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Abstract
In the past decade, the sparsity prior of image is investigated and utilized widely as the development of compressed sensing 
theory. The dictionary learning combined with the convex optimization methods promotes the sparse representation to be 
one of the state-of-the-art techniques in image processing, such as denoising, super-resolution, deblurring, and inpainting. 
Empirically, the sparser of image representation, the better of image restoration. In this work, the non-local clustering sparse 
representation is applied with optimized matching strategies of self-similar patches, which break through the bottleneck 
of search window (localization) and improve the estimation effect of the sparse coefficient. The experimental results show 
that the proposed method provides an effective suppression on noise, preserves more details of image and presents more 
comfortable visual experience.

Keywords  Image Denoising · Global Matching · Nonlocal Self-Similarity · Sparse Representation

1  Introduction

Vision is taken as the most advanced source of informa-
tion for human beings, and images play the most important 
role in human vision. Noise corruption is inevitable during 
the sensing process, and it may heavily degrade our visual 
experience. Removing noise is an essential step in various 
image processing and vision tasks, such as image segmenta-
tion, image coding, and target detection. In particular, many 
image restoration problems could be addressed by solving a 
sub-problems of denoising, which further extends the mean-
ing of exploring image denoising techniques.

Many classical denoising methods have emerged in recent 
years [1–8], such as wavelet, dictionary leaning and multi-
scale feature fusion. The methods could be roughly divided 
into two categories: spatial domain filtering and transform 
domain filtering. The former directly processes the pixels of 
the image and the representative one is the non-local means 

(NLM) [1]. NLM is wonderful algorithm because of its sim-
plicity and effectiveness, which creatively utilized the non-
local self-similarity (NSS) of image for denoising task. The 
core of NLM is to group the similar patches and perform 
an average operation for noise suppression. Natural images 
often have NSS prior, as shown in Fig. 1, the contours are 
not randomly distributed and have a clear correlation/simi-
larity at different positions. The NSS prior is widely used in 
many image processing methods [2–6], such as the bench-
mark denoising algorithm-block matching three-dimensional 
filtering (BM3D) [3].

The other category mainly uses a basis function (atom) 
to transform the image to another domain, where separates 
the noise and effective information of image. The represent-
ative method is sparse representation. For natural images, 
the meaningful information usually possesses sparsity in a 
transform domain (e.g. wavelet domain), where the sparse 
signal is enhanced and noise remains the same, by using 
a simple thresholding method, the noise component could 
be removed and the useful information is retained, and 
finally the inverse transform is performed to recover the 
image in spatial domain. There are two typical solutions, 
one is based on the analytic basis [9] and the other is the 
dictionary learning. With the flexibility of atom design, the 
redundant and over-complete dictionary representation could 
achieve higher sparsity when compared with the analytic 
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basis methods, and indeed obtained much better denoising 
performance, such as K-means Singular Value Decomposi-
tion (K-SVD) [10], Learned Simultaneous Sparse Coding 
(LSSC) [5], Expected Patch Log Likelihood (EPLL) [11], 
Nonlocally Centralized Sparse Representation (NCSR) [12]; 
furthermore, the visual data often has an intrinsic low-rank 
structure [13], the low-rankness of patch matrix could be 
viewed as a 2D sparsity prior as compared with the diction-
ary sparse representation, and based on the low rank matrix 
completion theory [14], some impressive restoration meth-
ods have been proposed [15–24]. The key point of sparse 
method is to improve the sparsity of representation, and the 
NSS feature is one of the most important and widely used 
prior for sparsity improvement, especially in the case of 
image corrupted by noise. Several very competitive algo-
rithms reported [12, 16, 18], taking full advantage of the 
NSS prior of natural images, have proven the effectiveness 
of this prior.

In this work, in order to better employ the NSS prior of 
image and further improve the denoising performance, the 
centralized sparse representation (CSR) [25]-based algo-
rithm is proposed with enhanced NSS from 3 aspects: (1) the 
similar patches from external images are combined with the 
internal noise patches to refine the dictionary; (2) a global 
matching strategy is adopted to facilitate the estimation of 
model parameters; (3) an improved similarity measurement 
with cosine distance is used to eliminate the influence of the 
dimensional difference.

