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Abstract
Convolutional neural networks have been extensively used as the key role to address many computer vision applications.
Traditionally, learning convolutional features is performed in a hierarchical manner along the dimension of network depth
to create multi-scale feature maps. As a result, strong semantic features are derived at the top-level layers only. This paper
proposes a novel feature pyramid fashion to produce semantic features at all levels of the network for specially addressing the
problem of face detection. Particularly, a Semantic Convolutional Box (SCBox) is presented by merging the features from
different layers in a bottom-up fashion. The proposed lightweight detector is stacked of alternating SCBox and Inception
residual modules to learn the visual features in both the dimensions of network depth and width. In addition, the newly
introduced objective functions (e.g., focal and CIoU losses) are incorporated to effectively address the problem of unbalanced
data, resulting in stable training. The proposed model has been validated on the standard benchmarks FDDB and WIDER
FACES, in comparison with the state-of-the-art methods. Experiments showed promising results in terms of both processing
time and detection accuracy. For instance, the proposed network achieves an average precision of 96.8% on FDDB, 82.4% on
WIDER FACES, and gains an inference speed of 106 FPS on a moderate GPU configuration or 20 FPS on a CPU machine.

Keywords Face detection · Feature enhancement · Feature pyramid network

1 Introduction

Face detection is an interesting problem in the domain of
computer vision due to its various helpful applications in
real life such as face verification, face recognition, people
tracking, and smart advertising. Face detectors can be refor-
mulated as single class object detection, and thus, a number
of general object detectors can be applied, including R-CNN
[1], Fast R-CNN [2], Faster R-CNN [3], YOLO [4], SSD [5].

A modern object detector (i.e., using deep convolutional
neural networks) is generally composed of the following
components: a backbone to learn multi-scale features, a neck
to enhance the learned features and a head to perform object
prediction and classification. In recent years, a number of
attempts have been presented to improve each of these com-
ponents in different ways. High-performance detectors often
favor very deep backbones such as ResNet-101 [6] andDark-
net53 [7]. To further improve the feature discrimination, one
can integrate additional feature enhancement blocks (e.g.,
RFB [8], Inception [9], Inception-ResNet [10]), and/or attach
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appropriate neck networks, typically FPN [11], PAN [12],
and BiFPN [13]. Besides, the newly introduced loss func-
tions (FocalLoss [14], IoU [15], GIoU [16], CIoU [17]) have
been designed to achieve stable and fast training, as well as
to improve the classification and regression abilities.

In the specific area of face detection, the state-of-the-art
methods (e.g., [18–22]) are capable of producing high detec-
tion accuracy on the standard benchmarks FDDB [23] and
WIDER FACES [24]. However, these methods are subjected
to computationally intensive complexity and require pow-
erful GPU computer systems for inference, making them
difficult to time-critical application deployment. Recently,
some attempts (e.g., [25–27]) have been conducted to design
real-time face detectors. Nonetheless, the obtained results
are still limited in the means of either detection accuracy or
inference speed.

In the present work, we introduce and exploit a set of
enhanced features to solve the problem of efficient yet accu-
racy face detection, targeting to real-time deployment on
conventional CPU environments. Particularly, the Semantic
Convolutional Box (SCBox), that combines visual infor-
mation between the current layer and the upper layer of a
convolutional neural network (CNN), is presented to enhance
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the feature discrimination ability at each level of the net-
work. This strategy is opposed to traditional techniques, such
as Feature Pyramid Networks (FPN [11]) and PyramidBox
[18], where feature enhancement is applied to the detection
scales only. As a result, the feature maps learned at the lower
layers are not sufficiently discriminated to detect small faces.
To further enrich the visual features, the Inception residual
structure is incorporated that expands the backbone in the
dimension of network width. Besides, the newly introduced
loss functions, FocalLoss [14] and CIoU [17] are integrated
to strengthen the learning performance. The proposed detec-
tor has been validated on the standard datasets, FDDB [23]
and WIDER FACES [24], showing promising performance
in comparison with other methods. For clarity, the main con-
tribution of the present work can be summarized as follows:

• We propose a novel feature merging method, namely
Semantic Convolutional Box, to learn more discrimina-
tive features at each scale of the network.

• The network backbone is enhanced by integrating the
Inception residual structure to learn useful features for
object detection.

• Advanced loss functions (e.g., Smooth L1, CIoU, Focal-
Loss) are incorporated to achieve stable learning perfor-
mance.

• We provide detailed analysis and evaluation of the
proposed detector on the aspects of computational com-
plexity, stability, parameter tuning, and empirical results.

• We achieve promising detection performance in terms of
both accuracy and running times on the standard bench-
marks.

The remaining of this paper is structured as follows. Sec-
tion 2 reviews the state-of-the-art methods for face detection,
specifically focusing on deep learning methods and evolu-
tionary computation. Section 3 presents the proposed face
detection algorithm. Section 4 is dedicated to experiments
and discussion. Section 5 concludes the paper and identifies
potential follow-up works.

