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Abstract
In this paper, we propose contextual guided segmentation (CGS) framework for video instance segmentation in three passes.
In the first pass, i.e.,preview segmentation, we propose Instance Re-Identification Flow to estimate main properties of each
instance (i.e., human/non-human, rigid/deformable, known/unknown category) by propagating its preview mask to other
frames. In the second pass, i.e.,contextual segmentation, we introduce multiple contextual segmentation schemes. For human
instance, we develop skeleton-guided segmentation in a frame along with object flow to correct and refine the result across
frames. For non-human instance, if the instance has a wide variation in appearance and belongs to known categories (which
can be inferred from the initial mask), we adopt instance segmentation. If the non-human instance is nearly rigid, we train
FCNs on synthesized images from the first frame of a video sequence. In the final pass, i.e.,guided segmentation, we develop a
novel fined-grained segmentation method on non-rectangular regions of interest (ROIs). The natural-shaped ROI is generated
by applying guided attention from the neighbor frames of the current one to reduce the ambiguity in the segmentation of
different overlapping instances. Forward mask propagation is followed by backward mask propagation to further restore
missing instance fragments due to re-appeared instances, fast motion, occlusion, or heavy deformation. Finally, instances
in each frame are merged based on their depth values, together with human and non-human object interaction and rare
instance priority. Experiments conducted on the DAVIS Test-Challenge dataset demonstrate the effectiveness of our proposed
framework. We achieved the 3rd consistently in the DAVIS Challenges 2017–2019 with 75.4%, 72.4%, and 78.4% in terms
of global score, region similarity, and contour accuracy, respectively.

Keywords Semi-supervised learning · Video object segmentation · Contextual segmentation · Guided segmentation.

1 Introduction

Object segmentation is considered a labeling problem aim-
ing to separate foreground from background regions. Video
instance segmentation, which is higher-level and more chal-
lenging than object segmentation, aims to label each video
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frame pixel to instances or the background region and then
assign consistent IDs to these instances over the video
sequence. Object/instance segmentation in videos is benefi-
cial in awide range of practical applications, i.e.,autonomous
vehicle [1], action recognition [21], video summarization
[30], object tracking [66], scene understanding [70], and
video annotation [28].

This paper focuses on semi-supervised video instance
segmentation [46], which targets certain instances whose
ground-truth mask for the first video frame is given. DAVIS
Challenge [46] promotes the development of this task. The
benchmark dataset of this challenge consists of many pit-
falls such as rapid motion, distractors, smaller objects, fine
structures, occlusions, large deformations, complex object
interactions, and so on. Figure 1 shows some exemplary
results of our proposedmethod on theDAVISTest-Challenge
dataset [46].
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Fig. 1 Examples of results obtained by our proposed method. From left to right: the first video frame with the ground-truth label followed by results
of our method on next frames

To address the challenges of the given problem, track-
ing and re-identification methods are adopted and jointly
integrated into segmentation models to keep the consis-
tency of targeted instances over the entire video sequence
[17,22,31,32]. However, existing works usually fail to follow
and segment targeted instances due to cannot cover all vari-
ous contexts in the video. We argue that context information
is essential for semantic segmentation to reduce ambiguous
instances and obtain robust results. Therefore, this work aims
to leverage the context information to improve the perfor-
mance of video instance segmentation. Inspired by the idea
of “you should look twice” [42,43] in the task of object
detection, we propose a three-pass guided segmentation
framework, namely contextual guided segmentation (CGS),
to tackle the problem of semi-supervised video instance seg-
mentation. Our proposed method consists of two key ideas
as below.

First, we exploit variation in the video and propose vari-
ous contextual segmentation strategies adapting to contexts,
i.e.,the category andvisual properties of an instance. To select
the appropriate scheme, we propose a novel Instance Re-
Identification Flow (IRIF) to propagate the initial mask of
an instance to other frames and analyze the visual proper-
ties of segmented regions. Multiple contextual segmentation
schemes are also introduced to adapt the contextual prop-
erties of each instance. For human instances, we develop
skeleton-guided segmentation. For non-human instances, we
train FCNs from our synthesized dataset for nearly rigid
instances with similar background scenes. Instance segmen-
tation detectors are utilized to handle deformable non-human
instances in known categories. Results from our IRIF are
treated as the baseline scheme for other cases.

