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Abstract
In the automotive industry, light-alloy aluminum castings are an important element for determining roadworthiness. X-ray
testing with computer vision is used during automated inspections of aluminum castings to identify defects inside of the test
object that are not visible to the naked eye. In this article, we evaluate eight state-of-the-art deep object detection methods
(based on YOLO, RetinaNet, and EfficientDet) that are used to detect aluminum casting defects. We propose a training
strategy that uses a low number of defect-free X-ray images of castings with superimposition of simulated defects (avoiding
manual annotations). The proposed solution is simple, effective, and fast. In our experiments, the YOLOv5s object detector
was trained in just 2.5 h, and the performance achieved on the testing dataset (with only real defects) was very high (average
precision was 0.90 and the F1 factor was 0.91). This method can process 90 X-ray images per second, i.e. ,this solution can
be used to help human operators conduct real-time inspections. The code and datasets used in this paper have been uploaded
to a public repository for future studies. It is clear that deep learning-based methods will be used more by the aluminum
castings industry in the coming years due to their high level of effectiveness. This paper offers an academic contribution to
such efforts.

Keywords Object detection · Aluminum inspection · X-ray testing · Deep learning

1 Introduction

In the automotive industry, light alloy aluminum castings
(e.g. ,wheels, knuckles, gear boxes, etc.) are an important ele-
ment for determining roadworthiness. During the production
process, heterogeneous parts can be formed inside the work-
piece. This manifests itself, for example, as cracks, bubbles,
slags, or inclusions. In the quality control of aluminum cast-
ings, every detail must be thoroughly checked using X-rays,
and 100% of the parts must be reviewed. The goal of X-
ray testing of castings is to identify discontinuities (defects)
located inside the test object that are not visible to the naked
eye (see, for example, Fig. 1).
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Over the past 35 years, several computer vision methods
for conducting automated inspections of castings have been
described with many promising results. Automated X-ray
systems have improved quality through multiple objective
inspections and improved processes and increased produc-
tivity and consistency by reducing labor costs [41].

The trend today in computer vision -in general- is to use
methods based on deep learning. Deep learning has been
established as the state-of-the-art in many areas of com-
puter vision. The key idea of deep learning is to replace
handcrafted featureswith features that are learned efficiently
using a hierarchical feature extraction approach [2,22,23,41].
Usually, the learned features are so discriminative that no
sophisticated classifiers are required. In recent years, we have
witnessed tremendous improvements in many fields of com-
puter vision that involve using complex deep neural network
architectures trained with thousands or millions of images
(e.g. ,facial recognition [7], object recognition and detection
[31,63], diagnosis of prostate cancer [44], classification of
skin cancer [9], among others).Methods based on deep learn-
ing have become fundamental in these fields. Nevertheless,
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Fig. 1 X-ray images of a casting with real defects (images of series
C0001 of GDXray dataset [42])

the use of deep learning is still limited in aluminum casting
inspection.

In comparison with other computer vision applications,
the introduction of techniques based on deep learning in com-
puter vision for X-ray testing in industrial applications has
been rather slow. We believe that there are three reasons for
this. (i)The first has to do with the availability of public
databases that can be used for these purposes. While in some
areas of computer vision (e.g. ,facial recognition), hundreds
of databases have been created since the 1990s, there is only
one public database for X-ray testing for castings inspec-
tion, GDXray [42]. This database was created five years
ago and contains around 2700 X-ray images. The rest of the
datasets used in the experiments reported by the industry and
academia are private. (ii)The second reason is related to the
number of experts working in this field. While almost any-
one can be an expert in other areas of computer vision (such
as object recognition), in non-destructive testing of castings,
the relative number of people working on these subjects is
rather low and their work is usually expensive. In this kind of
computer vision application, experts must be hired to label
the data (make annotations, define bounding boxes, etc.). It
is very simple to find people who can detect cats and dogs
in photographs, but not so easy to find human operators who
can identify the discontinuities in a casting by inspecting an
X-ray image. (iii)The last reason is that in other applications
of computer vision, color photographs can be acquired using
inexpensive equipment (often a cell phone), whereas inX-ray
testing we need expensive equipment. It is likely that fewer
people are working on X-ray images than color images for
these reasons.

This research simplifies the use of deep learning in the
inspection of castings. It is our hope that these techniques
can be used easily and effectively in the quality control of die
castings in the near future. Our contributions are fourfold:

1. We developed a simple, effective, and fast deep learning
strategy that can be used in the inspection of aluminum
castings. The training stage requires a relatively small
number of X-ray images and no manual annotations
because a simulationmodel is used to superimpose defects
onto the X-ray images. In our experiments, the training
for the model was completed in just 2.5 h; in the testing
dataset (with real defects), performance was very high
(average precision was around 0.90 and the F1 factor was
0.91), and the computational time is very low (only 11 ms
per image i.e. ,it can be used in real-time inspection to aid
human operators).

2. We propose a training/testing strategy in which defects
that are used in the training are not used in testing. Due
to the low number of real defects, in many cases, a defect
can be captured in different X-ray images from differ-
ent points of view. Thus, it is very common to use some
captures of the defect in the training dataset and other
captures of the same defect in the testing dataset. This
practice, which could lead to overfitting, is avoided in our
work.

