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Abstract
Neural networks have been proved efficient in improving many machine learning tasks such as convolutional neural networks
and recurrent neural networks for computer vision and natural language processing, respectively. However, the inputs of these
deep learning paradigms all belong to the type of Euclidean structure, e.g., images or texts. It is difficult to directly apply
these neural networks to graph-based applications such as node classification since graph is a typical non-Euclidean structure
in machine learning domain. Graph neural networks are designed to deal with the particular graph-based input and have
received great developments because of more and more research attention. In this paper, we provide a comprehensive review
about applying graph neural networks to the node classification task. First, the state-of-the-art methods are discussed and
divided into three main categories: convolutional mechanism, attention mechanism and autoencoder mechanism. Afterward,
extensive comparative experiments are conducted on several benchmark datasets, including citation networks and co-author
networks, to compare the performance of different methods with diverse evaluation metrics. Finally, several suggestions are
provided for future research based on the experimental results.

Keywords Deep learning · Graph neural networks · Node classification · Convolutional mechanism · Attention mechanism ·
Autoencoder mechanism

1 Introduction

With the rapid increase in computing resources and train-
able data, the performance of neural networks has been
excellent improved in various fields. In computer vision
area, convolutional neural networks (CNNs) [1] are widely
exploited for different research directions such as image
classification [2,3], semantic segmentation [4,5] and image
captioning [6,7]. In natural language processing area, recur-
rent neural networks (RNNs) [8] or long short-term network
(LSTM) [9] are used for several important tasks includ-
ing sentiment analysis [10,11], machine translation [12,13],
question-answering system [14,15]. In addition, deep neu-
ral networks can also be used for cancer detection [16,17],
earthquakemagnitude prediction [18,19], or intelligent game
[20].

Deep learning architectures have achieved great success
in the Euclidean domain, including image, text and audio
[21,22]. As one of the typical non-Euclidean structures in
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the machine learning area, graph data have the character-
istics of arbitrary size, complex topological structure and
always have an unfixed node ordering [23]. Therefore, it is
difficult to directly exploit existing learning paradigms (e.g.,
convolutional or pooling operation) to graph structure data.
However, graph data are a ubiquitous and essential structure
in machine learning domain due to the powerful ability to
represent objects and their relationships in various scenarios
such as community detection [24,25], traffic flow prediction
[26,27], knowledge graphs [28,29]. It is imperative to gen-
eralize these successful neural networks to graph analysis,
and more and more researchers are devoting themselves to
do this task [30]. As a result, graph neural networks (GNNs)
have been developed rapidly and achieved a series of break-
throughs [31–33].

In the past few years, GNNs have been widely used
in various graph analysis tasks, including node-focused
tasks (e.g., node classification, link prediction) [34–36] and
graph-focused tasks (e.g., graph similarity detection, graph
classification) [37–39]. Among them, node classification is
one of the most typical research directions of graph analysis
due to the widespread application scenarios. In particular, the
objective of the node classification task is to predict a partic-
ular class for each unlabeled node in the graph based on the
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Fig. 1 Illustration of semi-supervised node classification. Blue and
green denote those nodes that the label is known beforehand, and gray
corresponds to the unlabeled nodes. The objective is to assign each gray
node a label according to the information of those colorful nodes

graph information [40]. For example, node classification can
predict the research topic to which each article belongs in
the citation networks [41,42]. In the protein-protein inter-
action network, each node can be assigned several gene
ontology types [43,44]. Figure 1 shows the objective of semi-
supervised node classification inwhich only a fewnodes have
labels in the training dataset.

To provide a comparison of different algorithms in node
classification, we present a review of graph neural networks
based on comprehensive experiments. The contributions of
this paper are shown as follows:

– This survey provides a comprehensive review of existing
graph neural networkmodels in the scene of node classifi-
cation. It introduces a new taxonomy of these models and
presents several popular algorithms for each category.

– Several popular algorithms derived from each category
are compared based on a comprehensive experiment. In
detail, these algorithms are rerunning on several pop-
ular benchmark datasets with four evaluation metrics.
Besides, an objective analysis is conducted based on the
experiment results.

– According to the experimental analysis, several chal-
lenges of existingGNNsmodels are discussed and several
future research directions are provided for interested
researchers.

The rest of this paper is organized as follows. InSect. 2,we
first define several commonly used notations and then intro-
duce some definitions related to node classification. Then,
various graph neural network models of different categories
are introduced in Sect. 3. In Sect. 4, we conduct experiments
about node classification by using graph neural networks on
several datasets and discuss the experimental results. Based
on the experimental analysis, several open problems and
future directions are provided in Sect. 5. In Sect. 6, a con-
clusion of this survey is conducted.

Table 1 Summary of commonly used notations in this article. A list of
notations including different variables and operations are provided in
this table

Notations Descriptions

G A graph

V The set of nodes

E The set of edges

vi A node and vi ∈ V
ei j An edge and ei j = (vi , v j ) ∈ E
| · | The length of a list

n The number of nodes and n = |V|
m The number of edges and m = |E|
d The dimension of input node feature

f The dimension of output node vector

c The number of node classes

R
m m-dimensional Euclidean space

In The identity matrix with dimension n

X The input node feature matrix

Xi The input feature of node vi

A The adjacency matrix

D The diagonal degree matrix

XT The transpose matrix of X

Xi, j The i-th row, j-th column element

L A loss function

σ(·) A activation function

N (·) A Gaussian distribution function

N (i) The neighbors of node vi

[·||·] Concatenation of matrices or vectors

� Element-wise multiplication operation

2 Notations and definitions

In this section, we provide a set of commonly used notations
and present some critical definitions that will be used in this
article. Specifically, we provide a number of notations sum-
marized in Table 1 before going further into the following
contents.

The degree matrix D is derived from the corresponding
adjacency matrix A and can be defined as

Di,i =
∑

i �= j

Ai, j . (1)

For other variables, we use lowercase italic characters to
represent scalers, bold lowercase characters to denote vectors
and bold uppercase characters to represent matrices. Then,
several definitions are introduced in the following.

Definition 1 (graph) Let G = (V, E) be a graph where V =
{v1, v2, . . . , vn} is a set of nodes, E ⊆ V×V is a set of edges
between nodes in V .
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Note that G can be weighted or unweighted (the ele-
ment’s value of A is either 0 or 1), directed or undirected.
In this paper, we focus on dealing with undirected graphs,
which are augmented with the node attribute feature X =
{X1,X2, . . . ,Xn},whereXi is the corresponding feature vec-
tor of node vi . In addition, for unattributed graphs, one-hot
encoding is used as the features for all nodes, i.e., X = I.

