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Abstract
Siamese trackers demonstrated high performance in object tracking due to their balance between accuracy and speed. Unlike
classification-based CNNs, deep similarity networks are specifically designed to address the image similarity problem and
thus are inherently more appropriate for the tracking task. However, Siamese trackers mainly use the last convolutional
layers for similarity analysis and target search, which restricts their performance. In this paper, we argue that using a single
convolutional layer as feature representation is not an optimal choice in a deep similarity framework. We present a Multiple
Features-Siamese Tracker (MFST), a novel tracking algorithm exploiting several hierarchical featuremaps for robust tracking.
Since convolutional layers provide several abstraction levels in characterizing an object, fusing hierarchical features allows
to obtain a richer and more efficient representation of the target. Moreover, we handle the target appearance variations by
calibrating the deep features extracted from two different CNN models. Based on this advanced feature representation, our
method achieves high tracking accuracy, while outperforming the standard siamese tracker on object tracking benchmarks.The
source code and trained models are available at https://github.com/zhenxili96/MFST.

Keywords Visual object tracking · Siamese networks · Feature combination

1 Introduction

Visual object tracking (VOT) is a fundamental task in com-
puter vision. Given a target object in the first frame, the
objective of VOT is to determine the object state, typically its
bounding box, in the following frames. With the rapid devel-
opment of computer vision, visual object tracking has been
employed inmany applications, such as autonomous driving,
visual analysis and video surveillance. For example, with the
help of visual object tracking, autonomous driving systems
can analyze obstacle movements and decide where to go.

Nowadays, most successful state-of-the-art trackers are
based on correlation filters (e.g., [31]), deep neural networks
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(e.g., [24]) or on a combinationof both techniques (e.g., [29]).
In this work, we are particularly interested in deep learn-
ing trackers, that achieved impressive performance while
bringing new ideas to VOT. This paradigm has become suc-
cessful mainly due the use of convolutional neural network
(CNN)-based features for appearance modeling and their
discriminative ability to represent target objects. While sev-
eral tracking methods use classification-based CNN models
that are built following the principals of visual classification
tasks, another approach [2] formulates the tracking task as a
deep similarity learning problem,where aSiamese network is
trained to locate the target within a search image region. This
method uses feature representations extracted by CNNs and
performs correlation operation with a sliding window to cal-
culate a similarity map for finding the target location. Rather
than detecting by correlation, other deep similarity trackers
[7,16,28,32] generate the bounding box for the target object
with regression networks. For example, GOTURN [7] pre-
dicts the bounding box of the target objectwith a simpleCNN
model. The trackers [32] and [16] generate a number of pro-
posals for the target after extracting feature representations.
Classification and regression procedures are then applied to
produce the final object location. The SPLT tracker [28] uses
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a similar approach, but includes also a re-detection module
for long-term tracking.

By formulating object tracking as a deep similarity learn-
ing problem, Siamese trackers achieved significant progress
in terms of both speed and accuracy. However, one weakness
of the siamese trackers is that they typically use only features
from the last convolutional layers for similarity analysis and
target state prediction. Therefore, the object representation
is not as robust as it could be to target appearance varia-
tions, and tracking can be lost in more difficult scenarios. To
address this weakness, we argue that using the last convolu-
tional layers is not the optimal choice, and we demonstrate in
this work that features from earlier layers are also beneficial
for more accurate tracking with Siamese trackers.

Indeed, the combination of several convolutional layers
was shown to be efficient for robust tracking [19,20]. As
we go deeper in a CNN, the receptive field becomes wider,
therefore, features from different layers contain different lev-
els of information. In this way, the last convolutional layers
retain general characteristics represented in a summarized
fashion, while the first convolutional layers provide low-
level features. These latter are extremely valuable for precise
localization of the target as they are more object-specific and
capture spatial details. Furthermore, instead of using features
from a single CNN model, we propose to exploit different
models within the deep similarity framework. Diversify-
ing feature representations significantly improves tracking
performance. Such strategy is shown to ensure a better robust-
ness against target appearance variations, one of the most
challenging tracking difficulties [18].