Among the sparse representation methods, the benchmarks 
[12, 25] introduced the sparse coding noise (SCN) in the object 
function and minimized SCN along with the fidelity term to 
obtain a superior performance. However, the sub-dictionary is 
learned from the centralized patches from noisy image itself 
and neglects the external priors, and the estimation of latent 
clean image is performed in a local window, which limits the 
quality of patch grouping with NSS prior. By introducing 
external reference images and global matching strategies, the 
clustering is improved to make better dictionary learning and 

more accurate estimation of latent clean patches, and then, the 
improvement of denoising performance is expected. In particu-
lar, using Euclidean distance (ED) is easy to cause mismatch 
by dimensional error, as shown in Fig. 2, and we adopt the 
cosine distance instead of ED to remove the dimensional dif-
ference to achieve a better matching effect.

The structure of the paper is constructed as follows: the 
second part introduces the proposed method, and third part 
illustrates the operations of NSS enhancement as well as the 
principle of denoising method; the fourth part demonstrates 
the denoising results and the comparison with several state-
of-the-art algorithms based on two kinds of datasets, one is 
the standard image processing pictures with added Gauss-
ian white noise (AGWN); the other is the actual low-light 
image with real noise; the last part summarizes the content 
of the paper, points out the places need to be improved in 
the future.

2 � The proposed method

For sparse representation, the image x ϵ RN, and its sparse 
coefficients x ≈ Φαx, αx ϵ RM, where M <  < N and most 
entries of αx are 0 by dictionary coding (dictionary Φ ϵ 
RMxN), the key point of the method is sparse decomposi-
tion with dictionary Φ, and generally it could be obtained 
by solving the l0-norm minimization problem [26–28], 
αx = argmin||α||0, s.t. ||x-Φαx||2 ≤ ε; however, the l0 norm 
minimization is a NP-hard problem, and often replaced by 
its closest convex relaxation-l1 norm minimization:

where the constant λ denotes the regularization parameter, 
which balance the fidelity term (approximation error) and 
the sparse prior. And Eq. (1) could be minimized efficiently 

(1)�x = argmin
�

{‖x − Φ�‖2
2
+ �‖�‖1}

Fig. 1   Examples of NSS features extracted from images. a some nat-
ural images from the standard test dataset; b the contours according 
to a (extraction with second atom by using PCA method)

Reference
Patch (a)

Patch (b) Patch (c)

Euclidean 
Distance:
(b) < (c)

Fig. 2   Illustration of mismatching with common-used Euclidean dis-
tance. a The reference patch; b The patch with the same intensity and 
different structure; c The patch with different intensity and the same 
structure
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by an analytic method such as iterative shrinkage algorithm 
[29]. In particular, coding with dictionaries learned from 
natural images could get a better performance than with 
fixed basis [30].

For image restoration, the degraded image signal y could 
be generally written as y = Hx + n, where H is the degra-
dation operator and for denoising H is specified as identi-
cal matrix, x is the latent clean image and n is the additive 
noise, and generally set as Gaussian distribution N(0, σn

2). 
Due to intensity difference in sparse domain between noise 
and image signal, denoising could be realized by a simple 
thresholding method, which removes the noise components 
and retains the structure information [31]. To recover the 
latent clean image x from its noisy version y with respect 
to the dictionary Φ, the sparse model could be written in a 
patched way as below:

However, simply using the sparse coding for the degraded 
image to recover the latent clean one is a very challenging 
task, for ill-posed nature of denoising for high-dimensional 
nature of natural images. On the other hand, it is known that 
the sparse coefficients of natural images are not randomly 
distributed, as shown in Fig. 1, and they have a NSS feature 
obviously. The strong correlations could be used to develop 
a more effective sparse model by exploring the nonlocal 
redundancies. Indeed, several classic methods are derived 
from this point; among them, the most representative one 
is NSCR, which introduced a sparse coding noise (SCN) to 
incorporate the NSS prior to help improve the image restora-
tion performance. The objective function of NCSR [12] is:

where parameters Φ and β paly the most important role for 
performance improvement. Φ is indeed a sub-dictionary 
which is learned from each cluster grouped in a global area 
and β is the estimated latent clean patch used to form the 
SCN (α-β), obtained by the corresponding sub-dictionary 
coding on an averaged patch with local matching method. 
The regularization parameter λ could be derived from the 
interpretation of the model in the Maximum a Posterior way 
[32].

