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Abstract
The advancements in deep learning technologies have produced immense contributions to biomedical image analysis appli-
cations. With breast cancer being the common deadliest disease among women, early detection is the key means to improve
survivability. Medical imaging like ultrasound presents an excellent visual representation of the functioning of the organs;
however, for any radiologist analysing such scans is challenging and time consuming which delays the diagnosis process.
Although various deep learning-based approaches are proposed that achieved promising results, the present article introduces
an efficient residual cross-spatial attention-guided inception U-Net (RCA-IUnet) model with minimal training parameters
for tumor segmentation using breast ultrasound imaging to further improve the segmentation performance of varying tumor
sizes. The RCA-IUnet model follows U-Net topology with residual inception depth-wise separable convolution and hybrid
pooling (max pooling and spectral pooling) layers. In addition, cross-spatial attention filters are added to suppress the irrel-
evant features and focus on the target structure. The segmentation performance of the proposed model is validated on two
publicly available datasets using standard segmentation evaluation metrics, where it outperformed the other state-of-the-art
segmentation models.

Keywords Breast tumor segmentation · Deep learning · Ultrasound imaging · U-Net

1 Introduction

Breast cancer is the most prevalent cancer in women among
all the cancers [1] with the leading cause of death world-
wide. With the molecular etiology of breast cancer being
unknown, identifying the early signs of cancer is the only
means to reduce the mortality rate. Due to the non-invasive,
non-radioactive, painless, cost effective and ease in availabil-
ity of the ultrasound imaging [2], it is most widely accepted
for screening and diagnosing breast cancer. However, even
for an expert radiologist, the manual analysis of such scans
is challenging and time consuming. Following this context,
deep learning-based computer-aided diagnosis (CAD) sys-
tems are developed for the early detection of breast tumor
for faster diagnosis and treatment [3]. In most CAD systems,
breast tumor segmentation (BTS) is the key phase for follow
up tumor treatment plans and diagnosis, where the goal is to
segregate the target tumor region from the rest of the image.
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However, most of the approaches proposed for BTS are pre-
sented and validated on the private datasets which limit their
reusability and reachability.

The general schematic representation of the deep learn-
ing based segmentation models is presented in Fig. 1. In the
data pre-processing phase, the aim is to transform the data
into the trainable format by applying certain techniques like
normalization to reduce intensity variation, resize to fit the
model input layer, cropping the irrelevant features or noise,
data augmentation, etc. The processed data is utilized to train
the deep learning model and generate the desired segmenta-
tion mask. Finally, the generated mask is post-processed to
refine the segmentation results. In the last decades, many
deep learning-based segmentation models are proposed [4],
where U-Net based approaches achieved state-of-the-art per-
formance in a wide variety of 2D and 3D data space [5–7]
while also addressing the challenge of limited availability of
the medical data.
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Fig. 1 Generalized representation of the overview of the biomedical
image segmentation models

1.1 U-Net

The U-Net model, developed by Ronneberger et al. [8],
formed the basis of the state-of-the-art biomedical image
segmentation networks. This model employed unique con-
traction and expansion paths along with the residual skip
connections for biomedical image segmentation. In this
architecture, the contraction phase tends to extract high and
low level features, whereas the expansion phase follows
from the features learned in the corresponding contraction
phase (skip connections) to reconstruct the image into the
desired dimensions with the help of transposed convolu-
tions or upsampling operations. The network does not have
any fully connected layers and only uses the valid convolu-
tion accompanied by rectified linear unit (ReLU) activation
and max pooling operations. Following the state-of-the-art
potential of the U-Net model, many variants are proposed
for biomedical image segmentation [4]. With such high util-
ity of the U-Net model, this article presents a U-Net based
model for breast tumor segmentation.

1.2 Our contribution

Themajor contribution of the article concerning breast tumor
segmentation is described below:

– A novel architecture, residual cross-spatial attention-
guided inception U-Net model (RCA-IUnet) is intro-
duced with long and short skip connections to generate
binary segmentation mask of tumor using ultrasound
imaging.

– Instead of the direct concatenation of encoder feature
maps with upsampled decoded feature maps, a cross-
spatial attention filter is introduced in the long skip
connections that use multi-level encoded feature maps to
generate attention maps for concatenation with decoded
feature maps.