Definition 2 (K-hop neighbors) Let G = (V, E) be a graph,
the k-hop neighbors of vi denote the set of nodes which are
exactly k hops away from vi and is formulated as

Nk(i) = {v j |i �= j,min(sp(i, j), K ) = k,∀v j ∈ V}. (2)

Here, sp(i, j) denotes the shortest path between vi and v j ,
and it will be infinite when there is no edge between them.
K represents the maximum number of hops.

Definition 3 (node classification) Let G = (V, E) be a graph,
the objective of node classification is to produce labels for
each node which can be formed as y = {y1, y2, . . . , yn} or
Y = {

y1, y2, . . . , yn
}
for multi-labels classification.

Note that the information of graph structure, node fea-
tures, edge connections can be helpful to complete the node
classification task.

3 Graph neural networks

In this section, we provide a comprehensive overview of
various graph neural networks, which can be used for node
classification, through three categories: convolutional mech-
anism, attention mechanism, and autoencoder mechanism.
Several popular algorithms of each category are introduced.

3.1 Convolutional mechanism

Graph convolutional mechanism is one of the most com-
monly used information aggregation paradigms in graph
analysis. The basic idea of this mechanism is that it utilizes
convolutional or pooling operations on graph structure to
extract higher representation for each node and then used in
node classifier. GNNs models based on this mechanism are
denoted as graph convolutional networks (GCNs), which are
unrelated to node order and different from CNNs on images.

3.1.1 ChebNet

In order to generalize operators of CNNs to graph domain,
Defferrard et al. [45] proposed a spectral-based graph con-
volutional network called ChebNet, which contains a fast
localized spectral graph filter derived from Chebyshev poly-
nomial. Specifically, ChebNet includes three main steps: the

design of localized convolutional filters, a graph coarsening
procedure, and a graph pooling operation.

GraphLaplacian is an important operator of spectral graph
analysis [46] and can be defined as L = D − A ∈ R

n×n . In
addition, L has a normalized form which is formed as

L = In − D− 1
2AD− 1

2 . (3)

The diagonalized form of graph Laplacian is defined as
L = UΛUT , where Λ is the diagonal matrix of eigenval-
ues derived from L and U denotes the Fourier basis. diag(·)
denotes a diagonal matrix derived from the input matrix or
vector.

Then, a spectral filter gθ is designed to filter the input
signal x ∈ R

n (each element associate with a node), which
is shown as follows:

gθ (L)x = gθ (UΛUT )x = Ugθ (Λ)UT x. (4)

Here, gθ (Λ) = diag(θ) is a nonparametric filter, θ ∈ R
n

denotes the Fourier coefficients, and UT x ∈ R
n represents

the graph Fourier transform of x.
However, the nonparametric filter gθ cannot localize in

space and is complex to learn. To alleviate these prob-
lems, Defferrard et al. [45] introduce a polynomial filter
and compute gθ (L) in a recursive formulation based on the
Chebyshev polynomial function. As a result, the filter can be
parametrized as

gθ (Λ) =
K−1∑

k=0

θkTk(Λ̃), (5)

where Λ̃ = 2Λ/λmax−In denotes a diagonalmatrixwhich all
elements in the range [−1, 1], λmax represents the maximum
eigenvalue of L and the parameter θ ∈ R

K denotes all coef-
ficients of the Chebyshev polynomial Tk(x). In detail, Tk(x)
can be computed in a recursive way Tk(x) = 2xTk−1(x) −
Tk−2(x), where T0(x) = 1 and T1(x) = x. Thus, Eq. (4) can
be reformed as follows:

gθ (L)x =
K−1∑

k=0

θkTk(L̃)x, (6)

where L̃ = 2L/λmax − In is a scaled graph Laplacian and
can then be used to evaluate the k-th order Chebyshev poly-
nomial Tk(L̃) ∈ R

n×n . Thus, the central vertex depends on
its K -hop neighbors since Eq. (6) is a K -order polynomial
in the Laplacian. Benefit from Eq. (6), ChebNet bypasses the
computation of the graph Fourier basis.

Furthermore,Defferrard et al. [45] denotedxk = Tk(L̃)x ∈
R
n and the hidden state is recursively updated as xk =
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Fig. 2 Illustration of the iterative process used in ChebNet. The initial
states x0 and x1 is set by x0 = x and x1 = L̃x, respectively. The final
representation xK is obtained by several iterative computations

2L̃xk−1 − xk−2, where x0 = x and x1 = L̃x. This itera-
tive process is shown in Fig. 2. Finally, the complete filter
can be defined as z = gθ (L)x = [

x0, x1, . . . , xK−1
]
θ which

contains O(Km) operations.
To provide a meaningful graph for pooling operation,

similar nodes should be clustered together where this pro-
cess can be regarded as graph clustering, which is NP-hard.
Thus, Defferrard et al. [45] utilized the Graclus multi-level
clustering algorithm [47] to aggregate similar nodes and gen-
erate a coarsening graph. However, the order of vertices is
not arranged in a meaningful way after coarsening. Thus,
it needs to store all matched vertices when applying pool-
ing operation, which would cause inefficient memory and
computation. In order to accelerate the pooling operations,
Defferrard et al. [45] proposed a pooling strategy that has
the same efficiency as a 1D pooling. In detail, the procedure
contains two steps: (i) construct a balanced binary tree and
(ii) rearrange the nodes. As a result, it makes the pooling fast
and suitable for parallel architectures.

3.1.2 GCN

Instead of using the information derived from K -hop neigh-
bors to represent each node introduced in ChebNet [45],
Kipf and Welling [48] also propose a spectral-based graph
convolutional network (GCN) that encapsulates the hidden
representation of each target node by aggregating the fea-
ture informationof its first-order approximate neighbors [49].
Then, a deep neural network model is built by stacking such
graph convolutional layers multi-times and is then used to
obtain the final hidden representation of each node. As a
result, the learned representation also contains information
of its multi-hop neighbors similar to ChebNet [45].

Specifically, Kipf andWelling [48] set the number of hops
as K = 1. Therefore, Eq. (6) becomes a linear function and
is reformed as

z = θ0T0(L̃)x + θ1T1(L̃)x

= θ0x + θ1

( 2

λmax
L − In

)
x,

(7)

with only two parameters θ0 and θ1. Furthermore, Kipf and
Welling [48] set the maximum eigenvalue as a constant
λmax = 2 and used a unique parameter θ = θ0 = −θ1
to address the problem of overfitting on the local structure of
a graph and minimize the number of operations. Under this
setting and Eqs. (3), (7) is reformed as

z = θ
(
In + D− 1

2AD− 1
2

)
x. (8)

Here, all eigenvalues of expression In +D− 1
2AD− 1

2 are lying
in [0, 2] and the parameters of the filter are shared by all
layers.