The NCSR model achieved the state-of-the-art performance 
at that time. However, new requirements raised later have sur-
passed its ability, such as the heavy noise condition where 
the noise components are dominating in the images, it is very 
difficult to extract effective characteristics if only based on 
the original one. There is still room for improvement of the 
estimated β by sub-dictionary coding on a specified global 
searching instead of a local window. In order to improve the 

(2)�y = argmin
�

{‖y − Φ�‖2
2
+ �

�

i

���i��1}

(3)�y = argmin
�

{‖y − Φ�‖2
2
+ �

�

i

���i − �i
��1}

accuracy of sparse coding and cover more noise levels, we 
propose an enhanced NSS improvement for sparse representa-
tion embed in the NCSR basic framework to pursue a better 
denoising performance.

3 � External and global matching strategy

3.1 � The effectiveness and feasibility of external 
images

The prior information could be extracted from different 
sources. In general, learning a dictionary from the natural 
image library will be time-consuming, however, in many 
occasions, a large number of similar images could be obtained 
and simplify the selection of external priors. With the help 
of the correlated images, the extracted sparse prior is much 
more accurate than that learned from the noisy image only. 
For example, in the surveillance situations, the image taken at 
night corrupted by a strong noise due to its low light environ-
ment, and in the same environment, images taken during the 
day have less noise while the major components remain the 
same which could be a worth reference and provide effective 
guidance for denoising at night.

3.2 � Similarity measurement

For image processing, patch operation is widely adopted for 
consideration of computation efficiency. Therefore, the patch 
matrix M of image is constructed with each column as a patch 
vector. To cluster the patches, the K-means method is adopted 
for similarity calculation, the cosine distance is used to replace 
the ED since ED ignores the correlation interference between 
data/patch (as shown in Fig. 2), which may lower the matching 
accuracy and in turn affects quality of sparse representation.

The cosine distance could be viewed as a normalized ED; it 
is insensitive to the absolute values of patches and more closed 
to the humane perception under a neuroscience perspective 
[33]. Based on the concept of cosine distance, image block 
similarity measurement is proposed:

where r represents the reference image patch, i represents 
the test patch, dr, i is the ‘distance’ between the two patches 
yr, yi, function cos(·) is the cosine similarity of yr, yi as two 
vectors. One patch is classified into a certain class according 
to the size of dr, i.

3.3 � Global clustering for dictionary learning

For the noisy image, external priors are added to improve 
the dictionary learning of corresponding features, aiming to 
improve the denoising performance, steps include:

(4)dr,i = 1 − cos(yi, yr)
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(1) Image retrieval: selecting the similar external 
images from some ready-made datasets or on the web. 
For the tested dataset set12, the external image could be 
selected easily by using a search engine, such as TinEye 
or Google Images. Also, one can use a much more sophis-
ticated method for image searching, such as [34]. For the 
real-noise dataset, the external similar images are captured 
with different conditions such as light intensity, exposure 
time and different view-angles.

(2) Patch matrix formation: decomposing the selected 
images into patches with specified size, merging the 
patches sequentially to form a matrix M (each column 
represents a patch vector);

(3) Feature extraction:
(a) Flat feature extraction, for a specific patch yi = M(:, 

i) in M, calculating its variance:

where n is the pixel number in a patch, p and q represent 
the pixel locations, b is the patch size (square shape). ỹi is 
the Gaussian filtered image of patch yi. Then a threshold 
method is used to determine whether a patch belongs to the 
flat region. As for natural images, the flat area generally 
accounts for a large proportion and the flat structure are sim-
ple, a small local window is sufficient for its extraction as 
well as atom learning.

(b) Detail feature extraction: for the detail patches 
left in M, the K-means method is used for grouping. The 
similarity measurement adopts the method described in 
Sect. 2.2. In consideration of the instability of the global 
dictionary learning method [10], a sub-dictionary learning 
followed the Ref.12 is adopted based on PCA method [35]. 
The number of sub-dictionary atom is consistent with the 
final optimized clustering centers (assuming K). Given the 
flat region atom, the total atom number is K + 1, and the 
final dictionary is represented as:

3.4 � Global matching for sparse coefficient 
estimation

The method of searching similar patches in local window 
is widely used because it is simple and effective. However, 
for natural images, similar structures may be distributed 
at different locations across the whole image as well as 
similar external images. Local windows exclude a large 
number of high-quality structures outside the window, as 
shown in Fig. 3. Therefore, we propose a matching method 

(5)𝜎i =
1

n

b∑

p=1

b∑

q=1

(yi(p, q) − ỹi(p, q))
2

(6)D = {�0,�1,�3, ...,�K}

by searching the similar patches in a global area (patch 
matrix M) instead of a local window.