3. We use well-established deep object detection methods
with a good level of maturity in computer vision. That
means that there are many examples available in pub-
lic repositories that have already been successfully tested
and evaluated. The use of these methods in aluminum
inspection does not pose practical problems at the train-
ing or testing stages.Moreover, training and testing can be
executed in Python in any browser with no intricate con-
figuration and free access to GPUs using Google Colab1.

4. The code and datasets used in this paper are available in a
public repository2. We believe that this practice, which is
very common in other fields of computer vision, should
be more common in X-ray testing. Thus, anyone can
(i)reproduce the results reported in this paper and (ii)re-
use the code in other inspection tasks.

In the field of computer vision, modern object-detection
methods (like YOLO [50] and RetinaNet [28]) have been
developed over the past five years with very promising
results, but it has been very difficult to use them to identify
defects in aluminumcastings because there is not enoughdata
for training. In order to overcome this problem, synthetic data
were used in our work. Deep learning models trained with

1 https://colab.research.google.com.
2 https://github.com/domingomery/defect-detection → will be public
after publication.
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synthetic data is nothing new (see, for example, [53,57,58]).
However, to the best of our knowledge, this is the first time
that modern object-detection methods have been applied to
the inspection of aluminum castings using simulated defects
as training data. We tested ten object-detection models:
eight modern object-detection models because they are the
best performing andmost representative deep learning-based
object detection models in computer vision, as stated in
[63], and two baseline classic models based on handcrafted
features [34] and convolutional neural networks [37] in con-
junction with a sliding windows strategy for comparison
proposes. As we show in our experiments, it is clear that the
modern strategies significantly outperform the classic ones.

2 Related work

In this Section, we cover the most important progress that
has been made in the automated detection of defects in alu-
minum castings. The review is divided into two sections: the
first (Sect. 2.1) is dedicated to the specific methods used in
the inspection of aluminum castings. The second (Sect. 2.2)
is related to computer vision methods that deal with object
detection.

2.1 Defect detection in castings

Over the past 35 years, the literature has described various
computer vision methods applied to the automated detec-
tion of casting defects. The first contributions were likely
made in the 1980s [4,12]. Today, we can identify four dif-
ferent families of methods that are being used by industry or
academia: (i)classic methods, (ii)methods based on multi-
ple views, (iii)methods based on computed tomography, and
(iv)methods based on deep learning. They are summarized
in Table 1.
•ClassicMethods:Thesemethods correspond to approaches
based on classic image processing and pattern recognition
techniques. In these approaches, handcrafted features are
used for the automated inspection of castings. This family
of methods consists of two main groups [35]:

– Reference methods: In reference methods, still images
must be taken from select inspection positions. A test
image is then compared to the reference image. If a sig-
nificant difference is identified, the test piece is classified
as defective.

– Methods without a priori knowledge of the structure:
These approaches use pattern recognition, expert sys-
tems, artificial neural networks, or general filters to make
them independent of the position and structure of the test
piece. An example of thesemethods is given in our exper-
iments.

The fundamental disadvantages of the first group of
methods include the complexity of their configuration and
inflexibility to changes in the design of the workpiece. How-
ever, they are much more effective than the second group
because the automated adaptive processes used to accom-
modate design modifications are far from perfect.
• Methods based on multiple views: Over the past two
decades, approaches based on multiple views have been pro-
posed because they can be very effective when examining
complex objects where the uncertainty of only one view can
lead to misinterpretation. These approaches typically have
two main steps:

– First, potential defects are identified in each view. Hand-
crafted or learned features can be used in this effort.

– Second, the potential defects are matched and tracked
across multiple views.

The key idea of this approach is to consider potential defects
which cannot be tracked to be false alarms.
• Methods based on computed tomography: In contrast
to the rest of the methods, computed tomography produces
a volumetric reconstruction of the test object: a 3D vol-
ume, i.e. ,a set of 2D images of slices of the object under
test is estimated using reconstruction approaches. Computed
tomography can be a very time intensive process requiring
a minimum measurement time for adequate signal to noise
ratios as well as a minimum number of projections for the
desired local resolution.
• Methods based on deep learning: The key idea of deep
learning is to replace handcrafted features with features that
are learned efficiently using a hierarchical approach. This
family of methods hasmade contributions to defect detection
in terms of object classification and object detection, as seen
in Table 1.

Multiple views and computed tomography are rarely used
to inspect castings. It is clear that in the coming years, deep
learning-based methods will be used more frequently by
the industry due to their high level of effectiveness. This
paper uses state-of-the-art object detection methods with
deep learning to offer an academic contribution to such
efforts.

