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Abstract
Due to the struggles of developing countries in coping with widespread coffee leaf diseases and infestations, the quality and
quantity of coffee-based commodities have reduced significantly. This paper proposes a solution to this problem using Deep
Convolutional Neural Networks (DCNN) that classifies seven coffee leaf conditions. Unlike other studies, this work proposed
a novel Triple-DCNN (T-DCNN) composed of three aggregated DCNN models formed in an ensemble to produce lesser
bias and better accuracy than standard models. Added to the proposed T-DCNN, an employed stage-wise approach narrowed
down the classification options through a multi-staged structure and diversified the entire feature pool. Upon evaluation, the
proposed Stage-Wise Aggregated T-DCNN (SWAT-DCNN) yielded successful diagnoses of diverse coffee leaf conditions
in various environmental settings. Furthermore, with an overall accuracy of 95.98%, the SWAT-DCNN outperformed most
state-of-the-art DCNNs that performed the same task.
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BCE Binary Cross-Entropy
BrACoL Brazilian Arabica Coffee Leaves
BSL Brown Spot Lesions
CCE Categorical Cross-Entropy
CE Cross-Entropy
CLM Coffee Leaf Miner
CLR Coffee Leaf Rust
CLS Cercospora Leaf Spots
CNN Convolutional Neural Networks
DCNN Deep Convolutional Neural Networks
DL Deep Learning
FLOPS Floating-Point Operations Per Second
FN False Negatives
FP False Positives
GAP Global Average Pooling
Grad-CAM Gradient-Weighted Class Activation Map
LiCoLe Liberica Coffee Leaves
LR Learning Rate
PLS Phoma Leaf Spots
P-R Precision-Recall
ReLU Rectified Linear Unit
ROC Receiver Operating Characteristic
RoCoLe Robust Coffee Leaves
RSM Red Spider Mite
SGD Stochastic Gradient Descent
SM Sooty Molds
SWAT-DCNN Stage-WiseAggregatedTriple-DeepConvo-

lutional Neural Network
T-DCNN Triple Deep Convolutional Neural Network
TN True Negatives
TP True Positives

1 Introduction

Globally, coffee production radiated a broad range of job and
business opportunities that contributed to our socioeconomic
development [1]. However, supplying coffee products in the
market can become challenging as farmers struggle to cope
with destructive plant diseases affecting their farmlands [2].
In addition, coffee leaf disease management and diagnosis
tend to become tedious for most farmers living in develop-
ing countries due to their lack of specialized equipment and
expertise [3].

Recently, new methods emerged to alleviate these prob-
lems with computer vision and Deep Learning (DL). Since
the rise of Convolutional Neural Networks (CNN), comput-
ers have become more intelligent as they can now recognize
intricate image patterns and produce human-like decisions
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[4]. CNN is a trainable multilayered architecture composed
of subsequent operations that extract a high to low-level hier-
archy of features from a 2D array image using a k × k striding
convolutional filter. The extracted features then enter a pool-
ing operation that reduces the feature’s values to prevent
computational exhaustion while maintaining and increasing
its depth during the entire learning process. These processed
feature samples then line up in a single-layered vector that
enters a succeeding Multilayered Perceptron (MLP). With
MLP, the features receive a respective weight and bias to
distinguish their importance apart. Then, a logistic nonlin-
ear classifier takes in these values from each neuron of the
MLP, representing a specific learned feature. Also, while a
CNN trains from a specific data domain, each weight on the
MLP neurons updates through a forward and backward prop-
agation that allows the model to learn progressively from a
domain of labeled inputs to generate predictions of future
unseen samples [5].

One of the notable breakthroughs in CNNs began with
AlexNet, which proposed additional depth to the CNN struc-
ture that improved its overall classification performance [6].
Eventually, AlexNet as a deep CNN (DCNN) became a
success, further inspiring other models to achieve better
performance and cost-efficiency. In other research fields,
DCNNs have shown exponential improvements with less
bias through aggregation. As a result, feature generation
became robust without the additional expense of recon-
struction or lengthy training. The study of Minetto et al.
showcased these improvements with their work where they
aggregated families of ResNet and DenseNet models applied
in the classification of geospatial land areas. With their
experiments, they found that their DCNNs aggregated into
a single classification pipeline called “Hydra” outmatched
most state-of-the-art methods [7]. Therefore, this study had
the inspiration to employ such a robust method to predict
various coffee leaf conditions and attain significant results.
For further improvement, this study also proposes a stage-
wise approach, a diagnostic process that reduces complexity
and increases the likelihood of getting genuine classifica-
tions than a conventionally trained DCNN [8]. In addition,
upon rigorous review of existing related works, none used or
investigated this combined approach of having an aggregated
DCNN to perform classifications of coffee leaf diseases in
a stage-wise fashion. With that said, this study presents the
Stage-Wise Aggregated Triple Deep Convolutional Neural
Networks (SWAT-DCNN).

Below presents the significant contributions of this study:

• Unlikemost existingworks, this study had a curated coffee
leaf image dataset with various species and conditions that
diversified the feature pool. In addition, the image samples
curated had different perspectives, captured from either a
controlled or uncontrolled environment, which most did
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not consider. Therefore, giving the proposed model better
opportunities to scale and not only learn from one aspect.

• With a higher possibility of bias predictions from a
single trained model with limited data, this work aggre-
gated three well-known DCNNs into a Triple-DCNN
(T-DCNN). The three components of the T-DCNN came
from a well-defined selection to guarantee cost-efficiency
and performance, which further improved through trans-
fer learning and fine-tuning. With that said, even with
the aggregation method, T-DCNN’s overall composition
maintained a reasonable cost than most conventionally
trained DCNNs based on the performance it yielded.

• The proposed model also employed a stage-wise approach
that lessened the prediction complexity and added robust-
ness to its overall proficiency. Unlike a conventionally
trained DCNN model that predicts all seven coffee leaf
conditions in a single run, the proposedSWAT-DCNNdoes
not require going over every class if it already satisfied the
initial stages of classification, giving it extra leeway to
reduce computational footprints when classifying massive
test samples.

The following sections contain in-depth information about
the proposed study. Section two discusses the literature
review, section three tackles the materials and methods used
to develop the proposed model, section four focuses on the
evaluations and discussions of the experimental results, and
the last section entails the conclusion.

2 Literature review

With the impact of DCNN models in the agricultural sec-
tor, this section discusses the previous studies and solutions
conducted in various crops and coffee leaves.

2.1 Leaf disease from various crops

In a recent study, Amara et al. used a classic LeNet model
that classified banana leaf diseases. Their method involved
images of banana leaves captured in an uncontrolled outdoor
setting categorized into three conditions that they resized into
60 × 60 × 1 grayscale images to minimize the computa-
tional cost needed. Upon evaluation, they found that LeNet
trained through random weight initialization could classify
their three banana leaf conditions apart with an accuracy rate
of 99.72% [9].