2 Related work

In this section, we shall select and review the representative
works for face detection. The revised methods are classified
into three groups: heavy-weight CNN detectors, real-time
CNN methods, and soft algorithms based on evolutionary
computation. The main characteristics of each method are
summarized in Table 3. To have a degree of detection per-
formance, we shall mention the accuracy in terms of true
positive rate (recall rate) measured at 1000 false positives
on the standard benchmark FDDB [23]. Besides, the infer-
ence time shall be provided, if any, in terms of frames per

Table 1 The main abbreviations used in the paper

Abbreviation Description

SCBox (or B) Semantic Convolutional Box

Conv (or C) A convolutional layer

R An inception residual module

FLOPs Floating point operations

MFLOPs Million FLOPs

BFLOPs Billion FLOPs

AP Average precision

RF Receptive field

IoU Intersection over union (Jaccard score)

CNN Convolutional neural network

NA Not available

Table 2 The main variables used in the paper

Variable Description

L loc Localization loss function

Lcls Classification loss function

CE Cross-entropy function

FL Focal loss function

CIoU Complete IoU loss function

GIoU Generalized IoU loss function

γ ≥ 0 A focusing parameter used in FL

α ∈ [0, 1] A balancing factor used in FL

Cin The number of input channels

Cout The number of output channels

W , H The spatial size of an output feature map

F The kernel width or height (symmetric)

w × h × c A tensor shape of width, height, depth

s2 The stride of 2 (symmetric) applied to a filter

n1, n2 The weight parameters of CIoU loss

second (FPS) for VGA-resolution images on CPU configura-
tion, unless otherwise stated. For the purpose of presentation,
themain abbreviations and variables used in the present work
are described in Tables 1 and 2, respectively.

2.1 Heavy-weight CNN face detectors

We first review the category of detectors that yield high
performance but incur intensively computational cost, and
hence, a high-end GPU model is required for the inference
phase. These methods [18–22] often conduct a significant
investigation on feature enhancement task.

The authors in [19] introduced a Single Shot Scale-
Invariant Face Detector (SFD) that is composed of a back-
bone derived from the VGG16 [37] network. To handle small
face detection, the authors presented an equal-proportion
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interval principle for anchor titling that determines the anchor
scale and interval based on the stride size associated with a
given prediction layer. The Maxout method is introduced to
handle the class imbalance problem. Experimental results
showed a good recall rate of 0.983 on FDDB at the cost of
high inference time (e.g., 36 FPS on a single GPU Titan X).
Similarly, PyramidBox [18] applies VGG16 as its backbone,
Maxout, and presents a new fashion of feature enhancement.
Specifically, FPN [11] is applied from the middle layers
instead of the top layer to enrich the features learned from
the backbone. Besides, a Context-sensitive Predict Module
(CPM) has been introduced to predict the faces in accordance
with the heads and bodies. PyramidBox achieves a recall rate
of 0.986 on FDDB.

FANet [20] (Feature Agglomeration Networks) describes
an agglomeration connection (A-block) to enhance the fea-
ture maps at the prediction layers. The A-block consists of
an Inception-like module [9] and a FPN-like module [11]
for merging features of the current layer and the upper layer.
An hierarchical agglomeration structure is presented to cre-
ate three levels of feature enhancement, each of which is
associated with a loss layer, yielding a hierarchical loss for
the entire model. FANet obtains a recall rate of 0.983 at the
speed of 35.6 FPS on a GTX 1080Ti. Similarly, DSFD [21]
(Dual Shot Face Detector) introduces a Feature Enhance
Module (FEM) that combines FPN and RFB [8] to make
the features more discriminated and robust. Besides, to han-
dle multi-scale face detection, a progressive anchor loss is
presented that is principally similar to the hierarchical loss.
DSFD yields a promising accuracy of 0.99 on FDDB with
the speed of 22 FPS on a GPU P40.

RefineFace [22] builds a backbone based onResNetmodel
[6] with several improvements. First, the authors applied
selective two-step classification (STC) to filter out most
simple negative samples and employed selective two-step
regression (STR) to yield better prediction of bounding
boxes. Second, a Receptive Field Enhancement (RFE) mod-
ule is designed to diversify the shape and size of receptive
fields. Third, the authors employed the margin-based loss
function that adds an extra margin to enhance the classifi-
cation ability. At last, a feature supervision module (FSM)
is added to the backbone that uses RoIAlign [38] for better
fitting of target boxes. RefineFace achieves a recall rate of
0.991 around the speed of 28.5 FPS (with GTX 1080Ti).

2.2 Real-time CNN face detectors

This part is dedicated to the group of methods that have
been specifically designed to work in a real-time speed on
CPU environments. The authors in [28] presented a CNN
cascade that consists of three classification CNNs for filter-
ing out most of the detection windows and three calibration
CNNs for adjusting the sizes and locations of the remaining

bounding boxes. The detector can perform around 14 FPS
on a CPU machine with the recall rate of 0.857 on FDDB.
Another cascaded framework [29] (MTCNN), consisting of
three CNNs (P-Net, R-Net, O-Net), has been presented to
exploit the semantic correlation between face detection and
alignment. An image pyramid is first created and fed into
P-Net for generating the proposals. Next, R-Net refines the
obtained candidates. At last, O-Net performs final verifica-
tion to output face boxes and landmarks. MTCNN gives the
recall rate of 0.9435 but is slower than cascade CNN [28]
for inference time probably due to the use of image pyramid
framework.

In [30] a Deep Dense Face Detector (DDFD) has been
constructed by fine-tuning the AlexNet [39] accompanying
with a sliding window strategy to perform face detection.
The method is very efficient due to its simplicity but gives
low recall rate (e.g., 0.669 on FDDB). In [31], the authors
presented five CNNs for capturing different facial parts. The
facial responses are combined to compute the faceness score
for a given candidate window. Faceness can achieve a recall
rate of 0.91 on FDDB, but the inference speed is relatively
high.