2.2 Computer vision for object detection

In computer vision, we distinguish between image classifica-
tion and image detection. The purpose of image classification
is to assign an X-ray image to one class. Image classification
is typically used when there is only one object per image
to be recognized. In the inspection of castings, we use this
approach when a small sub-image of an X-ray image, i.e. ,a
patch of 32 ×32 pixels as reported in [38], is to be classi-
fied as ‘defective’ or ‘not defective.’ In image classification
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Table 1 Published methods of defect recognition on castings

References Multi-views Deep learning Description

Classic methods

Cogranne and Retraint [6] � � Statistical hypothesis testing using nonparametric tests

Hernández et al. [17] � � Methods based on neuro-fuzzy approaches

Jin et al. [20] � � HOG and LBP features classified using Adaboost-SVM

Kamalakannan et al. [21] � � Image processing based on spatial based segmentation

Li et al. [26] � � Wavelet technique

Li et al. [25] � � Peak location algorithm combined with neural networks

Mery [34] � � Features based on crossing line profiles

Mery and Arteta [38] � � Comparative evaluation of 24 computer vision methods

Ramirez and Allende [47] � � Generative and discriminative approaches

Tang et al. [55] � � Segmentation using fuzzy model

Zhang et al. [60] � � Image processing based on adaptive thresholding

Zhao et al. [61] � � Statistical feature based on grayscale arranging pairs

Zhao et al. [62] � � Sparse representations

Methods based on multiple views

Carrasco and Mery [5] � � Multiple view correspondence with non-calibrated model

Mery and Filbert [39] � � Multiple view model with calibrated model

Mery et al. [43] � � Multiple view approach using 3D features

Mery [36] � � Multiple views using an un-calibrated tracking approach

Pieringer and Mery [45] � � 3D model from 2D images

Pizarro et al. [46] � � Multiple views based on affine transformation

Methods based on computed tomography (CT)

Bandara et al. [1] � � Inspection using dual-energy

Hangai et al. [15] � � Detection of shrinkage pores using microfocus CT

Li et al. [24] � � Inspection of Thixomolding Mg castings

Methods based on deep learning

Du et al. [8] � � Object detection using deep learning (FPN and R-CNN)

Ferguson et al. [10] � � Deep learning: Faster R-CNN architecture

Ferguson et al. [11] � � Instance segmentation using transfer learning

Hu and Wang [18] � � CNN with attention mechanism

Lin et al. [27] � � Inter-frame deep convolution neural network strategy

Mery and Arteta [38] � � Comparative evaluation of 24 computer vision methods

Mery [37] � � CNN with sliding windows

Ren et al. [51] � � Deep learning method based on auto-encoders

Tang et al. [56] � � Deep learning method including spatial attention

Yong et al. [59] � � Classification based on deep learning features

using deep learning, the input image is fed into a convolu-
tional neural network (CNN) that classifies the input image.
In image detection, more than one object can be recognized
in an X-ray image and the location of each recognized object
is identified using a bounding box that encloses the detected
object (see an example in Fig. 2).

A simple strategy that uses the sliding-window me-
thodology has been utilized for image detection based on
image classification. In this approach, a detection win-
dow is placed over an input image in both horizontal and

vertical directions. For each localization of the detection
window, a classifier (e.g. ,a CNN) decides which class the
corresponding portion of the image belongs to based on
its representation. An example of this approach for defect
detection in aluminum castings is given in [37] and in our
experiments. It is worthwhile to mention that this approach
requires the classification of huge number of patches. In
addition, if the size of the objects to be detected varies,
the sliding-windows approach must be performed for dif-
ferent patch-sizes, which may make the computational time
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prohibitive. New approaches that avoid this problem have
been developed over the past few years. We address them in
this Section. They can be subdivided into two groups [19]:
(i)detection in two stages, and (ii)detection in one stage.
In many object detection experiments, the methods of the
second group outperform those of the first in terms of both
accuracy and speed [50,63]. As such, we will only provide
an overview of the first methods in this paper.

2.2.1 Detection in two stages

The detection methods that use two stages are called region-
based methods. The first stage is the region proposal and the
second is the final classification (of the proposed regions).

In the region proposal, a method is used to identify
regions of the input image that may contain an object. In the
sliding-windows method explained above, this step involves
an exhaustive search. However, there are other methods,
e.g. ,R-CNN [14] that propose regions instead of analyzing
all possible matches for the input image.

In the final classification, a CNN is used to classify the
regions that have been proposed through the first step.

The most relevant methods that use two-stage detection
are R-CNN [14], Fast R-CNN [13], and Faster R-CNN [52].
For a more detailed explanation of the use of these methods
in X-ray testing, see [41].

2.3 Detection in one stage

In these approaches, a single CNN is trained on both loca-
tion and classification, i.e. ,prediction of bounding boxes and
estimation of the class probabilities of the detected bound-
ing boxes. This group of approaches is the state-of-the-art
in detection methods because they are very effective and
very fast. They are the best performing and most represen-
tative deep learning-based object detection models, as stated
in [63]. In this Section, we address the most representative
methods, namely, YOLO [3,48–50]3), EfficientDet [54], and
RetinaNet [28]. We offer a brief description of these detec-
tion models and their principal differences. We pay special
attention to YOLO because it performed best in our work.
•YOLO: In regard to region-based approaches, as explained
in Sect. 2.2.1, object detection is performed in two stages:
region proposal and final classification. This means that the
classification is not performed by looking at the complete
image, but by viewing selected regions of the image. In order
to overcome this disadvantage, a new method called YOLO,
You-Only-Look-Once was proposed [48]. YOLO is a single
(and powerful) convolutional neural network that looks the
image once, i.e. ,the input image is fed into a single CNN and

3 YOLOv5 was released in June 2020. See https://github.com/
ultralytics/yolov5.

the output is the simultaneous prediction of both the bounding
boxes (localization) and the category probabilities (classifi-
cation) of the detected objects. It is very fast because the input
image is processed in a single pass by the CNN.Over the past
few years, many versions of YOLO have been developed:
YOLOv1 [48], YOLOv2 [49], YOLOv3 [50], YOLOv4 [3]
and YOLOv53. They use different approaches in terms of
subdivision, scales, anchors, and architectures to improve
performance. Themain strategy ofYOLO is described below.