Another work by K. Zhang et al. employed a recent set of
DCNN models that identified eight leaf diseases from toma-
toes. Theirwork trained theAlexNet,GoogleNet, andResNet
models that performed feature extraction and predictions
from their tomato leaf dataset captured in a controlled and
uniformed fashion. However, during training, they found that

the given models consumed massive computing resources.
With that in mind, they performed the method of trans-
fer learning and fine-tuning the off-the-shelf models. They
performed this process by taking each model’s respective
pre-trained weights from ImageNet and injecting them to the
upper layers of each model accordingly. Also, to make their
approach work, they replaced each model’s current ending
layers to fit their target number of classes. Through their
evaluation, the results of their work achieved the highest
classification accuracy of 96.51%fromapre-trained andfine-
tuned ResNet model [10].

For another similar work, X. Zhang et al. improved the
GoogleNet and Cifar10 models. Their task involved nine
maize leaf conditions collected from the Plant Village dataset
and Google web search that produced data diversity. Their
proposed model aimed to increase the image recognition of
such models where they added pooling operations, a Rec-
tified Linear Unit (ReLU), and a dropout regularizer. With
that said, their infused ReLU operations made their modi-
fied network learn sparse feature transformations apart from
their dataset that generated other viewpoints and produced
additional learnable feature sets compared to a conventional
GoogleNet and Cifar10 model. Their dropout also controlled
overfitting from the overwhelming features passing through
their network, as dropout can remove random neurons in
the network. As a result, their accuracy reached 98.9% with
GoogleNet and 98.8% with Cifar10 [11].

2.2 Coffee leaf disease classification

With only a handful of papers published about coffee leaf
diagnosis with DL, Esgario et al. proposed a study that clas-
sified leaf diseases of Coffea arabica. Their work involved
a dataset with 1747 images divided into three classes, the
Coffee Leaf Rust (CLR), Phoma Leaf Spots (PLS), Cer-
cospora Leaf Spots (CLS), and Coffee Leaf Miner (CLM).
With the shortage of collected images for their task, they
performed data augmentation methods that created synthetic
transformed images, which increased their feature pool.
Their experiments found that one of their pre-trained mod-
els, the ResNet50 model, was the best option for classifying
these diseases compared toAlexNet,GoogleNet, andVGG16
as it achieved the highest disease classification accuracy of
97.07% [12].

Kumar et al. also used the same dataset from Esgario et al.
in their work but with a different state-of-the-art model, the
InceptionV3.As awell-known practice, their work employed
transfer learning, fine-tuning, and data augmentation that
effectively increased their feature sets and improved their
model’s recognition ability toward the given dataset. As a
result, they achieved 97.61%accuracy, 97.4% sensitivity, and
99.2% specificity. With such results, they concluded that a
pre-trainedDCNN, specifically InceptionV3, fine-tuned, and
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Table 1 Summary of recent
works that classified leaf
diseases using deep
convolutional neural networks

Method Crop Image environment Classes Accuracy (%) Years

LeNet [9] Banana Outdoor/Field 3 99.72 2017

ResNet [10] Tomato Controlled 9 96.51 2018

Modified GoogleNet [11] Maize Both 9 98.90 2018

ResNet50 [12] Coffea arabica Controlled 4 97.07 2020

InceptionV3 [13] Coffea arabica Controlled 5 97.61 2020

VGG16 [14] Coffea liberica Controlled 3 97.20 2020

given sufficient data through data augmentation, could out-
perform most classical machine learning and conventional
CNNs and even other DCNN models [13].

Due to the growing demand for state-of-the-art DCNNs,
newer models came out. Montalbo and Hernandez’s study
trained recent DCNNs like Xception, ResNetV2, and the
previous VGG16, which classified threeCoffeea liberica leaf
conditions CLR, CLS, SootyMolds (SM), and a healthy leaf.
However, based on their observation, overfitting and underfit-
ting cases occurred due to the lack of features learned by their
singularly trainedmodels.Nonetheless, their results achieved
a remarkable accuracy of 97.20%with theVGG16model and
outperformed the other two recent DCNNs. Their results also
indicated that even with a later DCNNmodel, other architec-
tures like the VGG16 can still perform better with its simpler
and more straightforward approach than a deeper and more
sophisticated Xception and ResNetV2 [14].

Table 1 presents a summary of the discussed works. As
shown, DCNNs can generate exceptional accuracies in iden-
tifying and classifying various leaf diseases from a wide
variety of crops.However,most existingworks in leaf disease
classification primarily relied on a singularly trained DCNN
model to classify either from an image captured in a con-
trolled or uncontrolled (outdoor or field) setting. Due to those
limitations, their trained models may have difficulty under-
standing both situations due to the lack of features learned.

3 Materials andmethods

3.1 Coffee leaf dataset specification

Table 2 presents the diseases from the curated coffee leaf
dataset used during the experiments, including a healthy
coffee leaf (a). One of the well-known diseases, the CLR,
emanates from a highly infectious fungus called theHemileia
vastatrix that produces rust-like pustules on the leaf, as shown
in (b) [15, 16]. Another disease, the CLS (c), from a fun-
gus Cercospora coffeicola [17] and PLS (d) from the Phoma
costaricensis [18, 19], also show signs of dramatic change
in the leaf’s physical characteristics with brownish halo-like
lesions [20]. Although most coffee variants today possess
better resistance against these diseases, another problem of

insect infestation deprives the plant’s nutrients, causing it to
experience a similar demise [21]. Unlike diseases, the pres-
ence of leaf-sapping insects like the Tetranychus urticae or
Red SpiderMites (RSM) and the Leucoptera caffeine or Cof-
feeLeafMiners (CLM) can leave behind injuries to the leaves
after extraction, as shown in (e) and (f) [22, 23]. In addition,
other insects likemealy bugs, scale, and aphids leave traces of
SM, shown in (g). Though not infectious and as destructive,
SM, if not attended immediately, can cover the entire surface
of the leaf, preventing it from absorbing adequate sunlight
[24]. These infections and infestations can limit the plant’s
capability to prosper and currently has no immediate solu-
tion or cure but are controllable through proper diagnosis,
treatment, and management [25]. However, due to the dif-
ficulty of assessing these diseases and infestations, farmers
who lack proper training and experience tend to suffer from a
massive and untimely loss of yield [26, 27]. Moreover, even
for an expert, identification, and classification of these leaf
conditions can still become difficult due to thewide variety of
pathogens and insect species [28]. With those said, improper
diagnosis and treatment can occur, causing further injuries
to the plant, adding more stress and vulnerabilities to other
diseases [29].