– Hybrid pooling operation is introduced that uses a com-
bination of spectral andmax pooling for efficient pooling
of the feature maps. It is utilized in two modes: (a) same:
used in inside inception block (b) valid: used to connect

inception blocks (reduce the spatial resolution by half the
input feature map).

– The model is also equipped with short skip connections
(residual connections) along with the inception depth-
wise separable convolution layers (concatenated feature
maps from 1 × 1, 3 × 3, 5 × 5 and hybrid pooling).

1.3 Article organization

The rest of the article is structured in various sections cov-
ering related work in Sect. 2 to present the literature survey
and the proposed approach in Sect. 3. In the later Sects. 4
and 5, the experimental setup and results are presented along
with the qualitative and quantitative results to cover the com-
parative analysis and ablation study. Finally, the concluding
remarks and future scope are presented.

2 Related work

With the advent of advancements in deep learning, the
healthcare sector is improving every day [9]. In classi-
cal approaches, thresholding [10], region growing [11] and
watershed [12]-based frameworks were adopted to pro-
duce segmentation masks. In this section, various breast
ultrasound image segmentation approaches are studied that
achieved state-of-the-art performance, especially on their pri-
vate dataset [3].

Shan et al. [13] proposed a fully automatic deep learning
based segmentation framework to identify and localize the
breast lesions using ultrasound imaging. The framework con-
siders textural and spatial features, where initially region of
interest (RoI) is generated (region likely to contain lesion)
with automatic seed point selection and region growing
approach. Following the RoI generation, multi-domain fea-
tures are extracted: phase in max orientation (PMO), radial
distance (RD) and a frequently used texture-and-intensity
feature joint probability (JP). Later, an artificial neural net-
work was used to generate the binary segmentation mask of
the lesion region. In 2014, Torbati et al. [14] introduced a
neural network-based framework that uses merging moving
average self organizing maps (MMA-SOM) to generate an
initial segmentation mask and objects belonging to the joint
cluster are merged. Later, a 2D discrete wavelet transform
(DWT) is computed to generate the input feature space of
the network. The approach was validated on multiple modal-
ities,where for breast ultrasound image segmentation authors
established a strong correlation between ground truth mask
and predictedmask. In another approach, a stacked denoising
auto-encoder (SDAE) was introduced by Cheng et al. [15] to
diagnose lesions in breast ultrasound and pulmonary nod-
ules in CT scans. The approach achieved robust results and
outperformed traditional computer-aided diagnosis (CAD)
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approaches, because of automatic feature extraction and high
noise tolerance.

With transfer learning [16] being a growing area of
research, Huyanh et al. [17] proposed a transfer learning-
based approach to classify cystic, benign, or malignant
cancer in breast ultrasound imaging. In a similar approach,
Fujioka et al. [18] utilized GoogLeNet inception [19] model
to classify breast tumors with varying shapes and size. To
generate the segmentationmask, Yap et al. [20] utilized a pre-
trained FCN-AlexNet model. The approach outperformed
other segmentation models, however failed to produce bet-
ter segmentation masks for small lesion regions. Huang et
al. [21] introduced a superpixels classification and cluster-
ing patches based segmentation approach to diagnose breast
tumors in ultrasound imaging. Though the authors achieved
promising segmentation results, the performance was fairly
low on large tumors due to simple linear iterative clustering
[22]. In order to generate better segmentation results, several
methods have been studied to dynamically adapt to the target
structures (tumor) of varying shapes and sizes using atten-
tionmechanism [6,23]. Following this context, Lee et al. [24]
introduced a channel attention module and multi-scale grid
average pooling to segment breast ultrasound images. Unlike
channel attention that offers depth correlation, spatial atten-
tion allows to prioritize an area within the receptive field to
better extract the target feature maps [25]. With this potential
of spatial attention filter, we propose a novel residual incep-
tion U-Net architecture that uses a cross-spatial attention
filter to extract relevant features from multi-scale encoded
features to generate binary tumor segmentation masks. Fur-
thermore, the model is equipped with residual inception
depth-wise separable convolution and hybrid pooling (max
pooling and spectral pooling) layers for better feature extrac-
tion and learning.

