
Machine Vision and Applications (2021) 32:67
https://doi.org/10.1007/s00138-021-01194-6

ORIG INAL PAPER

A data independent approach to generate adversarial patches

Xingyu Zhou1 · Zhisong Pan2 · Yexin Duan3 · Jin Zhang3 · Shuaihui Wang2

Received: 22 July 2020 / Revised: 27 February 2021 / Accepted: 5 March 2021 / Published online: 5 April 2021
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021

Abstract
Deep neural networks are vulnerable to adversarial examples, i.e., carefully perturbed inputs designed to mislead the network
at inference time. Recently, adversarial patch, with perturbations confined to a small and localized patch, emerged for its
easy accessibility in real-world attack. However, existing attack strategies require training data on which the deep neural
networks were trained, which makes them unsuitable for practical attacks since it is unreasonable for an attacker to obtain
the training data. In this paper, we propose a data independent approach to generate adversarial patches (DiAP). The goal is
to craft adversarial patches that can fool the target model on most of the images without any knowledge about the training
data distribution. In the absence of data, we carry out non-targeted attacks by fooling the features learned at multiple layers
of the deep neural network, and then employ the potential information of non-targeted adversarial patches to craft targeted
adversarial patches. Extensive experiments demonstrate impressive attack success rates for DiAP. Particularly in the blackbox
setting, DiAP outperforms state-of-the-art adversarial patch attack methods. The patches generated by DiAP also function
well in real physical scenarios, and could be created offline and then broadly shared.

Keywords Adversarial patch · Data independent · Physical attack

1 Introduction

Deep neural networks (DNNs) perform dramatically well in
various visual tasks, including image classification, object
detection, and semantic segmentation.However, they are also
susceptible to being fooled by adversarial perturbations: per-
turbations combined with data inputs in a specific way, cause
intentional misclassification.

Attacking deep neural networks has drawn an increasing
attention, and researchers havemade great progress in under-
standing the space of adversarial perturbations, beginning in
the digital domain (e.g. by modifying images correspond-
ing to a scene) [1–4], and more recently in the physical
domain [5–8]. Compared to attacks in the digital domain,
adversarial perturbations encounter more challenges when
attacking in the physical world: (1) Perturbations in the dig-

B Xingyu Zhou
universezhou@sina.cn

1 Communication Engineering College, Army Engineering
University of PLA, Nanjing 210007, China

2 Control Engineering College, Army Engineering University
of PLA, Nanjing 210007, China

3 Zhenjiang Campus, Army Military Transportation University,
Zhenjiang 212000, China

ital world can be so small in magnitude that it is impossible
for a camera to perceive them due to the sensor imper-
fections. (2) The perturbations generated by many current
algorithms are image-dependent. If the image in front of the
surveillance camera changes, the attacker needs to generate
a corresponding new perturbation immediately, which is dif-
ficult to achieve in physical attacks. (3) The perturbed image
is difficult to maintain at a precise distance and angle in the
view of surveillance camera, which requires perturbations to
be robust to various transformations (e.g. rotations or scaling)
and locations.

To tackle these challenges and achieve attacks in physi-
cal scenarios, Brown et al. [9] proposed visible adversarial
perturbations, called Adversarial Patch (GoogleAP). These
adversarial patches can be printed, added to any scene, pho-
tographed, and presented to deep neural networks. Even
when the patches are small, the deep neural network is inca-
pable to identify real objects in the scene and report a false
class. Adversarial patch is image-independent and robust for
rotation and scaling, can be placed anywhere within the field
of view of the deep neural network, and causes the deep neu-
ral network to output a targeted class (Fig. 1).

Adversarial patch can be applied to traffic signs to mis-
lead automated vehicles [10], or placed near products to fool

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00138-021-01194-6&domain=pdf
http://orcid.org/0000-0003-3439-4450


67 Page 2 of 9 X. Zhou et al.

Fig. 1 Examples of real-world adversarial patch attacks against VGG
16.We can observe that each object ismisclassifiedwhen the adversarial
sticker is placed beside it

online shopping platforms [11], or even affixed to clothing
to hide attackers from surveillance cameras [12,13]. Adver-
sarial patch brings a serious challenge to the safety of deep
neural networks. At the same time, research on adversarial
patch helps to improve the defense capability of deep neural
networks against malicious attacks.

However, GoogleAP requires training data on which the
target model is trained. The data dependency brings barriers
to the application of GoogleAP in the real world as training
data of the target system is generally unavailable. For exam-
ple, autonomous driving companies never tell the publicwhat
data they use to train detectors, online shopping website pro-
tects the data used to train their classifier from being stolen,
and face verification devices carefully store their face data in
their systems.

In order to address these shortcomings, we present a
novel data independent approach to craft adversarial patches
(DiAP). The objective of DiAP is to generate an adversarial
patch that can fool the target model on most of the images
without any knowledge about the data distribution. Inspired
by GD-UAP [14], DiAP perform non-targeted attacks by
fooling the features learned by the deep neural network. In
other words, we formulate this as an optimization problem to
calculate the non-targeted adversarial patch, which can fool
the features learned on each layer of the deep neural network
and eventually making it to be misclassified as an adversar-
ial example. After generating the non-targeted adversarial
patch, DiAP takes it as an important background item to help
an attacker extract the features of the target class for craft-
ing the targeted adversarial patch. Experimental results show
that the adversarial patch generated by DiAP exhibits strong
attack capabilities. In particular, by extracting vague infor-
mation about training data from non-targeted patches, DiAP
outperforms the state-of-the-art attack methods in blackbox
attack scenarios.

