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Abstract
Brain tumor classification and segmentation for differentweightedMRIs are among themost tedious tasks formany researchers
due to the high variability of tumor tissues based on texture, structure, and position. Our study is divided into two stages:
supervised machine learning-based tumor classification and image processing-based region of tumor extraction. For this job,
seven methods have been used for texture feature generation. We have experimented with various state-of-the-art supervised
machine learning classification algorithms such as support vector machines (SVMs), K-nearest neighbors (KNNs), binary
decision trees (BDTs), random forest (RF), and ensemble methods. Then considering texture features into account, we have
tried for fuzzy C-means (FCM), K-means, and hybrid image segmentation algorithms for our study. The experimental results
achieved a classification accuracy of 94.25%, 87.88%, 89.57%, 96.99%, and 97% with SVM, KNN, BDT, RF, and Ensemble
methods, respectively, on FLAIR-, T1C-, and T2-weighted MRI, and the hybrid segmentation attaining 90.16% mean dice
score for tumor area segmentation against ground-truth images.

Keywords Medical image processing · Machine Learning · Brain tumor classification · Brain tumor segmentation

1 Introduction

While the brain is the control unit of the human body, brain
tumors have become fatal and life-threatening diseases esca-
lating in recent days. It is generally a mass of tissue that
originates from an irregular stimulus of tumorous cells in any
part of the human brain. It is an activation in a single cell’s
genes, which is the source of the act, resulting in the further
uncontrollable division of nearby cells. More often than not,
a brain tumor emerges inside the brain and its nerves or the
brain’s coverings. These tumors are generally classified into
malignant tumors or benign tumors [1–3]. Thenon-cancerous
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cells are termed benign, whereas cancerous cells are called
malignant tumors. Benign types do not pervade the brain or
its neighboring tissues. However, these can still harm the
nearby tissues or vital organs, so they need to be treated in
the nick of time. On the other hand, malignant tumors are
life-threatening as they invade healthy tissues of the brain
and further spread throughout the brain or other regions of
the body.

A medical imaging technique, especially magnetic res-
onance imaging (MRI) [4,5], plays an essential role in
diagnosing and treating brain tumorswith positive outcomes.
The best parts of MRI, being an important modality of medi-
cal imaging [6–8], provide automated and precise diagnostic
results. One of the most demanding problems while deal-
ing with MR images is to segregate a few distinct cells and
tissues from the image. Further, this leads up to the seg-
mentation process. Segmentation of required objects aids
physicians in identifying lesions more precisely; hence, it
assumes a noteworthy job in computerized medical imaging.
While there exist manymainstream segmentation techniques
such as thresholding [9], region-based seed growing [10],
and graph partitioning [11], still they lack behind in domain
application of brain tumor classification due to similarities
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in intensity between some healthy tissues and brain tumors,
which can give rise to uncertainty within the algorithm. This
resulted in the usage of multispectral MR sequences [12] for
tumor identification by researchers to overcome this prob-
lem. Nevertheless, four main difficulties were identified in
this approach [13]. First, being the acquisition of such MR
sequences is not always attainable owing to the condition
as in the severity and urgency of patients. Second, it is an
expensive procedure. The third is the presence of redun-
dant information, which further results in the consumption of
image processing time, and still, the chances of segmentation
errors cannot be ruled out. Finally, the multispectral MRI
scans suffer from misalignment and inconsistency, which
needs bias correction and image registration in advance
before being used in segmentation algorithms [9]. Consid-
ering these limitations into consideration, in this research
article, we propose a scheme for the classification and seg-
mentation of tumors on two-dimensional single spectral MR
sequences. The mainstream contributions of this article are:

• This is the first article performing classification on the
BraTS dataset for the brain tumor as per the best of our
knowledge, and we also consider some data from The
Cancer Imaging Archive (TCIA).

• We consider asmany as fivemachine learning algorithms
along with multiple hyperparameter conditions.

• We consider as many as seven texture feature extraction
methodologies to generate texture features.

• Along with tumor classification, we also perform the
tumor segmentation method to detect the tumor.

• Finally, we use a hybrid segmentation approach (hybrid
of K-means and fuzzy C-means) rather than any individ-
ual approach.

The remaining parts of the article have been presented as
follows: Section 2 discusses some noticeable related works
in this domain of brain tumor classification and segmenta-
tion. Section 3 presents a system overview of the current
work. A detail about the dataset and preprocessing tasks is
given in sect. 4. Sections 5 and 6 discuss the tumor clas-
sification and segmentation process, respectively, with the
experimental outcome and discussion. Section 7 is devoted
to the conclusion, followed by some selected references.

2 Related works

Many approaches have been recommended for tumor clas-
sification and detection on MRI scans. Some of the related
works are referred here to further improve our work in that
direction.