Second, to segment an instance in a region of interest
(ROI), we propose novel guided fined-grained segmenta-
tion based on attention for performance improvement. We
transform a regular rectangular ROI to a non-rectangular

ROI by blending attention inferred from neighbor frames
to eliminate complex background inside the ROI. We also
propose bidirectional propagation strategies to construct
adaptive attention for guided segmentation. Forward prop-
agation strategy can correct missing segmentation due to
dense objects in a ROI. Meanwhile, a backward propagation
strategy can recover missing instances due to fast motion,
occlusion, or heavy deformation.

The DAVIS Challenges 2017–2019 results indicate that
our method is competitive among the top-performing sub-
missions. Our early results were preliminarily listed on
DAVIS 2017 Challenge [25], DAVIS 2018 Challenge [59],
and DAVIS 2019 Challenge [58]. In this paper, we provide
the full details of our proposed framework. Our contributions
are as follows.

– We propose contextual guided segmentation (CGS)
framework with three segmentation passes to exploit
various contexts in video instance segmentation.Our pro-
posedmethod achieved the 3rd ranking consistently in the
DAVIS Challenges 2017–2019.

– We propose Instance Re-Identification Flow (IRIF) to
extract contextual properties of each instance by propa-
gating its previewmask from the current frame to coming
frames.

– We introduce multiple contextual segmentation schemes
to adapt the contextual properties of each instance.

– We propose bidirectional propagation strategies for
guided fined-grained segmentation in non-rectangular
ROIs. Our proposed guided segmentation outperforms
the standard segmentation, which is mostly applied in
rectangular ROIs.

– To blend instance masks into a unique result, we intro-
duce a merging process based on their depth values
together with human and non-human object interaction
and rare instance priority.
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– We construct Wonderland Data to increase the number
of training data for one-shot learning. Our proposed aug-
mentation approach also can be utilized for different
problems.

The remainder of this paper is organized as follows. In
Sect. 2, we briefly review the related work. Next, our pro-
posed methods are presented in Sect. 3. Experimental results
are then reported and discussed in Sect. 4. Finally, Sect. 5
concludes and paves the way for future work.

2 Related work

2.1 One-shot learning

Data augmentation is essential to deal with one-shot learn-
ing [2], which aims to train a deep network with only a given
first video frame. Caelles et al. [2] introduced the first sim-
ple data augmentation strategy such as random crop, random
scale, vertical flip, random changes in brightness, saturation,
and contrast of the given first frame. Khoreva et al. [22]
later introduce Lucid Dreaming [22] to synthesize the fore-
ground changes by rigid and non-rigid transformation with a
small extent, and synthesize the background changes using
affine deformations with limited appearance variations. The
given first frame with ground truth is augmented with Lucid
Dreaming to generate more training data with different view-
points, leading to much improvement of training networks.
Hence, augmented data by Lucid Dreaming, called Lucid
Data, has become common for one-shot learning. However,
Lucid Data cannot deal with different backgrounds caused
by objects’ motion or camera view changes. Guo et al. [17]
changed the background of the first video frame by images
with pure background crawled randomly from the Internet by
Google, namelyOnlineData. However, OnlineData is unsta-
ble because of randomly crawled from the Internet without
considering the content of the video. Meanwhile, our Won-
derland Data is filtered out from large-scale scene data to
choose the most similar scenes with the video.

Khoreva et al. [22] trained appearance-based and motion-
basedmodelswith LucidData [22]. Shaban et al. [54] learned
video segments by bootstrapping them from temporally con-
sistent object proposals, which are first spatially trained on
Lucid Data [22] and then incorporated a semi-Markov pixel-
level motion model to form spatiotemporal object proposals.
Luiten et al. [38] first trained DeepLab3+ [8] on a combina-
tion of standard datasets and then fine-tuned the network
on Lucid Data [22] of each video to form a strong net-
work to segment instance inside ROI. Li et al. [31] trained
online re-identification network, which is the original Region
Proposal Network of Mask R-CNN, and a recurrent mask
propagation network on Lucid Data [22]. Xu [71] proposed

a spatiotemporal CNN in which the spatial segmentation
branch is fine-tuned online on Lucid Data of each sequence
while the temporal coherence branch is trained offline on the
entire dataset.Models are not onlyfine-tuned offline onLucid
Data [22] of the first frame but also can be updated online
while processing the video [62]. Mask R-CNN is fine-tuned
on Lucid Data [74] or Online Data [17] to adapt proposals to
the video.