Basedon these principles,wepropose aMultipleFeatures-
Siamese Tracker (MFST). Our tracker utilizes diverse fea-
tures from several convolutional layers, two models and a
proper feature fusing strategies to improve tracking perfor-
mance. Our contributions can be summarized as follows:

– We propose a new tracking method that exploits feature
representations from several hierarchical convolutional
layers as well as different CNN models for object track-
ing.

– We propose feature fusing strategies with a feature recal-
ibration module to make a better use of the feature
representations.

– We show that our two previous contributions improve
tracking by testing our MFST tracking algorithm on
popular OTB benchmarks. We show that our method
improves over the SiamFC base model and that our
method achieves strong performance with respect to
recent state-of-the-art trackers on popular OTB bench-
marks.

The paper is organized as follows. We present the related
work in Sect. 2, the proposedMFST tracker in Sect. 3, and the

experimental results in Sect. 4 respectively. Finally, Sect. 5
concludes the paper.

2 Related work

2.1 Siamese trackers

VOT can be formulated as a similarity learning problem.
Once the deep similarity network is trained during an offline
phase to learn a general similarity function, the model
is applied for online tracking by analyzing the similarity
between the two network inputs: the target template and the
current frame. The pioneering work, SiamFC [2], applied
two identical branches made up of fully convolutional neu-
ral networks to extract the feature representations, on which
cross-correlation is computed to generate the tracking result.
SiamFC outperformed most of the best trackers at that
time, while achieving real-time speed. Rather than perform-
ing correlation on deep features directly, CFNet [23] trains
a correlation filter based on the extracted features of the
object to speed up tracking without accuracy drop. MBST
[18] improved the tracking performance by using multiple
siamese networks as branches to enhance the diversity of the
feature representation. SA-Siam [6] encodes the target by
a semantic branch and an appearance branch to improve the
robustness of tracking.However, since these siamese trackers
only take the output of the last convolutional layers, more-
detailed target specific information from earlier layers is not
used. In contrast, in our work, we adopt a Siamese architec-
ture to extract deep features for the target and search region,
but combine features from different layers of the networks
for tracking.

2.2 Hierarchical convolutional features in tracking

Most CNN-based trackers only use the output of the last
convolutional layer that contains semantic information rep-
resented in a summarized fashion. However, different convo-
lutional layers embed different levels of visual abstraction.
In fact, convolutional layers provide several detail levels
in characterizing an object, and the combination of differ-
ent convolutional levels is demonstrated to be efficient for
robust tracking [17,19]. In this context, the pioneering algo-
rithm, HCFT [19], tracks the target using correlation filters
learned on several layers. With HCFT, the representation
ability of hierarchical convolutional features is demonstrated
to be better than features from a single layer. Subsequently,
[20] presented a visualization of features extracted from dif-
ferent convolutional layers. In their work, they employed
three convolutional layers as the target object representations,
which are then convolved with the learned correlation filters
to generate the response map and a long-term memory fil-
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Fig. 1 The architecture of ourMFST tracker. TwoCNNmodels are used
as feature extractors, and their features are calibrated by Squeeze-and-
Excitation (SE) blocks. Then, correlations are applied over the features
of the search region with the features of the exemplar patch, and the

output response maps are fused to calculate the new position of the
target. Bright orange and blue: SiamFC (S) and dark orange and blue:
AlexNet (A)

ter to correct results. The use of hierarchical convolutional
features is shown to make their trackers much more robust.
In a similar way, the SiamRPN++ [15] tracker uses features
from several layers of a very deep network to regress the
target location. The regression results obtained with several
SiamRPN blocks [16], applied each on a selected layer, are
combined to obtain the final object location.