2 Related work

Most of prior work has focused on generating visually imper-
ceptible adversarial perturbations which cover the entire
input image [15,16]. This type of attack is effective in digital
scenes, but is difficult to deploy in actual physical scenes. The
camera equipment cannot carefully capture the small pertur-
bation on the input, resulting in the failure of the adversarial
attack in real world.

Some researchers have tried to add visible perturbations
at specific locations in the input image to attack deep neu-
ral networks [7,17,18]. Compared to visually imperceptible
adversarial perturbations, the visible perturbations at specific
locations require fewer pixels to change, and allow for sig-
nificant changes to specified pixel points. This kind of attack
performs quite well in digital domain and shows some attack
capabilities in the physical scene. However, since they can
only be placed in specific locations in the input image, the
application of these perturbations in physical attacks is con-
fined.

Recent work by [9] and [19] have studied adversarial per-
turbations under a new attack model - adversarial patch,
which is restricted to a small region and can be placed
anywhere on the input image. This attack is based on the
assumption that machine learning models operate without
human validation of each input, so malicious attackers may
not care about the imperceptibility of their attacks.Moreover,
even if humans are able to notice adversarial patch, they may
view it as an art form rather than some way of attacking the
deep neural network.

It is observed that the objective presented by [9] and [19]
to craft adversarial patch requires real and clean examples
to participate in training. However, in physical attacks, it is
difficult for malicious attackers to obtain training data for the
target system in general. Therefore, this paper presents a data
independent attack method, DiAP.

From the perspective of whether there is an attack target,
adversarial attack against the deep neural network can be
divided into non-targeted and targeted. Non-targeted attack
don’t specify the prediction class of the deep neural network,
and the adversarial examples may be identified as any cat-
egory other than the correct one. However, the purpose of
targeted attack is to trick the deep neural network into rec-
ognizing adversarial examples as specified categories. Our
DiAP can carry out both non-targeted attack and targeted
attack.

3 DiAP for non-targeted attack

In the first setup, we explore generating adversarial patches
that can be used for non-targeted attackwithout training data.

123



A data independent approach to generate adversarial patches Page 3 of 9 67

3.1 Setting andmethod

Let μ denote a distribution of images in �n , and f denote a
pre-trained deep neural network that outputs for each image
x ∈ �n an estimated label f (x). We want the adversar-
ial patch p to attack the target model by replacing a part
of the image x , regardless of the scale, rotation or location
of the patch. The adversarial example A(p, x, l, t) could be
achieved by a patch application operator which first applies
transformations t (e.g. rotations or scaling) to the patch p,
and then applies the transformed patch p to the image x at
location l. That is, the goal ofDiAP to perform a non-targeted
attack is to seek an non-targeted adversarial patch pnt such
that

f (A(pnt , x, l, t)) �= f (x), for x ∼ μ (1)

In the absence of training data,we fool the features learned
at individual layers of the deep neural network to finally craft
the non-targeted adversarial patch pnt . To achieve this goal,
we introduce a variant of the spurious activation loss pro-
posed in [20]. In particular, the non-targeted patch pnt is
trained to optimize the spurious activation objective function

argmax
pnt

El∼L,t∼T

[
log

(
K∏
i=1

‖Li (A(pnt , Iz, l, t)) ‖2
)]

(2)

where L is a distribution over locations in the image, and
T is a distribution over transformations of the patch. Iz is
the background image with RGB = [0, 0, 0] for all pixels.
Li (A(pnt , Iz, l, t)) is the output tensor at layer i when the
image A(pnt , Iz, l, t) is fed to the network f . K is the number
of layers in f at which we maximize the output caused by
A(pnt , Iz, l, t). The proposed objective computes product of
output magnitude at all the individual layers. Note that the
RGB values of the background image Iz are all zero, which
will notmislead the features extracted by the various layers of
the deep neural network. Therefore, the erroneous features
extracted by the network are actually caused by the non-
targeted adversarial patch pnt .

We would ideally want the patch pnt to provoke as much
strong disturbance at all layers as possible in order to fool the
features distilled by multiple layers and attack the network,
that is, the larger E [·] in Eq. (2), the greater the contami-
nation caused by pnt . During the training, the patches are
transformed and then digitally inserted on a random location
on the background image Iz , andwe optimize Eq. (2) without
any training data. The entire process is detailed in Algorithm
1.

Algorithm 1: Computation of non-targeted adversarial
patch pnt
Data: Target deep neural network f , background image Iz ,

distribution over location L , distribution of transformations
T , number of iterations I temax , learning rate η.