2.2 Temporal connectionmining

This approach aims to perform instance tracking, propaga-
tion, and re-identification, where each instance is detected
and re-identified through frames [32]. Li et al. [32] itera-
tively propagated masks via flow warping and re-identified
instances via adaptive matching to retrieve missing ones.
Luiten et al. [38] first segmented multiple object proposals in
the entire video and then selected and linked these proposals
over time using a re-identification feature embedding vector
for each proposal. Re-identification feature embedding vec-
tors are computed using a triplet-loss-based re-identification
embedding network. Li et al. [31] jointed re-identification
and attention-based recurrent temporal propagation into a
unified framework to retrieve missing objects despite their
large appearance changes. Guo et al. [17] first extracted pos-
sible mask proposals in each frame and then joined tracking
and re-identification to filter and rank proposals to merge the
highest confident proposals. Xu et al. [74] adapted a multi-
ple hypotheses tracking method to build up a bounding box
proposal tracking tree for different objects, then propagate
masks, and finally merged mask proposals from the tracking
tree.Wang et al. [66] used fully convolutional Siamese track-
ers to produce class-agnostic binary segmentation masks of
the target objects. Voigtlaender et al. [61] used a semantic
pixel-wise embedding together with a global and a local
matching mechanism to transfer information from the first
frame and from the previous frame of the video to the current
frame, which is used as internal guidance for segmentation.
Jonathon et al. [39] used a Siamese architecture to detect
and track multiple objects and then performed segmentation
inside the detected bounding boxes. Tran et al. [57] propa-
gatedmaskswith reference tomultiple extra samples through
a memory reference pool.

2.3 End-to-end temporal learning

This approach directly learns temporal information in a
video through deep learning architectures such as LSTM,
guided attention, or memory networks. Some methods com-
bine feature maps from different video frames by correlation
matching [61] or non-local matching [44]. Guo et al. [16]
integrated STM [44] into DeepLabv3+ [8] to concatenate
low-level features inmask decoder. Andreas et al. [48] imple-
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mented amemory network to add semantic information about
the target object from a previous frame to the refinement
stage, complementing the predictions provided by the target
appearance model. Zhang et al. [78] developed a spatial con-
straint module that takes the previous prediction to generate
a spatial prior for the current frame, helping to disambiguate
appearance confusion and eliminate false predictions. Fiaz
et al. [15] introduced a guided feature learningwithoutmodel
update algorithm for directional deep appearance learning.
Liu et al. [35] integrated multilevel backbone into mem-
ory network to generate higher spatial resolution features.
Le et al. [64] leveraged existing memory-based models and
enhanced their capability by adding pre-processing and post-
processing steps. Xie et al. [69] integrated depth maps from
a video sequence into STM [44] to alleviate the ambigu-
ity of objects with similar appearances. Seong et al. [53]
developed a kernelized memory network and used the Hide-
and-Seek strategy training to handle occlusions and segment
boundary extraction. Yang et al. [77] combined collaborative
foreground–background integration with multi-scale match-
ing to be robust to various object scales.

3 Proposedmethod

3.1 Overview

Figure 2 illustrates CGS with three passes: preview seg-
mentation for context evaluation, contextual segmentation,
guided segmentation based on propagation. In particular, in
the first pass, we propose Instance Re-Identification Flow
(IRIF) to generate the previewmask sequence and extract dif-
ferent contextual properties from each instance. In the second
pass, we introduce multiple segmentation schemes corre-
sponding to extracted properties. In the third pass,we develop
fined-grained segmentation based on guided propagation.We
remark that each instance is processed independently over
frames of a video sequence. Finally, instance masks are then
blendedwith reference to depth information, human and non-
human instance interaction, and rare instance priority.

3.2 Preview Segmentation

Figure 3 illustrates theflowchart of InstanceRe-Identification
Flow (IRIF) for preview segmentation. The segmentation
performed on the current frame is based on the history infor-

Current MasksLocalization and TrackingCurrent Frame

Adaptive 
Online Training

Previous Frame Previous Masks

Instance 
Segmentation

Fig. 3 The flowchart of Instance Re-Identification Flow (IRIF) com-
ponent. The segmentation performed on the current frame is based on
the history information of the previous frames. The segmentation result
of the current frame is further fed to the process of the coming frame

mation of the previous frames. The segmentation result of
the current frame is further fed to the process of the coming
frame.