2.3 Multi-branch tracking

One of the most challenging problem in object tracking
is the varying appearance of the tracked objects. A single
fixed networks cannot guarantee to generate discriminative
feature representations in all tracking situations. To handle
the problem of target appearance variations, TRACA [3]
trainedmultiple auto-encoders, each for different appearance
categories. These auto-encoders compress the feature repre-
sentation for each category. The best expert auto-encoder is
selected by a pretrained context-aware network. By select-
ing a specific auto-encoder for the tracked object, a more
robust representation can be generated. MDNet [22] applied
a fixed CNN for feature extraction, but used multiple regres-
sion branches for objects belonging to different tracking
scenarios. More recently, MBST [18] extracted the feature
representation for the target object throughmultiple branches
and selected thebest branch according to their responsemaps.
With multiple branches, MBST can obtain diverse feature
representations and select the most discriminative one under
the prevailing circumstance. In their study, we can observe
that the greater the number of branches, the more robust the
tracker is. However, this is achieved at the cost of a higher
computational time. In this work, we can get a diverse fea-
ture representation of a target at lower cost because some of
the representations are extracted from the many layers of the
same CNN. Therefore, we do not need a large number of
siamese branches.

3 Multiple features-siamese tracker

We propose a Multiple Features-Siamese Tracker (MFST)
for object tracking. For the design of our method, we consid-
ered that features from different convolutional layers contain
different level of abstractions and that the different channels
of the features play different roles in tracking. Furthermore,
we recalibrate the deep features extracted from the CNN
models and combine hierarchical features to make a more
robust representation. Besides, since models trained for dif-
ferent tasks can diversify the feature representation as well,
we build our siamese architecture with two CNN models to
achieve better performance. The code of our tracker can be
found at https://github.com/zhenxili96/MFST.

3.1 Network architecture

Asmany recent object tracking approaches [2,18,23], we for-
mulate the tracking problem as a similarity learning problem
and utilize a siamese architecture to address it. The network
architecture of our tracker is shown in Fig. 1. It uses two
pretrained CNN models as feature extractors, SiamFC [2]
and AlexNet [14], as indicated in Fig. 1. The two models are
denoted as S and A, respectively, in the following. Both of
them are five layers fully convolutional neural networks.

The input of our method consists of an exemplar patch z
cropped according to the initial bounding box or the result
of last frame and search region x . The exemplar patch has
a size of Wz × Hz × 3, and the search region has a size of
Wx × Hx × 3 (Wz < Wx and Hz < Hx ), representing the
width, height and the color channels of the image patches.

With the two CNN models, we obtain the deep features
Sli , Ali (l = c3, c4, c5, i = z, x) from the conv3, conv4 and
conv5 layers of each model. These are the preliminary deep
feature representations of the inputs. Then, these features
are recalibrated through Squeeze-and-Excitation blocks (SE-
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Fig. 2 Illustration of a SE-block. It consists of two step, squeeze step
and excitation step. The squeeze step uses average pooling operation
to generate the channel descriptor, and the excitation step uses a two
layers MLP to capture the channel-wise dependencies

blocks) [10]. The recalibrated features are denoted as S∗
li
, A∗

li
,

respectively, for the two models. The details of a SE-block
are illustrated in Fig. 2. These blocks are trained to explore
the importance of the different channels for tracking. They
learnweights for the different channels to recalibrate features
extracted from the preliminary feature representations.

Once the recalibrated feature representations S∗
li
and A∗

li
are generated, we apply cross-correlation operations for each
recalibrated featuremappairs to generate responsemaps. The
cross-correlation operation can be implemented by a convo-
lution layer using the features of the exemplar as a filter. Then
we fuse these response maps to produce the final response
map. The corresponding location of the maximum value in
the response map is the new position of the target object.