Based on Table 2, the Coffea canephora or Robusta Cof-
fee Leaf (RoCoLe) samples came from the published dataset
of Parraga-Alava et al. [30], which included three classes, a
healthy leaf, CLR, and RSM captured in an outdoor setting.
Another dataset named the Brazilian Arabica Coffee Leaf
(BrACoL) by Esgario et al. [12] had images of Coffea ara-
bica from a controlled environment classified into a healthy
leaf, CLR, CLS, PLS, and CLM. Lastly, a set ofCoffea liber-
ica or Liberica Coffee Leaves (LiCoLe) dataset served as an
additional set of healthy leaves, CLR, and SM from Mon-
talbo and Hernandez [14]. In total, the curated dataset in this
study reached 4675 images classified into the seven discussed
conditions.

3.1.1 Balancing of data with augmentation

Due to the limited samples available, this study employed
data augmentation techniques that increased the sample size
of each class with affine transformed images and gave the
models additional learnable features. As presented in Table
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Table 2 Specification of the curated coffee leaf dataset

Source Samples

Healthy (a) CLR (b) CLS (c) PLS (d) CLM (e) RSM (f) SM (g)

RoCoLe [30] 632 480 – – – 133 –

BrACoL [12] 272 337 88 342 321 – –

LiCoLe [14] 645 515 – – – – 910

Total 1549 1332 88 342 321 133 910

3, the values selected for augmentation produced new vari-
ations from the original images that did not affect their
essential features [31]. However, it is worth mentioning
that further increasing the given values can cause heavy
distortions, making each image unrecognizable or indistin-
guishable. Therefore, this study made sure only to use subtle
transformations that prevented such a problem from happen-
ing.

Moreover, due to the stage-wise nature of the proposed
model, each stage had different data distributions. Fortu-
nately, this approach balanced each model’s dataset for each
stage during training with the augmented filler images and
prevented any class superiority that could have caused insta-
bility and bias [32]. In addition, this study guaranteed that the
validation and test samples did not receive any augmentation
and undergone a stochastic selection beforehand to prevent
data leakage from the train samples, preventing unwanted
pre-defined outcomes during experiments [33].

3.2 Triple deep convolutional neural networks

With such a complex task of classifying various coffee leaf
diseases from various environmental conditions, this study
proposed a stage-wise model based on DCNNs. However,
using only a single model for feature learning and classi-
fication can result in a less robust and biased diagnosis.
Therefore, this study employed an ensembled structure called
the T-DCNN composed of carefully selected models from a
preliminary benchmark analysis. The T-DCNN model with
three different DCNNs aggregated as a single unit can con-
duct a diverse feature extraction of learnable patterns from a
specific leaf condition due to its ensemble nature.

3.2.1 Model benchmark and selection

In constructing a compelling T-DCNN, this work had a pre-
liminary benchmark performed that included the commonly

Table 3 Augmentation settings Augmentation Values

Horizontal flip True

Vertical flip True

Shear range 0.15

Rotation range 20

Zoom range 0.40

Fill mode Constant

used and recent state-of-the-art DCNN classification mod-
els. The models chosen for the benchmark consisted of the
AlexNet [6], VGG16/19 [34], InceptionV3 [35], Efficient-
NetB0 [36], DenseNet121 [37], Xception [38], ResNet50V2
[39], and LeNet-5 [40] where each trained using the curated
coffee leaf dataset with seven classes. Subsequently, all mod-
els trained had their results analyzed and compared. It is also
worth mentioning that these models had their ending lay-
ers replaced through fine-tuning to accommodate the said
dataset. Without fine-tuning, the models would not have the
capability to perform the task. The said fine-tuning process
has an in-depth explanation in the later sections of the article.

Table 4 presents the results from the conducted bench-
mark. Based on calculations, the DenseNet121 and VGG16
had the highest validated accuracies among the rest with
94.21% and 93.46%, respectively, followed by the Incep-
tionV3 model with 93.35%, making these three models the
best possible candidates.However, consideringmodels based
only on their performance validated on a local dataset can
take a toll on the reproducibility and scalability of the pro-
posed T-DCNN. Therefore, as part of the selection process,
this work also chose models based on their parameter sizes.
DCNNs with fewer parameters entail better cost-efficiency,
making them easier to reproduce and deploy in low to mid-
end devices [41].
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Table 4 State-of-the-art deep
convolutional neural networks
trained on the diverse coffee leaf
dataset

Model Accuracy (%) Precision (%) Recall (%) F1-Score (%)

DenseNet121 [37] 94.21 93.95 94.21 94.02

VGG16 [34] 93.46 93.30 93.46 93.30

InceptionV3 [35] 93.35 93.43 93.35 92.57

Xception [38] 92.82 92.47 92.82 92.42

ResNet50V2 [39] 92.82 92.51 92.82 92.50

EfficientNetB0 [36] 92.07 91.42 92.07 91.39

VGG19 [34] 91.96 92.19 91.96 92.04

AlexNet [6] 81.35 80.06 81.35 80.08

LeNet-5 [40] 75.67 74.38 75.67 74.72

Entries in bold indicate the highest scores obtained

Fig. 1 Parameter comparison of
the candidates
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To better identify which should become part of the pro-
posed solution, this work compared the following models in
terms of their parameter size to performance ratio.

Illustrated in Fig. 1, the EfficientNetB0 model had the
lowest parameters of 3.6M, followed by LeNet-5 with 5.4M
and DenseNet121 with 7M. However, even though LeNet-
5 had fewer parameters than most models, this study did
not consider it for the task due to its inferior performance
of 75.67% accuracy. The following potential candidate,
the DenseNet121, had around 1.6M more parameters than
LeNet-5 but a far better accuracy of 94.21%. Based on Table
4, comparing the DenseNet121 against the other models
had shown its superiority, giving it no questions about why
it should become part of the proposed solution. Although
VGG16 required a larger parameter size of 14.7M than
LeNet-5 with 5.4M and AlexNet with 12.6M, VGG16’s per-
formance to parameter size ratio still has a better balance, as
VGG16 had a significant 93.46% accuracy, unlike LeNet-5
with only 75.67% and AlexNet with 81.35%.

Basing solely on Table 4, the possible candidates may
eventually become the top three models with the highest
accuracy. However, considering the selection criteria based

on performance and cost, even with IncpetionV3’s accuracy
of 93.35%, its 16.1M parameters can bloat the T-DCNN to
become computationally expensive. Its following model, the
Xception model with 92.82%, had lesser performance yet
higher parameters of 20.8M. The ResNet50V2 had a similar
result as Xception but also higher parameters of 23.5M. The
EfficientNetB0, on the other hand, had shown that even with
its 92.07%accuracy, it only required 3.6Mparameters, giving
it only 1.28% less performance andhaving13Mfewer param-
eters than InceptionV3.Upon analysis of the following, it had
shown that DenseNet121, VGG16, and EfficientNetB0 have
the best potentials among the given selections to structure the
proposed T-DCNN based not only on their performance but
also on parameter sizes that may have a significant impact in
the future when the dataset increases.