We remark that in this component, we consider two types
of instance, i.e., humanandnon-human, to treat each instance
in different ways. Given the first frame with its ground-truth
label, we extract the bounding box for each instance and then
perform human/non-human classification for all instances
using Mask R-CNN [18].

3.2.1 Instance localization and tracking

For each video frame, we localize and track instances in a re-
identificationmanner. Note that we expand the bounding box
to 10% to well capture the whole area of the object instances.
For human objects, we employ person search [68] by detect-
ing person by using Faster R-CNNand then extracting person
re-identification feature for all detected person region. On
the other hand, DeepFlow [67] and Deformable Part Mod-
els (DPM) [14] are utilized to detect and track non-human
objects.

3.2.2 Adaptive online learning for instance segmentation

For each instance, to identify each pixel as foreground
(instance) or background, we utilize multiple binary SVM
classifiers [6] which is learned from the appearance of the
previous n frames with sampling step size δ, where n and δ

are set as 8 and 2, respectively. Note that our multiple binary
SVM classifiers are implemented for history reference with
several unary instances, e.g., saliency [36], CNN features
[23], location of the bounding box, and color, to segment

Fig. 2 Overview of our contextual guided segmentation (CGS) framework
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each instance within its tracked bounding box in each frame.
We only update the SVM model if the size of one instance
significantly changes. We then utilize GrabCut [49] for each
instance to separate it from the background. After this step,
each pixel is assigned with the instance ID.

Specifically for human instance, in case the instance is
missing and re-appears in the next couple of frames, we
adopt the state-of-the-art image parser, Pyramid Scene Pars-
ing (PSPNet) [81] with the pre-trained model on PASCAL
VOC dataset [13]. The re-identification results from PSPNet
are blended into our segmentation outcomes.

3.2.3 Contextual property extraction

This component aims to determine the context of an instance
so that we can apply an appropriate segmentation scheme for
that instance. The context can be any observable properties
that may affect the strategy to extract the mask of an instance
in frames efficiently. In this work, we consider the following
three attributes of an instance as its context: human or non-
human, known or unknown category, rigid or deformable.

The category of an instance, such as person, car, and dog,
can be directly inferred from its initialmask using pre-trained
Mask R-CNN [18] on the MS-COCO dataset.

To evaluate if an instance is rigid or deformable, we ana-
lyze the preview sequence of instance masks in the first
nPreview frames. If there exists a homographymatrix to trans-
form the instance from the first frame to another frame for
most frames in the first nPreview frames, we consider the
instance to be rigid.

3.3 Contextual segmentation

Each instance is segmented in different appropriate ways in
this contextual segmentation, adapting to its extracted con-
textual properties (i.e., human/non-human, rigid/deformable,
known/unknown category).

3.3.1 Human instance segmentation

WeemployMaskR-CNN[18], pre-trained on theMS-COCO
dataset [34], to extract human segments. However, the results
of Mask R-CNN may be affected by occlusion or unusual
human pose.

To overcome this issue, we develop skeleton-guided seg-
mentation. We use the skeletons from OpenPose [4] for
reference to control and refine human instance segmentation.
For a human instancewith an unusual pose thatMaskR-CNN
cannot recognize, we dilate the skeleton to obtain a skeleton-
guided region, i.e.,an image with only the region containing
the complete human instance. We then apply Mask R-CNN
on a skeleton-guided region. By eliminating unrelated con-
tent, Mask R-CNN has a higher chance to extract human

Result of Mask-RCNN Skeletons detected by 
OpenPose

Segmenta�on on skeleton-
guided region

Fig. 4 Skeleton-guided segmentation for unusual pose

instance segment correctly (see Fig. 4). To preserve the inter-
frame mask consistency, we use object flow [60] to correct
and refine the result across frames.

3.3.2 Rigid non-human instance segmentation

For this type of instance, our objective is to accurately extract
such instances from different backgrounds in the same scene
category with the initial frame. Our method to process each
instance is as follows. First, we synthesize images from the
first frameof a video sequence, resulting inWonderlandData.
Second, to segment instances inside bounding boxes,we train
DeepLab2 [7] and OSVOS [2] on our synthesized Wonder-
land Data.