Result: Non-targeted adversarial patch pnt .
1 Randomly initialize pnt
2 I te = 0
3 while I te ≤ I temax do
4 Randomly select parameter l ∼ L and t ∼ T

5 Lossnt = − log

(
K∏
i=1

‖Li (A(pnt , Iz, l, t)) ‖2
)

6 pnt = pnt − η ∂Lossnt
∂ pnt

7 I te = I te + 1
8 end
9 Return pnt

For convenience of optimizing Eq. (2), we added a negative sign after
the logarithm operation, that is, the smaller Lossnt defined in line 5, the
stronger disturbance caused by pnt

3.2 Experiments and results

We utilized 5 pre-trained ImageNet models, viz. Inception-
V3 [21], ResNet-50 [22], Xception [23], VGG-16 [24] and
VGG-19 [24].1 For all experiments, the weights of these
models are kept frozen throughout the optimization process.
We test our attack from three aspect: (1) The Whitebox-
SingleModel Attack trains and evaluates a single patch on a
single model, and the process is repeated on the models men-
tioned above. (2) The Whitebox-Ensemble Attack jointly
trains a single patch across five models, and then evaluates
the patch by averaging the win rate across all these mod-
els. (3) The Blackbox Attack is similar to the leave one
method, jointly training a single patch across four of the
ImageNet models, and then evaluating the blackbox attack
on the fifth model. The blackbox attack is very similar to
the real-world attack, because the attacker knows neither the
structure, parameters, nor the training dataset of the target
model. In the process of training, we use the gradient descent
optimizer and set the hyper-parameter I temax = 800 and
η = 8 for Algorithm 1.

In the testing phase, we need images to evaluate the attack
performance of the patch, although our approach is data
independent when generating the patch. Note that there are
images in the ILSVRC 2012 validation data that are misclas-

1 https://github.com/fchollet/deep-learning-models/releases/
download/v0.5/inception_v3_weights_tf_dim_ordering_tf_kernels.
h5 https://github.com/keras-team/keras-applications/releases/
download/resnet/resnet50_weights_tf_dim_ordering_tf_kernels.
h5 https://github.com/fchollet/deep-learning-models/releases/
download/v0.4/xception_weights_tf_dim_ordering_tf_kernels.h5
https://github.com/fchollet/deep-learning-models/releases/download/
v0.1/vgg16_weights_tf_dim_ordering_tf_kernels.h5 https://
github.com/fchollet/deep-learning-models/releases/download/v0.
1/vgg19_weights_tf_dim_ordering_tf_kernels.h5.

123

https://github.com/fchollet/deep-learning-models/releases/download/v0.5/inception_v3_weights_tf_dim_ordering_tf_kernels.h5
https://github.com/fchollet/deep-learning-models/releases/download/v0.5/inception_v3_weights_tf_dim_ordering_tf_kernels.h5
https://github.com/fchollet/deep-learning-models/releases/download/v0.5/inception_v3_weights_tf_dim_ordering_tf_kernels.h5
https://github.com/keras-team/keras-applications/releases/download/resnet/resnet50_weights_tf_dim_ordering_tf_kernels.h5
https://github.com/keras-team/keras-applications/releases/download/resnet/resnet50_weights_tf_dim_ordering_tf_kernels.h5
https://github.com/keras-team/keras-applications/releases/download/resnet/resnet50_weights_tf_dim_ordering_tf_kernels.h5
https://github.com/fchollet/deep-learning-models/releases/download/v0.4/xception_weights_tf_dim_ordering_tf_kernels.h5
https://github.com/fchollet/deep-learning-models/releases/download/v0.4/xception_weights_tf_dim_ordering_tf_kernels.h5
https://github.com/fchollet/deep-learning-models/releases/download/v0.1/vgg16_weights_tf_dim_ordering_tf_kernels.h5
https://github.com/fchollet/deep-learning-models/releases/download/v0.1/vgg16_weights_tf_dim_ordering_tf_kernels.h5
https://github.com/fchollet/deep-learning-models/releases/download/v0.1/vgg19_weights_tf_dim_ordering_tf_kernels.h5
https://github.com/fchollet/deep-learning-models/releases/download/v0.1/vgg19_weights_tf_dim_ordering_tf_kernels.h5
https://github.com/fchollet/deep-learning-models/releases/download/v0.1/vgg19_weights_tf_dim_ordering_tf_kernels.h5


67 Page 4 of 9 X. Zhou et al.

Fig. 2 The process of constructing adversarial examples when the scal-
ing parameter is 10%. Left images: original natural images. Central
image: an adversarial patch. Right images: adversarial images. The
patch is rescaled to cover 10% of the original images, and then ran-
domly rotated and placed at random locations on different test images

sified by the above 5 pre-trained models. For example, the
top-1 accuracy of Inception-V3 is 82.8%. It is less mean-
ingful to study the attack success rates if the pre-trained
models cannot correctly classify the original images. To ver-
ify the effect of our attackmethod, we randomly choose 1000
images from the ILSVRC 2012 validation data for testing,
and these images are correctly classified by the above 5 pre-
trained models.

The patches are rescaled and rotated, and then digitally
inserted on a random location on the test images.We selected
13 scaling parameters, i.e. 5 points in equal intervals from
1 to 10% and 8 points in equal intervals from 10 to 50%.
The rotation angle is limited in [−45◦, 45◦]. Figure 2 shows
the process of constructing adversarial examples for testing
when the scaling parameter is 10%. The patch generated by
Inception-V3 for whitebox single model attack is rescaled to
cover 10% of the input images, and then randomly rotated
and placed at random positions on different test images.