Recently, a noticeable real-time face detector, FaceBoxes
[25], has been presented. Basically, FaceBoxes consists of
two parts: Rapidly Digested Convolutional Layers (RDCL)
and Multiple Scale Convolutional Layers (MSCL). The key
part of the RDCL is the inclusion of the CReLU activa-
tion function [40] to reduce the number of output channels,
enabling real-time computation of the whole network. As
for the MSCL, Inception modules [9] are incorporated to
enrich the visual features in the dimension of network width.
In addition, a novel anchor densification strategy is pre-
sented to improve the prediction of small faces. FaceBoxes
is able to achieve real-time speed on CPU (e.g., 20 FPS on
an Intel Xeon E5-2660v3@2.60GHz) with reasonable recall
rate (e.g., 0.959 on FDDB). An improvement of this work has
been presented in [26] where the FPN is incorporated as the
neck of the detector and a Divide and Conquer Head (DCH)
is presented to separately predict the different scales of the
anchors. Despite the inclusion of more computational blocks
compared with the work in [25], the method still achieves
better inference speed (e.g., 26 FPS) while obtaining higher
recall rate (e.g., 0.965).

Differing from the afore-mentioned methods, UnitBox
[15] employs VGG16 [37] as its backbone and develops a
new loss function, namely IoU loss, for accurate bounding
box regression. The IoU loss function takes into account the
correlation of four points of a bounding box representing
a face. In addition, UnitBox builds a confidence heatmap
inferring whether a pixel belongs to a face (positive) or not
(negative) and applies bounding box regression at all posi-
tive pixels. UnitBox achieves a recall rate of 0.951 on FDDB
with the inference speed of about 10 FPS. However, the IoU
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loss is ineffective when the intersection of the target box
and the prediction box is empty. To solve this problem, the
work in [27] integrates GIoU loss [16] into YOLOv3 [7] net-
work, that is a generic object detection algorithm, resulting in
the YOLO-face method. The newly introduced face detector
gains a recall rate of around 0.958 on FDDB at the speed of
45 FPS (on a GPU 1080Ti).

2.3 Soft methods for face detection

In this part, we review soft computing methods that employ
evolutionary algorithms for face detection [32–36].

Early works using genetic algorithm (GA) [32,33] for face
detection have included some heuristic techniques for image
enhancement such as size normalization, noise filtering, his-
togram equalization, or gray-scale conversion. In [32], the
authors appliedGA to find the faces of a given image by using
a face template. Each chromosome encodes the parameters
of a searching window and is assigned with a fitness value
calculated as the similarity between the face template and
the sub-image at the searching location. The work in [33]
describes a hybrid method for predicting the label (i.e., face
or non-face) of a given imagewindow.Given a set of chromo-
somes, each represented by a shallow network structure (i.e.,
3-layer CNN), the goal is to optimize the networks by reduc-
ing the number of hidden nodes without loss of accuracy. The
hybrid evolutionary process applies GA and gradient-based
optimization to create new offspring. The evolved solution
improves the classification speed up to 30% while achieving
the same level of accuracy as the expert-designed architec-
ture.

There are several works combining GA, Haar-based fea-
tures [41], and amachine learning algorithm (i.e., AdaBoost)
for face detection [34,35]. In [34], three evolutionary meth-
ods are employed for generating the novel Haar features,
including: differential evolution (DE), genetic algorithm
(GA), and particle swarm optimization (PSO). These meth-
ods employ the same fitness function that is computed as the
error of the AdaBoost classifier on the generated Haar fea-
tures. The experiments showed that the DE method yields
the best results with the detection precision of 96.01% on
FDDB given that the number of false positives is 152. The
work in [35] proposes using joint integral histogram to
extract advanced features and combining GA and AdaBoost,
so-called GAdaBoost, to select the best features for face
detection. Here the ε-constraint-based GA [42] is employed
to guide the training of each strong classifier and the cas-
cade as well. Experimental results showed that GAdaBoost
is capable of reducing the number of features for each stage
and improving the detection performance when comparing
to the conventional AdaBoost.

Recently, the authors in [36] applied a genetic algorithm
for data augmentation to improve the performance of a

YOLOv2-based face detector [43]. The main goal is to cre-
ate new face instances by using a crossover operator that
exchanges facial parts (i.e., eyebrow, eye, nose, and mouth)
from different faces. The evolutionary process is driven by a
fitness function that employs a face detector to find new faces
that have not been explored or detected so far. As a result, the
GA-based augmentation process tends to enrich the training
data and to exploits the vulnerabilities of the detector. A sig-
nificant improvement in detection precision (i.e., up to 30%)
has been reported for the FDDB dataset.

3 The proposed approach

In this section, we describe the proposed approach for han-
dling the problem of face detection. We firstly introduce an
advanced feature enhancement module, namely Semantic
Convolutional Box, then present our network architecture.
Finally, we provide detailed analysis of the loss functions,
computational evaluation of the model, and training settings.