In [14], Mishra et al. (2020) present brain tumor MRI
classification using a support vector machine (SVM) by con-

sidering wavelet feature extraction such as DWT, SWT, and
DMWT. In [15], Gumei et al. (2019) proposed a regularized
extreme learningmachine (RELM)brain tumor classification
method based on a machine learning approach. They con-
sidered hybrid feature extraction on 3064 brain MRI images
with max–min preprocessing steps. Basically, GIST and nor-
malized GIST feature descriptors are used in their work.

In [16], Mishra et al. (2019) discussed the classifica-
tion of the microscopic image to classify normal white cells
from infected cells of leukemia. They have considered dis-
crete orthonormal S-transform for feature extraction with
linear discriminant analysis for feature reduction and finally
Adaboost-based random forest classifier for classification
purposes. In [17], Amin et al. (2017) proposed a distinc-
tive approach to detect and classify the brain tumor from
an MRI scan. Basically, they go for an SVM classifier with
cross-validation after getting the feature by shape, texture,
and intensity feature selection procedure to finally classify
cancerous MRI from non-cancerous MRI.

In [18], Bahadure et al. (2017), support vector machine
(SVM) and Berkeley wavelet transformation (BWT)
approaches were investigated for image analysis on MRI.
The work on [19] by Joseph et al. (2014) proposed K-means
clustering algorithms for segmentation of tumor regions, and
in [20], by Alfonse et al. (2016) used SVM for automatic
brain tumor classification with accuracy further improved by
Fourier transform for feature extraction.

In [21] Ahmadvand et al. (2016), a feature vector of
MRI was extracted based on the wavelet transform described
as modality fusion vector (MFV). Then for the segmenta-
tion of tumorous images, Markov random field model was
used. In [22], Atiq Islam et al. (2013), a new texture feature
extraction method, MultiFD with Ada Boost classification
technique, is used to detect and segment out a brain tumor.
In [23], Abbasi et al. (2017), automatic detection of the tumor
was performed on 3D images. Histogram-oriented gradients
(HOGs) and local binary pattern (LBP) in three orthogonal
planes of MRI were used for the random forest classifier
for segmenting out the region of interest. The work in [24]
by Işın, Ali et al. (2016), emphasizes modern deep learn-
ing architectures, mostly on convolutional neural networks
(CNNs) for brain tumor classification. CNN takes spatial
information within input pixels using convolution and pool-
ing processes. The convolution process extracts features, and
round-up operations result in successful classification. Still,
it takes a considerably long training period and showcases
issues with being able to adhere to a particular solution at the
time of the training process [25].

After going through some relevant literature, we have
studied that most of the literature is based on either one or
two classification algorithms. Similarly, for feature extrac-
tion, some literature uses wavelet features, while others use
texture features. Furthermore, each of the classification algo-
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Fig. 1 System for tumor classification and segmentation

rithms and feature extraction techniques has its own pros and
cons. So, the motivation behind this work is to use multiple
classification algorithms and texture features for a better con-
clusion of the classification of brain tumors. Eventually, by
doing so, we can choose the best classification algorithm as
per the need of the hour.

In this paper, we have considered texture features and
seven techniques of texture feature generation. For classi-
fication, we choose SVM, KNN (with Euclidean distance,
City-Block distance, and Minkowski distance), binary deci-
sion tree, random forest, ensemble method (with Adaboost,
Gentleboost, Logitboost, LPboost, Robustboost, RUSboost,
and Totalboost). So, as a total, we have considered five main-
stream classification methods, even more hyperparameters
for some classification algorithms.

3 System overview

Our whole system is partitioned into two parts, i.e., tumor
classification and tumor segmentation. In tumor classifica-
tion, anMR image has been considered as input and classified

into whether the MR image is tumorous or not based on
the trained classifiers. After that, the tumorous MR image
is passed into the tumor segmentation process, where the
tumorous region is segmented out to give an idea of the tumor
present in the brain. The above-described system overview
of the proposed approach is depicted in Fig. 1.

4 Dataset and preprocessing

4.1 Dataset

The datasets used in our system have been gathered from the
NCI-MICCAI 2017 and the 2019 Challenge (BraTS-2017
and BraTS-2019) [26–28]. These benchmark datasets con-
sist of fully anonymous images from institutions like Bern
University, ETHZurich, Utah University, and Debrecen Uni-
versity. These are the datasets of 3D images of brain tumor
medical resonance imaging (MRI), specifically designed for
brain tumor segmentation. These datasets consist of mul-
timodal brain MRI scans along with manually annotated
tumor regions corresponding to each scan in four different
volumes, namely (a) native T1 (T1), (b) contrast-enhanced
T1-weighted (T1ce), (c) T2-weighted, (d) fluid attenuated
inversion recovery (Flair). Samples of all these modalities of
the images are shown in Fig. 2. Also, we have considered
data from MR sequences from The Cancer Imaging Archive
(TCIA). Overall, themanually inspected central slices of 100
numbers of T1C-, T2- & FLAIR-weighted MR sequences,
each of the brain images having high-grade glioma (HGG)
along with low-grade glioma (LGG) and 100 number MRI
scans of the normal brains are utilized in this study from both
the datasets.