The main idea behind YOLO is very simple: The input
image is divided into a grid of S × S cells, and YOLO can
detect B objects for each cell. For each detected bounding
box, YOLO computes:

– (x, y, w, h): variables that define the detected bounding
box, i.e. ,location (x, y) and dimension (width, height),

– p: confidence score that gives the probability that the
bounding box contains an object (P(Object)),

– pi : for i = 1 · · · K : probability distribution over all K
possible classes, i.e. ,pi is a conditional class probability
(P(Classi |Object)).

This means that for each bounding box, YOLO provides an
array of R = 4 + 1 + K elements: (x , y, w, h, p, p1 · · ·
pK ), as illustrated in Fig. 24. At the testing stage, an object of
class i is detected if P(Object) ×P(Classi |Object) is greater
than a confidence threshold. Since B bounding boxes can be
detected in a grid cell, an array of Q = B × R elements is
computed for each cell. The simplicity of YOLO (see Fig. 2)
is based on the fact that (i)the architecture has only standard
convolution layers with 3 ×3 kernes and max-pooling layers
with 2 ×2 kernels, and (ii)the output of the CNN is a tensor
of S × S × Q. This means that we have 5 + K elements
per bounding box for each grid cell that give us information
about the localization of the bounding box and the category
probability.
• RetinaNet: RetinaNet architecture [28] is another new
object detection model. It combines the pyramidal feature
extraction structure [29]with a residual architecture (ResNet)
[16] that has yielded promising results for image classifica-
tion. The pyramidal approach consists of decreasing the size
of the image several times and making predictions for each
of those sizes. Another novelty of this architecture is the
shift from cross-entropy to a ‘focal loss’-based objective that
reduces the penalty for well classified classes while punish-
ing mis-classifications more aggressively.
• EfficientDet: In EfficientDet [54], improvements to the
architecture design are performed and analyzed: (i)BIFPN
uses a weighted bidirectional feature pyramid network to
fuse fast multi-scale features. (ii)A scaling method is used

4 In our experiments, K = 1 because there is only one class to detect:
‘defects.’

123

https://github.com/ultralytics/yolov5
https://github.com/ultralytics/yolov5


72 Page 6 of 16 D. Mery

Fig. 2 YOLO strategy for object detection

Fig. 3 Block diagram of the proposed method. See examples of images a, b, c, and d in Fig. 4

to scale depth, width, resolution and prediction networks
simultaneously. This method achieves better performance
than RetinaNet and YOLOv3 in terms of accuracy and speed
in the COCO dataset5.

5 The COCO dataset is a well-known object recognition dataset that
contains complex images of common objects (in a natural context) [30].

2.4 Overview

An overview of our proposed method is presented in Fig. 3.
The recognition approach has two stages: training and test-
ing. In our method, training is performed using real X-ray
images of aluminum castings with simulated defects only
(see Fig. 4). Thus, no real defect is used for training purposes
because the number of real defects is very low. Testing is
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Fig. 4 Simulation of defects: a Original X-ray image with no defect.
b Simulated projections of ellipsoids. c X-ray image with simulated
defects (superimposition of simulated ellipsoids onto the original X-ray
image). d Bounding boxes of the simulated defects. Using this method,

it is very simple to generate training data, i.e. ,X-ray images with (sim-
ulated) defects and location of the defects, where the bounding boxes
are obtained with no manual annotation

achieved using real X-ray images of aluminum castings with
real defects. Thus, the reported performance on the testing
dataset corresponds to a real scenario.

2.5 Simulation of ellipsoidal defects

We use simulated ellipsoidal defects to train the detec-
tion model6. In this Section, we summarize the simulation
approach. For further details and more examples, see [33,37,
40].

X-ray imaging can typically be modeled using the absorp-
tion law, which characterizes the intensity distribution of
X-rays through matter [32] and a linear model [33]:

I = I (z) = Aϕ0e
−μz + B, (1)

where A and B are the constant parameters of the linear
model; and μ the absorption coefficient, z the thickness of
the irradiated matter, ϕ0 the incident energy flux density. In
this case,ϕ0 exp(−μz) corresponds to the energy flux density
after passage through matter with the thickness of z. If the
material has a bubble of thickness d (with null absorption
coefficient), the output energy flux density can be written as
ϕ0 exp(−μ(z−d)) and the newX-ray image can be modeled
from (1) by:

I ′ = I (z − d) = Aϕ0e
−μ(z−d) + B (2)

where I (z−d) is the new gray-value of the X-ray image with
the simulated defect, which can be rewritten as:

I ′ = I (z − d) = (I (z) − B)eμd + B. (3)

Thus, it is possible to model the X-ray image of a casting
with a simulated defect ‘I (z − d)’ from the X-ray image of

6 In the simulation, we chose to use ellipsoidal models instead of GAN
models because [37] reports that the former perform better.