Note that stacking such convolutional operator to build a
deep neural network model might produce some problems
such as numerical instabilities and exploding/vanishing gra-
dients. To solve these problems, Kipf and Welling [48] used
a renormali zation trick strategy for the above expression
as

In + D− 1
2AD− 1

2 → D̃− 1
2 ÃD̃− 1

2 , (9)

where Ã = A+ In is the adjacency matrix of the graph with
a self-connection. Similar to Eq. (1), D̃i i = ∑

j Ãi j is the

degree matrix with respect to Ã.

Then, Kipf and Welling [48] generalized the definition
of Eq. (9), which is used for input signal x ∈ R

n with only
one channel, to the situation where each signal has multiple
channels X ∈ R

n×d . Here, d denotes the number of input
channels (i.e., the dimension of node feature vector). To this
end, the convolutional filter for signalX is defined as follows:

Z = D̃− 1
2 ÃD̃− 1

2XW. (10)

Here,W ∈ R
d× f is thematrix of filter parameters,Z ∈ R

n× f

is the convolved feature matrix for all nodes and f denotes
the dimensional of the embedding feature.

After defining the convolutional filter of each layer, Kipf
and Welling [48] intent to build a multi-layer GCN with a
layer-wise propagation rule:

H(l+1) = σ
(
D̃− 1

2 ÃD̃− 1
2H(l)W(l)

)
, (11)

where W(l) is a trainable weighted matrix, H(l) ∈ R
n×h

is the matrix of hidden states for the l-th layer, and h denotes
the dimension of higher representation.H(0) is initialized by
using the input signal X.
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Fig. 3 Schematic diagram of a two-layer GCN model. The dark green
denotes target nodes that need to aggregate information from neighbors.
The orange and purple lines denote the information stream for first-hop
and second-hop neighbors, respectively. As a result, the output contains
both first-hop and second-hop information

For semi-supervised node classification, Kipf andWelling
[48] proposed a two-layer GCN model, which is schemati-
cally depicted in Fig. 3. In practice, Kipf and Welling [48]
computed Â = D̃−1/2ÃD̃−1/2 in pre-processing phase and
introduced a forward propagation model as follows:

Z = f (X,A)

= σ
(
ÂReLU

(
ÂXW(0)

)
W(1)

)
,

(12)

where W(0) ∈ R
d×h is a matrix that maps the input feature

to the hidden representation, W(1) ∈ R
h× f is a hidden-

to-output matrix, and σ(·) is implemented by a softmax
function.

3.1.3 GraphSAGE

However, ChebNet and GCN are inherently transductive that
need all nodes are existing during the training process and
cannot generalize to previously unseen nodes. In order to
enable a model to become inductive that has the ability to
deal with those unseen nodes, Hamilton et al. [50] proposed
a spatial-based graph convolutional network called Graph-
SAGE (SAmple and aggreGatE), which utilizes both the
feature information of nodes (e.g., the TF-IDF feature when
one node represents for one document) and the structural
attributes of a node’s local neighborhood to learn a higher
representation for each node.

Instead of training different hidden representations for
each node separately,Hamilton et al. [50] designed a group of
aggregators to learn embeddings by combining the informa-
tion of nearby nodes of the current central node. Then, these

Fig. 4 Illustration of GraphSAGE model with a sampling strategy.
Here, the maximum number of neighbors for each hop is set as one and
the maximum hop is set as two. The orange and purple edges denote
different aggregators. After sampling, the information of white nodes
are not used in the aggregation stage

aggregators are combined to form the forward propagation
algorithm of GraphSAGE. There are existing K aggregators,
which can be denoted as AGGREGATEk,∀k ∈ {1, . . . , K },
and K parameter matrices Wk,∀k ∈ {1, . . . , K }, which are
used as the transformer between different hops.

In order to obtain the hidden state hki of each target node
vi in each step k ∈ {1, . . . , K } , Hamilton et al. [50] firstly
used AGGREGATEk to produce the aggregated neighbor-
hood vector hkN (i) by using the information of all immediate
neighbors of vi which was produced in the previous time
step. Then, hkN (i) is concatenated with the previous hidden

state hk−1
i of node vi , and this concatenated vector is then

transformed by Wk with an activation function to form the
current state of the target node vi . Repeats the above process,
the final feature representation of each node Zi is produced
in the K -th step.

In order to reduce the complexity ofGraphSAGEand scale
to a large graph,Hamilton et al. [50] utilized a sample strategy
to choose a fixed-size set of neighbors for each target node.
The illustration of the GraphSAGE model with a sampling
strategy is shown in Fig. 4.

Therefore, the complexity of GraphSAGE becomes

O
(∏K

k=1 Sk
)

, where Sk denotes the size of the neighbor’s

set in the k-th step.
Additionally, Hamilton et al. [50] introduced three differ-

ent aggregators, including mean aggregator, LSTM aggre-
gator and pooling aggregator. In the mean aggregator, the
aggregated neighbor vector hkN (i) is derived by simply utiliz-
ing the element-wise mean operation on the hidden state of

neighbor
{
hk−1
j ,∀v j ∈ N (i)

}
, which can be formed as

hkN (i) ← σ
(
W · MEAN

(
hk−1
j ,∀v j ∈ N (i)

)
(13)

Equation (13) is similar to the convolutional operator in the
GCN [48] and can be modified to an inductive variant from
the original transductive framework. In the LSTM aggrega-
tor, Hamilton et al. [50] simply used an unordered sequence
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of node’s neighbors as the input of an LSTM model. In the
pooling method, an element-wise max-pooling operator is
used to gather information for each node, which is shown as
follows:

hkN (i) ← max
({

σ
(
Wpoolhkj + b

)
,∀v j ∈ N (i)

})
, (14)

where max represents the pooling operator. Note that the
mean and pooling aggregator are symmetric means that they
are permutation invariant.

3.1.4 APPNP

Recently, Xu et al. [51] proposed an algorithm to reduce
the complexity of GNNs by using the relationship between
a random walk algorithm and a common message passing
algorithm. However, this model considers a graph as a whole
and loses the ability to capture the different information of
local neighbors for each starting root node. Instead of using
the randomwalk, Klicpera et al. [52] utilized the relationship
betweenGCNandPageRank [53] to formulate a personalized
PageRank-based propagation architecture. This propagation
scheme is then used to design a graph convolution-based
network called personalized propagation of neural prediction
(PPNP).