3.2.2 EfficientNetB0

With the aim for accurate classifications and cost-efficiency,
this study selected the EfficientNetB0 illustrated in Fig. 2.
The said model consists of a compressed architecture that
offers better accuracy, scalability, and faster executability
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Fig. 2 EfficientNetB0 architecture [36]

than most state-of-the-art DCNN architectures. Its overall
structuremakes use of a 224× 224 input dimension with six-
teen succeeding Mobile-inverted Bottlenecks Convolutions
(MBConv) with varying kernel sizes of 3 × 3 and 5 × 5,
each containing a Squeeze and Excitation (SE) block, Batch
Normalization (BN), Depth-Wise Convolution (DWConv)
and the recent Swish activation function. Furthermore, from
the original benchmark made by EfficientNetB0 from the
ImageNet and custom datasets, the model outperformed pre-
viousDCNNs in terms of image classificationswith a smaller
parameter size and computation cost (FLOPS) [36, 42].With
that said, EfficientNetB0 became a suitable choice for the
feature generation and classification in this study.

3.2.3 DenseNet121

Compared to the standard CNN and ResNet models,
DenseNet captures additional feature sets from its previous
layers by concatenating every node directly to reuse features
across the entire architecture, as shown in Fig. 3. The pro-
found method yielded fewer parameters that made DenseNet
easier to train without having severe performance saturation
even with deeper layers. The model’s primary concept con-
sists of multiple dense blocks with a BN → ReLU → 3 × 3
Conv → Dropout connectivity pattern. As an entire model,
before each dense block, a bottleneck transition performs
down-sampling operations using a BN → ReLU → 1 × 1
Conv followed by a 2 × 2 Average Pooling (AP). Through
this approach of handling features, DenseNet became less
computational heavy with better gradient handling and com-
pensated the vanishing-gradient problem better than most
DCNN models [37].

Due to these traits, DenseNet became a valuable feature
extractor for the proposed T-DCNNwith its efficient gradient
handling and low-end computational requirement when pro-
ducing learnable patterns from the limited coffee leaf dataset.
This study primarily employed the 121-layer DenseNet with
the smallest parameter size among the DenseNet family,
which achieved the best results during the benchmark study.

3.2.4 VGG16

Unlike the selected EfficientNetB0 and DenseNet121,
VGG16 had a much simpler feature extraction process that
made it a go-to backbone model for most image classifica-
tions. Illustrated in Fig. 4, VGG16 uses a 3 × 3 kernel with
a composition of succeeding Conv blocks containing two
Conv layers activated by a ReLU function and down-sized
by a following 2 × 2 max-pooling operation. In addition,
VGG16 had an increased number of Conv layers from the
third to the fifth Conv block with a similar pattern from the
first and second. Unfortunately, due to its large neuron size of
two 4096 FC neurons, the VGG16 became inflated, making
it slow and costly to train [34]. Nonetheless, this study solved
this problem through fine-tuning that reduced the network’s
FC neurons size yet maintained its extraction prowess for the
task.

3.2.5 The structured T-DCNN classifiers

Figure 5 presents the proposed T-DCNN composed of the
mentioned aggregated DCNN models. As illustrated, the
selected DCNNs became aggregated as a single feature
extraction unit connected directly to their corresponding
averaging layer. Through this design, the T-DCNN man-
aged to generate relevant predictions from their respective
datasets, where these T-DCNNs performed specific classi-
fications in a particular stage based on a broader spectrum
of features. Thus, compared to a conventionally trained sin-
gle model, due to these improvements made, the prediction
probability by the T-DCNNs can become more dependable.
Furthermore, such an aggregation method can reduce errors
and bias that can alleviate issues regarding future input data
[43].

3.3 Proposed stage-wise classification approach

This study’s primary intuition is to have three distinct expert-
level classification models that work together as a single unit
to perform less biased classifications simultaneously from
fewer options.
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Fig. 3 DenseNet concept [37]

Fig. 4 VGG16 model [34]

Figure 6 presents the proposed stage-wise design. The
SWAT-DCNN begins with a coffee leaf health classifier sup-
ported by the T-DCNN stage 1 backbone identifying whether
the leaf contains any infections, lesions, or molds. If none
of the mentioned exists, the classifier immediately predicts
and outputs that the coffee leaf is healthy and will no longer
progress through the succeeding stages. Otherwise, if the
model finds any of the mentioned anomalies, the model will
pass the image to the second stage to identify whether the
leaf has CLR, Brown Spot Lesions (BSL), or SM. Again,
suppose the leaf had any features that resemble either CLR
or SM, the model will eventually output its final prediction
based only on the two options. In that case, the model will
immediately set the entire model to a halt to prevent fur-
ther consumption of resources. For the BSL case, this study
did not consider including the CLS, PLS, CLM, and RSM
together with CLR and SM at the second stage as it dramat-
ically affected the overall performance due to their visual
similarities, analyzed in the results section. Instead, this study
added a third classification stagewith another T-DCNNback-
bone that focuses only on the BSL, making the specific

identification of these lesions less confusing and robust for
the entire SWAT-DCNN.

3.4 Transfer learning and fine-tuning the individual
models

Before producing the T-DCNN, the three DCNNs underwent
transfer learning and fine-tuning to adjust their functional-
ity to classify coffee leaf conditions. With transfer learning,
pre-trained weights from the ImageNet dataset transported
readily available image recognition features that added
leverage for the models to train faster and achieve better per-
formance [44]. However, such a method also had the models
inherit the pre-trained neurons of one thousand unnecessary
classes, making them unsuitable for the task. Therefore, this
study fine-tuned the said models that replaced their ending
layers based on the classes per stage.

Due to the primary intent of DCNNs not being for coffee
leaf classification, this study deducted unnecessary lay-
ers from each model accordingly. Fine-tuning helps reduce
excessive parameters while preserving the most substantial
number of features during the feature extraction process [45].
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Fig. 5 Triple deep convolutional neural network backbone setup

Fig. 6 The stage-wise
classification of coffee leaves
with the trained backbones

The EfficientNetB0 had its last five layers removed in this
study, making the “block7a_project_conv” with 320 depth
features as its ending layer. Similarly,DenseNet121 had three
layers deducted, ending with the “conv5_block16_concat”
withmore extensive features of 1024. Also, VGG16 only had
two layers removed, significantly decreasing its parameter
size compared to the other two models, leaving its ending
layer with the “block5_conv3” with 512 features.

Subsequently, a set of proposed layers replaced the pre-
viously deducted layers so that the model could correctly
classify the specific coffee leaf conditions. Insteadof a typical
FC dense layer, this study used the Global Average Pooling
(GAP) that averaged the entire feature space and summed up
the spatial feature information to produce a flattened vector
passed to the following layer. The GAP layer also does not
require complex optimization methods as it does not include
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parameters compared to conventional FC dense layers, mak-
ing it an ideal option to counteract overfitting [46].