3.1 Semantic Convolutional Box

Traditionally, the backbone of a convolutional neural net-
work (CNN) is composed of alternating convolutional layers
and max-pooling layers. When designing such a backbone,
a number of issues have been identified. As for the max-
pooling, it is commonly agreed that this structure causes the
visual content lost and hence may be a source of degrada-
tion in recognition performance [44]. Besides, the feature
maps derived at the upper layers are semantically stronger
yet coarser in the means of spatial resolution. On the other
hand, the features learned at the lower layers are mainly con-
cerned with facial cues (e.g., low-level information) and thus
are subjected to poorly visual discrimination. To handle these
issues, some advanced models (e.g., FPN-based structures
[11,18–20]) propose combining the features created at the
upper layers and those at the lower ones. However, such
methods have been designed to improve the feature maps
at the detection scales only.

In the present work, we propose to enrich the features
at every layer of the network by substituting the conven-
tionally convolutional layer for a more distinctive structure,
namely Semantic Convolutional Box (SCBox). Conceptu-
ally, a SCBox combines the visual content at the current layer
and the upper layers that is opposed to FPN [11] where the
features at the top layers are embedded into the lower layers.
Figure 1 presents several SCBox structures, each of which is
parameterized by the number of fusion layers. A SCBox con-
sists of a sequence of convolutional layers and produces the
output by merging the feature maps derived at these layers
in a bottom-up manner.
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(a) (b)

Fig. 1 SCBox structures: applying feature fusion from 2 layers (a) and
3 layers (b). The convolutional layers of each SCBox have the same
number of kernels (e.g., k) with filter size of 3 × 3 and stride of 2.

The 2× upsampling operator is done with bilinear, and feature fusion
is processed in the element-wise addition fashion. More convolutional
layers may be added to generate more contextual features, if necessary

It is worth noting that we have imposed the same number
of kernels on all the convolutional layers inside a specific
SCBox to facilitate the fusion process. For instance, Fig. 1a
describes SCBox(k,2) consisting of two convolutional layers
having k kernels. The feature map at the upper layer is first
undergone a 2× bilinear operation, then added to the feature
map at the lower layer to produce the final output. Figure 1b
creates a SCBox(k,3) in the same manner but with a deeper
network. As such, SCBox can adaptively control the level
of feature fusion, avoiding the problem of spatial size mis-
alignment between the receptive field and the anchor box. In
other words, SCBox offers a better fashion to combine the
semantic features and the facial ones. As a result, the feature
map at every layer is contextually enhancedwhile beingmore
accurate in the means of spatial resolution, especially helpful
for small face detection.

3.2 Network architecture

In this section,we describe the proposed convolutional neural
network to address the problem of face detection. The main
goal is to work out an efficient detection model such that it
can work in a near real-time fashion even on CPU machines
while providing a promising accuracy. In our face detection
network, conventional max-pooling layers are replaced by
Inception residual blocks to avoid the loss of visual informa-
tion [44]. Specifically, the Inception-ResNet-A module [10],
as shown in Fig. 2, is adopted in the present work to enhance
the learned features for object detection [25]. This structure
employs three convolutional pathways with a fixed number
of kernels of 32. In addition, each kernel applies the same
stride of 1 on an input. As a result, the output shape of this
structure equals to the shape of the input feature map.

The proposed model is presented in Fig. 3 that consists of
alternating SCBox layers, Inception residual blocks, and con-
volutional layers. The detailed descriptions of the number of
kernels and the strides are showed next to each layer. As can

Fig. 2 The structure of Inception-ResNet-A block [10]. All the convo-
lutional layers use the stride of 1

be seen in Fig. 3, we use SCBox(k, 3) module for the lower
layers and SCBox(k, 2) for the deeper layers. The reason is
based on the observation that small faces should be detected
at the lower layers and thus the corresponding feature maps
are expected to be sufficiently discriminated for achieving
high detection accuracy. While many high-performance face
detectors take as input the images of large size (e.g., 640×640
as for PyramidBox [18], DSFD [21], and SFD [19]), the pro-
posed detector requires an input shape of 384 × 384 × 3 to
balance speed and accuracy. In addition, the network size
must be multiple of 128 as the model uses six SCBox layers
(i.e., B1− B6) and the layer B6 consists of two convolutional
layers as indicated in Fig. 1a. To maintain good performance
of small face detection, one can choose larger model sizes:
for instance, 512 × 512 or 640 × 640.
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Fig. 3 Network architecture: the proposed detector is composed of
alternating SCBox layers (i.e., B1−B6), Inception residual blocks (i.e.,
R1−R6), and small convolutional layers (i.e., C1−C8 having the stride
of 1 and kernel size of 3 × 3). Note that the Inception residual block

does not change the dimensions of the previous layer. C1 and C2 have
the same number of kernels (i.e., 96), while C3 −C8 have 128 kernels.
Bounding boxes of faces are learned in a multi-scale manner with the
anchor boxes attached to the feature maps at the C4, C6, C7, C8 layers

Fig. 4 Illustration of computing the receptive field sizes of an 1D input
signal. All the convolution operators (i.e., Conv1, Conv2, and Conv3)
have the filter length of 3 and the stride of 2. The green samples are the
origins or centers of filters at corresponding locations. The Conv1 layer
has the RF size of 3 (i.e., RF1 = 3) with respect to the filter length. The
RF size of the current convolutional layer (RFi ) is derived from that of
the previous layer (RFi−1) by: RFi = 2RFi−1 + 1

Table 4 Receptive field (RF) sizes at different layers of the proposed
network

Layer Small RF size Large RF size

R1 3 15

C2 7 31

C4 15 63

C5 31 63

C7 63 127

C8 127 255

Fig. 5 Effect of applying a SCBox(k,2) structure: the cell is assigned
two receptive fields. The outer one helps describe the contextual infor-
mation around the face, while the inner one puts more focus of facial
features