Wonderland Data Generation Differently from exist-
ing work, we exploit various contextual properties from
instances. After that, multiple segmentation schemes are
performed for each instance, adapting to its extracted con-
textual properties. Inspired by Lucid Data [22], we introduce
new augmented data, namely Wonderland Data. To generate
visual variations of the initial mask, we apply both affine and
non-rigid deformations, together with illumination changes,
on the mask. We also replace the background with most sim-
ilar scenes filtered out from a large-scale Places365 dataset
[82] to preserve the semantics of the image. In this way, we
can increase more training samples than Lucid Data (10,000
images for each video, in comparing with 2,500 images of
Lucid Data) to deal with one-shot learning.

Figure 5 illustrates our proposed Wonderland Data gen-
eration. In this work, from a pair of an input image and
a mask, we generate 10, 000 different pairs of synthesized
images and masks. The Wonderland Data is published on
our website.1 We collect scene photos from the training set
of the Places365 dataset [82], which has about 8 million
images divided into 365 scene categories. We manually dis-
card artificial scenes, use only 22 natural scene categories
with 592k images. For each image, we extract a feature at
the last layer of DenseNet-161 [20], which was pre-trained
on the Places365 dataset [82]. This feature is used to build a
hierarchical k-mean search for each category independently.
We assume that each node has M images, and a leaf node has
maximum L images. To cluster images at a node, we propose

1 https://sites.google.com/view/ltnghia/research/vos.
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Wonderland Data

Combine

Transform

Transform

Places365 Dataset

Instance

Video Frame

Scene Search

Fig. 5 Wonderland data generation

Original Video Frame Wonderland DataLucid Data

Fig. 6 Augmented data generated by different methods. From left to right: the original video frames with overlaid ground truth, followed by
corresponding Lucid Data [22] and our proposed Wonderland Data in this order

to use K -mean algorithm with K = min(M\L, T ). In this
work, we empirically set L = 200 and T = 200 to speed up
clustering.

We classify an input image into the corresponding cate-
gory, using the pre-trained DenseNet-161 on the Places365
challenge dataset.We also extract a channel feature at the last
layer of the same network. After that, we search leaf nodes by
comparing the Euclidean distance between the feature of an
input image and the center of clusters. To search N images,
we randomly choose 80% number of images of the nearest
leaf node and 70%, 60%, 50%, etc. number of images of next
leaf nodes, respectively.

We also extract the object mask from the input image,
then transform the object and searched scenes independently,
similarly to [22]. In more detail, we use affine transformation
(e.g.,translation, rotation, and scale) and non-rigid deforma-
tions, together with illumination changes. Figure 6 shows
examples of Lucid Data and our Wonderland Data.

Network Training Figure 7 shows our training process,
including domain-based training and object-based training.
In domain-based training, we fine-tune pre-trained networks
(i.e., DeepLab2 [7] pre-trained on COCO-Stuff dataset [3]
and OSVOS [2] pre-trained on ImageNet dataset [50]) on the
DAVIS training data for domain transformation. In object-
based training: we fine-tune networks on the ground-truth
mask of each instance of each video. We remark that we
use only the first frame of videos and apply the proposed
Wonderland Data generation method for these images.

3.3.3 Deformable non-human instance segmentation

For this instance type, we categorize instances into two
groups, namely, known and unknown categories. For the
known categories, i.e., already listed in MS-COCO dataset
[34], we simply adopt Mask R-CNN to retrieve the instance
segments. We directly obtain the preview results from our
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Fig. 7 The flowchart of our
network training process Base Network Domain-based Training Object-based Training

ImageNet MS-COCO DAVIS Training Set First Frame Wonderland Data

Fig. 8 Visualization of guided
non-rectangular ROI

(a) Juggle clip (b) Demolition clip

Frame 19

All masks of frame 19

Frame 20

Guided ROI for instance 1 
(red mask) in frame 20

Result of Frame 20 
(without Guided ROIs)

Result of Frame 20 
(with Guided ROIs)

Frame 19

All masks of frame 19

Frame 18

Guided ROI for instance 3 
(yellow) in frame 18

Result of Frame 18 
(without Guided ROIs)

Result of Frame 18 
(with Guided ROIs)

(a) Forward propagation (b) Backward propagation

Fig. 9 Visualization of forward and backward propagation

IRIF component for the unknown categories since it can han-
dle arbitrary object categories.