This study also included a dropout layer for added assur-
ance to provide better regularization and gradient flow from
the previous layer. The dropout layer regularized the gradient
flow by eliminating a random set of values from the flattened
layer at a specific rate that relieved the network from poten-
tial instability during training due to the overwhelming flow
of features [47]. For the rest of the network, the models had
a respective number of dense neurons attached to a softmax
classifier.

3.5 Hyper-parameter selection andmodel
compilation

Due to the unfamiliarity of the models with the curated
dataset, an appropriate selection of hyper-parameters is
imperative to achieve the best possible results. Hyper-
parameters are the “bells-and-whistles” of ML models that
play a vital impact in their learning process. A well-tuned set
of hyper-parameters can help the model achieve the lowest
possible errors and potential highest performance toward a
specific set of data [48].

Table 5 presents the empirically tuned hyper-parameter
values based on current computing resources at the exper-
iments’ time. The specification used for the experiments
only had an 8GB GTX 1070 non-specialized GPU and an
i5 fourth-generation Intel processor coupled with 16GB of
RAM.Theproposedvalues producedwell-convergedmodels
as they prevented overfitting and underfitting issues along the
waywithout the depletion of resources. The hyper-parameter
values had intricate adjustments in the Learning Rate (LR)
and epoch when such cases occur. A constant value of 16
provided sufficient transfer speed for the batch size without
sacrificing too much memory. The selected epochs stayed at
25 to 30 as the models tend to provide less to no improve-
ments beyond the given. For the optimizer, a go-to algorithm,
Adam, an easily tune-able optimizer, provided a fast and reli-
able stochastic descent during weight training. Adam also
became the choice for this study as it consumes less mem-
ory than a standard Stochastic Gradient Descent (SGD) [49]
and RMSProp [50]. It is worth noting that the presented con-
figurations yielded the most success in this study. However,
such settings may still vary according to the present machine
specifications if reproduced.

Furthermore, this study did not employ hyper-parameter
optimization methods like random or grid search due to the
mentioned limitation as it can become too costly, specifically
for convoluted DCNNs [51]. Instead, all values came from
an empirical trial and error estimation approach until an ade-
quate convergence or result turned out. Nonetheless, though
not considered entirely optimal, the results from the given
settings still attained exceptional outcomes.

Table 5 The selected hyper-parameter configurations for each model

T-DCNN Models Softmax
neurons

Epochs LR

Stage 1 EfficientNetB0 2 25 0.7e−5

DenseNet121 25 0.9e−6

VGG16 30 0.88e−7

Stage 2 EfficientNetB0 3 25 0.3925e−5

DenseNet121 25 0.925e−6

VGG16 25 0.25e−6

Stage 3 EfficientNetB0 4 25 0.224e−5

DenseNet121 25 0.925e−6

VGG16 30 0.175e−6

3.6 Loss function

Training an efficient DL model does not solely depend on
high accuracies but also low error rates or losses. This study
employed different loss functions to measure the number
of errors produced during the training and validation pro-
cesses. Due to the different class numbers in each T-DCNN
stage, the use of a proper loss function like the Cross-
Entropy (CE) loss measured eachmodel’s loss appropriately.
At the first stage, the models trained with a Binary CE
loss (BCEloss), which measured the losses between only two
classes. However, the succeeding T-DCNNmodels had more
than two classes, which indicated a multi-class classifica-
tion. Therefore, instead of a BCEloss, the following stages
had a Categorical CE loss (CCEloss). The following equa-
tions below denote the given loss functions. In BCEloss, y is
a binary indicator 0 or 1 based on a given class c from the
observation made o and p as the prediction that justifies if
the o belongs correctly to c. On the other hand, the CCEloss

represents M that signifies the multiple instances of classes
for an appropriate loss measurement of a multi-class model
[52].

BCEloss � −(y log(p) + (1 − y) log(1 − p)) (1)

CCEloss � −
M∑

c�1

yo,c log
(
po,c

)
. (2)

3.7 Evaluationmetrics

Like most DCNN models, this study employed the standard
evaluation metrics used by most DL classification models.
In addition, this study considered metrics like accuracy,
precision, recall, and f1-score as the primary comparative
measures. For the calculation of the following, this study
relied on the number of True Positives (TP), True Negatives
(TN), False Positives (FP), and False Negatives (FN). Each
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Table 6 Distribution of the
curated dataset into their
respective splits

Split Data Healthy CLR CLS PLS CLM RSM SM Total

Train (70%) RoCoLe 443 336 – – – 93 – 872

BrACoLe 191 236 62 240 225 – – 954

LiCoLe 452 361 – – – – 637 1450

Total 1086 933 62 240 225 93 637 3276

Validation (20%) RoCoLe 126 96 – – – 27 – 249

BrACoLe 54 67 18 68 64 – – 271

LiCoLe 128 103 – – – – 182 413

Total 308 266 18 68 64 27 182 933

Test (10%) RoCoLe 63 48 – – – 13 – 124

BrACoLe 27 34 8 34 32 – – 135

LiCoLe 65 51 – – – – 91 207

Total 155 133 8 34 32 13 91 466

of the given came from the classification instances performed
by the model.

TP represents positive images classified correctly as the
actual ground truth class, whereas the TN represents a correct
classification of the non-positive or other classes. Either way,
the vital aspect of these values in this study lies in the number
of correct TPs and TNs produced by a specificmodel. For FP,
this indicates that the model identified a negative class incor-
rectly with the wrong label, while FN does the same with
a positive class. For the computation of the overall perfor-
mance, this study considered the following equations below
[53].

Accuracy � TP + TN

TP + TN + FP + FN
(3)

Precision � TP

TP + FP
(4)

Recall � TP

TP + TN
(5)

F1 − Score � 2 ∗ precision ∗ recall

Precision + recall
. (6)

4 Experimental results and discussion

It is worth mentioning that this section focused on the previ-
ously identified evaluation metrics and other measurement
approaches commonly used in vision-based DL. In addi-
tion, this study also presents other points of view to fully
justify the significance of the SWAT-DCNN compared to
a single-staged T-DCNN model and other state-of-the-art
DCNNs. Through these approaches, the developed SWAT-
DCNN effectively presented its contribution in terms of
coffee leaf diagnosis.

4.1 Experimental setup and data handling

During experiments, as mentioned, this study used a GTX
1070 8GB graphics card to train the SWAT-DCNN and other
DCNNs using the specified dataset in Table 2. The said
dataset consisted of 4675 samples collectively. However, to
train the models, this study needed to divide the dataset into
70% train, 20% validation, and 10% test set, as shown in
Table 6. The division occurred for each class rather than the
entire dataset of 4675 due to the imbalanced and limited
quantities. Through this approach, the healthy leaf samples
of 1549 became divided into 1086 train samples, 308 val-
idation samples, and 155 test samples. Due to the uneven
numbers after the split, the partial numbers went into the
training samples as this work prioritized more on the learn-
ing process of the models. For the rest of the classes, this
study also performed the same procedure of distribution.