Similarly to [2], the SiamFC feature extractor, as well as
the SE-blocks for both feature extractors are trained with a
logistic loss. For a pair of patches z, x , the total loss for a
response map r is

L(y, v) = 1

|r |
∑

u∈r
l(y[u].v[u]), (1)

with

l(y, v) = log(1 + exp(−yv)), (2)

where y is a ground truth label (1 or -1, for positive and neg-
ative pairs) and v is a cross-correlation score at coordinate u
in response map r .

3.2 Feature extraction

Hierarchical Convolutional Features. It is well known that
the last convolutional layer encodes more semantic infor-
mation that is invariant to significant appearance variations,
compared to earlier layers. However, its resolution is coarse
due to the large receptive field, and it is not the most appro-
priate for precise localization as required in tracking. On the

contrary, features from earlier layers contain less semantic
information, but they retain more spatial details and they are
more precise in localization. Thus, we propose to exploit
multiple hierarchical levels of features to build a better rep-
resentation of the target.

In our work, we use the convolutional layers of two CNN
models as feature extractors, that is SiamFC [2] and AlexNet
[14]. Each model is trained for a different task, object track-
ing for SiamFC and image classification for AlexNet. We
take features extracted from the 3rd, 4th, 5th layers as the
preliminary target representations.
Feature Recalibration.Considering that different channels of
deep features play different roles in tracking, we apply SE-
blocks [10] over the raw deep features extractedwith the base
feature extractors. An illustration of a SE-block is shown in
Fig. 2. The SE-block consists of two steps: 1) squeeze and
2) excitation. The squeeze step corresponds to an average
pooling operation. Given a 3D feature map, this operation
generates the channel descriptor !sq with

ωsq = 1

W × H

W∑

m=1

H∑

n=1

vc(m, n), (c = 1, ...,C), (3)

whereW , H ,C are thewidth, height and the number of chan-
nels of the deep feature, and vc(m, n) is the corresponding
value in the feature map. The subsequent step is the excita-
tion through a two-layer multi-layer perceptron (MLP). Its
goal is to capture the channel-wise dependencies that can be
expressed as

ωex = σ(W2δ(W1ωsq)), (4)

where σ is a sigmoid activation, δ is a ReLU activation,

W1 ∈ R
C
b ×C and W2 ∈ R

C×C
b are the weights for each

layer, and b is the channel reduction factor used to change
the dimension. After the excitation operation, we obtain the
channel weight ωex . The weight is used to rescale the feature
maps extracted by the base feature extractors with

F∗
li = ωex · Fli , (5)

where · is a channel-wise multiplication and F = (S, A).
Note that !ex is learned for each layer in a base feature extrac-
tor, but the corresponding layers for the CNN branches of the
exemplar patch and the search region share the same channel
weights. We train the SE-blocks to obtain six !ex in total (see
Fig. 1).

3.3 Responsemaps combination

Once the recalibrated feature representations from the con-
volutional layers of each model are obtained, we apply a
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cross-correlation operation, which is implemented by con-
volution, over the corresponding feature maps to generate
the response map r with

r(z, x) = corr(F∗(z), F∗(x)), (6)

where F∗ is a recalibrated feature map from SiamFC or
AlexNet.

The responsemaps are then combined. For a pair of image
inputs, six response maps are generated, denoted as r Sc3, r

S
c4,

r Sc5, r
A
c3, r

A
c4 and r

A
c5. Note that we do not need to rescale the

response maps for combination, since they have the same
size (see Sect. 4.1, Data Dimensions). The response maps
are combined hierarchically. After fusing r S and r A for each
of the CNN models, we combine the two resulting response
maps to get the final map. The combination is performed by
considering three strategies: hard weight (HW), soft mean
(SM) and soft weight (SM) [20], defined as

Hard weight: r∗ =
N∑

t=1

wt rt , (7)

Soft mean: r∗ =
N∑

t=1

rt
max(rt )

, (8)

Soft weight: r∗ =
N∑

t=1

wt rt
max(rt )

, (9)

where r∗ is the combined response map, N is the number of
response maps to be combined together, and wt is an empir-
ical weight for each response map.