4.2 Preprocessing

The raw MRI scans usually contain various artifacts, noise,
salts. It also includes uneven intensity distribution as the
MRI has been collected from the different scanners and even
under multiple situations and positions of the camera. This

Fig. 2 Middle slices of an HGG patient in (a) Flair, (b) T1, (c) T1ce, (d) T2
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Fig. 3 Preprocessing of some tumorous images

may reduce the performance of the system. Due to the above
reasons, medical images and especially MRI images need
mandatory preprocessing steps.

The data of BraTS 2017 and 2019 contain 155 slices for
everymodality (Flair, T1, T1ce, andT2) of each patient as it is
a 3D dataset and is originally provided in .nii (NIfTI) format.
Corresponding to each patient, every volume consists of 155
slices of 2D images, each having dimensions of 240 × 240,
representing the 3D architecture of the brain. We chose five
slices out of 155 from each patient’s data. These five slices
were chosen manually in a careful way to make sure that
they were at least 3 or 4 slices away from each other, and the
brain tumor images were present in them. This takes care that
different parts of the brain are covered, and the probability
of finding a tumor becomes high. Each of the chosen slices
was converted to .png (portable network graphic) format as it
eased the reading of images for the next preprocessing steps.

For the mandatory preprocessing step, we applied “inten-
sity normalization” and “bias field correction”. The N4ITK
method [29] is adopted for the bias field correction job. We
have combined the histogram equalization (HE) technique
with the fast gray-level grouping (FGLG) technique [30] for
intensity normalization of the image. Initially, the histogram
obtained from a low-contrast image is further segmented
into two sub-histograms with reference to the position of the
maximum amplitude of the constituents of the histogram.
Contrast enhancement is achieved by leveling the left seg-
ments of the histogram constituents with the help of HE and
then by the FGLGmethod to equalize the correct segment of
the histogram components of all. Figure 3 shows the result
of images from some arbitrary tumorous images after the
preprocessing steps.

5 Tumor classification

Automatic brain tumor classification is very important in
modern diagnosis science because it sets out prognosis and
treatment finding for the patient. For the tumor classification,
100 numbers of MR tumorous images and 100 numbers of
MR non-tumorous images are selected of different weights

Fig. 4 Tumor classification procedure

from the dataset. Then we have to consider the texture fea-
tures into account and apply binary classification techniques
along with tenfold cross-validation, as shown in Fig. 4. The
various classification algorithms used for this purpose and
their corresponding classification accuracy are tabulated in
the result section of Table 1. The various texture feature
generation techniques are also summarized briefly, as given
below.

5.1 Texture features extraction

The texture is an essential characteristic used in identify-
ing regions of interest in an image. The texture of an image
region has been determined by how the gray levels are dis-
tributed over the pixels in the region. We have extracted
texture features using different texture-based feature extrac-
tion approaches. Although there is no clear definition of
“texture” in the literature, it often describes an image that
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Table 1 Accuracy of classifiers for the BraTS-2017 and TCIA dataset

Classifier Accuracy

T1C T2 FLAIR

SVM Linear – 93 94 93

KNN Euclidean distance k = 1 90.5 90 90

3 87.5 84 82.5

5 87 84 84

7 87 84 83

City-Block distance K=1 89.5 89.5 83.5

3 85 85.5 80

5 79 81 81.5

7 79.5 80.5 81

Minkowski distance K=1 90 91.5 91

3 83.5 87 81

5 81 80 80

7 84.5 83.5 82.5

Binary Decision Trees – – 89 90 88.5

Random Forest – – 96 97 96.5

Ensemble Adaboost – 97 98.5 97

Gentleboost 99 97 98.5

Logitboost 97 99 98.5

LPboost 97 97 97.5

Robustboost 95.5 98.5 90

RUSboost 87 90 86

Totalboost 94.5 97.5 94.5

looks fine or coarse, smooth or irregular, homogeneous or
inhomogeneous, etc. Generally, texture denotes characteris-
tics of the surface and appearance of an object based on the
structure, size, density, arrangement, and proportion of its
fundamental parts. The collections of such features through
the process of texture analysis have been described as texture
feature extraction. The following texture features have been
accounted into the discussion in this study:

5.1.1 First-order statistical feature

Themost widely used first-order statistical features that char-
acterize texture for image classification are mean, median,
skewness, kurtosis, energy, entropy, average contrast. So,
these six features are considered as first-order statistical fea-
tures used for the feature extraction process [31].