In detail, Klicpera et al. [52] defined the personalized
PageRank for each starting node vi by using a recursive for-
mulation, which is shown as follows:

πppr (Ri ) = (1 − α)Âπppr (Ri ) + αRi , (15)

where Ri is a one-hot indicator vector that denotes the tele-
port vector of node vi , and α ∈ (0, 1] is the teleport (or
restart) probability that can be used to control the range of
neighbor for each target node. Thus, Eq. (15) can be solved
as the following form

πppr (Ri ) = α
(
In − (1 − α)Â

)−1
Ri . (16)

Note thatRi is helpful to preserve the information of a node’s
local neighbors. Further, Klicpera et al. [52] defined the fully
personalized PageRank matrix by stacking all πppr (Ri ) and
replacing it with an identity matrix. The final representation
of this PageRank matrix is shown as

Πppr = α
(
In − (1 − α)Â

)−1
. (17)

Here, each element of Πppr represents the influence score
between two nodes. For example, the influence score of node
vi on node v j is proportional to the value of Π

( j i)
ppr and can

be defined as I (i, j) ∝ Π
( j i)
ppr .

Fig. 5 Illustration of the PPNP model. First, a neural network is used
to generate predictions. Then, an adaptation of personalized PageRank
is utilized to propagate information between samples. α represents the
teleport (or restart) probability. The self-connection is not considered

The process of the PPNP model can be divided into two
consecutive parts, prediction and propagation, which is illus-
trated by Fig. 5. In the prediction stage, PPNP uses a neural
network fθ with parameter set θ to generate predictions for
each node based on the input node features X. In the prop-
agation step, the predictions matrix H ∈ R

n× f is used to
produce the final result via the fully personalized PageRank
scheme. So, the equation of PPNP can be defined as

Z = σ

(
α

(
In − (1 − α)Â

)−1
H

)
, (18)

where Hi = fθ (xi ) and σ(·) is implemented by a softmax
function. Note that the propagation matrix Â can be replaced
with other forms such as Arw = AD−1. Furthermore, the
number of propagation layers is arbitrary (in fact, infinitely
many) and can avoid the oversmoothing problem.

The computational complexity and memory requirement
of the PPNP model is O (

n2
)
. It is inefficient and may

cause the outing of memory more easily for a large graph. In
order to solve this problem, Klicpera et al. [52] proposed an
approximate personalized propagation of neural predictions
(APPNP) by replacing the full personalized PageRank with a
variant of topic-sensitive PageRank [54]. In APPNP, the final
predictions of all nodes are calculated via some propagation
layer by a recursive formulation, which is shown as

Zk+1 = (1 − α)ÂZk + αH, (19)

where Z0 = H = fθ (X) and the output of the last layer is
followed by a softmax function.
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Fig. 6 Illustration of SGC. Here, the SGC model reduces the entire
procedure of a multi-layer model to a single feature propagation step.
However, the final output also contains both first-hop and second-hop
information in this example

3.1.5 SGC

The development of traditional neural networks is from sim-
plicity to complexity, e.g., from the logistic regression to
CNNs for grid-like data or RNNs used in the sequence-like
data. However, the computational complexity and memory
requirement of most existing GNNs are always higher even
in the early algorithms [48] and do not follow the trend
that appears in the development of neural networks used for
Euclidean data. In order to reduce the complexity of exist-
ing models, Wu et al. [55] proposed a linear graph neural
network called simple graph convolutional (SGC) which is
illustrated in Fig. 6.

The SGCmodel holds a hypothesis that the improved per-
formance of GCNs is derived from the usage of information
aggregated from neighborhoods.

Under this assumption, Wu et al. [55] removed all non-
linear transition functions except the softmax function in the
original GCNs to reduce the cost of computing. Therefore,
the definition of this linear network can be obtained by mod-
ifying Eq. (12) and is shown as follows:

Z = σ(Â . . . ÂÂXW0W1 . . .WK ), (20)

where σ(·) is implemented by a softmax function. Note that
Eq. (20) can aggregate information from K -hop neighbors
similar to the K -layer GCN model. Further, Wu et al. [55]
collapse all the weight matrices between different GCN lay-
ers into a single matrix W = W0W1 . . .WK . Similarly, the
repeated multiplication of Â is collapsed into K power ÂK .

After this simplify, the definition of SGC can be reformed as

Z = σ(ÂKXW), (21)

where ÂK is a low-pass-type filter and calculated in the pre-
processing stage. SGC is naturally to interpret because of the
dividing of feature extraction H = ÂKX and classification

Z = σ(HW). The latter is implemented by logistic regres-
sion and trained with any second-order method or stochastic
gradient descent [56].

3.2 Attentionmechanism

Attentionmechanism is one of themost useful architecture in
artificial intelligence, including computer vision, graph anal-
ysis. Instead of using a constant weight, different neighbors
should have variant contributions for the target node. Addi-
tionally, the number of neighbors is variant to each node. The
benefits of attention mechanism are dealing with variable-
sized inputs and focusing on the most relevant part. Thus, it
is natural to apply attentionmechanism in node classification.

3.2.1 GAT

In order to capture different importance of neighborhood for
a target node when producing the higher hidden represen-
tation, Veličković et al. [57] introduced an attention-based
graph convolutional layer and is then used to construct arbi-
trary deep graph attention networks (GAT) by stacking such
attention layers.

On thewhole, the objective of theGATmodel is to produce
a new set of features Z = {Z1,Z2, . . . ,Zn} ∈ R

n× f for all
nodes by using X = {X1,X2, . . . ,Xn} as the model inputs.
In detail, GAT firstly utilizes a learnable linear transformer
to obtain the hidden representations Hi = WXi ∈ R

f for
each node vi . Here, W ∈ R

f ×d denotes the parametrized
weightmatrix of this transformer. Then, Veličković et al. [57]
designed an attentional functionATTENTION : R f ×R

f →
R, to compute attention weights between each pair of nodes
by using the above hidden representation

ei j = ATTENTION
(
Hi ,H j

)
. (22)

Specifical, ei j denotes the importance of node v j when com-
puting the representation of node vi . Note that, Veličković
et al. [57] only use the first-order appropriate neighbors in
Eq. (22). In order to make the weight coefficients more com-
parable across different nodes, a softmax function is used to
normalize ei j and the improved form is defined as

αi j = softmax j
(
ei j

) = exp
(
ei j

)
∑

vk∈N (i) exp (eik)
. (23)

In fact, Veličković et al. [57] only used a single forward
neural network with an activation function to compute the
normalized coefficients. Thus, Eq. (23) is reformed as
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Fig. 7 Illustration of multi-head attention mechanism used in the GAT
model. Here, the number of attention is set as K = 3. The aggregated
features from each head are concatenated or averaged to obtain a higher

representation for each node. The average operation is only used in the
output layer. The self-connection is not considered

αi j = exp
(
σ

(
aT

[
Hi ‖ H j

]))
∑

vk∈N (i) exp
(
σ

(
aT [Hi ‖ Hk]