Figure 3 shows the attack success rates, each point is cal-
culated through 5000 tests (1000 adversarial images × 5
pre-trainedmodels).When the non-targeted adversarial patch
covers 10% of the image area, the attack success rates of all
three attack methods achieve more than 70% attack success
rates, of which the whitebox single model attack exceeds
90%, although DiAP knows nothing about the training data.

Figure 4 shows some patches generated for non-targeted
attack. These patches all seem to contain a lot of small round
circular patterns and exhibit some symmetry.We examine the
estimated labels of adversarial examples crafted by the adver-
sarial patch shown in Fig. 4. When the patch covers 10% of
the testing images, 97.1% of the adversarial examples super-

0 10 20 30 40 50

20

40

60

80

100

Attack as % of image size

A
tta

ck
 su

cc
es

s r
at

e

Whitebox−Single Model
Whitebox−Ensemble
Blackbox

Fig. 3 Attack success rates of non-targeted adversarial patches gen-
erated by DiAP. Each point in the plot is computed by averaging the
results of 1000 adversarial examples, which are crafted by applying the
patch to test images at random locations in these images. This is done
for various scales or rotations of the patch, with each transformation
independently tested on 1000 images. Note that these success rates are
the mean of five ImageNet models

Fig. 4 Adversarial patches for non-targeted attack.a is generated for the
whitebox single model attack, b is computed for the whitebox ensemble
attack, and c is crafted for the blackbox attack. The target model is the
pre-trained VGG-16

imposed with the patch (a) are classified as bubbles, 60.9%
of the images perturbed by the patch (b) are recognized as
salt shaker or ladybug, and 55.8% of the images disturbed
by the patch (c) are identified as bubble or pinwheel. This
indicates that when performing non-targeted attacks by opti-
mizing Eq. (2), DiAP tends to construct patches with circular
patterns in order to enhance robustness to various transfor-
mations, so the corresponding adversarial examples aremore
likely to be classified as circular objects.

When DiAP perform non-targeted attacks, the above
experiments clearly show the existence of several dominant
labels, and these labels are typically circular objects. How-
ever, when performing physical attacks, malicious attackers
may want adversarial patches to cause the network to output
any target class. In the next section, we generate adversarial
patches to trick the network to evaluate different adversarial
examples as the target class.

123



A data independent approach to generate adversarial patches Page 5 of 9 67

4 DiAP for targeted attack

We now explore crafting adversarial patches that can be
applied to perform targeted attack without training data.

Algorithm 2:Computation of targeted adversarial patch
pt
Data: Target deep neural network f , background image Int ,

learning rate η, distribution over location L , distribution of
transformations T , number of iterations I temax , target
label ŷ.

Result: Targeted adversarial patch pt .
1 Randomly initialize pt
2 I te = 0
3 Losss = in f
4 while I te ≤ I temax do
5 Randomly select parameter l ∼ L and t ∼ T
6 Int = A(pnt , Iz, l, t)
7 Randomly select parameter l ∼ L and t ∼ T
8 Losst = − log Pr(ŷ|A(pt , Int , l, t)
9 if Losst < Losss then

10 pt = pt − η ∂Losst
∂ pt

11 Losss = Losst
12 end
13 I te = I te + 1
14 end
15 Return pt

Note that we added a negative sign after the logarithm operation in
Eq. (4) to facilitate the optimization. In each iteration, after randomly
selecting parameters l and t to construct the background image Int (as
shown in lines 5 and 6), parameters l and t are randomly selected again
to construct the adversarial example A(pt , Int , l, t) (as shown in lines
7 and 8).

4.1 Setting andmethod

Let ŷ denote the target label, and the goal of DiAP to imple-
ment a targeted attack is to seek an targeted adversarial patch
pt such that

f (A(pt , x, l, t)) = ŷ, for x ∼ μ (3)

Ideally, the goal of Eq. (3) can be achieved if the network
estimate any image, which is perturbed by the patch pt , as
label ŷ. Lack of data prevents us from extracting features of
the target class ŷ from the training example x like existing
methods [9,19]. Note that the non-targeted patch pnt gener-
ated by Eq. (2) can effectively attack the network and lead
the network to recognize many of the adversarial examples
as dominant labels, which implies that the patch may contain
some information about the training data. We believe that
this prior knowledge helps generate targeted patch pt with-
out training data. In order to craft such a pt , we optimize for

Fig. 5 The process of constructing the background image
A(pt , Int , l, t) for targeted attack. After random transformation, pnt
is digitally inserted on a random position of the image Iz to craft Int .
We take Int as the background image in Eq. (4), and explore its implicit
information to help generate the targeted patch pt

the following objective

argmax
pt

El∼L,t∼T
[
log Pr(ŷ|A(pt , Int , l, t)

]
(4)

where the background image Int is defined as

Int = A(pnt , Iz, l, t) (5)

In other words, we take A(pnt , Iz, l, t) as the background
image. During the training, the non-targeted patch pnt is ran-
domly scaled and rotated, and then digitally inserted on a
random location on the image Iz to form a background image
Int . Next, the targeted patch pt is also randomly transformed
anddigitally inserted on a random locationon the background
image Int . Figure 5 shows this process.