To deal with multi-scale face detection, the anchor boxes
are attached to several deeper layers. In particular,weuse four
feature maps (i.e., C4, C6, C7, C8) whose the corresponding
shapes are of 48×48×128, 24×24×128, 12×12×128, and
6×6×128. Each cell of a featuremap is assignedwith one or
several anchor boxes. The number of boxes and sizes is given
in Fig. 3. When designing the sizes of anchors at each scale,
it is important to take into consideration the information of
corresponding receptive fields. In our case, because a SCBox
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structuremerges information fromdifferent layers, the recep-
tive field sizes at each level are also varying. Generally, the
RF size of the current convolutional layer (RFi ) is derived
from that of the previous layer (RFi−1) by: RFi = 2RFi−1+1
provided that all the convolutional layers have the filter size
of 3×3 and the stride of 2. As for the B1 component, because
it consists of three convolutional layers (i.e., Conv1, Conv2,
and Conv3 as illustrated in Fig. 4) with the size of 3× 3 and
the stride of 2, the RF sizes are 3, 7, and 15, respectively. On
the other hand, as the R1 block employs convolutional layers
with the stride of 1, the RF sizes can be considered as equiv-
alent to those of the B1 component. For clarity, we provide
the RF sizes at different layers as shown in Table 4. Figure 5
illustrates the case that two receptive fields are imposed at the
cell of a given feature map. This structure brings an appeal-
ing benefit: it collects more contextual information around
the facewhile enhancing the confidence by focusing on facial
details.

The anchor boxes along with feature vectors learned at
each cell are used by the model to predict the locations (in
the mean of bounding boxes) and labels of interested objects
(i.e., face or non-face). This task is driven by the prediction
layer that employs a small kernel (i.e., 3×3×2) to predict the
label and another kernel (i.e., 3×3×4) to perform regression
of the locations (i.e., four coordinates) of each object. It is
worth noting that the predicted coordinates of each object are
relatively transformed to the specific anchor box’s size.

One important aspect of building deep CNN models for
object detection concerns the preparation of target training
samples. Usually, the anchor boxes are matched against the
groundtruth information (i.e., labels and box coordinates) to
create two sorts of training targets, namely positive and nega-
tive samples. The matching procedure is basically presented
as follows [3,5]:

– Each groundtruth box is matched to the anchor that has
the largest Jaccard overlap.

– Assign the matched anchors as positive samples and
remove them from the list.

– For each remaining anchor, find the groundtruth boxwith
largest Jaccard overlap and consider it as a positive sam-
ple if and only if the obtained overlap is higher than a
given threshold (i.e., 0.35 in our experiments).

When done, the anchors that are not matched to any
groundtruth box are regarded as negative samples. As a side
effect of the matching process, the number of negative sam-
ples is relatively higher than the number of positives. This fact
tends to create a bias to the negative samples, thus degrad-
ing the detection accuracy. One common method to alleviate
this issue is known as online hard negative mining (OHEM)
[3,5,25]. Its basic idea is to sort the negative samples in the
decreasing order of classification loss. The top-list samples

are then selected until the ratio between negatives and pos-
itives meets a given threshold (typically 3:1). In the present
work, wewill employ the idea ofOHEM in combinationwith
the use of advanced loss functions to address the problem of
class imbalance.

3.3 Loss functions

To drive the training process, two sorts of loss functions are
used by themodel, namely classification loss (Lcls) and local-
ization loss (L loc). Usually, a cross-entropy (CE) function is
a common choice to compute Lcls:

CE = −
∑

i∈X

(
yi log(pi ) + (1 − yi ) log(1 − pi )

)
(1)

where yi ∈ {1, 0} is the class label of the i th anchor, pi is
the predicted probability that the i th anchor is a face (i.e.,
yi = 1), and X denotes the anchor set.

Denoting CEi = yi log(pi )+ (1− yi ) log(1− pi ), the CE
loss can be rewritten as follows:

CE = −
∑

i∈X
CEi . (2)

As discussed in [14], a less attracting property ofCE loss is
that it does not distinguish between well-classified examples
and hard examples. As a result, the loss function applied to
the easy samples (e.g., p close to 1) can even have high mag-
nitude, degrading the training performance. To handle this
issue, a new loss function, FocalLoss, has been introduced in
[14] whose main idea is to put more weight on hard exam-
ples while giving less priority to the well-classified ones.
Specifically, FocalLoss (FL) is created by adding a modulat-
ing factor to the CE loss:

FL = −
∑

i∈X
FLi (3)

where FLi =
(
yi pi + (1− yi )(1− pi )

)γ

CEi , and γ ≥ 0 is

a focusing parameter.
In practice, the full form of FL loss employs a balancing

factor α ∈ [0, 1] for class y = 1 and (1−α) for class y = 0.
Its purpose is to further reduce the impact of class imbalance
matter. Putting all together, the classification loss is defined
as follows:

Lcls = −
∑

i∈X

(
yiα + (1 − yi )(1 − α)

)
FLi . (4)