3 Proposed architecture

The schematic representation of the residual cross-spatial
attention-guided inceptionU-Netmodel (RCA-IUnet) is pre-
sented in Fig. 2. The network follows U-Net topology where
standard convolution and pooling operations are replaced
by inception convolution with short skip connections and
hybrid pooling along with the cross-spatial attention filter
on long skip connection to focus on the most relevant fea-
tures. The network has four stages of encoding and decoding
layer, where at each stage the spatial dimension (width and
height) of the feature map reduces by 50% and channel depth
increases by 50%. Besides, in order to minimize the training
parameters and the number of multiplications, the depth-
wise separable convolution (DSC) operation [26] is followed
which resulted in 2.9M trainable parameters.

Fig. 2 Schematic representation of the RCA-IUnet

The network generates a binary segmentation mask to
highlight the tumor region. In some of the predicted masks,
minor holes (false negative) and small unnecessary regions
(false positive) are identified. Hence, the generated segmen-
tation mask is further refined with post-processing morpho-
logical operations such as the flood fill algorithm, mask
extraction and binary thresholding to fill the minor holes left
in the generated mask based on the surrounding or connected
pixels (reducing the false negative predictions), remove the
small masked regions (reducing the false positive predic-
tions) and filter the masked regions, respectively.

3.1 Depthwise separable convolution

Unlike standard convolution (SC) operation, in DSC the con-
volution is performed in two stages involving depthwise
and pointwise convolutions as shown in Fig. 3b for some
input feature map with width (w), height (h) and depth (d),
F ∈ R

w×h×d . From Fig. 3 it can be observed that the ratio of
reduction in parameters and multiplications can be presented
using Eq. 3 in terms of number of parameters (PSC, PDSC)
or multiplications (MSC, MDSC), number of kernels (r ) and
kernel size ( f ).

MSC = r .p2. f 2.d , PSC = r . f 2.d (1)

MDSC = d.p2.( f 2 + r) , PDSC = d.( f 2 + r) (2)
MDSC

MSC
= PDSC

PSC
= 1

r
+ 1

f 2
(3)

3.2 Hybrid pooling

In deep learning, various pooling operations are introduced
[27], where max pooling is the most common choice for
downsampling the feature maps. Max pooling tends to only
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Fig. 3 Convolution operations: a standard convolution, and b depthwise separable convolution

preserve the sharpest features by applying max operation in
given window size, whereas spectral pooling [28] not only
downsamples the feature maps but also preserves more infor-
mation as compared to max pooling. In spectral pooling,
discrete Fourier transform (DFT) of the input feature map is
computed to truncate the high frequency values in the spectral
domain and then inverse DFT is applied to convert back to
the spatial domain. Hence, to better downsample the feature
maps, in this article hybrid pooling is introduced in which
downsampled feature maps from max pooling and spectral
pooling are merged using the 1 × 1 convolution operation.

3.3 Inception convolution

In order to identify the features concerning tumor regions of
varying shape and size, the model needs to have an adaptive
receptive field [29,30]. The inception convolution is designed
by concatenating the feature maps extracted using the ReLU
activated parallel depthwise separable convolutions with dif-
ferent kernels of sizes such as 1 × 1, 3 × 3 and 5 × 5, and
hybrid pooling while also using the batch normalization to
avoid the covariance shift problem. Finally, the concatenated
feature maps undergo 1 × 1 convolution to setup the chan-
nel correlation and optimize the spatial dimension. Consider
an input feature map, Fi ∈ R

w×h×d , the overview of the
inception convolution is illustrated in Fig. 4a. Following from
the inception convolution layers, the residual inception con-
volution block is developed by applying double inception
convolution layers with a short skip connection to merge the
extracted feature maps with input using 1×1 DSC as shown
in Fig. 4b.

3.4 Cross-spatial attention block

In order to draw the attention of the model toward the tumor
structure of varying shape and size, a cross-spatial atten-
tion block is introduced in the long skip connections. Unlike
the standard attention network [6], in this block, the atten-
tion filter utilizes the extracted features maps from multiple

Fig. 4 Overview of the a inception convolution layer and b residual
inception layer

encoded layers to develop better correlation in the spatial
dimension of the feature maps. The schematic representa-
tion of the cross-spatial attention approach is illustrated in
Fig. 5, where feature maps from three different layers are
considered to form the attention feature maps (output feature
maps) which are later concatenated with the corresponding
decoded layer in the expansion or reconstruction phase.