Fig. 5 Simulation of an ellipsoidal defect: for every pixel of the X-ray
image, (x, y) ∈ �, the corresponding X-ray beam is estimated. The
two intersection points of the X-ray beam with the modeled ellipsoid
surface are computed, and the length of the X-ray beam in the bubble
d is calculated as the distance between the intersection points

casting with no defect ‘I (z)’ and a 3Dmodel of the defect. In
our approach, a 3D defect is modeled as an ellipsoidal cavity,
which is projected and superimposed onto real X-ray images
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Fig. 6 Similarity between real and simulated defects: grayscale (top)
and 3D (bottom) representations

of a homogeneous casting with absorption coefficient μ as
shown in Fig. 5.

The synthetic image simulation process is described
below:

• Step 1: A real X-ray I image of an aluminum casting is
acquired. The size of the image is N × M pixels. Image
I typically has no defect.

• Step 2: An ellipsoid is defined in 3D space. The size
(dimensions of each axis), location in 3D space (3D coor-
dinates of the center of the ellipsoid) and orientation (3
rotations of each axis) are determined.

• Step 3: For each pixel (x, y) of image I, the two inter-
sections of the X-ray beam with the ellipsoid surface are
calculated, and the distance between them (d) is com-
puted as illustrated in Fig. 5. If there is no intersection, d
is set to zero. As output, we obtain a matrix d of N × M
elements, in which element d(x, y) is the corresponding
length d for pixel (x, y).

• Step 4: A new image I′ of N × M elements is defined.
For each pixel (x, y) of I′, the corresponding gray-value
is computed according to (3) as:

I ′(x, y) = (I (x, y) − B)eμd(x,y) + B. (4)

The approach simulates only the defect and not the whole
X-ray image of the casting, because for d = 0, I ′(x, y) =
I (x, y).

The new gray-value of a pixel, where the 3D defect is
projected, depends on just four parameters:

1. The original gray-value ‘I (x, y)’,
2. The linear absorption coefficient of the examinedmaterial

‘μ’,
3. The calibration parameter ‘B’, and
4. The length ‘d’ of the intersection of the 3D flaw with the

modeled X-ray beam, which is projected into the pixel
(see Fig. 5) .

A simulation of an ellipsoidal defect of any size and orien-
tation can be performed in any position of the casting. In
the simulation, we must consider the fact that the size of the
ellipsoid should not be larger than the thickness of the casting
where the simulated defect is projected. Some examples are
illustrated in Fig. 4.

In our work, we use ellipsoidal defects because it is a
very simple model with known geometry. Furthermore, the
similarity between real and simulated defects is good enough,
as we can see in Fig. 6.

2.6 Training

The detection model is trained using real X-ray images with
simulated ellipsoidal defects only as follows (see Figs. 3, 4):

1. Representative X-ray images of the casting object with no
defects are selected. The idea is to have X-ray images of
every part of the object being tested.

2. In each representative X-ray, random ellipsoidal defects
are simulated. The idea is to superimposemany ellipsoidal
defects onto the defect-freeX-ray images.Here, the length
of each axis of the ellipsoid, the orientation, and the 3D
location are set randomly. It is worthwhile to mention
that the simulated defects must be located in the object,
i.e. ,no simulated defect may be located in the holes of the
regular structure of the casting. As we can see in Fig. 4c,
all simulated defects are located on the object, and none
are located outside of it (in the white areas).

3. For each simulated defect, a bounding box is defined as
a rectangle that encloses the projected ellipsoid. Using
these three steps, it is very simple to generate training
data. Now, we have X-ray images with many (simulated)
defects with their locations and the bounding boxes are
obtained with no manual annotation.

4. We split the X-ray images (with simulated defects) into a
set for training purposes and a set for validation purposes.
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Fig. 7 Anexample ofX-ray images fromseriesC0001 and seriesC0021
ofGDXray. Each series contains X-ray images of a specific wheel type

5. The detection model is trained using training and valida-
tion sets.

Details of numbers of images and simulated defects per
image are provided in Sect. 3.

2.7 Testing

The trained model is tested on X-ray images with no defects
and with real defects. The idea is to estimate the performance
in a real scenario. Thus, no simulated defects are used in the
testing dataset.

To build the testing dataset, we need X-ray images of the
same casting type with real defects that are manually anno-
tated by human operators.

Performance and computational time must also be mea-
sured in the testing stage.

3 Experimental results

In this Section, we present the experiments and results
obtained using the proposed method. We used eight mod-
ern algorithms for object detection: YOLOv3 [50] (versions
SPP and Tiny), YOLOv53 (versions ‘s’, ‘l’, ‘m’ and ‘x’),
RetinaNet [28] and EfficientDet [54] (see details of imple-
mentation in Section 3.3). YOLOv5 and EfficientDet were
released in 2020 and the others were released over the
past three years. As a baseline, we included two additional
methods that were developed earlier: (i)Xnet based on a con-
volutional neural network [37] and (ii)CLP-SVM [34] based
on handcrafted features and SVM classifier. Both methods
use the sliding windows strategy. According to Table 1, Xnet
is a deep learningmethod and CLP-SVM is a classic method.

The Section is subdivided into four main parts. The first,
Sect. 3.1, focuses on the construction of the datasets using
real and simulated defects. The second, Sect. 3.2, shows the
results obtained. The third, Sect. 3.3, describes the imple-
mentation in detail. Finally, Sect. 3.4 offers a discussion of
our results.