On the other hand, the localization loss (L loc) is designed
to perform the regression of the bounding box’s coordinates.
Traditional CNNmodels often employ the Smooth L1 loss as
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done in [3,5]. This loss function treats 4 points of a box inde-
pendently and does not take into consideration the inherent
correlation between the four points of a given face. To solve
this problem, different novel loss functions have been intro-
duced including IoU [15], GIoU [16], CIoU [17]. A common
idea of these losses is the use of overlapping areas of the pre-
dicted box and the target box to make better the optimization
process. As its name, IoU takes the intersection over union of
the two boxes to drive the learning. When the two boxes are
not overlapped, the loss is set to zero and thus is lessmeaning-
ful. GIoU [16] (Generalized IoU) develops a more appealing
idea by combining the shape properties and region property,
yielding a better metric for comparing two objects having
arbitrary shapes. Nonetheless, if the target box is completely
covered by the predicted box, GIoU is identical to IoU loss.
CIoU [17] (Complete IoU) solves this problem by taking into
consideration three geometric factors: the overlapping area,
the distance between two centers of the boxes, and the aspect
ratio between the spatial dimensions of the boxes. In this
paper, we incorporate the use of CIoU loss in addition to the
common Smooth L1 loss to ensure a stable training.

L loc = n1 CIoU+n2 SmoothL1
n1 + n2

(5)

where we set n1 = 5, n2 = 1 to favor the weight of CIoU
loss. Finally, the two loss functions, Lcls and L loc, are linearly
combined to drive the training process.

3.4 Computational analysis

In this part, the computational complexity of the proposed
model is evaluated and compared with other methods by
using themetric of floating point operations (FLOPs). Specif-
ically, we compute FLOPs for the convolutional layers
only as they have been arguably considered as the most
intensively computational components of modern neural net-
works. Other additional layers (e.g., max-pooling, batch
normalization, activation) are often ignored because their
computational cost is relatively small when comparing to that
of convolutional layers.Mathematically, we have adopted the
following calculation formula to compute FLOPs for a given
convolutional layer:

FLOPs = CinF
2CoutWH (6)

where F indicates the kernel width or height (assumed to be
symmetric), Cin,Cout represent the input and output chan-
nels, andW , H denote the output featuremap size (i.e., width
and height, respectively).

Because the proposed model consists of the SCBox mod-
ules, Inception residual blocks, and the convolutional layers,
we shall first provide the detailed justification of FLOPs

Table 5 FLOPs of inception-ResNet-A module

Layer Input shape F Output shape FLOPs

Conv1a w × h × c 1 w × h × 32 32whc

Conv1b w × h × c 1 w × h × 32 32whc

Conv1c w × h × c 1 w × h × 32 32whc

Conv2b w × h × 32 3 w × h × 32 962wh

Conv2c w × h × 32 3 w × h × 32 962wh

Conv3c w × h × 32 3 w × h × 32 962wh

Conv4 w × h × 96 1 w × h × c 96whc

Total FLOPs: 192wh(c + 144)

Table 6 FLOPs of SCBox(k,2) and SCBox(k,3) modules

Layer Input shape Output shape FLOPs

Conv1 w × h × c w/2 × h/2 × k 9kwhc/4

Conv2 w/2 × h/2 × k w/4 × h/4 × k 9k2wh/16

Total FLOPs of SCBox(k,2): 9kwh(4c + k)/16

Conv3 w/4 × h/4 × k w/8 × h/8 × k 9k2wh/64

Total FLOPs of SCBox(k,3): 9kwh(16c + 5k)/64

for each of these components in the following. Specifically,
Table 5 shows the FLOPs of the Inception-ResNet-A block
given an input featuremap having the shape ofw×h×c (i.e.,
width, height, and depth, respectively). Similarly, Table 6
presents the FLOPs of the SCBox(k,2) and SCBox(k,3)mod-
ules provided an input having the shape of w × h × c. It is
noted that the kernel width is fixed (i.e., F = 3) for all convo-
lutional layers in the SCBox modules. Hence, this parameter
is not presented in Table 6.

Table 7 presents the complete analysis of FLOPs of the
proposed network for an input image having the shape of
384 × 384 × 3. Here, the FLOPs of each layer is computed
and rounded to the nearest integer. Overall, the proposed face
detection model requires around 5.25 BFLOPs. For compar-
ative justification, the proposed model is compared against
other modern face detectors, including EXTD-Mobilenet
[45] (10.62 BFLOPs), PyramidBox-Res50 (111 BFLOPs),
and ASFD-D6 [46] (183.11 BFLOPs). These figures demon-
strate the theoretical efficiency of the proposed face detector.
In addition, the empirical results on running times shall be
provided in the subsequent section.

3.5 Training settings

The detection model is trained using the same protocol and
dataset as described in [25]. Specifically, the WIDER FACE
[24] is used for the training (12,880 images) and validation
tasks (3,220).Wealso apply the data augmentation strategy as
described in [25] including random color distortion, random
image cropping, scale transformation, horizontal flipping,
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Table 7 FLOPs of the proposed face detector