4 Experiment setup

In this section, details concerning the experimental envi-
ronment and datasets are presented along with the obtained
results and comparative analysis. Due to non-availability of
the implementation of the existing breast ultrasound image
segmentation models and a standard testing set, the proposed
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Fig. 5 Schematic representation of cross-spatial attention block

model is compared with other state-of-the-art segmentation
models like SegNet1 [31], U-Net1 [8], U-Net++2 [32], atten-
tion U-Net3 [6], dense U-Net4 and deep layer aggregation
(DLA)2 [33] while using vgg16 [34] and resnet50 [34] as
backbone architectures.

4.1 Dataset description and setup

The RCA-IUnet model is trained and evaluated using two
publicly available datasets: a) breast ultrasound image seg-
mentation (BUSIS) benchmark dataset [35] and b) breast
ultrasound images (BUSI) dataset [36]. The BUSIS dataset
comprises 562 breast ultrasound images that are collected
from vivid hospitals: Harbin medical university, Qingdao
university, and Hebei medical university. Each image is pro-
vided with a binary ground truth mask (1 label is assigned
for tumor pixel and 0 label for background pixel) to highlight
the tumor regionwhich is generated using themajority voting
approach from the annotations provided by various radiolo-
gists. Unlike the BUSIS dataset, BUSI dataset offers 780
ultrasound images divided into normal (133), benign (487)
and malignant (210) classes along with the binary ground
truth mask. Figure 6 shows the sample ultrasound images
along with the ground truth from BUSIS and BUSI datasets.
Due to the variation in the image size in both the datasets,
the images are normalized and resized to 256 × 256 for all
the segmentation models. Both datasets are randomly split
into 70% of the training set and 30% of the testing set and
are kept the same throughout the experimentation. All the
segmentation models are trained on the training set which is

1 https://github.com/lsh1994/keras-segmentation.
2 https://github.com/kannyjyk/Nested-UNet.
3 https://github.com/ozan-oktay/Attention-Gated-Networks.
4 https://github.com/clguo/Dense_Unet_Keras.

Fig. 6 Breast ultrasound images with ground truth from a BUSIS and
b BUSI datasets

further split into 70% train set and 30% validation set. The
trained models are then evaluated on the testing set.

4.2 Training and testing

The models are trained and tested on the BUSIS and BUSI
datasets. The training phase is assisted with the stochastic
gradient descent approach and Adam as an optimizer [37]
on an NVIDIA GeForce RTX 2070 Max-Q GPU. During
training, the learning rate initialized at 1e − 3 is reduced
by a factor of 2 once learning stagnates to achieve better
results. Moreover, earlystopping technique is adopted that
halts the training process as soon as the validation error stops
improving to avoid the overfitting problem. The RCA-IUnet
is trained with the segmentation loss function (L) that is
defined as the average of binary cross entropy loss (LBC)
and dice coefficient loss (LDC) as shown in Eq. 4.

L = 1

2
LBC + 1

2
LDC (4)

LBC (y, p (y)) = −
N∑

i

(yi .log (p (yi )) + (1 − yi ) .

log (1 − p (yi )))

(5)

LDC (y, p (y)) = 1 − 2
∑N

i yi .p(yi )∑N
i |yi |2+ ∑N

i |p(yi )|2
(6)

where y is the ground truth label, p(y) is the predicted label,
and N is the total number of pixels. During the backpropa-
gation, the gradient of the loss function with respect to the
predicted value can be computed using Eq. 7.