3.1 Datasets

In our experiments, we used GDXray dataset [42]7. From
GDXray, we used series C0001 for the main experiments
with 72 X-ray images, and series C0021 for an additional
experiment with 37 X-ray images. Each series contains X-
ray images of a specific casting type as illustrated in Fig. 7.
Both series have an annotated ground truth that includes real
defects. In each series, there is a unique casting piece that
is radiographed from different points of view. The follow-
ing procedure must be performed for each casting type. The
explanation and main experiments are provided below for
series C0001. In the discussion, we include experiments on
series C0021 to validate the proposed method.

Series C0001 belongs to an aluminum wheel commonly
used for testing purposes (see, for example, [5,37–39,47]).
These castings present two types of defects. The first is a
group of blow hole defects (with ∅ = 2.0 – 7.5 mm) which
were already present in the castings. They were initially
detected during (human) visual inspection (see, for exam-
ple, Fig. 1). The remaining defects in these castings were
produced by drilling small holes (with ∅ = 2.0–4.0 mm) in
parts of the casting that were known to be difficult to detect
(for example, on the edges of regular structures).

3.1.1 Training and validation subsets

We used the following procedure to build the training and
validation subsets:
• Pre-processing: The size of the images of series C0001 is
572×768 pixels. We resized them by a factor of two to 1144
×1,536 pixels.
• Selection: Series C0001 has 72 X-ray images. For each
resized X-ray image, we randomly select 100 windows of
640 ×640 pixels in locations where there is no real defect.
An example is given in Fig. 4-a. Of the 100 images, 90 are
selected for the training subset and 10 for the validation sub-
set.
• Simulation: In each window selected for the previous step,
we simulate defects using the ellipsoidal model explained
in Sect. 2.5. We can use a Python function given in our
repository2. The input variables of this function are the size
of the three axes of the ellipsoid, the location, and orientation
in 3D space of the ellipsoid, the linear absorption coefficient
μ of the casting, and a parameter called xmax defined as the
maximum thicknesswhere gray values areminimal (it is used
to compute parameter B in (3)). We used the same configura-
tion reported in [40]. In our experiments, we set the number
of simulated defects per image randomly (from 2 to 20) along
with the size and orientation of the three axes of the ellipsoid

7
GDXray can be used free of charge for research and educational

purposes only.
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Fig. 8 Results for seven testing images of C0001 (one per column).
The first row is the original testing image. The following eight rows are
the results obtained using YOLOv3-Tiny, YOLOv3-SPP, YOLOv5s,
YOLOv5l, YOLOv5m, YOLOv5x, RetinaNet and EfficientDet, respec-

tively (ground truth (GT), in red, and detection (DT) in green). Baseline
methods are not shown due to low performance and due to the space
limitations of the article format
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Fig. 9 Different good detections (ground truth (GT) in red, and detec-
tion (DT) in green). The size of the cropped images is 140 ×140 pixels.
The almost perfect detection of the first row (the difference is a cou-
ple of pixels) yields an IoU score of 0.5 ∼ 0.6. IoU criterion in small
defects depends on very accurate ground truth definition. Clearly, in
these examples, the detection is more accurate than the ground truth.
As such, we set the IoU-threshold in our work at α = 0.25

(from 1 to 9mm and from 0 to 2π respectively). Examples
are shown in Fig. 4. The defects have an elliptical shape of
different sizes, and they are located and orientated in differ-
ent ways. The size of the axes varies randomly from 1 to 9
mm. In these examples, we show the entire image and the
simulated defects. We store the coordinates of the bounding
box that enclosed each simulated defect.

In summary, for seriesC0001,wehave7,200X-ray images
of 640 ×640 pixels with around 80,000 simulated defects.

3.1.2 Testing subset

We use the following steps to define the testing subset.
• Pre-processing: The size of the images of series C0001 is
572×768 pixels. We resized them by a factor of two to 1144
×1,536 pixels.
• Selection: Series C0001 has 72 X-ray images. For each
resized X-ray image, we randomly selected 10 windows of
640×640 pixelswhichmay contain real defects. An example
is given in Fig. 8-first row.

In short, for series C0001, we have 720 X-ray images of
640 ×640 pixels with around 650 real defects. It is worth
mentioning that there is no simulated defect in the testing
dataset.

Fig. 10 Precision and recall curves for IoU-threshold α = 0.25

Table 2 Evaluation metrics for α = 0.25

Method AP Pr∗ Re∗ F∗
1

YOLOv3-Tiny 0.8905 0.8441 0.9414 0.8901

YOLOv3-SPP 0.8858 0.8401 0.9321 0.8837

YOLOv5s 0.8962 0.8512 0.9754 0.9091

YOLOv5l 0.8902 0.8654 0.9621 0.9112

YOLOv5m 0.8929 0.8445 0.9773 0.9061

YOLOv5x 0.8887 0.8692 0.9546 0.9099

RetinaNet 0.6482 0.7362 0.6018 0.6622

EfficientDet 0.5091 0.4887 0.7496 0.5917

Xnet 0.5222 0.6271 0.6309 0.6290

CLP-SVM 0.1478 0.3027 0.3187 0.3105

3.2 Results

After training, the models were tested on the testing X-ray
images. Some of them are illustrated in Fig. 8. Some models
performed well visually, especially the YOLO-based detec-
tors. As we will see in the next experiments, the baseline
methods (Xnet and CLP-SVM) did not perform well.