Layer Input shape Output shape MFLOPs

B1 384 × 384 × 3 192 × 192 × 40 206

R1 192 × 192 × 40 192 × 192 × 40 1302

B2 192 × 192 × 40 96 × 96 × 80 431

R2 96 × 96 × 80 96 × 96 × 80 396

C1 96 × 96 × 80 96 × 96 × 96 637

C2 96 × 96 × 96 96 × 96 × 96 764

B3 96 × 96 × 96 48 × 48 × 128 340

R3 48 × 48 × 128 48 × 48 × 128 120

C3 48 × 48 × 128 48 × 48 × 128 340

C4 48 × 48 × 128 48 × 48 × 128 340

B4 48 × 48 × 128 24 × 24 × 128 106

R4 24 × 24 × 128 24 × 24 × 128 30

C5 24 × 24 × 128 24 × 24 × 128 85

C6 24 × 24 × 128 24 × 24 × 128 85

B5 24 × 24 × 128 12 × 12 × 128 27

R5 12 × 12 × 128 12 × 12 × 128 8

C7 12 × 12 × 128 12 × 12 × 128 21

B6 12 × 12 × 128 6 × 6 × 128 7

R6 6 × 6 × 128 6 × 6 × 128 2

C8 6 × 6 × 128 6 × 6 × 128 5

Total: 5252 MFLOPs

Table 8 Parameter settings for training phase

Parameter Value

num_training_step 250,000

batch_size 32

balancing_weight (α) 0.25

modulating_weight (γ ) 2.0

neg_to_pos_rate 5:1

and face-box filtering. Other training parameters are detailed
in Table 8.

4 Experiments

Two standard benchmarks, FDDB [23] and WIDER FACE
[24], have been selected for performance evaluation of the
proposed detector. As for the state-of-art face detection
methods, we have reproduced their results from the public
sources linked to the two benchmarks.1,2 The training pro-
cess has beenperformedon the followingGPUconfiguration:
GeForce RTX 2080 Ti, 11GB memory. All testing experi-

1 http://vis-www.cs.umass.edu/fddb/results.html.
2 http://shuoyang1213.me/WIDERFACE/.

Fig. 6 Comparative evaluation on the FDDB dataset

ments have been run on a moderate GPU machine (GeForce
GTX 1070 8Gb, CPU Core i7-7700). Our face detector is
implemented using TensorFlow framework (v1.15) based on
this project.3

4.1 Evaluation on FDDB benchmark

FDDB consists of 5171 faces from a set of 2845 images. The
dataset covers a wide range of challenges including occlu-
sions, difficult poses, and low resolution and out-of-focus
faces. In addition, the images are provided in both gray-scale
and color formats. Noticeably, the groundtruth face informa-
tion is provided in the mean of bounding ellipses. Therefore,
to make the evaluation comparable with the state-of-the-art
methods, we follow the protocol described in [25] that a ellip-
tical regressor is created to transform the bounding boxes to
elliptical regions. Concerning evaluation metric, true posi-
tive rate versus the number of false positives is employed
because it is commonly used by previous works. To obtain
different operating points of score, the threshold for predicted
probability is set to a relatively low value (i.e., 0.1 in our
experiment).

Figure 6 shows the detection accuracy of the proposed
model in comparison with other methods ([15,19,25,28,30,
31,47–63]). As can be observed, our model performs com-
petitively with the heavy-weight face detectors (e.g., HR-ER
[63], SFD [19]). It is worth mentioning that these two meth-
ods have been trained from the pre-trained ImageNet models
before fine-tuning on WIDER FACE. In contrast, our detec-
tor is trained from scratch using only 12K images in the
training set of WIDER FACE. Impressively, the proposed
detector outperforms many other systems with a significant
gap in accuracy. Considering the number of false positives at
1000, the proposed model gives a true positive rate of 0.968
which is superior tomanyother near real-timeCPUdetectors,
for instance FaceBoxes [25] (0.959), UnitBox [15] (0.951),

3 https://github.com/TropComplique/FaceBoxes-tensorflow.
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(e) Validation: Hard
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(f) Test: Hard

Fig. 7 Comparative results on validation and test subsets of WIDER FACE dataset
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Fig. 8 Training (pink) and validation (green) loss functions for a wide
range of parameter: num_training_step

Faceness [31] (0.910), Conv3d [47] (0.901), Boosted Exem-
plar [48] (0.848). Figure 10 shows some visual results on
FDDB.

4.2 Evaluation onWIDER FACE benchmark

This dataset contains 393,703 faces from a collection of
32,203 images having a high degree of variability in scale,
pose, facial expression, lighting environment, and occlusion.
In addition, it covers 60 common events in daily life and is
randomly structured into three sets: 40%, 10%, and 50%with
respect to the training, validation, and testing. As mentioned
previously, our model is trained only on the training set and
is evaluated on both the validation and testing sets. Besides,
to have more insight of detection performance, the evalua-
tion results are divided into three difficulty levels (i.e., Easy,
Medium, and Hard) based on the detection rate of a baseline
detector (i.e., EdgeBox [64]).

Figure 7 shows the precision–recall curves of our detector
and other methods ([18–20,24,29,31,59,60,62,63,65–71]).
The proposed system consistently outperforms other near
real-time detectors. Specifically, the AP rates of our detec-
tor on the validation set are following: 89.7% (Easy), 86.7%
(Medium), and 70.8% (Hard), while on the test set the results
are 89.6% (Easy), 86.2% (Medium), and 70.8% (Hard). The
obtaining results are encouraging when considering the fact
that the detector has been designed from a lightweight back-
bone. For this merit, we will justify the real-time aspect of
the detector in the following part. A few visual results on
this benchmark are shown in Fig. 11. As can be visually
examined, the proposed detector can handle impressively
the detection of small faces with accurate bounding box
coordinates. Additional results are presented in Fig. 12
where similar images are fed into three face detectors: our
method, FaceBoxes [26], and SFD [19]. The proposedmodel
produces better detection accuracy than FaceBoxes and is
competitive with the high-performance detector SFD.
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Fig. 9 Effect of the parameters neg_to_pos_rate and batch_si ze on
the validation:medium set of WIDER FACE