∂L
∂ p(y)

= 1

2

[
∂LBC (y, p (y))

∂ p(y)
+ ∂LDC (y, p (y))

∂ p(y)

]
(7)
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Table 1 Tumor segmentation
evaluation metrics in terms of
number of true positive (TP),
true negative (TN), false
positive (FP) and false negative
(FN), predicted mask (P) and
ground truth (G), H(P,G) is the
directed AHD from P to G with
d as Euclidean distance, N is
the total number of pixels and t
is the prediction threshold

Metric Expression

Accuracy Acc = (T P+T N )
(T P+T N+FP+FN )

Precision Pr = T P
(T P+FP)

Recall R = (T P)
(T P+FN )

Dice coefficient DC = 2×|P∩G|
|P|+|G| = 2T P

2T P+FP+FN

Mean intersection-over-union
mIoU = 1

10

∑
t I oU t ; t+ = 0.5 ≤ 0.95

I oU = P∩G
P∪G = T P

T P+FP+FN

Average Hausdorff distance
AHD = 1

2

(
H(P,G)

P + H(G,P)
G

)

= 1
2

(
1
P

∑
p∈P ming∈G d(p, g) + 1

G
∑

g∈G minp∈P d(p, g)
)

Mean absolute error MAE = |P−G|
N

Fig. 7 Qualitative comparison of BUS tumor segmentation results of
the models: SegNet, U-Net, U-Net++, attention U-Net, dense U-Net,
deep layer aggregation and RCA-IUnet, a Without the post-processing
and b With the post-processing. The quantities indicate the dice score
for each predicted mask

where

∂LBC (y, p (y))

∂ p(y)
= p (y) − y

p (y) (1 − p (y))
(8)

∂LDC (y, p (y))

∂ p(y)
= −2

(
y.(|y|2 − |p (y)|2
(|y|2 + |p (y)|2)2

)
(9)

The trained models are utilized to predict the tumor seg-
mentation mask for the test set. The performance of the
models is compared using various evaluation metrics as

Fig. 8 Summary of average training and validation scores: aDice coef-
ficient, b mean absolute error, c average Hausdorff distance, d mean
intersection over union, e precision and f) recall, of RCA-IUnet model
over BUSIS and BUSI datasets

shown in Table 1. In addition, inference time (IT) [38] is
considered to measure the speed of the model. This is com-
puted by measuring the average time taken by the model to
generate mask for each sample in test set, where less infer-
ence time indicates faster mask generation.

5 Results and discussion

The models produce a binary tumor segmentation mask for
a given BUS image. The qualitative results of all the models
with and without the post-processing are shown in Fig. 7.
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Table 2 Comparative analysis of the RCA-IUnet with other segmentation approaches on the BUS datasets

Dataset Model Params IT (ms) PP Tumorsegmentation

Acc. ↑ Pr. ↑ R ↑ DC ↑ mIoU ↑ AHD ↓ MAE ↓
BUSIS SegNet + vgg16 29.4M 46.12 N 0.910 0.882 0.713 0.789 0.777 5.936 0.052