For the i-th patch yi of target image, first finding the 
class Sk it belongs to, for all the image blocks yj in the 
class Sk, calculating the distance di,j by using (4); then 
choosing the first t minimum distance patches yi,j as the 
similar patches of yi. The estimated patch of yi is calcu-
lated as:

where the averaging weights of wi,j is determined by:

Finally, the key parameter of sparse coefficient is calcu-
lated by the learned sub-dictionary D (φk):

Additionally, the regularization parameter λ could be 
derived from applying the maximum posterior probability 
MAP [28] for NCSR model representation:

where σn
2 is the noise level of original image, and σi,j is the 

noise level of jth pixel in ith patch, and the object function 
is:

(7)ei =
1

∑t

j=1
wi,j

�t

j=1
wi,jyi,j

(8)wi,j = exp(−d2
i,j
∕h2)

(9)�i = �T
k
ei

(10)�i,j =
2
√
2�2

n

�i,j

Fig. 3   Comparison of finding similar patches with a local and global 
matching: a The similar patches with local matching; b The similar 
patches with global matching (the reference patch is indicated by 
green square, and the similar patches indicated by red square); c com-
parison of the averaging effect for local and global matching
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The global matching strategy offers several distinct 
advantages: (1) the external prior is used to enhance the NSS 
feature for sub-dictionary learning and latent clean patch 
estimation; (2) making the sparse coding of patch consistent 
with the sub-dictionary learning process in a global nature; 
(3) the denoising effect has been improved remarkably with 
different noise levels.

The object function (11) could be solved by an iterative 
shrinkage method efficiently [29], and the algorithm of this 
work combined with a global match strategy is illustrated 
in Algorithm 1.

4 � Experimental results and discussions

4.1 � Evaluation indicators and parameters setting

In order to verify the effectiveness of NSS enhancement, 
the proposed method will be tested on the standard test 
image dataset (set12) and the real-noise photograph dataset, 

(11)�y = argmin
�

{‖y − Φ�‖2
2
+
�

i

�

j

�i,j
���i(j) − �i(j)

��1}
respectively. The results are compared with the classic 
denoising algorithms K-SVD, EPLL, BM3D, NCSR and 
WNNM. Peak signal-to-noise ratio (PSNR) and structural 
similarity (SSIM) are used for evaluation of image denois-
ing performance.

The parameters in K-SVD, EPLL, BM3D, NCSR and 
WNNM are used as default. Except that there are several 
parameters to be illustrated for patch matching in NCSR 
and proposed method. Experimentally, the patch size is 
set to 6 × 6, 7 × 7, 8 × 8 and 9 × 9 for σn ≤ 20, 20 < σn ≤ 40, 
40 < σn ≤ 70 and 70 < σn, respectively as well as T is set to 
2, 3, 3, and 4 according to the noise levels. Additionally, 
the thresholding value for flat classification is proportional 
to the total noise level and the default scale coefficient is 1. 
When used for real photograph denoising, the noise level is 
evaluated by the method [37].

4.2 � Test on standard dataset (set12)

Test is performed on 12 standard test images (as shown in 
Fig. 4) with additive white Gaussian noise (AWGN) for per-
formance testing. The AWGN is set with a mean value of 
0 and the standard deviation σn is 10, 30, 50, 70, and 100, 
respectively.

Table 1 and Table 2 show the PSNR and SSIM results 
for various sparse representation algorithms, respectively, 
and the bold values represent the best performance in the 
comparison. It could be seen that the proposed method has 
achieved a better performance in almost all noise levels, 
even in the case of strong noise (σn >  = 50). The remark-
able improvements under strong noise (σn >  = 50) prove 
the effectiveness of the NSS enhancement, since that the 
external images with similar details/structures merged have 
offered extra useful information and improved the quality 
of image prior, while the other methods that only rely on 
the single noisy image suffer from heavy degradation as the 
noise level increases and could not be recovered indepen-
dently and effectively.