5.1.2 Gray-level co-occurrence matrix (GLCM) feature

TheGLCM is one of the essential and traditional methods for
texture feature extraction. It is a two-dimensional histogram
where the occurrence of pairs of pixels which are parted by
a particular distance (i.e., d = 1, 2) as well as an angle (0◦,
45◦, 90◦, and 135◦) is described. The number of gray levels

presented in an image influences the required size of the
matrix. The statistical features that are extracted from this
matrix are energy, entropy, inertia, homogeneity, correlation,
absolute value,maximumprobability, and inverse difference,
i.e., eight features [32]. By taking distances and angles into
consideration, finally, there are 64 consolidated features.

5.1.3 Gray-level run length matrix (GLRLM) feature

In GLRLM [33], gray-level run length is a texture primi-
tive, which is regarded as the connected group of pixels of
maximum co-linearity with exactly the same gray level. Fur-
ther, gray-level runs are described based on the direction and
length of the run for a specific gray value. For determining
GLRLM, different lengths of gray-level runs must be found
for certain. The GLR matrices are calculated for angles 0◦,
45◦, 90◦, and 135◦.

The extracted features are short-run emphasis (SRE),
long-run emphasis (LRE), run percentage (RP), run length
non-uniformity (RLN), gray-level non-uniformity (GLN),
low gray-level run emphasis (LGRE), high gray-level run
emphasis (HGRE), short-run high gray-Level emphasis
(SRHGE), short-run low gray-level emphasis (SRLGE),
long-run high gray-level emphasis (LRHGE), and long-run
low gray-level emphasis (LRLGE), i.e., 11 features. By tak-
ing angles into account, there are 44 features.

5.1.4 Histogram-oriented gradient (HOG) feature

The reasoning behind the usage of histogram-oriented gradi-
ent features [34] is that it takes the appearance of local object
and structure, which can be identified by edge directions and
then generalizes. The method locally outlines the gradient
orientation of an image. Hence, 80 histogram-oriented gra-
dient features are derived.

5.1.5 Local binary patterns (LBP) feature

Local binary patterns [35] can be used to describe the shape
and texture of an image. The image is partitioned into vari-
ous small regions fromwhich the extraction of features takes
place. Binary patterns that describe the neighborhood of pix-
els in the divided small regions constitute the features. The
features obtained from these small regions are sequenced
into a single-feature histogram, which creates a portrayal of
the image. The resulting histogram will be 256 dimensions.
Finally, 256 LBP features are extracted.

5.1.6 Cross-diagonal texture matrix (CDTM) feature

CDTM[36] represents the spatial connection between a pixel
and its neighboring pixel at a particular angle and distance. It
also finds out texture information around the central pixel by
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using the eight neighboring pixels. So, a set of six features are
extracted from the matrix, i.e., homogeneity, entropy, abso-
lute value, contrast, energy, and inertia difference moment.

5.1.7 Simplified texture spectrum feature

It characterizes local texture information in four directions
instead of eight directions, which is used in the original tex-
ture spectrum feature. One of the advantages of the texture
spectrum approach in image processing is that instead of
texture features, it characterizes the texture aspects of an
image by the corresponding texture spectrum. The simpli-
fied texture spectrum groups the 81 features obtained from
the texture spectrum into 15 features [37].

So a total of 6 first-order statistical features, 44 gray-
level run length matrix features, 64 gray-level co-occurrence
matrix features, 80 histogram-oriented gradient features, 256
local binary pattern features, 6 cross-diagonal texture matrix
features, and 15 simplified texture spectrum features, forms
a 471-dimensional texture feature vector.

5.2 Feature matrix

All the texture feature vectors obtained from 100 tumorous
and100non-tumorous images are hence consolidated to form
a feature vector matrix of size 200 x 471.

5.3 Feature classification

This section deals with the brain tumor classification from
both the tumorous and non-tumorous images using features
obtained. Five robust supervised binary classification tech-
niques are applied, and a comparison of results is made. The
techniques applied are SVM (linear) [38,39], KNN (distance
= Euclidean, City-Block andMinkowski & k = 1,3,5,7) [40],
binary decision trees [41], random forest [42], and ensem-
ble methods [43], i.e., Adaboost, Gentleboost, Logitboost,
LPboost, Robustboost, Rusboost, and Totalboost, as shown
inFig. 5. Training–testing samples are chosen randomly.Ten-
fold cross-validation is applied to ensure the robustness and
prevent over-fitting of our models.

The advantages of using the SVM model are more visi-
ble in high-dimensional spaces, i.e., more separation margin
between classes gives better results and is more effective in
the scenario where number samples are less as compared to
the number of dimensions [38,39]. The superiority of using
KNN is that it has a straightforward implementation proce-
dure, is robust to noisy data, is effective if the training data
are large, and augmentation in training data [40]. The bene-
fits of using a decision tree as a classifier are decision trees
required less effort for data preparation during preprocessing
compared to other algorithms and do not require normal-
ized data as well as scaling of data [41]. The advantages of

using a random forest classifier are handling unlabeled data,
robustness to outliers and nonlinear data, quick prediction
and training time, and deals with high dimensionality data
[42]. The feature that ensemble learning follows is: it com-
bines various machine learning models to improve the final
model’s performance. We can call the ensemble technique a
meta-algorithm. By following this approach, ensemble learn-
ing reduces bias and variance or improves predictions [43].
After the completion of training, the classifiers’ recognition
rate on un-tested data is used to indicate the performance
algorithm.