An evaluationmetric based on the Intersection overUnion
(IoU) score is used [30] to evaluate the performance of the
detectors. In this definition, an existing defect is considered
to be detected if the overlap between defect and detection is
high enough. Two bounding boxes are used to measure the
overlap: one for the defect, called the ground truth GT (see
red rectangles in Fig. 9), and one for the detection DT (see
green rectangles in Fig. 9). Using these bounding boxes, the
normalized overlap is defined as:

IoU = area(GT ∩ DT)
area(GT ∪ DT)

. (5)
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Fig. 11 Average precision (AP) depending on IoU-threshold (α)

The criterion establishes that a defect is detected if IoU > α,
where α is called the IoU-threshold. In general, the α is set
at 0.5. Nevertheless, as we can see in Fig. 9, for very small
defects, this IoU-threshold would be so tight that half of the
detections would likely be wrong. A more reasonable IoU-
threshold for our experiments should be lower, with α = 1

4
for example all defects of Fig. 9 would be correctly detected.
In our experiments, we evaluate the performance for α =
1
10 ,

1
5 ,

1
4 ,

1
3 ,

1
2 .

Using this IoU-criterion, the statistics of true positives
(TP), false positives (FP) and false negatives (FN) can be
computed, andwith them, the precision, recall, and F1 values
are calculated as:

Pr = T P

T P + FP
, Re = T P

T P + FN
, F1 = 2

Pr Re

Pr + Re
.

(6)

By varying the confidence threshold of the detectors, we will
obtain different (Pr , Re) values that can be plotted on the
precision-recall curve. In Fig. 10, we show the precision-
recall curve for α = 0.25. In Table 2, we report the
(Pr∗, Re∗) values at maximum F1 value (F∗

1 = max(F1)
). Finally, in our experiments, we use the average precision
(AP), computed as the area under the precision-recall curve
as an evaluationmetric of the detector’s performance. Table 2
gives the AP value for α = 0.25. In Fig. 11, we show the
AP values for different IoU-thresholds (α).

3.3 Implementation

All modern methods were implemented in Python in Google
Colab notebooks1. The following well-known implementa-
tions were adapted to our task:

– YOLOv3: Ultralytics8

– YOLOv5: Ultralytics3

– RetinaNet: Fizyr9

– EfficientDet: Roboflow10

The use of these methods in aluminum inspection does
not present any practical problems at the training or testing
stages, such as configuration, versions, etc.

All object detection methods and the X-ray images used
for training, validation and testing in this work for aluminum
defect detection are available on our public repository2.
Details of computational time are given in Table 3.

3.4 Discussion

In our experiments, we implemented and tested eight modern
object detectors based on YOLO, RetinaNet, and Efficient-
Det, and two baseline methods (Xnet and CLP-SVM) based
on CNNs and handcrafted features, respectively. The main
results are given in terms of performance (Figs. 10, 11 , and
Table 2) and computational time (Table 3). In terms of perfor-
mance, we have identified three groups according to average
precision (AP): (i)YOLO-based methods with AP > 0.88,
(ii)RetinaNet, EfficientNet, and Xnet with AP = 0.5–0.65,
and (iii)CLP-SVMwithAP< 0.15. In addition, we identified
two groups according the testing stage computational time:
(i)modern object detection methods with only a few tens of
milliseconds per image (ii)baseline methods with more than
1 sec/image.

In defect detection in aluminum castings, since the defects
are so small (some of the defect diameters are only 16 pixels),
and the manual definition of the bounding boxes of the real
defects are very inaccurate, we relaxed the IoU-threshold
to α = 0.25, so we can consider those small detections as
correct (see Fig. 9).

In the reported results (see, for example, Table 2), it
is evident that baseline methods Xnet and CLP-SVM did
not perform very well. On the other hand, the YOLO-
based detectors did perform very well (and at very similar
levels), and YOLOv5-methods performed best (better than
YOLOv3-methods at IoU-threshold α > 0.25). Moreover,
RetinaNet and EfficientDet did not perform well, probably
because they were designed for larger objects. To overcome
this problem, we could increase the resolution of the training
images, but that would increase the training time consider-
ably.

In order to explain what the results mean, we will provide
more details about YOLOv5s because it achieved one of the

8 https://github.com/ultralytics/yolov3.
9 https://github.com/fizyr/keras-retinanet.
10 https://blog.roboflow.com/training-efficientdet-object-detection-
model-with-a-custom-dataset/.
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Table 3 Computational time

Method Number of Epochs Training/epoch [sec] Training total [hours] Testing/image [msec]

YOLOv3-Tiny 75 87 1.82 6

YOLOv3-SPP 75 87 1.81 16

YOLOv5s 75 120 2.49 11

YOLOv5l 75 344 7.16 29

YOLOv5m 75 197 4.36 17

YOLOv5x 75 664 13.84 43

RetinaNet 25 107 0.74 56

EfficientDet 200 250 13.89 33

Xnet 100 64 1.78 1.2 × 103

CLP-SVM – – 0.25 15 × 103

highest evaluation metrics. As shown in Table 2, for α =
0.25, 97.54% of all existing defects were correctly detected
(recall), and 85.12% of all detections were true positives.
These metrics correspond to F1 = 0.9091. We observe in
Fig. 11 that the performance decreases with the IoU score (α
value): the larger α, the lower the average precision (AP). For
instance, in YOLOv5s, for α = 0.25, AP is 0.8962, however,
for α = 0.33 and 0.5, AP is 0.8075 and 0.3174 respectively.
Finally, according to Table 3, YOLOv5s was trained in just
2.5 hours, and the computational time in testing stage was
only 11 ms per testing image, i.e. ,90 images per second.