Y 0.961 0.949 0.717 0.817 0.820 5.730 0.038

U-Net + resnet50 36.5M 25.48 N 0.925 0.899 0.881 0.890 0.861 5.303 0.034

Y 0.980 0.941 0.889 0.914 0.910 4.800 0.022

U-Net++ + resnet50 37.7M 41.33 N 0.928 0.867 0.847 0.857 0.888 5.156 0.029

Y 0.976 0.921 0.865 0.892 0.890 4.920 0.024

Attention U-Net + vgg16 31.9M 45.32 N 0.939 0.894 0.892 0.893 0.891 4.980 0.027

Y 0.978 0.930 0.888 0.909 0.909 4.650 0.022

Dense U-Net + vgg16 20.2M 41.54 N 0.939 0.838 0.871 0.854 0.825 5.485 0.031

Y 0.973 0.893 0.872 0.882 0.879 5.002 0.027

DLA + vgg16 23.7M 44.22 N 0.933 0.840 0.832 0.836 0.851 5.345 0.024

Y 0.976 0.900 0.834 0.866 0.887 5.002 0.023

RCA-IUnet (Ours) 2.9M 18.75 N 0.980 0.950 0.920 0.935 0.904 4.760 0.019

Y 0.990 0.954 0.920 0.937 0.910 4.632 0.019

BUSIS SegNet + vgg16 29.4M 46.15 N 0.919 0.779 0.637 0.701 0.780 5.896 0.048

Y 0.925 0.842 0.693 0.760 0.787 5.750 0.042

U-Net + resnet50 36.5M 25.48 N 0.825 0.808 0.815 0.811 0.815 5.535 0.035

Y 0.926 0.881 0.814 0.846 0.834 5.050 0.027

U-Net++ + resnet50 37.7M 41.32 N 0.885 0.883 0.811 0.845 0.864 5.393 0.029

Y 0.941 0.900 0.812 0.854 0.850 5.136 0.027

Attention U-Net + vgg16 31.9M 45.32 N 0.860 0.877 0.752 0.810 0.827 5.215 0.027

Y 0.946 0.901 0.808 0.852 0.860 5.010 0.025

Dense U-Net + vgg16 20.2M 41.54 N 0.883 0.881 0.787 0.831 0.811 5.082 0.032

Y 0.960 0.914 0.820 0.864 0.880 4.840 0.023

DLA + vgg16 23.7M 44.21 N 0.880 0.859 0.812 0.835 0.839 5.142 0.028

Y 0.968 0.910 0.820 0.863 0.890 5.082 0.024

RCA-IUnet (Ours) 2.9M 18.74 N 0.969 0.938 0.889 0.913 0.888 4.810 0.022

Y 0.970 0.940 0.890 0.914 0.899 4.710 0.020

The best results with post-processing (PP) no and yes are shown in italics and bold fonts respectively

The generated segmentation mask along with the dice scores
confirms the better performance of the RCA-IUnet model
over other segmentation models. Figure 8 presents the mean
segmentation performance of the RCA-IUnet model over the
training and validation sets from both the datasets monitored
during the training phase. From Fig. 8, it can be observed that
the training and validation scores are promising and close
to each other indicating that the RCA-IUnet model neither
overfits nor underfits the training data and hence generates
better segmentation masks.

It is also observed that among the tested models, the
post-processing techniques have minimal impact on the per-
formance of the RCA-IUnet model, indicating that themodel
produces a segmentation mask with very low false positive
and false negative predictions of the tumor regions. How-
ever, there is a noticeable improvement in the performance

of other models by using post-processing, indicating that
these models generate high false predictions and hence relies
on further refinement to improve the results. For instance,
in Fig. 7, the segmentation mask generated for the second
sample by U-Net without and with post-processing has dice
scores of 0.731 and 0.934, respectively,while theRCA-IUnet
model produces same resultswith a better dice score of 0.984.
Besides, the overall quantitative results are shown in Table 2
along with the comparative analysis with other state-of-the-
artmodels in terms of evaluationmetrics described inTable 1.
The proposed model outperformed with best segmentation
scores and minimal inference time while having consider-
ably less number of training parameters.

The effectiveness of each proposed component of the
RCA-IUnet model is analyzed in Table 3. This ablation
study is conducted by adding the proposed components to
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Table 3 Ablation study of RCA-IUnet model

Dataset Model IT (ms) Tumor segmentation

Acc. ↑ Pr. ↑ R ↑ DC ↑ mIoU ↑ AHD ↓ MAE ↓
BUSIS U-Net 3.187 0.680 0.521 0.553 0.536 0.527 6.433 0.095

U-Net + RIC 18.06 0.920 0.881 0.864 0.872 0.869 5.001 0.022

U-Net + CSA 14.28 0.911 0.873 0.860 0.866 0.862 5.120 0.022

U-Net + RIC + HP 18.11 0.930 0.901 0.884 0.892 0.883 4.701 0.021

U-Net + CSA + HP 14.93 0.933 0.911 0.884 0.893 0.883 4.700 0.021

U-Net + CSA + RIC 18.31 0.987 0.926 0.912 0.919 0.897 4.644 0.019

U-Net + RIC + HP + CSA (RCA-IUnet) 18.75 0.990 0.954 0.920 0.937 0.910 4.632 0.019

BUSI U-Net 3.185 0.621 0.468 0.519 0.492 0.483 6.501 0.095

U-Net + RIC 18.06 0.899 0.861 0.849 0.855 0.843 5.110 0.024

U-Net + CSA 14.28 0.885 0.860 0.845 0.852 0.839 5.121 0.024

U-Net + RIC + HP 18.11 0.933 0.911 0.866 0.888 0.858 4.823 0.021

U-Net + CSA + HP 14.93 0.923 0.920 0.861 0.890 0.860 4.813 0.021

U-Net + CSA + RIC 18.31 0.968 0.932 0.879 0.905 0.889 4.751 0.020

U-Net + RIC + HP + CSA (RCA-IUnet) 18.74 0.970 0.940 0.891 0.914 0.899 4.710 0.020