5.4 Performance evaluation and experimental setup

The following parameters are used as the performance eval-
uation metrics for the brain tumor classification system.

• Accuracy: The texture features consist of many different
capabilities for the precise classification of MRI lesions.
So we computed its confusion matrix, i.e., a table that is
often used to illustrate a trained model’s performance on
a given test dataset where the true values are well known.
The terms used in a confusion matrix are as follows:

True positives (TP): accurately classified+ve samples
True negatives (TN): accurately classified -ve sam-
ples
False negatives (FN): inaccurately classified +ve
samples
False positives (FP): inaccurately classified -ve sam-
ples

We then quantify this capability using accuracy from the
following expression:

Accuracy = (T P + T N )/(T P + T N + FN + FP)

(1)

• Sensitivity: It is themetric that evaluates amodel’s ability
to predict the true positives of each available category.

Sensi tivi t y = T P/(T P + FN ) (2)

• Specificity: It is themetric that evaluates amodel’s ability
to predict true negatives of each available category.

Speci f ici t y = T N/(T N + FP) (3)

• Precision: It is the ratio of correctly predicted positive
observations to the total predicted positive observations.

Precision = T P/(T P + FP) (4)
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Fig. 5 Classification techniques used

• F1-Score: It is the weighted average of precision and
recall (sensitivity).

F1 − Score =
2 ∗ (Precision ∗ Recall)/(Precision + Recall) (5)

• Experimental Setup: All the source code implementation
for preprocessing steps, classification, and segmentation
are performed on python 3.6 with the help of standard
machine learning libraries. The software systems are
compiled on the hardware resource of Windows 10 oper-
ating system (64-bit), 8GB memory, Intel(R) Core(TM)
i5-10300H CPU @ 2.50GHz with NVIDIA GeForce
GTX 1650 Ti graphics.

5.5 Experimental results

We have trained our classifiers for 200 TIC-, T2-, and
FLAIR-weighted images of tumorous and non-tumorous
MRI scans. The various classifiers used for these image clas-
sification tasks are support vector machine (SVM) with the
linear model, K-nearest neighbors (KNNs) having k values
1,3,5 and 7 for Euclidean, City-Block and Minkowski dis-
tance, binary decision trees (BDTs), random forest (RF), and
ensemble methods with Adaboost, Gentleboost, Logitboost,
Lpboost, Robustboost, Rusboost and Totalboost as various

types of classifiers. The accuracy of the individual classifier
is mentioned in Table ztab1.

With reference to Table 1, when we compare among the
classifiers for classification accuracy, ensemble algorithms
outperform the rest. However, the accuracy of the random
forest algorithm has also reached nearby the ensemble. The
average accuracy of SVM is 93.33%, KNN is 84.56%, BDT
is 89.16%, RF is 96.5%, and ensemble is 96.98% as depicted
in Table 2 for BraTS-2017 dataset. We have also performed
exploratory analysis using box-plot for T1C, T2, and FLAIR
class of tumor to know the shape of the distribution, central
value, and variability of classification accuracy, sensitivity,
and specificity. Figures 6, 7, and 8 show the box-plot distri-
bution of accuracy, sensitivity, and specificity, respectively,
for various classes of tumor. Now, Fig. 9 shows the compari-
son graph for average classification accuracy, sensitivity, and
specificity for various classifiers.

We have also calculated the sensitivity, specificity, preci-
sion, and F1-score of respective classifiers as these parame-
ters also hold equal importance to measure the performance
of classifiers. Table 3 summarizes the sensitivity of all clas-
sification models for all the weights of MRI scans, whereas
Table 4 gives the average sensitivity of the classifiers. Sim-
ilarly, Tables 5 and 6 illustrate the specificity and average
specificity of the classifiers for all volumes of brain image,
respectively. Now, Table 7 and 8 represents the average pre-

123



6 Page 8 of 16 B. Jena et al.

Fig. 6 Box-plot for the value of accuracy distribution on T1C, T2, and Flair of BraTS-2017+TCIA

Fig. 7 Box-plot for the value of sensitivity distribution on T1C, T2, and Flair of BraTS-2017+TCIA

Table 2 Average accuracy of classifiers

Classifiers Average accuracy
(BraTS-2017+TCIA)

Average accuracy
(BraTS-2019+TCIA)

SVM 93.33 94.25

KNN 84.57 87.88

BDT 89.16 89.57

RF 96.5 96.99

Ensemble 96.98 97.01

cision and F1-score of all the classifiers used in this study.
Further, the classification mean CPU time in seconds also
depicted in Table 9 shows the performance analysis of vari-
ous algorithms.