The optimal weights wt for HW and SW are obtained
experimentally. Finally, the corresponding location of the
maximum value in the final response map is the new location
of the target.

4 Experiments

Thefirst objective of our experiments is to investigate the con-
tribution of each module in order to find the best response
map combination strategy for optimal representations. For
this purpose, we perform an ablation analysis. Secondly,
we compare our method with the reference SiamFC method
and recent state-of-the-art trackers. The experimental results
show that our method significantly outperforms SiamFC,
while obtaining competitive performance with respect to the
recent state-of-the-art trackers.

We performed our experiments on a PC with an Intel
i7-3770 3.40 GHz CPU and a Nvidia Titan X GPU. We
benchmarked our method on the OTB benchmarks [26] and
on the VOT2018 benchmark [11]. The benchmark results are

calculated using the provided toolkits. The average testing
speed of our tracker is 39 fps.

4.1 Implementation details

Network Structure. We used SiamFC [2] and AlexNet [14]
as deep feature extractors. The SiamFC network is a fully
convolutional neural network, containing five convolutional
layers. It has an AlexNet-like architecture, but it is trained
on a video dataset for object tracking. The AlexNet network
consists of five convolutional layers and three fully connected
layers trained on an image classification dataset. We slightly
modified the stride of AlexNet to obtain the same dimensions
for the outputs of both CNN models. Since only deep fea-
tures are needed to represent the target, we removed the fully
connected layers of AlexNet and only kept the convolutional
layers to extract features.
Data Dimensions. The inputs of our method are the exemplar
patch z and the search region x . The size of z is 127×127 and
the size of x is 255× 255. The output feature maps of z have
sizes of 10×10×384, 8×8×384 and 6×6×256 respectively.
The output feature maps of x have sizes of 26 × 26 × 384,
24 × 24 × 384 and 22 × 22 × 256, respectively. Taking the
features of z as filters to perform a convolution on the features
of x , the size of the output response maps are all the same,
17 × 17. The final response map is resized to the size of the
input to locate the target. Since the two feature extractors that
we are using are fully convolutional neural networks, the size
of inputs can also be adapted to any other dimension.
Training. The SiamFC model is trained on the ImageNet
dataset [4] and only color images are considered. The Ima-
geNet dataset contains more that 4,000 video sequences with
about 1.3 million frames and 2 million tracked objects with
ground truth bounding boxes. For the input, we take a pair
of images and crop the exemplar patch z in the center and
the search region x in another image. The SiamFC model is
trained with the loss of Eq. 1 for 50 epochs with an initial
learning rate of 0.01. The learning rate decays with a factor
of 0.86 after each epoch. The AlexNet model is pretrained
on the ImageNet dataset for the image classification task.
We just remove the fully connected layers before training
the SE-blocks.

After the training of the base feature extractors, we add
the SE-blocks in the two models and train them separately in
the samemanner. For eachmodel, the original parameters are
fixed.We then apply SE-blocks on the output of each selected
layer (c3, c4 and c5) and take the recalibrated output of each
layer as the output feature maps to generate the result for
training. The SE-blocks are trained with the videos of the
ImageNet dataset with the loss of Eq. 1 for 50 epochs with
an initial learning rate of 0.01. The learning rate decays with
a factor of 0.86 after each epoch.
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Tracking.We first initialize our tracker with the initial frame
and the coordinates of the bounding box of the target object.
Afterwe scaled and cropped the initial frame andobtained the
exemplar patch, it is fed into the SiamFCmodel and AlexNet
model to generate the preliminary feature representations Slz ,
Alz (l = c3, c4, c5). Then, the SE-blocks are applied to pro-
duce the recalibrated feature maps S∗

lz
, A∗

lz
, which are then

used to produce response maps for tracking the target object
for all the following frames.

