the classifier (the student model in our method) was
trained for 6200 iterations when L=1000, for 6200 iterations
when L=500, for 3100 iterations when L=250, for 1200 iter-
ations when L=100.

With ResNet-18 as the classifier, the experimental results
are shown in Table 2. We also use the same network for the
teacher and studentmodel in ourmethod. Similar results as in
the previous section can be observed fromTable 2.Moreover,
we can observe the following results:

(1) Compared withMT-CAS, the accuracy of all methods is
lower onMT-Ours. This is because the region of defects
in MT-CAS is relatively large, whereas there are many
images with small defect regions in MT-Ours, so it is
more difficult to classify.

123



35 Page 10 of 14 T. Liu

Fig. 10 Defect classification accuracy on MT-Ours with ResNet-18

Table 3 Defect Classification Accuracy on MT-Ours with DenseNet-
121

L � 2296 L � 1000 L � 500 L � 250 L � 100

Supervised-only 96.47 94.87 93.32 90.89 84.71

Pseudo-Label – 95.55 94.14 92.07 87.64

Mean Teacher – 95.29 93.85 91.70 86.78

Ours – 96.07 94.69 92.96 90.13

(2) The smaller the number of labeled samples, the more
obvious the superiority of our method. For example,
when L=1000, 500, 250, and 100, the accuracy of our
method is 1.28%, 1.64%, 2.23%, and 5.11% higher
than that of the supervised-only method, 0.84%, 1.12%,
1.52%, and 1.96% higher than that of Pseudo-Label
[20], 0.73%, 1.39%, 1.63%, and 2.57% higher than that
of Mean Teacher [29].

For a more intuitive comparison, the results in Table 2 are
plotted as a line graph shown in Fig. 10. The black horizontal
dashed line represents the accuracy of the supervised-only
method when L=2296.

Besides ResNet-18, we also adopted DenseNet-121 as the
classifier and conducted experiments under the same settings.
As shown inTable 3 and Fig. 11, ourmethod still outperforms
the baseline methods. Benefiting from the densely connected
mechanism, DenseNet-121 can achieve a deeper network
structure andmore efficient feature reuse and extraction abil-
ities with even fewer parameters than ResNet-18.

As mentioned before, the teacher model and the student
model in our method are independent. The teacher model is
responsible for generating pseudo-labels for unlabeled sam-
ples, and the student model is the resulting model for defect
classification.With such design, we can choose a big network

Fig. 11 Defect classification accuracy on MT-Ours with DenseNet-121

Table 4 Number of Parameters and Computational Cost of Networks

Parameters FLOPS

ResNet-18 11.7 M 1820 M

DenseNet-121 7.98 M 2900 M

MobileNetV2 3.4 M 300 M

MobileNetV2(0.25) 1.5 M 37 M

with powerful learning ability as the teacher model to get
high-quality pseudo-labels, while selecting a small network
as the student model for efficient deployment on embedded
devices.

The architecture of MobileNet is specifically designed
for mobile and embedded devices with fewer parameters
and lower computational costs, making it ideal for applica-
tions requiring real-time performance. As shown in Table
4, the number of parameters and computational cost of
MobileNetV2 [30] are 1/3 and 1/6 of those of ResNet-18,
respectively. The size of the network can be further reduced
by decreasing the width multiplier in MobileNetV2.

We then used MobileNetV2(0.25) as the defect classifier
for experiments. For our method, only the student model
needs to be replaced with MobileNetV2 (0.25), while the
teacher model can still use DenseNet-121. In contrast, the
teacher model and the student model in Mean Teacher [29]
must have the same network structure. Therefore, both the
teacher model and the student model in Mean Teacher [29]
must be replaced with MobileNetV2(0.25).

The results are shown inTable 5 andFig. 12.Ours(ResNet-
18) and Ours(DenseNet-121) denote the teacher model in
our method using ResNet-18 and DenseNet-121, respec-
tively, while the student model using MobileNetV2(0.25).
Compared with the results in Table 3, the accuracy of all
methods decreases after using the lightweight network, but
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Table 5 Defect Classification Accuracy on MT-Ours with
MobileNetV2(0.25)

L � 2296 L � 1000 L � 500 L � 250 L � 100

Supervised-only 93.11 91.15 88.40 84.58 80.94

Pseudo-Label – 92.49 90.13 86.26 81.94

Mean Teacher – 92.41 89.76 86.44 81.88

Ours – 93.38 92.54 90.03 85.03

Fig. 12 Defect classification accuracy on MT-Ours with
MobileNetV2(0.25)

the decrease in accuracy of our method is slighter. For exam-
ple, compared with Table 3, the accuracy of Pseudo-Label
[20] decreases by 3.06%, 4.01%, 5.81%, and 5.70% when
L=1000, 500, 250, and 100, respectively, while the accu-
racy of our method decreases by 2.09%, 1.68%, 2.17%,
and 2.96%. This shows that our method can be efficiently
deployed while maintaining promising performance.

It can be seen that the accuracy of Ours(ResNet-18) and
Ours(DenseNet-121) when L=1000 is higher than that of
the supervised-only method when L=2296. Compared with
ResNet-18 and DenseNet-121, MobileNetV2(0.25) has a
very limited number of parameters, so its learning ability
is correspondingly much weaker. Therefore, it is hard for
the supervised-only method to achieve very high accuracy
even when all the samples in the training set are labeled
(L=2296). In our method, the student model can learn trans-
ferable knowledge from the teachermodel. Thus, ourmethod
can achieve higher accuracy with fewer labeled samples.

5.6 Ablation studies

We study the effects of some settings and parameters in the
proposed method in this section. All ablation experiments
were carried out on the MT-Ours dataset, changing one or a
few hyperparameters at a time while the others remain fixed.