Using A(pnt , Iz, l, t) as the background image seems
strange, as it is presented in Eq. (2) to train non-targeted
attack patch pnt . However, this approach is reasonable if
we aware that pnt probably contain information about train-
ing data, although pnt does not belong to the training data.
We seek an effective way to use the information implied in
the non-targeted patch pnt (i.e. optimize Eq. (4)), leading
the image A(pt , Int , l, t) to be evaluated as the target label
ŷ. Finally, covered by the targeted patch pt , the adversarial
example A(pt , x, l, t) is misclassified as ŷ by the network.
It is worth noting that during the entire optimization process,
we did not use information about training data at all. The
entire process is detailed in Algorithm 2.

4.2 Experiments and results

We experiment with the same settings as in Sect. 3.2. To
evaluate the performance of DiAP for targeted attack, we
introduce GoogleAP for comparison. We also inspect our
DiAP in two other ways to verify the effect of the background
image Int . DiAP_Iz adopts image Iz instead of image Int as

123



67 Page 6 of 9 X. Zhou et al.

0 10 20 30 40 50
0

20

40

60

80

100

Attack as % of image size

A
tta

ck
 su

cc
es

s r
at

e

DiAP
GoogleAP
DiAP_Iz
DiAP_n
toaster

(a) Whitebox-Single Model

0 10 20 30 40 50
0

20

40

60

80

100

Attack as % of image size

A
tta

ck
 su

cc
es

s r
at

e

DiAP
GoogleAP
DiAP_Iz
DiAP_n
toaster

(b) Whitebox-Ensemble

0 10 20 30 40 50
0

20

40

60

80

100

Attack as % of image size

A
tta

ck
 su

cc
es

s r
at

e

DiAP
GoogleAP
DiAP_Iz
DiAP_n
toaster

(c) Blackbox

Fig. 6 Attack success rates of targeted attack. The target class is
toaster. DiAP adopts Int as the background image to generate adversar-
ial patches for targeted attack. DiAP_Iz replace Int with Iz , andDiAP_n

use random noise as the background image. A real toaster image is also
tested for comparison. All attack success rates are the average values
calculated by the five models

the background image in Eq. (4), and DiAP_n replace Int
with randomly noise as the background image. In the process
of training, we use the gradient descent optimizer to craft
adversarial patches, and set the hyper-parameter I temax =
800 and η = 8 for Algorithm 2.

Figure 6 shows the attack success rates of targeted adver-
sarial patches, and the target class is toaster. The test images
are the same as those used in Sect. 3.2. In the whitebox sin-
gle model attack, GoogleAP’s attack success rates are higher
than that of DiAP. Nevertheless, when the patch takes 10%
of the image size, about 80% of the attack success rate still
can be achieved by DiAP. In the whitebox ensemble attack,
the performance of GoogleAP and DiAP is very close. Fur-
ther, in the blackbox scenario, DiAP performs even better
than GoogleAP. Noting that DiAP is completely unaware of
any information about the training data while GoogleAP uses
training examples for optimization, this result seems coun-
terintuitive. We presume that, without knowing the structure
of the attacked model (blackbox scenario), the vague infor-
mation about the training data provided by Int makes DiAP
more generalized, resulting in the higher attack success rates
than GoogleAP. This indicates that when the attacker is not
acquainted with the attacked model, fuzzy information about
training data may be more beneficial to generating attack
patches than accurate example knowledge. In addition, DiAP
is far more effective than using Iz or random noise as the
background image, as is shown in Fig. 6 by the relatively
poor performance of DiAP_Iz and DiAP_n.

Furthermore, we wonder that whether real photographs
of target class could fool the deep neural network, just like
DiAP. A real toaster image is digitally inserted into testing
images in the sameway as the adversarial patch. As shown in
Fig. 6, to achieve a 90% attack success rate, the real toaster
image has to cover about 50% of the testing image. However,
in this case, the new adversarial image actually turns into a
picture of the toaster.

Fig. 7 Adversarial patches for targeted attack. a, b and c are generated
by DiAP for the whitebox single model attack, the whitebox ensemble
attack, and the blackbox attack, respectively. d is crafted by DiAP_Iz
for the blackbox attack. e is computed by DiAP_n for the blackbox
attack. The target model is VGG-16 and the targeted label is toaster. f
is the photo of a real toaster, which is used in the experiments shown in
Fig. 6

Figure 7 shows some patches that DiAP generates for tar-
geted attacks. These patches are very similar to the target
class (real toaster), although DiAP doesn’t know what the
toaster looks like since it’s data independent and isolated
from real examples during training. We presume that DiAP
learns high-level features of the target category, making the
adversarial patch more toaster-like than the real toaster pic-
ture in the vision of the deep neural networks.