After the feature maps of the target object are obtained,
to track the target, the next frame is fed into the tracker. The
tracker crops the region centered on the last center position
of the target object, generate the feature representations and
output the response maps by a correlation operation with the
feature maps of the target object. The corresponding position
of the maximum value in the final combined response map
indicates the center point of the new position of the target
object and the bounding box keeps the same size unless other
scales obtain higher response value.
Hyperparameters. The channel reduction factor b in the SE-
blocks is 4. The empirical weights wt for r Sc3, r

S
c4, r

S
c5, r

A
c3,

r Ac4 and r Ac5 are 0.1, 0.3, 0.7, 0.1, 0.6 and 0.3. The empir-
ical weights wt for r S and r A are 0.3 and 0.7. To handle
scale variations, we search the target object over three scales
1.025{−1,0,1} during evaluation and testing.

4.2 Dataset and evaluationmetrics

OTB Benchmarks. We evaluate our method on the OTB
benchmarks [26,27], which consist of three datasets, OTB50,
OTB2013 and OTB100. They contain 50, 51, 100 video
sequences with ground truth target labels for object tracking.
Two evaluation metrics are used for quantitative analysis, the
center location error and the overlap score, which are used
to produce precision plots and success plots respectively. To
obtain the precision plot, we calculate the average euclidean
distance between the center location of the tracking results
and the ground truth labels. The threshold of 20 pixels is
used to rank the results. For the success plot, we compute the
IoU (intersection over union) between the tracking results
and the ground truth labels for each frame. The AUC (area-
under-curve) is used to rank the results.
VOT2018Benchmark.VOT2018 short-termbenchmark con-
sists of 60 video sequences, the target in the sequences are
annotated by a rotated bounding box. The benchmark takes
three primarymeasures to evaluate the tracking performance:
accuracy (A), robustness (R) and expected average overlap
(EAO). The accuracy is calculated by the average overlap
between the tracker predictions and the ground truth bound-
ing boxes, while the robustness is how many times the target
get lost during tracking. The last evaluation metric, expected
average overlap, measures the expected average overlap of a

tracker when given sequences with the same visual proper-
ties. TheVOTbenchmarkutilizes a reset-basedmethodology,
which means that the tracker is re-initialized when its pre-
diction has no overlap with the ground truth.

4.3 Ablation study

To investigate the contributions of each module and the opti-
mal strategies to combine representations, we performed an
ablation studywith several variations of ourmethod. We first
studied the combination strategy that achieves the best per-
formance on the OTB benchmarks to generate the combined
response maps for each model, which are denoted as r S and
r A (see Table 1). After that, as illustrated in Table 2, we test
the three different strategies again to find the best strategy to
combine r S and r A.
A proper combination of features is better than features from
single layer.As illustrated in Table 1, we experimented using
features from a single layer as the target representation and
combined features from several layers with different com-
bination strategies for the two CNN models. The results
show that, taken separately, c3, c4, c5 give results that are
approximately similar. Since object appearance changes, c3
that should give the most precise location does not always
achieve good performance. However, with a proper combi-
nation, the representation power of the combined feature gets
much improved.
Features get enhanced with recalibration.Due to the squeeze
and excitation operations, recalibrated features achieves bet-
ter performance than the preliminary features. Recalibration
through SE-blocks thus improves the representation power
of features from single layer, which results in a better repre-
sentation of the combined features.
Multiplemodels are better than a singlemodel.Our approach
utilizes two CNN models as feature extractors. Therefore,
we also conducted experiments to verify the benefit of using
two CNNmodels. As illustrated in Table 2, we evaluated the
performance of using each CNNmodel separately and using
the combination of two CNN models. The results show that
the combination of two models is more discriminative than
only one model regardless of the use SE-blocks.
A proper strategy is important for the response map combi-
nation. We applied three strategies to combine the response
maps: hard weight (HW), soft mean (SM) and soft weight
(SW). Since the two CNN models are trained for differ-
ent tasks and features from different layers embed different
level of information, different types of combination strategies
should be applied to make the best use of the features. The
experimental results show that generally, combined features
are more discriminative than independent features, while a
proper strategy can improve the performance significantly
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Table 1 Experiments with
several variations of our method,
where A and S denote using
AlexNet or using SiamFC as the
base feature extractor. Boldface
indicates best results