)) , (24)

where a ∈ R
2 f is the weight vector of the proposed atten-

tion mechanism implemented by a single-layer feedforward
network and σ(·) is implemented by function LeakyReLU.
Once the coefficients of a node’s neighbors are all computed,
a linear combination for all neighbors is used to obtain the
final representation for each target node which is shown as
follows:

Zi = σ

⎛

⎝
∑

v j∈N (i)

αi jH j

⎞

⎠ . (25)

Furthermore, Veličković et al. [57] applied a multi-head
attention mechanism to improve the stability of the learn-
ing process, which is inspired by Vaswani et al. [58]. This
improved mechanism is illustrated in Fig. 7 and can be
defined as

Zi = K‖
k=1

σ

⎛

⎝
∑

v j∈N (i)

αk
i jW

kX j

⎞

⎠ , (26)

where αk
i j denotes the normalized coefficients computed by

the k-th attention function ATTENTIONk and ‖ represents
the operator which concatenating the output feature of all
attention functions. Note that the concatenate operator of
Eq. (26) will be replaced with an averaging operator if the
multi-head attention is used in the last layer, and then, Eq.
(26) can be redefined as

Zi = σ

⎛

⎝ 1

K

K∑

k=1

∑

j∈N (i)

αk
i jH

k
j

⎞

⎠ . (27)

Here, Hk
j = WkX j is computed by the k-th linear trans-

former. Additional, GAT is efficient due to the parallelized
compute of the attention layer and the complexity of one
layer is appropriate to O (nd f + m f ) .

3.2.2 AGNN

Similarly, Kiran et al. [59] proposed a new attention-based
graph neural network (AGNN) with a dynamic and adaptive
propagation layer and then used it to deal with the situa-
tion where the supervised information in the original data is
scarce.

The AGNN model consists of one word-embedding layer
and several attention-guided propagation layers. The front is
used tomap abag-of-words representation of a document into
an averaged word embedding. In the word-embedding layer,
a linear transformer followedby an activation function is used
to derive the initially hidden representation for each node by
using the input features. Thus, the first layer of the AGNN
model can be defined as H0 = σ

(
XW0

)
, where W0 ∈

R
d×h denotes the transformmatrix, and σ(·) is implemented

by the rectified linear unit (ReLU) that can be calculated
as ReLU(x) = max(0, x). In fact, H0 ∈ R

n×h is a hidden
matrix by stacking the hidden state of all nodes.

Then, the normalized attention coefficient from node v j

to node vi in the k-th layer is computed as follow
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αk
i j =

exp
(
βk cos

(
Hk

i ,H
k
j

))

∑
vr∈N (i)∪{vi }

exp
(
βk cos

(
Hk

i ,H
k
r

)) . (28)

Here, cos(x, y) = xT y/‖x‖‖y‖ with an L2 norm, e.g.,
‖x‖ and βk ∈ R is the only scalar parameter of k-th
attention-guided propagation layer. Note that in Eq. (28),
the self-connected attention coefficient is also considered.
Similar to the work produced by Veličković et al. [57], the
coefficient of a node’s neighbors is used to compute the next
hidden representation of target node vi and is defined as

Hk+1
i =

∑

v j∈N (i)∪{vi }
αk
i jH

k
j . (29)

Since the whole AGNN model consists of several same
propagation layer, Kiran et al. [59] propose the following
layer-wise propagation rule based on a recursive formula-
tion Hk+1 = PkHk, where Pk ∈ R

n×n is the coefficient
matrix derived from the k-th propagation layer. Finally, the
output layer consists of a linear transformer and an activation
function to produce the final representation for each node

Z = f (X,A) = σ
(
HKW1

)
, (30)

where W1 ∈ R
h× f is the transformation weight matrix, K

denotes the number of attentional propagation layers, and
σ(·) is implemented by softmax function. Note thatW0,W1,

and β(k) are the parameters that need to learn in the training
process.

Instead of using all nodes in a graph to compute attention
coefficients [60,61], Kiran et al. [59] only used the first-order
neighbors similar to the GAT model [57]. The illustration of
AGNN is depicted in Fig. 8.

3.3 Autoencoder mechanism

Autoencoder mechanism is one of the most commonly used
unsupervised technology to learn a low-dimensional embed-
ding from large unlabeled training data. Moreover, there is
existing a large number of node classification datawith scarce
labeled nodes. Thus, it is essential to utilize this mechanism
to learn a higher representation for all nodes.

3.3.1 VGAE

Kipf and Welling [62] firstly employed the variational
autoencoder (VAE) [63] to deal with the graph-structured
data and proposed an unsupervised learning algorithm vari-
ational graph autoencoder (VGAE). The framework of
VGAE can be separated into two parts: the inference model
(encoder) and the generative model (decoder).

Fig. 8 Schematic depiction of the multi-layer AGNN model. αk
i j

denotes the importance from node v j to vi in the k-th layer. The rep-
resentation of target node is obtained by combining its neighborhoods
with various weights in different layers. The self-connection is not con-
sidered

In detail, the inference model is implemented by only
using a two-layer GCN model [48] and can be defined as

q(Z|X,A) =
n∏

i=1

q (Zi |X,A) , (31)

where q (Zi |X,A) = N (
Zi |μi ,Σ i

)
, μi ∈ R

f is the mean
vector, Σ i ∈ R

f × f denotes the covariance matrix of above
Gaussian distribution. Zi denotes the stochastic latent vari-
able for the i-th node and is used to construct the latentmatrix
Z ∈ R

n× f . Specifically,μi andΣ i are obtained by using the
GCN layer which is defined as μi = GCNμ(Xi ,A) and
logΣ i = GCNΣ (Xi ,A), respectively. Then, the definition
of this two-layer GCN model is shown as follows:

GCN(X,A) = Åσ
(
ÅXW0

)
W1, (32)

where Å = D− 1
2AD− 1

2 denotes the symmetrically normal-
ized adjacency matrix and σ(·) is implemented by a ReLU
function; W0 and W1 are the learnable weight matrices and
W0 is shared between GCNμ(Xi ,A) and GCNΣ (Xi ,A).

In the generative process, Kipf and Welling [62] sim-
ply employed an inner product operation between different
learned latent variables to implement the decoder and can be
formed as:

p
(
Ai j = 1|Zi ,Z j

) = σ
(
ZT
i Z j

)
. (33)

Here, σ(·) is implemented by a sigmoid activation function
sigmoid(x) = 1/

(
1 + e−x

)
. Finally, the goal of VGAE is to

minimize the variational lower bound:
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L = Eq(Z|X,A)[log p(A|Z)] − KL[q(Z|X,A)‖p(Z)], (34)

with a Gaussian prior distribution

p(Z) =
n∏

i=1

p (Zi ) =
n∏

i=1

N (Zi |0, In) . (35)

Here, 0 is a zero vector and KL[· ‖ ·] operation denotes
the Kullback–Leibler (KL) divergence between two distribu-
tions.Note that,Kipf andWelling [62] setAi j = 1 inEq. (34)
when A is very sparse and used the renormali zation trick
strategy during the training process.