We randomly select other 8 categories as target labels (e.g.
banana, jellyfish), and the experimental results are shown in
Fig. 8. The adversarial patches are generated by DiAP.When
the patch occupies 20% of the input image area, the suc-
cess rate of both whitebox attacks exceeds 80% for all target
classes. When the patch occupies 20% of the input image
area, for all target classes, the attack success rates of both
whiteboxmethods exceed 80%, and that of the blackbox sce-

123



A data independent approach to generate adversarial patches Page 7 of 9 67

0 10 20 30 40 50
0

20

40

60

80

100

Attack as % of image size

A
tta

ck
 su

cc
es

s r
at

e

apron
banana
barbell
broom
jellyfish
minibus
Pembroke
torch

(a) Whitebox-Single Model

0 10 20 30 40 50
0

20

40

60

80

100

Attack as % of image size

A
tta

ck
 su

cc
es

s r
at

e

apron
banana
barbell
broom
jellyfish
minibus
Pembroke
torch

(b) Whitebox-Ensemble

0 10 20 30 40 50
0

20

40

60

80

100

Attack as % of image size

A
tta

ck
 su

cc
es

s r
at

e

apron
banana
barbell
broom
jellyfish
minibus
Pembroke
torch

(c) Blackbox

Fig. 8 Attack success rates of targeted adversarial patches generated by DiAP. Eight target labels are randomly selected

Fig. 9 Eight adversarial patches crafted by DiAP for targeted attack.
All these patches are generated for the whitebox single model attack,
and the target model is VGG-16 and the targeted labels are listed blow
them. These patches look similar to their target classes

nario exceeds 60%. Moreover, the attack success rate varies
depending on the target class. Taking the whitebox single
model attack with the scaling parameter of 10% as an exam-
ple, the lowest success rate is 47.35% and the highest success
rate is 78.56% for different target classes. However, there is
no strict correspondence between the attack success rate and
the target class in the three attack settings. For example, in
the blackbox scenario, the attack patches generated with the
target category broom achieve higher attack success rates
than other target categories, while in the whitebox ensemble
attack, the attack patches generated with the target category
banana perform better.

Figure 9 shows patches generated by DiAP. To some
extent, these patches have many similarities with their target
classes. For example, the patch (b) appears to be composed
of many small bananas, patch (g) shows that it contains Pem-
broke’s eyes and nose, and patches (c), (d), and (f) even seem
to be distorted images of their target categories. This fur-
ther confirms our inference that the adversarial patch actually
extracts the high-level features of the target category.

The attack performance of DiAP in the blackbox sce-
nario is particularly noteworthy, which means that malicious

0

10

20

30

40

50

60

70

apron
banana

barbell

broom
jellyfish

minibus

Pembroke

torch

A
tta

ck
 su

cc
es

s r
at

e

 44.95
 41.16

 5.25

DiAP
GoogleAP
real_image

Fig. 10 Attack success rates in the blackbox attack scenario. The X -
axis represents the 8 target categories. The Y -axis indicates the attack
success rate against the target class when the adversarial patch (or real
image) covers 10% of the test image area

attackers can attack deep neural networks without knowing
the model structure, pre-training parameters, and training
dataset. Figure 10 shows the attack success rate in the black-
box attack scenario when the scaling parameter is 10%. We
examine the attack abilitywhen thepatchoccupies 10%of the
test image area. In most cases, DiAP outperforms GoogleAP,
and DiAP achieves an average attack success rate of 44.95%
compared to GoogleAP’s 41.15%. This suggests that patches
generated by DiAP have better transferability and are more
suitable for blackbox attacks. At the same time, 8 real images
are randomly selected for comparison, one for each target
class. The attack success rates of real pictures are all less
than 10%, and the average is only 5.25%. These results con-
firm that our adversarial patches, rather than real image of
the target label, can attack deep neural networks.

123



67 Page 8 of 9 X. Zhou et al.

Fig. 11 A real-world attack example. The targeted patch is generated
for whitebox ensemble attack and the test model is the pre-trained
Inception-V3 mentioned in 3.2. The photographs on the left are cor-
rectly classified. However, after being inserted into the targeted patch,
the photographs on the right are all classified as toaster, in spite of the
different scale, location, angle of the patch

5 Physical world attacks

In this section, a physical world attack experiment is con-
ducted to validate the practical effectiveness. We use a
targeted patch (as shown in Fig. 7b) generated by DiAP,
which is crafted through thewhitebox ensemblemethod. The
test classifier is the pre-trained Inception-V3 model men-
tioned in Sect. 3.2. The attack is considered successful if the
pre-trained Inception-V3 model correctly identifies the orig-
inal image and misclassifies the adversarial example as the
specified label. After printing this patch by a Canon IP8780
printer, we place it in a variety of real world scenes and take
photographs with the combination of different distances and
angles using aMI 8 phone. The images and results are shown
in Fig. 11 demonstrate that the attack successfully fools the
network, regardless of the scale, location, angle of the patch.

6 Conclusion

In this paper, we presented a data independent approach to
generating adversarial patches. By contaminate the extracted
features at each layer of the attacked network, DiAP generate
non-targeted adversarial patches. Then, combined with the
information implied by the non-targeted patch, DiAP extract
the features of the target class to craft the targeted adver-

sarial patches. In the process of generating patches, DiAP
does not use any training data at all, which is conducive to
performing attacks in real physical scenarios. The extensive
experimental results, under whitebox and blackbox settings
in both digital and physical world, demonstrate that DiAP
owns strong attack capabilities, and achieves state-of-the-
art performance. Further, DiAP outperforms state-of-the-art
method in blackbox attack, which implies that when the net-
work structure is unknown, fuzzy example information may
be more helpful for attack than real examples. To encourage
reproducible research, the code of DiAP is made available at
https://github.com/zhouxy2020/DiAP.