Even if we go through various articles on brain tumor
classification and detection, we closely follow some very
recent works by Mishra et al. (2020) [14] and Abbasi et al.
(2017) [23]. While most of the works follow certain types
of methods for feature extraction, then a sole classifier for
the classification task. By considering all the pros and cons,
we go for seven methods for texture feature extraction, and
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Fig. 8 Box-plot for the value of specificity distribution on T1C, T2, and Flair of BraTS-2017+TCIA

Table 3 Sensitivity of classifiers for the BraTS-2017 and TCIA dataset

Classifier Sensitivity

T1C T2 FLAIR

SVM Linear – 94 95 95

KNN Euclidean distance k = 1 91 91.5 92

3 89.5 85 84

5 89 85 85.5

7 87 86 85

City-Block distance K=1 90 91 85

3 86.5 86 81

5 79.5 81.5 82

7 80.5 82 81.5

Minkowski distance K=1 90.5 92 92

3 85 87.5 81.5

5 82 80.5 81

7 85.5 83.5 83.5

Binary Decision Trees – – 89.5 91 89

Random Forest – – 97 97 98

Ensemble Adaboost – 98 99 97.5

Gentleboost 99 98.5 98.5

Logitboost 98.5 99 98

LPboost 98 97.5 98

Robustboost 96 98 92

RUSboost 97.5 90.5 87

Totalboost 95.5 98.5 94

Fig. 9 Comparison graph showing the average accuracy, sensitivity,
and specificity of various classifiers for BraTS-2017 and TCIA dataset

Table 4 Average sensitivity of classifiers

Classifiers Average sensitivity
(BraTS-
2017+TCIA)

Average sensitivity
(BraTS-
2019+TCIA)

SVM 94.66 95.02

KNN 85.59 88.16

BDT 89.83 90.11

RF 97.33 97.89

Ensemble 96.57 97.55

then, we consider five classifiers (SVM, KNN, BDT, RF, and
ensemble) for the classification task. The datasets used in
this work are MICCAI’s 2017 and 2019 challenge datasets
of 3D brain MRI scans (BraTS-2017 and BraTS-2019). The
comparison of our work with some relevant recent works is
tabulated in Table 10.
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Table 5 Specificity of classifiers for the BraTS-2017 and TCIA dataset

Classifier Specificity

T1C T2 FLAIR

SVM Linear – 94 93 94.5

KNN Euclidean distance k = 1 91.5 91 91.5

3 88.5 85.5 84

5 89.5 85 85

7 87.5 85 85.5

City-Block distance K=1 90 90 84.5

3 86.5 86.5 80

5 79 82 82

7 80.5 82.5 80.5

Minkowski distance K=1 90.5 91.5 91

3 85 87 81

5 82.5 81.5 81

7 85 83 84.5

Binary decision trees – – 90 91 89

Random forest – – 96 97.5 98

Ensemble Adaboost – 97.5 98 97

Gentleboost 98 98 98

Logitboost 98.5 98 98.5

LPboost 97 97.5 98.5

Robustboost 97 97 93

RUSboost 98 91.5 86

Totalboost 94.5 97.5 95

Table 6 Average specificity of classifiers

Classifiers Average specificity
(BraTS-
2017+TCIA)

Average specificity
(BraTS-
2019+TCIA)

SVM 93.83 93.99

KNN 85.47 88.12

BDT 90.00 90.15

RF 97.16 97.23

Ensemble 96.38 97.44

Table 7 Average precision of classifiers

Classifiers Average specificity
(BraTS-
2017+TCIA)

Average specificity
(BraTS-
2019+TCIA)

SVM 94.13 94.88

KNN 84.99 87.11

BDT 90.03 90.76

RF 96.00 96.97

Ensemble 96.88 97.14

Table 8 Average F1-score of classifiers

Classifiers Average specificity
(BraTS-
2017+TCIA)

Average specificity
(BraTS-
2019+TCIA)

SVM 93.75 94.11

KNN 84.79 88.00

BDT 90.21 91.44

RF 97.11 97.87

Ensemble 97.07 97.81

Table 9 CPU time analysis of the classification algorithms

Alorithms Mean CPU time
(BraTS-
2017+TCIA)

Mean CPU time
(BraTS-
2019+TCIA)

SVM 1.61 1.69

K-NN 2.12 2.24

BDT 1.41 1.72

RF 1.55 1.59

Ensemble 2.03 2.22

6 Tumor segmentation

After a successful tumor classification, the region of inter-
est(ROI) must be detected from the tumorous images as
the subsequent important work. For the tumor segmenta-
tion process, we have taken 100 tumorous images and their
corresponding ground-truth images. We have then prepro-
cessed the tumorous images. Then, we have applied a hybrid
of K-means and fuzzy C-means clustering techniques to
segment tumorous regions followed bymorphological opera-
tions. Ground-truth images are also preprocessed and applied
with morphological operations. Finally, the segmented MR
image and ground-truth image are compared by various per-
formance metrics. The above-described image segmentation
process is clearly depicted in Fig. 10.