With the concept of having multiple stages to perform the
given tasks, the prepared dataset in Table 6 had its distribu-
tion designed for the stage-wise approach. However, upon
distribution, the dataset had shown imbalances of train sam-
ples in all classes. Therefore, in Table 7, this study employed
data augmentation to appropriately re-distribute and balance
the train data for each stage.

For the first stage dataset, the health classifier had two
classes, healthy and unhealthy leaves. The healthy class con-
tained all the healthy leaf samples from the entire dataset,
while the unhealthy class contained all the other classes. On
the other hand, the following stage 2 dataset had CLR, BSL,
and SM classes. The intuition behind the consolidated BSL
is to reduce confusion among the highly similar character-
istics of CLS, PLS, CLM, and RSM classes. However, the
model still needed to classify each BSL specifically. There-
fore, this study also established another dataset distribution
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Table 7 Stage-wise distribution of the augmented dataset for a respec-
tive classification stage

Stage Class Train + Augmentation Validation Test

1 Healthy 1086 + 1914 � 3000 308 155

Unhealthy 2190 + 810 � 3000 625 311

Total 3276 + 2724 � 6000 933 466

2 CLR 933 + 1067 � 2000 266 133

BSL 620 + 1380 � 2000 177 87

SM 637 + 1363 � 2000 182 91

Total 2190 + 3810 � 6000 625 311

3 CLS 62 + 1438 � 1500 18 8

PLS 240 + 1260 � 1500 68 34

CLM 225 + 1275 � 1500 64 32

RSM 93 + 1407 � 1500 27 13

Total 620 + 5380 � 6000 177 87

for the third stage of classification that focused only on the
specific BSL classes.

4.2 Progress of training and validation

InDL, during the progress of training and validation, it is cru-
cial to prevent overfitting and underfitting as it can impact
the overall classification prowess of a model toward future
unseen data. Based on the learning curves, this study moni-
tored the changes of accuracy and losses over time [54]. In
Fig. 7, all models successfully trained and validated from
their respective datasets, illustrated by the converged train
and validation graphs. In addition, even without an opti-
mal hyper-parameter tuning approach, the selected values
worked well with the prepared dataset combined with the
proposed pre-training and fine-tuning methods. Though not
all achieved full convergence, the results showed that allmod-
els had learned progressively in a stablemannerwithin a brief
period and avoided immense overfitting or underfitting.

4.3 Overall performance of the individual models
using the validation dataset

Table 8 presents the classification results of each model
trained on a specific stage using their respective validation
data. For the first stage, themodels trained to performclassifi-
cations between a healthy and an unhealthy leaf. On the other
hand, the second stage focused on the three conditions, the
CLR,BSL, andSM.Finally, the third stage had theCLS,PLS,
CLM, and RSM. As observed, all models trained and vali-
datedwell with their respective validation datasets. However,
a slight decrease in accuracy occurred with EfficientNetB0
and DenseNet121 upon additional classes at the succeed-
ing stages. Compared to the two, VGG16’s accuracy slightly
increased at the second stage of classifications but eventually

decreased again at the last stage. Nonetheless, even with the
models’ shifting performance, all still performed as a single
unit in the form of a T-DCNN.

4.4 T-DCNN classification results from the test set
with a confusionmatrix

Figure 8 presents the classification results of the individual
T-DCNN stages with their respective test datasets visual-
ized using a normalized confusion matrix [55]. Also, an
addedBase T-DCNNmodel performed a similar task to high-
light certain deficiencies when the stage-wise approach is
not employed. The term “Base” indicates a T-DCNN model
trained with all seven classes and did not perform a stage-
wise approach. As evaluated, the Base T-DCNN had a slight
classification advantage in classifying healthy leaves with
99.35% and CLS with 87.50% earning a 1.93% and 12.5%
higher recall than the first and third T-DCNN stages, respec-
tively. However, such a result does not immediately indicate
that the Base T-DCNN entirely outperformed the T-DCNNs
trained in stages. In a holistic view, the stage-wise T-DCNNs
still had a significantly better classification among the other
classes than the Base T-DCNN and that the Base T-DCNN
also had the worst performance with RSM.

4.5 Receiver operating characteristic and area
under the curve

In this section, the Receiver Operating Characteristic (ROC)
curve estimated each specificmodel’s classification ability in
various thresholds [56]. As defined, ROCcurves can generate
a respective Area Under the Curve (AUC) by summarizing
the trade-off between the sensitivity and specificity for each
class to identify whether the model genuinely distinguished
a specific class. A higher AUC for a specific class indicates
better performance, and a lower one means poor. Having an
AUC<=0.50 also entails that the model merely depends on
guessing instead of actual classifications.

As depicted in Fig. 9, compared to the first stage, stages
2, 3, and the base T-DCNN had more evident fluctuations at
the lower thresholds of their AUCs due to additional classes
and complexity involved. With that said, the Base T-DCNN
with the most considerable number of classes had the most
noticeable noise than the rest of the T-DCNNs, specifically
with the RSM class, indicating that the stage-wise approach
does have an impact in terms of performance.

4.6 Precision–recall curve

Due to the unbalanced test samples used for each class, the
Precision–recall (P–R) curve [57] became a more valuable
evaluation tool that identified the FP and FN rate of each T-
DCNN in different thresholds. Similarly, a P–R curve with a
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Fig. 7 The learning progress of the selected models during training and validation

higher AUC value indicates better performance in producing
relevant results like the ROC curve.

As illustrated in Fig. 10, the Base T-DCNN also had the
most noticeable distortion with RSM. Even with the slight
AUC movements observed from the other stage-wise mod-
els, the lowest AUC attained was only 0.983 AUC from BSL
in stage 2. The unstable distortion seen on the AUC of the
Base T-DCNN from the RSM class landed as the lowest
recorded AUC of 0.664. Unlike the rest of the T-DCNNs
with fewer classes, the Base T-DCNN struggled the most
in producing relevant results due to its higher number of
classes. With results evaluated by the P-R and ROC curves,

the Base T-DCNN that classified all seven classes simulta-
neously became less dependable due to its complexity in
classifying coffee leaf conditions than the proposed stage-
wise approach.