Additionally, Kipf and Welling [62] proposed a non-
probabilistic variant of VGAE called graph autoencoder
(GAE). In the GAE model, the embeddings of all nodes are
computed as same as Eq. (32) and are then used to reconstruct
A = σ

(
ZZT

)
.

3.3.2 G2G

In fact, the previous approaches represent each node by a
single point vector in a low-dimensional continuous space,
and it is difficult to obtain information about the uncertainty
of representation. However, diverse nodes may contain dif-
ferent uncertainties. On the other hand, identical uncertainty
is insufficient for modeling [64]. As a solution to this prob-
lem,Bojchevski et al. [65] proposed a newgraph autoencoder
model called Graph2Gauss (G2G) to represent each node as
a low-dimensional Gaussian distribution which allows cap-
turing the uncertainty of representations.

In detail, G2G uses a deep encoder fθ (Xi ) to map nodes
to a middle representation Mi which is then used as an
input to obtain the mean vector μi = σ(μθ (Mi )) and
covariance matrix Σ i = σ(Σθ(Mi )) of the Gaussian dis-
tribution, respectively. Here, μi ∈ R

f , Σ i ∈ R
f × f with

f � n, d, and σ(·) is implemented by ReLU or other non-
linear functions. θ are parameters that need to be trained and
shared by all instances. Although μθ(·) and Σθ(·) are usu-
ally feed-forward neural networks, it can be CNNs or RNNs
model where each node denotes an image or a sequence,
respectively. Then, μi and Σ i are pass through a Gaussian
distribution to obtain the node embeddingHi , which is shown
as follows:

Hi = N (μi ,Σ i ) (36)

In order to utilize the information of graph structure during
learning node representation, Bojchevski et al. [65] pro-
posed an unsupervised personalized ranking algorithm. The
algorithm is constrained to satisfy the following pairwise
constraints

Δ(Hi ,H j ) < Δ(Hi ,H j ′) (37)

where ∀vi ∈ V , ∀v j ∈ Nk(i), ∀v j ′ ∈ Nk′(i), ∀k < k′
and Δ(Hi ,H j ) denotes the dissimilarity measure between
the Gaussian distribution embedding of vi and v j . Equation
(37) expresses the intuition which the 1-hop neighbors of vi
should be closer to node vi than the 2-hop neighbors in the
embedding space and so on.

Since the dissimilarity measure Δ(Hi ,H j ) is defined
between the Gaussian distribution of two nodes, it is nat-
ural to use the (KL) divergence similar to He et al. [64] and
Santos et al. [66]. Specifically, Δ(Hi ,H j ) can be defined by
an asymmetric KL divergence which is shown as follows:

Δ(Hi ,H j ) = KL(N (i) ‖ N ( j))

= 1

2
[tr(Σ−1

i Σ j ) + P − L − log
det(Σ j )

det(Σ i )
](38)

whereP = (μi − μ j )
TΣ−1

i (μi−μ j ), tr(·) denotes the trace
of a matrix, and det(·) denotes the determinant of a matrix.

Since it is difficult to solve Eq. (37), Bojchevski et al.
[65] introduced an energy-based method to define the energy
between two nodes by using the KL divergence. Then, the
objective of G2G is to optimize the following loss function

L =
∑

i

∑

k<l

∑

v jk∈Nk (i)

∑

v jl ∈Nl (i)

(Ei jk
2 + exp−Ei jl )

=
∑

(i, jk , jl )∈Dt

(Ei jk
2 + exp−Ei jl )

(39)

where Ei j = KL(N (i)||N ( j)) is the energy between two
nodes, and Dt = {(i, jk, jl)| sp(i, jk) < sp(i, jl)} is the set
of all valid instances. Additionally, Bojchevski et al. [65]
proposed an unbiased node-anchored sampling (NaS) strat-
egy to solve the unbalanced problem, which may occur in
the original sampling strategy.

3.3.3 DGI

The previous unsupervised learning methods used for gen-
erating node embedding are mostly based on the random
walk objective. However, these approaches pay too much
attention to the localized structure information [67], and the
performance relies heavily on the setting of hyperparameter
[68]. To solve this problem, Veličković et al. [69] proposed
an unsupervised learning method call deep graph infomax
(DGI), which is based on the mutual information between
the global representation of the entire graph and the patch
representation of special input. Specifically, mutual infor-
mation maximization is introduced into the graph data by
DGI.

In detail, Veličković et al. [69] produced a high-level
embedding Hi for each node vi by using a graph convo-
lutional encoder f : R

n×d × R
n×n → R

n× f , such that

123



Graph neural networks in node classification: survey and evaluation Page 11 of 19 4

H = f (X,A). Note that Veličković et al. [69] referredHi as
the patch representation of vi since this embedding is formed
by summarizing a patch of graph information. Veličković et
al. [69] introduced a summary vector s to denote the global
information of the entire graph. The summary vector s is
computed by using a readout function R : R

n×d → R
d ,

which uses the derived patch representations as input and
can be formulated as

s = R( f (X,A)) = R(H). (40)

Then, Veličković et al. [69] assigned a probability score
for each patch-summary pair by using a discriminator, D :
R
d × R

d → R. Note that this score will then be used in the
objective function.

Furthermore, a negative sample strategy is employed to
produce the product ofmarginals (negative samples). Specifi-
cally, an explicit (stochastic) corruption function, C : Rn×d×
R
n×n → R

h×d×R
h×h, is used to obtain the alternative graph

derived from the original graph which is shown as follows:

Ğ = (X̆, Ă) = C(X,A), (41)

where h denotes the number of nodes in the alternative graph
Ğ. Note that Eq. (41) is only used for the situation where
the dataset only contains one single graph. For the multi-
graphs situation, some other graphs of the dataset will be
used as Ğ. Thus, the negative samples can be derived from
the alternative graph.

Finally, in order to maximize the mutual information
between Hi and s, Veličković et al. [69] used a noise-
contrastive type objective with a standard binary cross-
entropy loss between the samples from the joint and the
product of marginals and can be formed as

L = 1

n + h

(Lpos + Lneg
)
, (42)

with

Lpos =
n∑

i=1

E(X,A)

[
logD(Hi , s)

]
,

and

Lneg =
h∑

j=1

E
(X̆,Ă)

[
log

(
1 − D

(
H̆ j , s

))]
.