Model Layers OTB-2013 OTB-50 OTB-100

c3 c4 c5 Fusion SE AUC Prec. AUC Prec. AUC Prec.

A � 0.587 0.740 0.474 0.618 0.559 0.712

A � � 0.603 0.755 0.504 0.642 0.587 0.747

A � 0.632 0.789 0.536 0.692 0.614 0.778

A � � 0.637 0.801 0.544 0.707 0.623 0.795

A � 0.582 0.763 0.496 0.665 0.557 0.735

A � � 0.573 0.762 0.507 0.696 0.575 0.769

A � � � HW 0.623 0.774 0.515 0.657 0.605 0.763

A � � � SM 0.633 0.797 0.542 0.705 0.616 0.784

A � � � SW 0.630 0.795 0.538 0.699 0.616 0.786

A � � � HW � 0.627 0.798 0.537 0.700 0.617 0.790

A � � � SM � 0.631 0.799 0.542 0.706 0.621 0.792

A � � � SW � 0.635 0.811 0.545 0.716 0.627 0.803

S � 0.510 0.661 0.439 0.574 0.512 0.656

S � � 0.545 0.709 0.465 0.608 0.532 0.687

S � 0.584 0.757 0.507 0.666 0.570 0.742

S � � 0.592 0.772 0.518 0.686 0.581 0.758

S � 0.600 0.791 0.519 0.698 0.586 0.766

S � � 0.606 0.801 0.535 0.722 0.588 0.777

S � � � HW 0.614 0.794 0.532 0.692 0.602 0.776

S � � � SM 0.612 0.787 0.539 0.697 0.607 0.777

S � � � SW 0.615 0.808 0.534 0.705 0.600 0.780

S � � � HW � 0.627 0.823 0.542 0.716 0.606 0.787

S � � � SM � 0.591 0.761 0.501 0.649 0.575 0.736

S � � � SW � 0.603 0.780 0.518 0.673 0.590 0.759

Table 2 Experiments on
combining the response maps of
the two CNN models. Ac5 is
only taking features from the
last convolutional layer of
AlexNet network, Sc5 is only
taking features from the last
convolutional layer of SiamFC
network. Acom is the combined
response maps from AlexNet
network by soft weight
combining, Scom is the
combined response maps from
SiamFC network by hard weight
combining. Boldface indicates
best results

OTB-2013 OTB-50 OTB-100

A S Fusion SE AUC Prec. AUC Prec. AUC Prec.

Ac5 0.582 0.763 0.496 0.665 0.557 0.735

Acom 0.630 0.795 0.538 0.699 0.616 0.786

Acom � 0.635 0.811 0.545 0.716 0.627 0.803

Sc5 0.600 0.791 0.519 0.698 0.586 0.766

Scom 0.614 0.794 0.532 0.692 0.602 0.776

Scom � 0.627 0.823 0.542 0.716 0.606 0.787

Acom Scom HW 0.637 0.815 0.555 0.720 0.625 0.801

Acom Scom SM 0.647 0.819 0.560 0.728 0.638 0.816

Acom Scom SW 0.647 0.818 0.564 0.734 0.637 0.813

Acom Scom HW � 0.667 0.852 0.583 0.761 0.644 0.824

Acom Scom SM � 0.640 0.810 0.557 0.718 0.632 0.804

Acom Scom SW � 0.667 0.854 0.581 0.764 0.647 0.831

as illustrated in Table 1 and Table 2. In addition, we observe
that the soft weight strategy is generally themost appropriate,
except for combining hierarchical features from the SiamFC
model.