4.3 Inference time

In this part, we investigate the efficiency, in terms of frames
per second (FPS), of the proposed detector on both CPU and
GPU configurations. Table 9 provides a comparative report
of running times of all the studied methods. Besides, the
average precision (%) on the FDDB benchmark is also pro-
vided (by setting the number of false positives to 1000). As
for the methods running on CPU configuration, our detec-
tor performs impressively with a significant improvement of
AP while still maintaining a good speed of 19.5 FPS. When
comparing with heavy-weight detectors (e.g., SFD, FANet),
the proposed detector gains a 3× speed with a small drop
in accuracy (e.g., 1.5%). For instance, it achieves a notable
speed of 106.3 FPS on a fairly moderate GPU. In addition,
the model is also remarkable in terms of memory with about
11.1 MB of memory fingerprint.

4.4 Impact of parameter settings

For the training,we have used a number of control parameters
as described inTable 8. The twoparameters,α andγ , are used
in the FocalLoss function and have been initialized by default
values as suggested in the original paper [14] (i.e., α = 0.25,
γ = 2.0).

For each of the remaining parameters, we vary its value
while keeping the others unchanged. Figure 8 shows the
behavior of training and validation losses when varying the
parameter num_training_step in the range of [0, 300k]. As
can be seen, the two loss functions behave similar to each
other and tend to converge to stability after 200k steps. As a
result, one can set this parameter to any value in the range of
[200k, 300k].
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Fig. 10 Visual results (red-color bounding boxes) of the proposed face detector on FDDB dataset
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Fig. 11 Visual results of the proposed face detector on WIDER FACE dataset
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Fig. 12 Qualitative results of three face detectors for similar input images: our method (top row), FaceBoxes [26] (middle row), and SFD [19]
(bottom row). The proposed model is competitive with the high-performance detector SFD

Figure 9 demonstrates the effect of two parameters:
batch_size and neg_to_pos_rate. The former is varied in the
set of {8, 16, 32, 48} (i.e., with respect to the variables of
bs8, bs16, bs32, and bs48 in Fig. 9). The latter is often set to
3:1 in the literature [25], but in our study this ratio is set to
the following values: 1:1, 3:1, 5:1, 10:1 (i.e., with respect to
NPR1-1, NPR3-1, NPR5-1, NPR10-1). The results in Fig. 9
have been reported on the validation set (i.e.,Medium subset)
ofWIDERFACE.One can notice that all the precision–recall
curves are very close to each other and the performance gap

is neglectable for different settings of the two parameters.
All of these results consistently confirm the robustness of
our approach for varying values of parameters.

5 Conclusion

In this work, we have presented an effective face detector by
designing a lightweight CNN model. The proposed model
exploits several advanced ideas for improving both detec-
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Table 9 A report of running times (FPS) and average precision (AP)
on FDDB of different detectors

Method Machine model FPS AP

Ours (HDU) CPU i7-7700K 19.6 96.8

FaceBoxes [25] CPU E5-2660v3 20.1 95.6

ACF [67] CPU i7-3770 20 85.2

JointCascade [54] CPU- 34.9 86.3

Cascade-CNN [28] CPU- 14 85.7

Cascade-CNN [28] GPU Titan Black 100 85.7

Faceness [31] GPU Titan Black 20 87.0

MTCNN [29] GPU Titan Black 99 94.3

SFD [19] GPU Titan X 36 98.3

FANet [20] GPU GTX 1080 35.6 98.3

Ours (HDU) GPU GTX 1070 106.3 96.8

tion accuracy and inference time. By introducing a Semantic
Convolutional Box as a core block of each layer, the feature
maps are enhanced at all the levels of the network. Besides,
we have chosen to substitute all the max-pooling modules
by a more discriminated structure (i.e., Inception residual) to
learn the features in both the wider and deeper dimensions of
the model. In addition, by incorporating recently introduced
loss functions (i.e., FocalLoss, CIoU), the class imbalance
problem has been nicely solvedwhile yielding stable training
and convergence. The proposed model has been validated on
standard benchmarks and showed interesting results. Its per-
formance is competitive with state-of-the-art methods while
being efficient in terms of inference time.

Although the proposed detector achieves promising per-
formance, there are several points that could be further
improved. Firstly, it can be derived from Table 7 that the pro-
posed SCBox modules are indeed very efficient with around
1.1 BFLOPs (21%) in total. The Inception residual compo-
nents (i.e., R1 −R6) and convolutional layers (i.e., C1 −C8)
consume a high rate of computational complexity (i.e., 4.15
BFLOPS or 79%). Therefore, further studies on designing
lightweight and discriminative structures for substitution of
these components could be helpful.

Secondly, data augmentation plays an important role in
training an object detection model. In the present work, we
have just applied basicmethods for data augmentation.Many
advanced methods have been recently presented to increase
the variability of training images, for instance, CutOut [72],
MixUp [73], CutMix [74], and Mosaic [75]. One could
probably gain a significant improvement of performance by
incorporating these advanced augmentation strategies.

Finally, we also intend to conduct future works on the
problems of face landmark detection and face embedding
as they are closely correlated to face detection in practical
applications.
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