For these reasons, we believe that the proposed me-
thodology based on YOLO object detectors could satisfy
the requirements of the industry according to the following
attributes:
• Simplicity: The construction of the training dataset is very
simple because we need a low number of defect-free X-ray
images11 and a simulation process for including simulated
defects in the dataset. This means that no manual annota-
tion is required. Furthermore, we used well-established deep
object detectionmethods that have been easily adapted to our
task. The codes are implemented in Python and executed in
Google Colab with no intricate configuration and free access
to GPUs.
• Effectiveness: The performance of the object detectors
based on YOLOv5 was very high. The average precision was
0.89–0.90 and the F1 factor was 0.91 as shown in Table 2.
• Speed: The models were trained in a matter of hours. In
addition, the computational time of one testing image is only
a few tens of milliseconds, as we can see in Table 3, i.e. ,it
can be used in real-time inspection to aid human operators.
It is worth mentioning that the computational time of the
baseline methods is extremely high because they use the
sliding-windows strategy.

11 In our experiment series C0001 has only 72 X-ray images.

Although the YOLO methods performed very well, one
disadvantage of the proposedmethod is that each casting type
needs an ad-hoc trained model. That means that if we train
the model on images of a specific wheel type (e.g. ,series
C0001 of GDXray, as we did in our experiments), and we
use this trainedmodel onX-ray images of another wheel type
(e.g. ,series C0021 of GDXray), it may not perform well
(in this example AP = 0 because no real defect could be
detected). The reader can see the differences between these
two wheel types in Fig. 7. This result was expected because
the model has learned about the details of the regular struc-
tures of one casting type that are not present in the another
(and vice versa, the model has not learned the details of the
other casting type). However, if we train a new model for
this specific wheel type –using the methodology reported in
this work–, the performance is increased to a very high level.
In the aforementioned example, for wheel C0021 with 37
X-ray images, we obtain performance similar to the perfor-
mance obtained for wheel C0001 using YOLOv5s, as shown
in Table 4.

Toovercome the disadvantageof havingone trainedmodel
per casting type, we could train a single model with X-ray
images from both casting types. In our example, if we train
and test the model using images of both casting types, the
object detector can recognize defects in both (the perfor-
mance is, however, slightly lower, as shown in Table 4).
However, with this solution, we are not avoiding a new
training when we have a new casting type. Moreover, the
computational time of this new training is higher (becausewe
have more training images), and with the new training, the
individual performances must be evaluated again to ensure
the effectiveness of the model on all included casting types.
For these reasons, we recommend that a specific model be
learned for each casting type.

It could be interesting to analyze how many casting types
can use a single model. We believe, however, that it is ambi-
tious to have one model for all wheel types. It would be best
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Table 4 Evaluation of YOLOv5s on two wheel-types

Training with Testing on AP Pr∗ Re∗ F∗
1

A A 0.8962 0.8512 0.9754 0.9091

A B 0.0000 0.0000 0.0000 0.0000

B B 0.8811 0.8764 0.9155 0.8955

A + B A 0.8817 0.9754 0.8445 0.9053

A + B B 0.8654 0.8436 0.8653 0.8543

A: wheel C0001, B: wheel C0021.

to have one model for each type. This should not be a prob-
lem for the industry, as the training process can be completed
in just 2.5 hours.

4 Conclusions

In this article, we proposed a training strategy that uses
defect-free X-ray images of a casting with the superimposi-
tion of simulated defects.Nomanual annotations are required
because the locations of all simulated defects are known. In
addition, tests are performed using real X-ray images of alu-
minum castings with real defects. Thus, the reported testing
dataset corresponds to a real scenario.

We used well-established object detection methods (YO-
LO, RetinaNet, and EfficientDet) to detect defects in alu-
minum castings. All of themwere developed in the past three
years, andmany examples are available in public repositories
that could be adapted to our task. The strategies implemented
are simple, effective, and fast. The training stage requires a
relatively small number of X-ray images. In our experiments,
YOLO-based detectors perform best. One of the models,
YOLOv5s, was trained in just 2.5 hours. In addition, the
testing dataset (with real defects) performed very well (aver-
age precision was 0.90 and the F1 factor was 0.91), and the
computational time is very low (the method is able to process
90 X-ray images per second, i.e. ,this solution can be used in
real-time inspection to aid human operators).

The code and the datasets used in this paper have been
uploaded to a public repository so that anyone can reproduce
(and improve upon) the reported results or re-use the code in
other inspection tasks.

In the coming years, deep learning-based methods will
be used more frequently by the aluminum castings industry
due to their high effectiveness. This paper offers an academic
contribution to such efforts.

In the future, we will model random shapes that can be
used to simulate other kind of defects such as cracks. This

feature can be very useful in the automated inspection of
welds.
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