6.1 Segmentationmethods

Clustering is a powerful technique that has been reached in
image segmentation. We have used clustering techniques for
the process of image segmentation of brain tumors as cluster-
ing problems aremainly concernedwith determining specific
pixels in an image belonging together most appropriately.
The two clustering techniques which we experimented are
as follows:

6.1.1 K-means segmentation

This k-means clustering algorithm [44] is an unsupervised
algorithm that helps segment the region of interest from the
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Fig. 10 Tumor segmentation process

background of the image. The main principle of this algo-
rithm is: it partitions the given dataset into k number of
clusters based on the k-centroids. When we have unlabeled
data, we go for this algorithm. Based on a certain similarity
in the data present, we find the groups where the number of
groups formed is represented by k. The initial requirement
of the k-means algorithm is the number of clusters, i.e., k.
Then randomly, the centers of k-clusters are selected. By tak-
ing various distance matrices available, the distance between
each cluster center to each pixel is determined. Then, the
pixels are grouped to a specific cluster that has the small-
est distance among others, and then, the re-estimation of the
centroid is calculated. Again the same approach for other
pixels continues until the center converges. Finally, this algo-
rithm aims at minimizing an objective function knows as the
squared error function given by Eq. 6:

J (v) =
k∑

i=1

n∑

j=1

(
∥∥xi − v j

∥∥)2 (6)

where
∥∥xi − v j

∥∥ is the Euclidean distance between xi and
v j .

k = number of clusters.
n= number of data points in a cluster.

6.1.2 Fuzzy C-means

The case of fuzzy c-means (FCM) [45] is another form of
clustering technique, where a single piece of information
may belong to more than one cluster. Hence, the pixels of
a particular image data will be present in various outcome
classes with different degrees of membership. Fuzzy behav-
ior can be studied in fuzzy C-means when data are bound

to each cluster employing an objective function. It occurs by
the continuous increment ofmembership function alongwith
cluster centers. The distance of the weighted summation of
the data from each cluster center defines the object function.
The belongingness of data to the cluster for every cluster is
considered as a weight for that data. This membership func-
tion is responsible for the bounding of data to each cluster.
The weighted mean of data is defined as the center of a spe-
cific cluster. The increment is continued until and unless the
optimization between iterations exceeds a threshold. Finally,
the objective of the fuzzy C-means algorithm is to minimize
the objective function given by Eq. 7:

J (u, v) =
k∑

i=1

n∑

j=1

(µi j )
m(

∥∥xi − v j
∥∥)2 (7)

where
∥∥xi − v j

∥∥ is the Euclidean distance between xi and
v j .

k = number of clusters.
n= number of data points in a cluster.
µi j = represents the membership of ith data to the jth

cluster center.
m = fuzziness index.

6.1.3 Hybrid segmentation

This is the segmentation method, which is the combination
of K-means and fuzzy C-means [46]. The K-means cluster-
ing method is simple to run and very fast on large datasets,
but it fails to determine the specific tumorous regions. On the
other hand, fuzzy C-mean methods are mainly used because
they help retain the more minute information of the origi-
nal image for detecting tumor cells precisely compared to
the K-means. After experimenting with the algorithms men-
tioned above, we chose the hybrid segmentation algorithm
based on the results. The hybrid segmentation algorithm first
performs K-means followed by FCM on the given dataset
using the results of K-means. The resulted cluster centers
of the K-means algorithm are used as the cluster seeds in
FCM algorithms until the termination condition arrives. But,
to run the initial iteration of the FCM, the cluster centers and
the membership matrix are calculated based on the results of
K-means. The remaining iterations continue as in the FCM
algorithm. The two output segmented images from the set
of tumorous images after applying the hybrid segmentation
techniques are shown in Fig. 11.

6.2 Morphological operations on the segmented
image

Binary images can have many disfigurements. In specific,
after segmentation, the binary regions induced are mainly
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Table 10 Comparison with other similar works of classification

Work Approach Dataset Result

Mishra et al. [14] Features: Wavelet, Classifier: SVM REMBRANDT 200 images Accuracy: 98%

Gumei et al. [15] Features: PCA-NGIST,
Classifier: RELM

3064 brain tumor MRI images Accuracy: 94.23%

Amin et al. [17] Features: Shape, texture, and
intensity, classifier: SVM

Harvard dataset: 100
RIDER:
126 Local: 85

Accuracy:97.1, AUC: 0.98, specificity:98.0

Abbasi et al. [23] Features: LBP and HOG,
Classifier: RF

BRATS 2013 (85 Flair MRI) High accuracy rate

Our work Features: 7 methods for tex-
ture feature extraction,
classifier: SVM,KNN,BDT,
RF, ensemble

BRATS 2017 (200 Flair,
T1C and T2 MRI)

Accuracy:89.22, Sensitivity:90.22, Specificity:90.06

Fig. 11 Hybrid Segmentation

Fig. 12 Morphological operations on segmented image

distorted by texture and noise.Morphological image process-
ing methods are applied for removing such imperfections by
considering the structure and form of the image. Firstly, we
have applied Erosion operation and then closing operation;
after that, holes are filled, and an opening operation is finally
applied. The order of operations is totally based on experi-
mental results. The results from the morphological operation
on some segmented images are shown in Fig. 12.