3.4 Guided segmentation

Traditional Fully Convolutional Networks (FCNs) consider
the entire rectangular region of interest (ROI) as the input to
segment objects inside the ROI. This can lead to incorrect
boundary segmentation due to the complex background and
concave hull of the object. To overcome this limitation, we
aim to transform a rectangular ROI to a non-rectangular ROI
across the object boundary to eliminate the complex back-
ground inside the ROI (see Fig. 8). In particular, we utilize
referral information from extra frames to identify the shape
of the instance of interest inside the ROI of the current frame.
We propose to apply guided attention to construct the non-
rectangular ROI and then perform fine-grained segmentation
on this guided non-rectangular ROI.

3.4.1 Bidirectional propagation

In particular, we propose bidirectional strategies to construct
adaptive attention for guided segmentation. Particularly, ini-
tial segments from neighbor frames are used as references

for segmentation at the current frame. Attention is computed
in two strategies sequentially, i.e., forward propagation and
back-propagation, in specific ways adapting the context. For-
ward propagation strategy,where attention is referenced from
initial segments of previous frames, can correct excessed
segmentation due to dense objects in a ROI (cf. Fig. 9a).
Meanwhile, the back-propagation strategy, where attention is
referenced from initial segments of next frames, can recover
missing instances due to fast motion, occlusion, or heavy
deformation (size changing from tiny to large or vice versa)
(cf. Fig. 9b).

3.4.2 Guided non-rectangular ROI construction

To construct a guided non-rectangular ROI, we expand the
mask of the interest instance at neighbor frames and then
transfer and combine them at the current frame. This guaran-
tees that the ROI can cover the entire interest instance.We do
not applymask propagation to avoid inaccurate flowwarping
as well as reducing the complexity of computation. Then, we
create a smooth transition region (by applying a blurredmask
to remove background) for the guided ROI to avoid a clear
border between the ROI and background. It is essential to
make the segmentation method focus on the interest instance
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and avoid inaccurate segmentation due to a clear border. We
remark that the range of boundary expansion and transition
smooth is computed based on the intensity of movement of
the instance.Both propagation strategies are performed adap-
tively if initial segments of the interest instance at the current
frame are much different (in appearance or size) from those
at neighbor frames or the instance re-appears. On the other
hand, we only refine the interest instance at the current frame
to save the computational cost.

3.4.3 Fine-grained segmentation

We use Deep Grabcut [72] and Mask R-CNN [18] for
fine-grained segmentation in guided non-rectangular ROIs.
Inspired by Luiten et.al. [38], we train DeepLab3+ [8] based
on Xception-65 [10] backbone onMS-COCO [34] andMap-
illary [40] datasets to enhance the network generalization.
For Mask R-CNN, we directly use a pre-trained model on
MS-COCO [34] dataset.

3.5 Refinement andmerging

Through preliminary results, we observe that the initial
segmentation is not smooth enough. Therefore, we refine
instance masks to improve segmentation quality, using rare
instance attention and boundary snapping.

3.5.1 Rare instance attention refinement

We further refine the results by considering the rare instances.
We observe that rare objects are shrunk due to larger objects.
To identify rare object instances, we compute each object
instance mask percentage in terms of area (provided in the
first frame). Instances with a size smaller than 5% the total
size of tracking objects are considered rare ones. We assume
that a smaller object tends to be small in the whole video.
Next, we recover rare object instances by transferring the
results produced by the foreground probability obtained from
the binary SVM classifier on each object instance.

3.5.2 Boundary snapping refinement

We also adopt boundary snapping [2] to further refine object
shapes. In particular, we extract the saliency [36] and the
contour [76] from the video frame. The salient pixels close
to the contour are snapped.

3.5.3 Topological order estimation for instance merging

It is essential to determine the topology relationship (in terms
of z-order) between multiple instances to sequentially com-
bine corresponding masks of different instances into the final

result. We here merge instances based on human and non-
human instance interaction, depth values, and rare instance
priority heuristics in this order as follows:

– Human and non-human instance interaction We define
interaction heuristics as follow: transportation instances
(such as horse, bike, motor, surfboard, and skateboard)
are the farthest from the camera; human instance have
the middle distance to the camera; and small non-human
instances which can be held, bring, touch, etc. are the
nearest from the camera. Interacted small non-human
instances are localized at the human hand’s position using
OpenPose [4].

– Depth valuesWefirst estimate pixel-wise depth values of
the video frame, using DCNF-FCSP [37], and then take
the average value for each instance.