Here, the calculation of Eq. (42) is based on the Jensen–
Shannon divergence between the positive examples and the
negative examples. The DGI model is illustrated in Fig. 9.

Fig. 9 A high-level overview of DGI. f represents a graph convolu-
tional encoder. R, D, C denote the readout function, discriminator and
corruption function, respectively. The hidden embedding H is used as
the input of R to obtain the summary vector s

4 Experimental analysis

In this section, we compare the aforementioned graph neu-
ral networks on several popular node classification datasets.
Firstly, we describe the statistic information of datasets and
parameter settings in detail. Then, four commonly used eval-
uation metrics are introduced to evaluate the performance
of various algorithms. The classification results of different
methods are provided at the end.

4.1 Datasets

We conduct our experiments on several applications, includ-
ing citation networks, co-author networks, Amazon net-
works, protein-protein interaction (PPI) networks.Thedetailed
descriptions of each dataset are introduced in the following,
and the statistic information of all datasets is summarized in
Table 2.

4.1.1 Transductive learning

Transductive learning means that the trained models miss
the ability to generalize to unseen nodes. In this category,
several standard benchmark datasets, including five citation
networks, one co-author network and twoAmazon networks,
are used to compare. For all of these datasets, the transductive
experimental setup is similar to Yang et al. [70].

In detail, Cora, Citeseer and Pubmed are firstly introduced
by Sen et al. [41] and DBLP is proposed by Pan et al. [71].
The Cora-ML dataset is similar to Cora and was produced by
Bojchevski et al. [65]. In all of these citation datasets, each
node represents a scientific paper and edges correspond to
citations. Note that the citation networks are represented as
undirected graphs according to [70]. Node features are bag-
of-words encoded documents. The class labels represent the
research domains to which each document belongs, and each
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node has a unique tag. For co-author graphCS, each node rep-
resents a researcher connected by an edge if they co-author a
paper. Node features correspond to paper keywords for each
author’s papers. The labels of nodes denote the most active
fields of study for each author. In Amazon networks, Com-
puters and Photo are segments of the Amazon co-purchase
graph [72], where vertices denote goods and node features
correspond to elements of a bag-of-words representation of a
review. If two products are frequently bought together, there
is an edge between them. The class labels represent the cat-
egory of each product.

In order to obtain the performance of each model in all
transductive datasets, only 20 nodes for each class are used to
train, and the other 1000 nodes are used in the test phase.Note
that all of the node features are utilized in the unsupervised
learning methods and all graphs are undirected.

4.1.2 Inductive learning

Contrary to transductive learning, an algorithm is inductive
means that it can be generalized to unseen graphs or nodes. In
our experiments, a popular PPI network benchmark dataset
is used in this setting.

In detail, the complete PPI dataset is provided by Zit-
nik and Leskovec [73] and then was preprocessed again by
Hamilton et al. [50]. The version of PPI used in our experi-
ments is the latter one. In this dataset, each graph corresponds
to different human tissues, and nodes represent various pro-
tein functions. The features of each node are derived from
positional gene sets, motif gene sets and immunological sig-
natures. Each label represents a gene ontology set collected
from theMolecular Signatures Database [43], and each node
can hold several labels simultaneously. The dataset contains
20 graphs used in the training stage and two completely unob-
served graphs for testing.

4.2 Experimental setup

Since most parameters of all algorithms are set according to
the original papers, the validation procedure is stripped in
our experiments. For all models, they have some identical
settings introduced in the following. The maximum number
of training epochs is 2000, and the training stage would be
early stopped when the loss is not reducing in one consecu-
tive hundred epochs.We repeatedly conduct each experiment
five times and provide the values ofmean and variance across
all repeats. The parameters of all methods are optimized by
using Adam [74]. For supervised or semi-supervised learn-
ing models, the objective of model training is to minimize
the cross-entropy loss. On the other hand, G2G and DGI
both have a customize loss function. For instance, cross-
entropy and KL divergence are both used in VGAE. Similar
to transductive datasets, the multi-label classification of the
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PPI dataset is regarded as a multi-class classification prob-
lem.

For those models in which node classification is not
considered in the original paper, the initial configurations
are referring to algorithms similar to their architecture. For
instance, the parameter initialization of ChebNet is derived
from GCN’s settings, and VGAE is similar to G2G. Note
that the sampling technology of GraphSAGE introduced in
Sect. 3 is not used in our experiments, and the mean aggre-
gator is used to propagate information. After the embedding
matrix is obtained, a linear transform function is trained to
gain the probability distribution of classes for unsupervised
learning methods, including VGAE, G2G and DGI.

The major software and hardware devices used in our
experiments are listed in the following. Based on the deep
learning framework PyTorch1, an open source graph rep-
resentation learning tool called PyTorch Geometric2 (PyG)
was used in our experiments. Specifically, the latest released
version of PyG, 1.3.0, is used to implement all baselinemeth-
ods except the G2Gmodel. G2G is implemented by using the
code provided by Bojchevski et al. [65] based on the Tensor-
Flow framework3. Note that the train data and test data used
in G2G are proportional to the full dataset according to a rule
in which the final size of training data is approximate to other
baseline methods. In order to accelerate the training process,
one graphics processing unit (GPU) card with 16 GB mem-
ory is used in all experiments. The implementations of all
algorithms are available at https://github.com/Xiaoshunxin/
GNN-Survey.

4.3 Evaluationmetrics

In order to compare the performance of diverse algorithms,
several commonly used evaluation metrics of the classifica-
tion task, includingmacro-precision (macro-P), macro-recall
(macro-R), macro-F1 and micro-F1, are used in our experi-
ments.

Firstly, the true positive, false positive, true negative and
false negative of i-th class are denoted as T Pi , FPi , T Ni and
FNi , respectively. Then, the definitions of these metrics are
introduced in the following.

– In order to obtain themacro-precision ofmulti-class clas-
sification, the precision of each class should be calculated
at first and can be formed as Pi = T Pi/(T Pi + FPi ).
Then,macro-P is obtained by averaging all the precisions,

1 https://github.com/pytorch/pytorch.
2 https://pytorch-geometric.readthedocs.io/en/latest/.
3 https://github.com/tensorflow/tensorflow.

which is shown as follow

macro-P = 1

n

n∑

i=1

Pi , (43)

where n denotes the number of classes.
– Similar, the value of macro-R can be obtained by aver-
aging all the recalls

macro-R = 1

n

n∑

i=1

Ri , (44)

where Ri = T Pi/(T Pi + FNi ) denotes the recall of the
i-th class.