For subjective evaluation, three standard images (Boat, 
Monarch, Peppers) under strong noise (σn=100) were 
selected for display (shown in Figure 5). The details of the 
same area of each figure are enlarged (marked by a green 
square). Fig. 5 indicates that some details in the original 
image are almost indistinguishable due to severe damage 
of strong noise. By comparison, it is found that the K-SVD 
is overall blurred after denoising, image details are lost. As 
for EPLL and BM3D, some visual artifacts are suppressed, 
but the water ripple effect appears in the smooth area of the 
image, mainly caused by the patch processing of the image, 
while the NCSR and WNNM have an over-smooth phenom-
enon and some texture information is lost. Local window 
search limits the quantity and quality for patch matching, 
resulting in obvious errors in the reconstructed structures. 
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As for the proposed method with global matching, more 
details of the original image are reconstructed, while the flat 
area is visually pleasant.

4.3 � Test on real photograph dataset

To further verify the effectiveness of the proposed algorithm, 
we applied the algorithm for real-noise image taken at low-
light condition in a laboratory environment. The dataset con-
tains 8 scenes, 5 levels of light intensity below 3 × 10−3 lx 
and 3 exposure times have been chosen for each scene, and 
5 photos are taken under every condition. The total number 
of our self-made image dataset is 8 × 5 × 3 × 5 = 600. Several 
low-light typical scenes are shown in Fig. 6.

The overall image is dark, with low signal-to-noise ratio 
and dead pixels. Usually, such image needs to be pre-processed 
before denoising, which mainly includes defect corrections and 
luminance enhancement. The dataset contains images taken 

Fig. 4   The standard test image dataset

Table 1   PSNR (dB) results by different denoising methods

Bold number represents the highest value achieved by a certain algorithm at each noise level

σn Barbara Boat Camera Couple Finger Hill House Lena Man Monar Pepper Straw Average

10 K-SVD 34.766 33.963 33.751 33.895 31.456 34.194 35.963 35.662 33.730 33.664 34.237 30.969 33.854
EPLL 34.310 34.166 34.023 34.115 30.919 34.323 35.747 35.726 33.969 34.275 34.538 30.825 33.911
BM3D 35.305 34.265 34.188 34.394 31.451 34.499 36.714 36.237 34.045 34.124 34.684 30.917 34.235
NCSR 35.422 34.284 34.186 34.364 31.634 34.484 36.726 36.218 34.172 34.400 34.676 31.405 34.331
WNNM 35.874 34.455 34.353 34.515 31.885 34.604 36.850 36.532 34.282 35.004 34.940 31.690 34.582
Proposed 36.516 35.633 35.771 35.802 33.836 35.423 37.550 37.459 35.287 36.171 35.915 33.496 35.738

30 K-SVD 29.030 28.065 28.042 27.646 25.153 28.382 31.187 29.717 28.106 27.874 28.772 24.642 28.051
EPLL 29.138 28.521 28.358 28.328 24.790 29.014 31.228 30.007 28.562 28.351 29.164 24.747 28.351
BM3D 29.834 28.598 28.638 28.471 25.655 29.261 32.087 30.454 28.730 28.364 29.280 24.941 28.693
NCSR 29.757 28.334 28.534 28.243 25.611 29.019 32.029 30.341 28.609 28.305 29.135 25.150 28.589
WNNM 30.036 28.710 28.810 28.511 25.775 29.304 32.537 30.668 28.783 28.923 29.515 25.475 28.921
Proposed 30.104 29.023 29.936 28.854 26.654 29.348 32.779 30.910 28.983 29.630 30.162 25.986 29.364

50 K-SVD 26.121 25.366 25.712 25.091 22.166 25.870 27.996 26.703 25.592 25.302 26.101 21.536 25.297
EPLL 26.673 26.088 26.025 25.879 22.133 26.713 28.765 27.415 26.309 25.776 26.626 22.003 25.867
BM3D 27.260 26.091 26.131 25.973 23.415 27.017 29.694 27.884 26.406 25.819 26.683 22.406 26.231
NCSR 27.212 25.835 26.105 25.798 23.050 26.766 29.672 27.918 26.296 25.564 26.549 22.477 26.103
WNNM 27.459 26.321 26.476 26.048 23.396 27.076 30.368 28.148 26.492 26.333 26.965 22.918 26.500
Proposed 27.522 26.450 27.243 26.275 23.745 27.151 30.499 28.399 26.652 26.806 27.380 23.014 26.761