– Rare instance priority We notice that rare instances are
always the nearest ones from the camera.

4 Experimental results

4.1 Dataset benchmark andmetrics

We participated in the DAVIS Challenges 2017–2019,
Semi-Supervised Track234 and evaluated our methods on
the DAVIS Test-Challenge dataset. The dataset consists of
150 sequences, totaling 10, 459 annotated frames and 376
instances. There are a total of 30 video sequences for testing,
and their ground truth is not publicly available. Submissions
were made through the CodaLab site of the challenge.5 This
dataset is challenging due to multiple object instances with
more distractors, i.e., smaller instances and fine structures,
more occlusions, and fast motion.

For the evaluationmetrics, per-instancemeasures are used
as described in [45]: Region Jaccard (J) and Boundary F
measure (F). The overall measures are computed as the mean
between J and F, and both are averaged over all objects.

4.2 Results on DAVIS challenges 2017–2019

4.2.1 DAVIS 2017 challenge

Due to the time limit, we submitted the proposed IRIF com-
ponent in the DAVIS 2017 Challenge and achieved 3rd place
out of 22 team submissions in this challenge. As shown in
Table 1, our proposed IRIF achieves very promising results in

2 https://davischallenge.org/challenge2017/index.html.
3 https://davischallenge.org/challenge2018/index.html.
4 https://davischallenge.org/challenge2019/index.html.
5 https://competitions.codalab.org/competitions/21650.
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Table 1 Top global ranking results in the DAVIS Challenges 2017–2019. The best results are marked in italic

Rank Method/Team Year Global G Region J Boundary F

Mean ⇑ Mean ⇑ Recall ⇑ Decay ⇓ Mean ⇑ Recall ⇑ Decay ⇓
1 OSS [65] 2019 76.7 72.8 81.5 18.9 80.7 87.5 21.3

2 BoLTVOS+ [39] 2019 76.2 72.9 81.7 16.3 79.4 86.7 19.5

3 CGS [58] 2019 75.4 72.4 81.7 11.0 78.4 87.6 12.9

4 STM [44] 2019 75.2 72.6 80.9 21.0 77.7 85.0 24.1

5 PremVOS [38] 2018 74.7 71.0 79.5 19.0 78.4 86.7 20.8

6 DyeNet [31] 2018 73.8 71.9 79.4 19.8 75.8 83.0 20.3

7 Theodoruszq 2019 73.1 70.1 77.3 24.8 76.1 84.0 28.3

8 Panday 2019 71.3 67.7 74.8 24.7 75.0 81.2 27.5

9 DLTA [47] 2019 70.6 68.5 78.1 20.3 72.8 84.2 24.0

10 VS-ReID [32] 2017 69.9 67.9 74.6 25.5 71.9 79.1 24.1

11 CAVOS [73] 2018 69.7 66.9 74.1 23.1 72.5 80.3 25.9

12 ODG [17] 2018 69.5 67.5 77.0 15.0 71.5 82.2 18.5

13 PVOS [16] 2019 69.2 66.0 73.4 28.5 72.3 80.4 31.1

14 LucidTracker [22] 2017 67.8 65.1 72.5 27.7 70.6 79.8 30.2

15 Second Pass [59] 2018 66.3 64.1 75.0 11.7 68.6 80.7 13.5

16 First Pass [26] 2017 63.8 61.5 68.6 17.1 66.2 79.0 17.6

17 SPT [54] 2017 61.5 59.8 71.0 21.9 74.6 74.6 23.7

18 FAVOS [33] 2018 60.6 58.4 65.6 26.2 62.9 71.0 29.7

19 MPN [56] 2018 60.1 57.7 64.9 27.2 62.4 71.7 28.1

20 PALC [63] 2018 58.9 56.7 63.1 30.7 61.1 67.6 33.1

21 OnAVOS [62] 2017 57.7 54.8 60.8 60.5 67.2 67.2 34.7

22 SPN [9] 2017 56.9 54.8 60.7 34.4 59.1 66.7 36.1

3 HE-PSPNet [80] 2017 56.9 53.6 59.5 25.3 60.2 67.9 27.6

24 OSVOS-IOFT [41] 2017 55.8 53.8 60.1 37.7 57.8 62.1 42.9

25 TOP [55] 2017 54.8 51.6 56.3 26.8 57.9 64.8 28.8

26 Froma 2017 53.9 50.9 54.9 32.5 57.1 66.2 33.7

Our results are marked in bold italic. We note that the teams without references do not have publication

the DAVIS 2017 Challenge, namely, 0.615, 0.662, and 0.638
in terms of region similarity (Jaccard index), contour accu-
racy (F measure), and global score, respectively. Our results
highly indicate that our method is competitive among the
state-of-the-art methods in this dataset. Our method main-
tains the performance as frames evolve, as seen via the best
performance in terms of J decay and F decay among the lead-
ing submissions in 2017.