– In order to balance macro-P and macro-R, Macro-F1 is
introduced and can be formed as

macro-F1 = 2 × macro-P×macro-R

macro-P+macro-R
. (45)

– Sincemacro-F1 does not consider the sample size of each
class, it is suitable to use micro-F1 when the distribution
of classes is unbalanced. The definition of micro-F1 is
formed as

micro-F1 = 2 × micro-P×micro-R

micro-P+micro-R
, (46)

with

micro-P =
∑n

i=1 T Pi∑n
i=1(T Pi + FPi )

,

and

micro-R =
∑n

i=1 T Pi∑n
i=1(T Pi + FNi )

.

4.4 Experimental results

In this section, the compared algorithms are tested on nine
publicly available datasets with several evaluation metrics
mentioned above. The macro-P, macro-R, macro-F1 and
micro-F1 of all algorithms on all datasets are listed in Table
3.

The blank cell described by one horizontal line represents
that this algorithm is essential unsuitable to current dataset
except for G2G and DGI. For instance, transductive learning
algorithms including GCN, VGAE, ChebNet, APPNP and
SGC cannot be used on the PPI dataset because this dataset
is inductive. However, the performance of G2G and DGI on
the PPI dataset is not obtained because the setting of induc-
tive learning is not provided in the source code. In addition,
the SGC model and GAT model have both obtained the best
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performance on the Computers dataset in macro-recall met-
ric. We regard SGC as the best model because of the smaller
variance.

Furthermore, several observations are derived from the
results shown in Table 3. From the perspective of the algo-
rithm, some algorithms are suitable for a special graph.
For instance, GAT achieves the best performance on two
transductive datasets (Cora and Photo) and one inductive
benchmark (PPI) with all evaluation metrics. This observa-
tion can reflect the importance of attention mechanism in
both transductive and inductive learning. SGCmodel obtains
the minimum variances on all transductive learning datasets
with all evaluation metrics. This phenomenon may reflect
that the simpler a model is, the more stable it is. In addition,
SGC achieves comparable performance on several datasets
and obtains the best result on the CiteSeer benchmark with
all evaluation metrics. It demonstrates that a simple method,
which only has a few layers, may have comparable perfor-
mance to complex models. G2G algorithm also achieves the
best performance on three datasets (PubMed, DBLP and
Cora-ML) in four criterions, except for the Macro-recall
result on the DBLP dataset. This phenomenon demonstrates
that not only the supervised information (e.g., node labels)
is critical, but also the extensive unsupervised information
(e.g., the information of graph structure) is all important for
the node classification task. On the other hand, observations
would be derived from the perspective of datasets. AGNN
usually has a big variance on large datasets such as DBLP,
Photo and Computers. In addition, the performance of dif-
ferent algorithms is greatly different on the same dataset.
For instance, the gap between the best method and the worst
network on the CiteSeer dataset is close to forty percent. It
demonstrates that different algorithms may be suitable for
different tasks.

The runtimes of each training epoch of different GNNs
algorithms on several datasets are illustrated in Fig. 10. For
those models which training embeddings in an unsupervised
way, only the time cost of training hidden representation
for each node is considered in our experiments. We also
have some observations from this figure. The training time
of unsupervised learning algorithms including VGAE, G2G
and DGI is longer than those semi-supervised or supervised
methods on most datasets. ChebNet has a larger time cost on
CS because this model is sensitive to the size of nodes set
and edge set, as well as the dimension of node features. The
SGC model spends very little time on all datasets because
there is only one linear transformation in the training stage.

5 Challenges and future directions

In this section, several challenges of the development of
GNNswould be introduced based on the experimental results

mentioned above. Then, some potential future directions are
provided for interested researchers.

Based on the observations derived from the experimen-
tal results, we can find many existing problems in previous
research works.

– In transductive learning, several aforementioned graph
analysis algorithms are difficultly scaled to large graphs
in real-world applications such as community detection,
which usually contains millions of nodes and edges.

– Most of the existing graph neural networks are essential
transductive learning algorithms. This means that they
cannot handle nodes or graphs that never appear and are
unsuitable for many applications.

– Several deep learning paradigms used for graph analysis
are supervised or semi-supervised learning. These meth-
ods often require lots of supervised information in the
training stage to obtain a good performance. However,
most of the existing graph data are unsupervised and it
is difficult to apply the supervised algorithms to these
unlabeled data.

– The applications of node classification aremainly focused
on those data in which there are existing real-world rela-
tionships between samples. However, it is a possible way
to apply GNNs in different kinds of data via node classi-
fication.

– Stacking several layers of graph convolution may cause
over-smoothing that the learned representations of all
nodes tend to be the same. As a result, the performance of
graph convolution models would decrease dramatically.

Then, several potential future directions are introduced
based on the challenges mentioned above.

– The ability to deal with a large graph is important inmany
scenes. From the perspective of computational resources,
the possible solution is to design a parallelized algorithm
that can run with multiple GPU cards. On the other hand,
many effective sampling techniques would be introduced
to reduce the scale of large graphs.

– Generalizing to unseen nodes or graphs has many bene-
fits. For instance, the model can be trained only in some
parts of the whole graph and then used to predict other
parts. One of the essential reasons for losing the inductive
ability is that they usually apply the information aggre-
gation on the propagation matrix. As a result, we suggest
that the information aggregation should be partial instead
of global.

– There is a lot of unsupervised information in graph data.
Using this information can produce a meaningful repre-
sentation for nodes or graphs. We can use unsupervised
deep learning technologies such as autoencoder mecha-
nism to achieve this objective.
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Fig. 10 Runtime of training stage. The time cost of each training epoch of diverse GNNs algorithms on several transductive learning datasets

– For common classification or clustering tasks, heuris-
tic methods can be used to model the real relationship
between samples. Then, these tasks can be converted to
node classification and be learned by variousGNNsmod-
els.

– To solve the over-smoothing problem, one can introduce
external information to reduce the distortion caused by
deep training. For example, the relationships between
nodes can be used as supervised information to guide
the training process.

Finally, we believe that the designed GNNs model would
be more accurate and more quickly by further studying these
directions.

6 Conclusion

In this paper, we introduced an overview of graph neu-
ral networks and provided a comparison among them in
node classification tasks. According to the major learning
paradigms, these graph analysis algorithms were divided
into three categories: convolutional mechanism, attention
mechanism and autoencoder mechanism. A comprehensive
introduction of several popular methods for each category
was provided. Furthermore, extensive comparative exper-
iments were conducted on nine benchmark datasets to
compare the performance of node classification. Finally, a
number of challenges are introduced based on the experimen-

tal results and several potential future directions are provided
to interested researchers. In the future work, we will explore
more efficient graph neural networks for node classification
based on these future directions.
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