70 K-SVD 24.098 23.689 23.863 23.553 19.547 24.606 25.440 24.714 24.070 23.308 24.053 19.758 23.392
EPLL 25.038 24.565 24.514 24.452 20.223 25.312 27.038 25.745 24.873 24.071 24.899 20.357 24.257
BM3D 25.565 24.644 24.620 24.580 22.080 25.610 27.912 26.332 25.059 24.242 25.066 21.017 24.727
NCSR 25.364 24.351 24.520 24.321 21.540 25.287 27.675 26.192 24.805 23.789 24.723 20.884 24.454
WNNM 25.713 24.871 24.954 24.622 22.052 25.604 28.694 26.634 25.056 24.671 25.371 21.479 24.977
Proposed 25.559 24.836 25.277 24.678 22.138 25.589 28.504 26.476 25.119 24.843 25.472 21.436 24.994

100 K-SVD 22.390 22.292 21.582 22.335 17.800 23.323 23.612 22.986 22.665 20.688 21.967 18.674 21.693
EPLL 23.423 23.124 22.856 23.036 18.252 23.948 25.190 24.077 23.473 22.230 23.080 19.018 22.642
BM3D 23.686 23.298 23.081 23.168 20.657 24.160 25.872 24.587 23.618 22.518 23.395 19.589 23.136
NCSR 23.451 22.904 22.773 22.837 20.018 23.828 25.520 24.340 23.292 21.768 22.806 19.321 22.738
WNNM 23.878 23.333 23.435 23.276 20.637 24.049 26.705 25.046 23.588 23.006 23.526 19.824 23.359
Proposed 23.764 23.344 23.552 23.180 20.554 24.113 26.179 24.535 23.694 22.759 23.599 20.082 23.279
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under different ambient light levels and under the same shoot-
ing parameters, generally, the lower the brightness, the lower 
the signal-to-noise ratio and stronger noise intensity after digi-
tal amplifier. Since latent truth of images is extremely difficult 
to obtain, we only make a subjective comparison, as shown 
in Figure 7.

The comparison is similar to that on the standard dataset. 
Overall, the EPLL and BM3D results still have slight artifacts 
in the flat region and edge structure; the NCSR and WNNM 
have a smooth trend. As for the protection of details and 

textures such as characters and edge lines, the EPLL, BM3D 
and NCSR are not as good as the proposed algorithm.

5 � Conclusions

In this paper, the limitations of reported sparse repre-
sentation for image denoising are studied. Based on the 
non-local clustering algorithm framework, we proposed a 
NSS enhanced denoising algorithm. By combining exter-
nal reference images and global matching strategies, the 

Table 2   SSIM results by different denoising methods

Bold number represents the highest value achieved by a certain algorithm at each noise level

σn Barbara Boat Camera Couple Finger Hill House Lena Man Monar Pepper Straw Average

10 K-SVD 0.936 0.923 0.926 0.925 0.969 0.914 0.906 0.946 0.918 0.949 0.923 0.958 0.933
EPLL 0.931 0.931 0.935 0.932 0.967 0.920 0.903 0.948 0.924 0.956 0.927 0.958 0.936
BM3D 0.945 0.930 0.932 0.936 0.970 0.920 0.922 0.954 0.923 0.956 0.928 0.959 0.939
NCSR 0.947 0.930 0.932 0.935 0.970 0.919 0.923 0.954 0.925 0.957 0.927 0.963 0.940
WNNM 0.951 0.930 0.931 0.936 0.971 0.920 0.920 0.956 0.925 0.960 0.929 0.964 0.941
Proposed 0.953 0.941 0.943 0.946 0.981 0.930 0.930 0.959 0.935 0.964 0.934 0.977 0.949

30 K-SVD 0.828 0.777 0.815 0.759 0.851 0.746 0.830 0.853 0.771 0.867 0.837 0.804 0.812
EPLL 0.838 0.803 0.832 0.800 0.861 0.787 0.834 0.863 0.797 0.879 0.847 0.823 0.830
BM3D 0.855 0.807 0.837 0.808 0.879 0.797 0.848 0.877 0.803 0.882 0.850 0.829 0.839
NCSR 0.856 0.795 0.839 0.800 0.872 0.786 0.848 0.879 0.799 0.884 0.850 0.836 0.837
WNNM 0.859 0.808 0.840 0.809 0.883 0.796 0.852 0.884 0.804 0.893 0.856 0.853 0.845
Proposed 0.859 0.813 0.862 0.814 0.904 0.799 0.860 0.881 0.808 0.897 0.859 0.870 0.852