Table 6 Accuracy of
Pseudo-Labels Generated by
Different Methods

L � 250 L � 100

Naïve 88.51 80.05

Alt-optim 89.93 83.38

Table 7 Defect Classification
Accuracy of the Student Model
Using Different Pseudo-Labels

L � 250 L � 100

Naïve 91.42 86.07

Alt-optim 92.23 88.09

In the following experiments, ResNet-18 is adopted as the
classifier by default.

5.6.1 Generation of pseudo-labels

In the pseudo-label generation stage, the pseudo-labels of
the unlabeled samples and the teacher model parameters
are alternatively optimized. Another simple way is to train
the teacher model using only labeled samples, then use the
trained teacher model to predict pseudo-labels for unla-
beled samples. Therefore, we generated the pseudo-labels
of unlabeled samples using these two methods separately
and evaluated the accuracy of pseudo-labels. The results are
shown in Table 6. Naïve denotes training the teacher model
using only labeled samples.Alt-optim denotes our alternating
optimizationmethod.We can see that the accuracy of pseudo-
labels generated by Naïve is lower than that of Alt-optim,
which illustrates the effectiveness of alternating optimiza-
tion.

The pseudo-labels generated by these two methods were
then used to train the student model separately. The corre-
sponding defect classification accuracy is shown in Table 7.
It can be seen that a higher accuracy of the pseudo-labels is
associated with a higher defect classification performance.
Note that the true labels of unlabeled samples are only used
to assess the quality of the pseudo-labels.

5.6.2 Curriculum learning for teacher model

In the pseudo-label generation stage, curriculum learning is
used to train the teacher model. The p0, p1, and T0 in (11)
control the value of p during the training. When L� 100 and
T0� 40, the accuracy of the generated pseudo-labels under
different values of (p0, p1) is shown in Fig. 13. The pseudo-
labels generated at (p0, p1)� (0.2, 0.5) have relatively high
accuracy.A too-small p0 results in too fewunlabeled samples
participating in the training at the beginning, and thus the
teacher model cannot make full use of unlabeled samples.
On the contrary, a too large p1 results in too many unlabeled
samples with low confidence pseudo-labels participating in
the training, thus introducing more label noise.
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Fig. 13 Accuracy of generated pseudo-labels under different values of
(p0, p1)

Fig. 14 Accuracy of the generated pseudo-labels under different values
of T0

When (p0, p1)=(0.2, 0.5), the similar experiments were
conducted under different values of T0, and the results are
shown in Fig. 14. The pseudo-labels generated at T0=40
have relatively high accuracy. A too-small T0 result in the
unlabeled samples participating in the training of the teacher
model too early, thus introducing label noise at the beginning.
On the contrary, a too large T0 result in unlabeled samples
participating in the training of the teacher model until the
training process is about to finish, making it hard to achieve
the alternating optimization.

Fig. 15 Defect classification accuracy of the student model under dif-
ferent values of p

′

5.6.3 Threshold of pseudo-label for student model

In the student model training stage, the unlabeled samples
with high-confidence pseudo-labels are selected for training
based on a threshold p

′
. To investigate the effect of p

′
on the

performanceof the studentmodel,we conducted experiments
for different values of p

′
. As shown in Fig. 15, the points with

the highest accuracy under different values of p
′
are marked

with hollow symbols. It can be seen that the optimal value of
p

′
differs for different L . The optimal values of p

′
are 0.9, 0.7,

0.5 and 0.5 when L� 1000, 500, 250 and 100, respectively.
Since the total number of labeled and unlabeled samples in

the training set is constant, there are fewer unlabeled samples
with large L . In this case, a large value of p

′
ensures there are

adequate unlabeled samples to help with the student model
training, whereas a small value of p

′
leads to insufficient

use of unlabeled samples. On the contrary, there are more
unlabeled samples with small L . In this case, a small value
of p

′
is enough, and a large value of p

′
introduces more label

noise instead. Therefore, p
′
should have a large value when

there are few unlabeled samples. Otherwise, the value of p
′

should be small. In previous experiments, the value of p
′

was not adjusted for a fair comparison with other methods
but was set to 0.7 by default.

5.6.4 Mixup augmentation

In the student model training stage, mixup is applied to
achieve information fusion between labeled and unlabeled
samples as well as regularization. To investigate the effect of
mixup on the performance of the student model, we trained
the student model with or without mixup, respectively. With-
out mixup, only Ls and Lu in (21) are available. The results
are shown in Table 8. It can be seen that mixup can improve
the defect classification accuracy of the student model.
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Table 8 Defect Classification
Accuracy of the Student Model
with or without Mixup

L � 100

Naïve 86.39

Alt-optim 88.09

6 Conclusion

This paper proposes a semi-supervised learning method
based on pseudo-labeling to inspect surface defects on mag-
netic tiles. The proposed method can effectively utilize
unlabeled samples to reduce the annotation cost. Experiments
on the public and our collected datasets show the effective-
ness and superiority of our method. In addition, our method
offers great flexibility for deployment on mobile and embed-
ded devices. The limitations of the proposed method are as
follows. Firstly, the proposed method requires tuning sev-
eral hyperparameters, although we have observed that good
performance can be achieved with rough tuning. Secondly,
we directly adopted off-the-shelf CNN models as classi-
fiers without exploring the network structure. Therefore, the
future of this paper will focus on these two aspects. Firstly,
it is necessary to reduce the number of hyperparameters or
improve the robustness of the proposed method to the choice
of hyperparameters. Secondly, the network structure needs
to be optimized to further improve the defect classification
performance.
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