The best results and proposed model are highlighted in bold. RIC residual inception convolution,HP hybrid pooling andCSA cross-spatial attention,
RCA-IUnet U-Net + RIC + HP + CSA

Table 4 Cross-data validation
of RCA-IUnet model with fine
tuning

Scenario Acc. ↑ Pr. ↑ R ↑ DC ↑ mIoU ↑ AHD ↓ MAE ↓
D1 − D2 0.957 0.913 0.885 0.901 0.855 4.879 0.023

D2 − D1 0.990 0.959 0.921 0.936 0.926 4.897 0.019

D1—BUSIS dataset, D2—BUSI dataset. Scenario D1 − D2 indicates model is trained on D1, fine-tuned and
tested on D2, whereas vice versa for scenario D2 − D1

base U-Net model. Here U-Net is a skeleton model of com-
plete RCA-IUnet model that consists of default depth-wise
separable convolutions, max pooling operations and skip
connections with four stages of encoding and decoding. This
study is conducted with the same training, validation and
testing sets of both datasets over various combinations to
form different models by adding components to the U-Net
model such as U-Net + CSA, U-Net + RIC + HP, etc. The
performance of each model is compared using segmentation
metrics along with the inference time (IT). From Table 3, it
can be inferred that RIC and CSA are core components that
derive the outperforming nature of the RCA-IUnet model as
shown for models: U-Net + RIC, U-Net + CSA and U-Net +
RIC + CSA. The residual inception convolution enables the
network to capture multi-scale feature representation, and
cross-spatial attention enables the network to draw atten-
tion towards the most relevant features. As compared to max
pooling, hybrid pooling plays a vital rolewith efficient down-
sampling to further improve the results as shown for the
models: U-Net + RIC + HP vs U-Net + RIC and U-Net +
CSA + HP vs U-Net + CSA. With the achieved quantita-
tive results, it is evident that each component contributes to
improving the segmentation performance of the RCA-IUnet

model. Though this segmentation performance is delivered
with increased inference time as compared to the base U-Net
model but is comparatively lesser as compared to the existing
models as shown in Table 2.

To further establish the robustness of the proposed model
a cross-data validation is performed as shown in Table 4.
The testing is performed with two scenarios: (1) model pre-
trained on BUSIS dataset is tested on BUSI dataset, and (2)
model pre-trained on BUSI dataset and is tested on BUSIS
dataset, by fine-tuning. Themodel achieved similar results as
highlighted inTables 2 and 3. This indicates that the proposed
model can adapt to a new dataset by just fine-tuning without
compromising the performance.

6 Conclusion

This article proposes a deep learning based model, resid-
ual cross-spatial attention inception U-Net (RCA-IUnet), for
breast tumor segmentation in ultrasound imaging. The RCA-
IUnet model is designed with a state-of-the-art U-Net model
that uses residual inception depth-wise separable convolu-
tion and hybrid pooling (max pooling and spectral pooling)
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layers along with the cross-spatial attention filter in the long
skip connections to better propagate and extract the feature
maps concerning the tumor region. With exhaustive trials,
the proposed model achieved significant improvement over
the state-of-the-art models with minimal training parame-
ters and inference time on two publicly available datasets to
generate tumor segmentation mask. Moreover, the ablation
study describes the significance of each component of the
model toward tumor segmentation, where residual inception
convolution (RIC) and cross-spatial attention (CSA) compo-
nents displayed a major contribution in the achieved results.
As an extension, the attention component could further be
improved by incorporating a channel attention filter to focus
on most relevant feature layers. Overall the performance of
themodel could further be improved by incorporating deeper
feature extraction layers, hybrid or ensemble learning lead-
ing toward better feature representation for tumor regions.
Besides, the scope of this model is not limited to tumor seg-
mentation in breast ultrasound imaging, it can also provide
potentially useful results with other modalities for biomedi-
cal image segmentation.
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