Declarations

Conflict of interest The authors declare that they have no conflict of
interest.

References

1. Goodfellow, I.J., Shlens, J., Szegedy,C.: Explaining and harnessing
adversarial examples. In: Bengio, Y., LeCun, Y. (eds.) 3rd Interna-
tional Conference on Learning Representations, ICLR 2015, San
Diego, CA, USA, May 7–9, 2015, Conference Track Proceedings
(2015)

2. Moosavi-Dezfooli, S., Fawzi, A., Fawzi, O., Frossard, P.: Universal
adversarial perturbations. In: 2017 IEEE Conference on Computer
Vision and Pattern Recognition, CVPR 2017, Honolulu, HI, USA,
July 21–26, 2017, pp. 86–94. IEEE Computer Society (2017)

3. Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S.,
Huang, Z., Karpathy, A., Khosla, A., Bernstein, M.S., Berg, A.C.,
Li, F.: Imagenet large scale visual recognition challenge (Int. J.
Comput. Vis.) (115) 211–252 (2015)

4. Szegedy,C., Zaremba,W., Sutskever, I., Bruna, J., Erhan,D.,Good-
fellow, I.J., Fergus, R.: Intriguing properties of neural networks.
In: Bengio, Y., LeCun, Y. (eds.) 2nd International Conference on
Learning Representations, ICLR 2014, Banff, AB, Canada, April
14–16, 2014, Conference Track Proceedings (2014)

5. Athalye,A., Engstrom, L., Ilyas,A.,Kwok,K.: Synthesizing robust
adversarial examples. In: Dy, J.G., Krause, A. (eds.) Proceed-
ings of the 35th International Conference on Machine Learning,
ICML 2018, Stockholmsmässan, Stockholm, Sweden, July 10–15,
2018, Volume (80) of Proceedings of Machine Learning Research,
PMLR, pp. 284–293 (2018)

6. Kurakin, A., Goodfellow, I.J., Bengio, S.: Adversarial examples in
the physical world. In: 5th International Conference on Learning
Representations, ICLR 2017, Toulon, France, April 24–26, 2017,
Workshop Track Proceedings, OpenReview.net (2017)

7. Sharif,M., Bhagavatula, S., Bauer, L., Reiter,M.K.: Accessorize to
a crime: eeal and stealthy attacks on state-of-the-art face recogni-
tion. In: Weippl, E.R., Katzenbeisser, S., Kruegel, C., Myers, A.C.,
Halevi, S. (eds.) Proceedings of the 2016 ACM SIGSAC Confer-
ence on Computer and Communications Security, Vienna, Austria,
October 24–28, 2016, pp. 1528–1540. ACM (2016)

8. Komkov, S., Petiushko, A.: Advhat: real-world adversarial attack
on arcface face ID system (CoRR) (abs/1908.08705) (2019) .
arXiv:1908.08705

9. Brown, T.B., Mané, D., Roy, A., Abadi, M., Gilmer, J.: Adversarial
patch (CoRR) (abs/1712.09665) (2017). arXiv:1712.09665

123

https://github.com/zhouxy2020/DiAP
http://arxiv.org/abs/1908.08705
http://arxiv.org/abs/1712.09665


A data independent approach to generate adversarial patches Page 9 of 9 67

10. Liu, A., Liu, X., Fan, J., Ma, Y., Zhang, A., Xie, H., Tao, D.:
Perceptual-sensitive GAN for generating adversarial patches. In:
The Thirty-Third AAAI Conference on Artificial Intelligence,
AAAI 2019, The Thirty-First Innovative Applications of Artificial
Intelligence Conference, IAAI 2019, TheNinth AAAI Symposium
on Educational Advances in Artificial Intelligence, EAAI 2019,
Honolulu, Hawaii, USA, January 27–February 1, 2019, pp. 1028–
1035. AAAI Press (2019)

11. Liu, A., Wang, J., Liu, X., Cao, B., Zhang, C., Yu, H.: Bias-
based universal adversarial patch attack for automatic check-out.
In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J. (eds.) Computer
Vision—ECCV 2020—16th European Conference, Glasgow, UK,
August 23–28, 2020, Proceedings, Part XIII, Volume (12358) of
pp. 395–410 (2020)

12. Thys, S., Ranst, W.V., Goedemé, T.: Fooling automated surveil-
lance cameras: Adversarial patches to attack person detection. In:
IEEE Conference on Computer Vision and Pattern Recognition
Workshops, CVPRWorkshops 2019, Long Beach, CA, USA, June
16–20, 2019, pp. 49–55.ComputerVisionFoundation/IEEE (2019)

13. Wu, Z., Lim, S., Davis, L.S., Goldstein, T.: Making an invisi-
bility cloak: real world adversarial attacks on object detectors.
In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J. (eds.) Computer
Vision—ECCV 2020—16th European Conference, Glasgow, UK,
August 23–28, 2020, Proceedings, Part IV, Volume (12349) of pp.
1–17 (2020)