4.2.2 DAVIS 2018 challenge

We also had another submission of CIS framework to the
DAVIS 2018 Challenge and achieved 6th place out of 41
team submissions in this challenge. Table 1 shows that our
CIS achieves promising results, namely, 64.1%, 68.6%, and
66.3% in terms of region similarity (Jaccard index), contour
accuracy (F measure), and global score, respectively. Our
method also maintains the best stable performance in terms

of J decay and F decay among the leading submissions in
2018.

4.2.3 DAVIS 2019 challenge

As shown in Table 1, we obtained very competitive results.
Our proposed CGS achieved 0.724, 0.784, and 0.754 in
terms of region similarity (J), contour accuracy (F), and
global score, respectively. Our method achieved the best per-
formance in Decay and Recall of all metrics consistently.
Furthermore, we note that our CGS is in top 3 over 4 teams
achieving 0.75 in terms of global score in all 3 years.

4.2.4 Ablation study

Table 2 shows the results of our proposed framework with
different settings. Our proposed CGS (using all three passes)
outperforms using only two passes [59] or a pass [26]. This
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Table 2 The performance of different components in our method on
the DAVIS Test-Challenge dataset. PS, CS, and GS stand for pre-
view segmentation, contextual segmentation, and guided segmentation,
respectively

Settings Global Score ⇑ Region J ⇑ Boundary F ⇑
PS CS GS

✓ 63.8 61.5 66.2

✓ ✓ 66.3 64.1 68.6

✓ ✓ ✓ 75.4 72.4 78.4

highlights the significant contribution of the second pass and
the third pass,which are themultiple contextual segmentation
schemes, and guided instance segmentation, respectively.
Particularly, contextual segmentation can improve the per-
formance up to 2.5%. Meanwhile, guided segmentation
improves contextual segmentation up to 9.1% in the global
score.

Figure 10 visualizes segmentation results. From top row to
bottom row, we can observe the first video frame and a triple
of processed video frames of our proposed methods in pre-
view segmentation [26], contextual segmentation [59], and
guided segmentation [58]. Our final CGS results surpass the
performance of others and successfully track and segment the
key instances. Our framework can even handle camouflaged
instances, small instances, and occluded instances.

5 Conclusion

In this paper, we propose the novel CGS framework for
semi-supervised instance segmentation in videos with three
segmentation passes. In the first pass, we develop the novel
IRIF for preview instance segmentation and extract contex-
tual information. In the second pass, we introduce multiple
contextual segmentation schemes to deal with different
instance types, such as human/non-human rigid/non-rigid
instances in known/unknown object categories. In the final
pass, we propose a novel guided fined-grained segmentation
based on attention to eliminate complex background inside
the region of interest for performance improvement.

Our proposed methods achieve competitive results among
the leading submissions in the DAVIS Challenges consis-
tently, i.e.,3rd place, 6th place, and 3rd place in 2017, 2018,
and 2019, respectively. Our full framework CGS is in the top
3 over 4 teams achieving 0.75 in terms of global score in all
3 years. Our method also maintains the best stable and recall
performance among the leading submissions.

In the future, we plan to consider modeling the seman-
tic relationship among object instances in the segmentation
process. We will also investigate Capsule-inspired [19,51,
52,79], and attention-inspired [5,11,12,29] network archi-
tectures for better segmentation performance. We also aim
to extend our work to camouflage analysis [24,27,75] in the
near future.

Fig. 10 Visualization results on the DAVIS Test-Challenge dataset.
From top to bottom: the first video frame with the ground-truth label
followed by results of our proposed methods in preview segmentation
[26], contextual segmentation [59], and guided segmentation [58]. The

ground truth of the certain video frame is not publicly available. Our
CGS results significantly track and segment the instances of interest as
annotated in the first frame
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