6.3 Image preprocessing of ground-truth images

Imagepreprocessingof ground-truth images is highly required
as ground-truth images are in the grayscale format. We have
converted them to binary format and then filled the holes to

Fig. 13 Image preprocessing of ground-truth image

compare ground-truth images with the segmented images.
Figure 13 shows the application of preprocessing on a seg-
mented ground-truth image.
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Table 11 Result of performance metrics of segmentation

Performance metric Result

Average Dice similarity coefficient 90.16%

Average Jaccard similarity coefficient 89.97%

Average accuracy 98. 40%

Fig. 14 Superimposed output
image

Table 12 Comparison with other similar works of segmentation

Work Approach Dataset Result

Saxena et al. [47] Fuzzy c-means Brain MRI (BraTS 2017) Dice:91

Alam et al. [48] Hybrid of K-means and fuzzy c-means Brain MRI Accuracy: 97.5

Duggirala et al. [46] Hybrid of K-means and fuzzy c-means Heart images Error Index (SSE):0.0024

Our work Hybrid of K-means and fuzzy c-means Brain MRI (BraTS 2017) Dice:90.16, Accuracy:98.4

6.4 Comparison of segmented image and
ground-truth image

For comparison, we have taken three parameters, namely
Dice similarity coefficient, Jaccard similarity coefficient, and
accuracy.

• Dice similarity coefficient: The Dice similarity coeffi-
cient (DSC) is a performance metric to calculate the
accuracy of automatic image segmentation results from
MRI scans by comparing it with the ground-truth results.
It is basically a statistical measurement metric, providing
accuracy in a probabilistic manner. For two sets P and Q,
it can be expressed as:

dice(P, Q) = 2 ∗ |intersection(P, Q)|/(|P| + |Q|)
(8)

Where, |P| and |Q| represents the cardinal of sets P and
Q, respectively.

• Jaccard similarity coefficient: The Jaccard similarity
index (JSI) compares the members of two sets. The
comparison result says that out of the two sets, which
members of a set are shared and distinct. It generally
measures the similarity of the two sets of data. The prob-
abilistic value of JSI ranges from 0 to 1. The greater the

JSI value, the better the similarity between the two sets.
For two given sets P and Q, it can be expressed as:

Jaccard(P, Q)

= |intersection(P, Q)|/|union(P, Q)| (9)

where |P| and |Q| represent the cardinal of set P and Q,
respectively.

• Accuracy: It is the extent of the result of ameasurement or
calculation that conforms to be correct. In easier terms,
it means how much the resulting data are closer to the
original data. Accuracy is determined, as mentioned in
Eq. 1.

6.5 Experimental Results

The performance for the comparison between 100 tumor-
ous segmented images and its corresponding ground-truth
images is mentioned in Table 11. All these results are cal-
culated for the complete tumor region class, which covers
various tumor regions such as enhancing tumor, peritumoral
edema, necrosis, and non-enhancing tumor. This indicates
that our segmentation process belongs to the binary segmen-
tation class.Hence,we can also say this as the tumor detection
procedure. To validate the segmentation results of our pro-

123



6 Page 14 of 16 B. Jena et al.

posed system, we compare our segmentation performance
with other similar works, which is tabulated in Table 12

Now to have a fair point to discuss, we experimented by
superimposing the segmented image on the tumorous MR
image. It can be clearly noticed that the tumorous region
is correctly superimposed on a tumorous image, and this
indicates the correctness of our segmentation task, which is
depicted in Fig. 14, for a randomly selected image.

7 Conclusion

This work is toward brain tumor analysis from MRI scans.
We have classified T1C-, T2-, and FLAIR-weighted MR
images into tumorous and non-tumorous, and further seg-
mentation on the tumorous images. The noteworthy accuracy
of the procedure for tumor classification and segmentation
on the benchmark datasets signifies our method’s efficacy.
The observations prove that the texture features are enough
to differentiate between tumor tissues and non-tumorous tis-
sues in theT1C-, T2-, and FLAIR-weighted scans.Moreover,
clustering-based segmentation techniques are one of the best
ways to segment tumorous regions. By keeping the positive
outcomes of our proposed methods, we can claim it on other
benchmark datasets of brain tumors and compare the results.
Also, we could extend our observation other than texture fea-
tures and strive towork onmultifeatures and diverse datasets.
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