14. Mopuri, K.R., Ganeshan, A., Babu, R.V.: Generalizable data-free
objective for crafting universal adversarial perturbations, (IEEE)
Trans. Pattern Anal. Mach. Intell. 41, 2452–2465 (2019)

15. Chen, P., Sharma, Y., Zhang, H., Yi, J., Hsieh, C.: EAD: elastic-
net attacks to deep neural networks via adversarial examples. In:
McIlraith, S.A.,Weinberger, K.Q. (eds.) Proceedings of the Thirty-
Second AAAI Conference on Artificial Intelligence, (AAAI-18),
The 30th Innovative Applications of Artificial Intelligence (IAAI-
18), and The 8th AAAI Symposium on Educational Advances in
Artificial Intelligence (EAAI-18), New Orleans, Louisiana, USA,
February 2–7, 2018, pp. 10–17. AAAI Press (2018)

16. Madry, A., Makelov, A., Schmidt, L., Tsipras, D., Vladu, A.:
Towards deep learning models resistant to adversarial attacks. In:
6th International Conference on Learning Representations, ICLR
2018, Vancouver, BC, Canada, April 30–May 3, 2018, Conference
Track Proceedings, OpenReview.net (2018)

17. Evtimov, I., Eykholt, K., Fernandes, E., Kohno, T., Li, B.,
Prakash, A., Rahmati, A., Song, D.: Robust physical-world attacks
on machine learning models (CoRR) (abs/1707.08945) (2017).
arXiv:1707.08945

18. Su, J., Vargas, D.V., Sakurai, K.: One pixel attack for fooling deep
neural networks, (IEEE) Trans. Evol. Comput. 23, 828–841 (2019)

19. Karmon, D., Zoran, D., Goldberg, Y.: Lavan: localized and visible
adversarial noise. In: Dy, J.G., Krause, A. (eds.) Proceedings of the
35th International Conference on Machine Learning, ICML 2018,
Stockholmsmässan, Stockholm, Sweden, July 10–15, 2018, Vol-
ume (80) of Proceedings of Machine Learning Research, PMLR,
pp. 2512–2520 (2018)

20. Mopuri, K.R., Garg, U., Radhakrishnan, V.B.: Fast feature fool: a
data independent approach to universal adversarial perturbations.
In: British Machine Vision Conference 2017, BMVC 2017, Lon-
don, UK, September 4–7, 2017. BMVA Press (2017)

21. Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.:
Rethinking the inception architecture for computer vision. In: 2016
IEEE Conference on Computer Vision and Pattern Recognition,
CVPR 2016, Las Vegas, NV, USA, June 27–30, 2016, pp. 2818–
2826. IEEE Computer Society (2016)

22. He,K., Zhang,X., Ren, S., Sun, J.:Deep residual learning for image
recognition. In: 2016 IEEE Conference on Computer Vision and
Pattern Recognition, CVPR 2016, Las Vegas, NV, USA, June 27–
30, 2016, pp. 770–778. IEEE Computer Society (2016)

23. Chollet, F.: Xception: Deep learningwith depthwise separable con-
volutions. In: 2017 IEEE Conference on Computer Vision and
Pattern Recognition, CVPR 2017, Honolulu, HI, USA, July 21–
26, 2017, pp. 1800–1807. IEEE Computer Society (2017)

24. Simonyan, K., Zisserman, A.: Very deep convolutional networks
for large-scale image recognition. In: Bengio, Y., LeCun, Y. (eds.)
3rd International Conference on Learning Representations, ICLR
2015, San Diego, CA, USA, May 7–9, 2015, Conference Track
Proceedings (2015)

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

Xingyu Zhou received the Ph.D. degree from the Army Engineering
University of PLA, Nanjing, China, in 2019. He is currently a lecturer
with the Army Engineering University of PLA. His research interests
include computer vision, image processing and pattern recognition.

Zhisong Pan received the Ph.D. degree of computer science and tech-
nology from Nanjing University of Aeronautics and Astronautics,
China, in 2003. He is now a Professor with the Army Engineering
University of PLA. His main research interests include deep learning,
machine learning, and pattern recognition

Yexin Duan is currently pursuing the Ph.D. degree in computer science
and technology with the Army Engineering University of PLA, Nan-
jing, China. His research interests include adversarial machine learn-
ing and computer vision.

Jin Zhang is currently pursuing the Ph.D. degree in computer sci-
ence and technology with the Army Engineering University of PLA,
Nanjing, China. He is currently a Senior Lecturer with the Army Mili-
tary Transportation University of PLA, Zhenjiang Campus, Zhenjiang,
China. His research interests include computer vision and machine
learning.

Shuaihui Wang received the Ph.D. degree in computer science and
technology with the Army Engineering University of PLA, Nanjing,
China. His main research interests include graph data mining and
graph neural networks.

123

http://arxiv.org/abs/1707.08945

	A data independent approach to generate adversarial patches
	Abstract
	1 Introduction
	2 Related work
	3 DiAP for non-targeted attack
	3.1 Setting and method
	3.2 Experiments and results

	4 DiAP for targeted attack
	4.1 Setting and method
	4.2 Experiments and results

	5 Physical world attacks
	6 Conclusion
	References