4.7 Comparison of performance with a stage-wise
approach

Figure 11 presents a visual comparison of the averaged over-
all performance of the SWAT-DCNN classification pipeline
against the Base T-DCNN model. As expected from the
results presented by the confusion matrices, ROC, and P-R
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Table 8 Individual validation
results of each model per stage Model Accuracy (%) Precision (%) Recall (%) F1-Score (%) Classes

Stage 1 T-DCNN

EfficientNetB0 98.18 98.21 98.18 98.18 Healthy and Unhealthy

DenseNet121 97.32 97.37 97.32 97.33

VGG16 92.71 92.91 92.71 92.77

Stage 2 T-DCNN

EfficientNetB0 95.20 95.21 95.20 95.18 CLR, BSL, SM

DenseNet121 94.72 94.79 94.72 94.68

VGG16 94.40 94.42 94.40 94.37

Stage 3 T-DCNN

EfficientNetB0 94.35 94.75 94.35 94.27 CLS, PLS, CLM, RSM

DenseNet121 93.22 93.33 93.22 91.52

VGG16 92.09 92.11 92.09 91.93

The bolded entries indicate the highest scores obtained in a specific T-DCNN stage

Fig. 8 T-DCNN confusion
matrix results from the test data
for each stage

curves, the SWAT-DCNN outperformed the Base T-DCNN.
As illustrated, the SWAT-DCNN had an evident increase of
0.5% accuracy, 0.41% precision, 0.05% recall, and a 0.5%
f1-score than the Base T-DCNN, showing the significance of
having a stage-wise model.

4.8 Gradient-weighted activationmaps

For added transparency and further evaluation of this study,
the Gradient-Weighted Activation Map (Grad-CAM) algo-
rithm by Selvaraju et al. helped visualize how the SWAT-
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Fig. 9 Sensitivity versus specificity of the T-DCNN stages and Base T-DCNN with the test dataset

DCNNmodel interpreted different coffee leaf samples. With
this algorithm, the SWAT-DCNN generated various saliency
maps from the identified feature importance’s learned. This
method also entails how the model provided its visual inter-
pretation toward a specific class of interest without the need
for model reconstruction or re-training. Furthermore, the
Grad-CAMalgorithm can alsoworkwithmost convolutional
vision-based models as it only relies on feature values gen-
erated from the last Conv layer of a model just before the FC
layers [58].

Figure 12 illustrates that the SWAT-DCNN had successful
interpretations from thepresented randomly selected samples
of each class. Though not perfect, the model still isolated the
most salient features specifically for the CLR, CLS, PLS,

CLM, and RSM. However, due to the Grad-CAM algo-
rithm’s limitation with multiple instances of targets, SM did
not achieve exact isolations of its affected areas due to its
sparsely distributed characteristic compared to the rest. Sim-
ilarly, due to the absence of any salient lesion on a healthy
leaf, the SWAT-DCNN seemed only to detect the entire leaf.
Nonetheless, even with inexact expectations from the given
interpretations, the proposed SWAT-DCNN still performed
remarkably in both images captured from a controlled and
outdoor environment. Therefore, this study validated that the
model did not interpret the given samples randomly, as sup-
ported by the Grad-CAM results.
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Fig. 10 Precision versus recall of the T-DCNN stages and the Base T-DCNN with the test dataset

4.9 Discussion

Based on the results shown in the confusion matrices, ROC,
P-R curves, and other performancemetrics, this study proved
that the aggregating DCNN models could significantly
increase the overall classification of coffee leaf diseases due

to the larger feature spectrum, added with the averaging
of prediction results from multiple expert classifiers. Even
with the significant improvements already produced through
model aggregation, the proposed stage-wise approach further
reduced the classification complexity and misclassifications
of theBase T-DCNN that yielded additional improvements in
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Fig. 11 T-DCNNoverall performance comparedwith the base classifier

Fig. 12 Generated gradient-weighted class activations by the SWAT-
DCNN from test samples

the form of the SWAT-DCNN. This study also demonstrated
that the SWAT-DCNN did not perform random interpreta-
tions when it diagnosed the various coffee leaf conditions.
With the Grad-CAM algorithm, the proposed study had
shown excellent isolation of the salient affected areas. With
those said, the proposed SWAT-DCNN contributes signifi-
cantly to solving the challenging task of classifying a diverse
set of coffee leaf conditions captured from various environ-
ments.

In Table 9, for an overall comparison, this study also
compared the SWAT-DCNN’s performance against existing
state-of-the-art and classic DCNNs that performed the task
similarly. Upon evaluation, SWAT-DCNN achieved the best
results across all metrics with an overall 95.98% accuracy,
followed by the Base T-DCNN (non-staged version) with

95.93%, and even outperformed a wide range of convention-
ally trained DCNNs.

This study also trained other models and compared their
performance against each T-DCNN stage to generate broader
findings. Presented in Table 10, the classification results pro-
duced from the first stage with two classes, healthy and
unhealthy had shown that the T-DCNN dominantly per-
formed across allmetricswith an overall accuracy of 98.39%,
followed by EfficientNetB0 with 98.18%.

In Table 11, stage 2, the following results had CLR, BSL,
and SM. Upon evaluation, the T-DCNN again achieved the
highest accuracy of 95.20%, with EfficientNetB0 and Incep-
tionV3 being similar.

Lastly, in Table 12, the third and final stage had CLS,
PLS, CLM, and RSM. Surprisingly, the T-DCNN did not
attain the best performance. Instead, the VGG19 had the best
performance with a 96.05% accuracy, making it 1.7% better.

Even if the T-DCNN model did not achieve the best per-
formance at the last stage of classifications, it still had the
best overall performance in the form of the SWAT-DCNN.
Compared to others, the SWAT-DCNN had the highest over-
all accuracy of 95.98%, as shown in Table 13. Thus, unlike
other DCNNs trained in a stage-wise or even through the
conventional approach, the SWAT-DCNN still prevailed as
the best overall performing model.

The calculated results had justified thatmodel aggregation
of diverse DCNNmodels like EfficientNetB0, DenseNet121,
andVGG16 trained in a stage-wise fashion can yield valuable
and better performance in diagnosing various coffee leaf con-
ditions compared to single-stagemodels or uniformed staged
models.

For transparency and future recommendation, this work
also highlights the drawback of the proposed model. From
the presented results, the developedmodel only functioned as
an image classification model rather than an object detection
[59] or segmentation model [60], making it unable to point
out the exact localized sections of the leaf’s affected areas.
Nonetheless, futureworks can employ the proposed approach
for a detection or segmentationmodel that may yieldmassive
improvements for coffee leaf diagnosis.