50 K-SVD 0.742 0.674 0.748 0.642 0.696 0.637 0.763 0.768 0.672 0.796 0.771 0.580 0.707
EPLL 0.767 0.712 0.762 0.695 0.736 0.693 0.784 0.791 0.715 0.812 0.783 0.649 0.742
BM3D 0.790 0.716 0.783 0.706 0.793 0.712 0.812 0.817 0.722 0.820 0.794 0.688 0.763
NCSR 0.794 0.705 0.782 0.698 0.756 0.696 0.817 0.825 0.717 0.822 0.798 0.691 0.758
WNNM 0.798 0.727 0.784 0.709 0.797 0.714 0.822 0.828 0.728 0.834 0.801 0.734 0.773
Proposed 0.802 0.731 0.806 0.724 0.819 0.718 0.829 0.836 0.733 0.849 0.812 0.745 0.784

70 K-SVD 0.664 0.597 0.680 0.563 0.478 0.580 0.685 0.695 0.603 0.728 0.705 0.396 0.614
EPLL 0.707 0.642 0.708 0.620 0.585 0.626 0.737 0.732 0.650 0.753 0.731 0.487 0.665
BM3D 0.735 0.654 0.743 0.637 0.721 0.649 0.775 0.768 0.665 0.767 0.748 0.574 0.703
NCSR 0.739 0.644 0.746 0.624 0.666 0.631 0.783 0.779 0.658 0.768 0.752 0.557 0.696
WNNM 0.742 0.664 0.740 0.642 0.731 0.650 0.792 0.783 0.671 0.783 0.752 0.640 0.716
Proposed 0.739 0.666 0.768 0.647 0.745 0.651 0.799 0.782 0.672 0.795 0.763 0.644 0.723

100 K-SVD 0.586 0.525 0.575 0.497 0.275 0.524 0.607 0.615 0.536 0.619 0.622 0.275 0.521
EPLL 0.636 0.562 0.635 0.539 0.351 0.554 0.670 0.658 0.578 0.677 0.665 0.330 0.571
BM3D 0.662 0.591 0.693 0.563 0.626 0.580 0.720 0.702 0.600 0.702 0.688 0.422 0.629
NCSR 0.668 0.579 0.697 0.552 0.550 0.565 0.734 0.718 0.594 0.698 0.697 0.373 0.619
WNNM 0.671 0.587 0.688 0.565 0.635 0.577 0.745 0.722 0.604 0.720 0.694 0.460 0.639
Proposed 0.673 0.599 0.717 0.570 0.652 0.582 0.752 0.719 0.612 0.723 0.708 0.529 0.653
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quantity and quality of similar patches for sparse prior are 
improved, making the NSS-based method more efficient. 
By testing on the standard test dataset and the real low-
light dataset, the results indicate that the proposed algo-
rithm could restore the details and textures effectively dur-
ing denoising and result in visually pleasant images. The 
method proposed surpasses the previous methods alike and 

achieves competitive performance even compared with 
remarkable low rank methods.

The method based on sparse model optimization has pro-
moted many advanced image techniques; however, these 
methods suffer from shortcoming of time-consuming which 
limits their applications in real world. In particular, with 
the fast development of machine learning technology, many 
deep learning-based denoising methods have been invented 
[38–41], which are classified as the discriminative learning 
method with the advantages of excellent performance on 
specific problems and fast processing speed, and disadvan-
tages of poor generalization ability and difficult to collect 
the training pairs.

On the contrary, the model optimization method, such 
as sparse representation, is of good generalization and pro-
vides relatively satisfactory denoising performance, and 
how to improve the processing speed of the method is our 
next focus. Inspired by the deep learning work on image 
denoising, a natural optimization method could be raised 
by converting the solution of a sparse model to a network 
like the deep learning network, and it is expected to take 
both advantages of retaining the image prior for better gen-
eralization and transferring the time-consuming work to the 
pre-training part. The final testing could be high efficiency 
with GPU hardware accelerations.

Fig. 5   Comparison of denoising effect for subjective evaluation, the 3 
selected images are boat, peppers and Monarch. The classical sparse 
representation algorithms are selected: K-SVD [10], EPLL [11], 

BM3D [3], NCSR [12], WNNM [18]. The enlarged details are indi-
cated by green squares

Fig. 6   The real low-light photograph dataset. The pictures are col-
lected with luma target ≤ 3 × 10–3  lx and exposure time = 1/25 s. The 
top row are the low-light photographs for example, the bottom row 
are the reference images taken at 1 lx
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