5 Conclusion

This study proposed an automated approach to diagnose
coffee leaf conditions with DL and computer vision due
to the challenging task of coping with various coffee leaf
diseases and infestations. With the growing demand for DL
solutions, this study contributed a novel approach that clas-
sified seven coffee leaf conditions with three aggregated
profoundDCNNmodels selected through a benchmark study
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Table 9 Comparison of
performance with other
state-of-the-art models

Model Accuracy (%) Precision (%) Recall (%) F1-Score (%)

SWAT-DCNN 95.98 96.27 95.98 95.91

Base T-DCNN 95.93 95.86 95.93 95.86

Base DenseNet121 [37] 94.21 93.95 94.21 94.02

Base VGG16 [34] 93.46 93.30 93.46 93.30

Base InceptionV3 [35] 93.35 93.43 93.35 92.57

Base Xception [38] 92.82 92.47 92.82 92.42

Base ResNet50V2 [39] 92.82 92.51 92.82 92.50

Base EfficientNetB0 [36] 92.07 91.42 92.07 91.39

Base VGG19 [34] 91.96 92.19 91.96 92.04

Base AlexNet [6] 81.35 80.06 81.35 80.08

Base LeNet-5 [40] 75.67 74.38 75.67 74.72

*Entries in bold indicate the highest attained value for a specific criterion. Basemodels indicate that it classified
all seven classes simultaneously or did not train in a stage-wise manner

Table 10 Stage 1 classification
results Model Accuracy (%) Precision (%) Recall (%) F1-Score (%)

T-DCNN 98.39 98.41 98.39 98.40

EfficientNetB0 [36] 98.18 98.21 98.18 98.18

ResNet50V2 [39] 97.96 98.01 97.96 97.97

InceptionV3 [35] 97.96 98.03 97.96 97.97

Xception [38] 97.86 97.88 97.86 97.86

DenseNet121 [37] 97.32 97.37 97.32 97.33

VGG19 [34] 96.78 96.78 96.78 96.77

VGG16 [34] 92.71 92.91 92.71 92.77

AlexNet [6] 92.07 92.20 92.07 92.11

LeNet-5 [40] 86.50 86.78 86.50 86.60

The bolded entries indicate the highest scores obtained during the Stage 1 classification
*The following models presented only trained with two classes, a healthy and unhealthy leaf

Table 11 Stage 2 classification
results Model Accuracy (%) Precision (%) Recall (%) F1-Score (%)

T-DCNN 95.20 95.30 95.20 95.16

EfficientNetB0 [36] 95.20 95.21 95.20 95.18

InceptionV3 [35] 95.20 95.21 95.20 95.18

VGG19 [34] 95.04 95.04 95.04 95.04

DenseNet121 [37] 94.72 94.79 94.72 94.68

VGG16 [34] 94.40 94.42 94.40 94.37

ResNet50V2 [39] 94.40 94.42 94.40 94.37

Xception [38] 94.40 94.40 94.40 94.40

AlexNet [6] 89.44 89.68 89.44 89.52

LeNet-5 [40] 87.04 87.08 87.04 87.03

The bolded scores indicate the highest values attained during the Stage 2 classifications
*The following models had trained with three classes, rust, brown spots, and sooty molds

and formed in a stage-wise fashion. It is worth mentioning
that this study also used a diverse set of coffee leaves cap-
tured in various conditions, which most existing works did
not consider. The intuition of this study primarily lies in the
concept of narrowing down the classification complexity by
simplifying a broad classification task into stages with fewer

options and increasing the number of features in a neural net-
work classifier. Based on the discussed approach, this study
aggregated three state-of-the-art pre-trained and fine-tuned
DCNNs that included the EfficientNetB0, DenseNet121, and
VGG16 formed into an ensemble called the T-DCNN. Once
aggregated, the T-DCNN produced a broader set of features,
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Table 12 Stage 3 classification
results Model Accuracy (%) Precision (%) Recall (%) F1-Score (%)

VGG19 [34] 96.05 96.09 96.05 96.02

ResNet50V2 [39] 94.92 94.96 92.56 94.87

T-DCNN 94.35 95.11 94.35 94.18

EfficientNetB0 [36] 94.35 94.75 94.35 94.27

Xception [38] 94.35 94.31 94.35 94.16

InceptionV3 [35] 93.79 93.92 93.79 93.70

DenseNet121 [37] 93.22 93.33 93.22 93.12

VGG16 [34] 92.09 92.11 92.09 91.93

LeNet-5 [40] 89.27 88.83 89.27 88.73

AlexNet [6] 86.44 85.94 86.44 86.05

The scores in bold means that they are the highest scores obtained in Stage 3
*The following models had trained with four classes, CLS, PLS, CLM, and RSM

Table 13 Overall classification
performance in a stage-wise
manner

Model Accuracy (%) Precision (%) Recall (%) F1-Score (%)

SWAT-DCNN 95.98 96.27 95.98 95.91

SW -VGG19 [34] 95.96 95.97 95.96 95.94

SW -EfficientNetB0 [36] 95.91 96.06 95.91 95.88

SW -ResNet50V2 [39] 95.76 95.80 94.97 95.74

SW -InceptionV3 [35] 95.65 95.72 95.65 95.62

SW -Xception [38] 95.54 95.53 95.54 95.47

SW -DenseNet121 [37] 95.09 95.16 95.09 95.04

SW -VGG16 [34] 93.07 93.15 93.07 93.02

SW -AlexNet [6] 89.32 89.27 89.32 89.23

SW -LeNet-5 [40] 87.60 87.56 87.60 87.45

The bolded values indicate the highest scores obtained when the models are in stage-wise form
*The following models with SW had their performance averaged in a stage-wise approach. The T-DCNN
model in the form of a stage-wise manner became the SWAT-DCNN

where it also had an averaging layer attached at the end to
achieve less biased classification toward a specific target.
Upon evaluation, this study proved that the Base T-DCNN
could yield better results than conventionally trainedDCNNs
when it classified seven coffee leaf conditions simultane-
ously. However, having only the Base T-DCNN classify all
the said conditions led to an abundant case of false classifi-
cations. As identified on its P-R curves, the Base T-DCNN
generated the lowest 0.664 AUC for the RSM. Fortunately,
the SWAT-DCNNmanaged to alleviate the said problem, as it
attained significant improvements that increased the RSM’s
AUC to 1.00. Overall, the stage-wise approach had shown
an increase of 0.5% accuracy, 0.41% precision, 0.05% recall,
and a 0.05% F1-score than the Base T-DCNN. In addition,
this study also showed that the SWAT-DCNN can outperform
commonly used state-of-the-art and classic DCNN models,
justifying its classification prowess with a 95.98% accuracy.

In conclusion, the overall performance achieved by the
SWAT-DCNN implies that model aggregation and a stage-
wise approach can induce significant improvements in the
classification of diverse coffee leaf conditions. In addition,
such improvements can become vital in developing apps for

real-world scenarios. Based on the SWAT-DCNN’s accurate
performancewith images captured in a laboratory setting and
images captured from an uncontrolled environment, farmers
and experts can potentially gain better opportunities to per-
form real-world diagnoses of the identified classes in their
coffee farms easier and faster in the future. However, the
proposed model cannot identify other coffee leaf conditions
and cannot localize the affected areas effectively due to the
limitations of a classification scheme. Therefore, as a future
study, researchers can add other coffee leaf conditions that
can help the model learn beyond the given classes, making
it a more viable tool. Also, employing an object detection
head or re-constructing the SWAT-DCNN into a segmen-
tation architecture can provide additional capabilities that
can help it identify coffee leaf diseases from a distinct per-
spective. Development and deployment of such in drones or
robots can significantly improve coffee farming or even agri-
culture in general.
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