4.4 Comparisons

Wecompare our trackerMFSTwithMBST [18], LMCF [25],
CFNet [23], SiamFC [2], Staple [1], Struck [5], MUSTER
[9], LCT [21],MEEM [30] onOTBbenchmarks [26,27]. The
precision plot and success plot are shown in Fig. 3. Both plots

123



59 Page 8 of 11 Zhenxi Li et al.

Fig. 3 The evaluation results on OTB benchmarks. The plots are generated by the Python implemented OTB toolkit

show that our tracker MFST achieves the best performance
among these recent state-of-the-art trackers on OTB bench-
marks, except on the OTB-50 benchmark precision plot. It
demonstrates that by using the combined features, the tar-
get representation of our method is more robust then our

base tracker SiamFC. The feature calibration mechanism we
employed is beneficial for tracking as well. Although we
use siamese networks to address the tracking problem as for
SiamFC, and take SiamFC as one of our feature extractor, our
tracker achieves much improved performance over SiamFC.
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Table 3 The speed evaluation results on OTB benchmarks

Tracker MFST MBST LCT LMCF MEEM CFNet SiamFC Staple Struck MUSTer

Speed(fps) 39 17 27 66 22 75 86 41 10 5

Table 4 Evaluation results of
our trackers and some recent the
state-of-the-art trackers on
VOT2018 benchmark. Bold:
best, Italic: second best, Bold
Italic: third best. ↑: higher is
better, ↓: lower is better. A:
Accuracy, R: Robustness, AO:
Average overlap, EAO:
Expected AO. For the
unsupervised experiment, the
tracker is not re-initialized when
it fails. For the real-time
experiment, frames are skipped
if the tracker is not fast enough

Baseline Real-time Unsupervised

Tracker EAO↑ A↑ R↓ EAO↑ A↑ R↓ AO↑ Speed (FPS)↑
MEEM 0.192 0.463 0.534 0.072 0.407 1.592 0.328 4.9

KCF 0.094 0.417 1.726 0.088 0.428 1.926 0.174 N/A

Staple 0.169 0.530 0.688 0.170 0.530 0.688 0.335 54.3

ANT 0.168 0.464 0.632 0.059 0.403 1.737 0.279 4.1

CFNet 0.188 0.503 0.585 0.182 0.502 0.604 0.345 42.6

SiamFCOSP 0.171 0.508 1.194 0.166 0.503 1.254 0.241 N/A

ALTO 0.182 0.358 0.818 0.172 0.365 0.888 0.252 42.9

SiamRPN++ 0.285 0.599 0.482 0.285 0.599 0.482 0.482 36.3

MFST 0.200 0.497 0.428 0.200 0.488 0.455 0.348 33.2

Besides, despite the fact that MBST tracker employs diverse
feature representations from many CNN models, our tracker
achieves better results with only two CNN models, in terms
of both tracking accuracy and speed.

A speed comparison is shown in Table 3 and Table 4
(Speed). Because we use two feature extractor networks, our
MFST is slower then SiamFC. Still, it is faster than several
trackers in the literature that are less robust. Our method
shows a better speed vs accuracy compromise than MBST
that combines features from several base feature extractor
networks.

In addition to the OTB benchmarks [26,27], we evalu-
ate our MFST tracker on the VOT2018 benchmark [11,13]
and compared it with some recent and classic state-of-the-
art trackers, including MEEM [30], some correlation-based
trackers:KCF [8], Staple [1],ANT [33], and several Siamese-
based trackers: CFNet [23], SiamFCOSP [12], ALTO [12]
and SiamRPN++ [15]. The results are produced by the VOT
toolkit [13] and reported in Table 4. These results show that
our method is more robust to the compared trackers with less
failures as depicted by the R value. On that aspect, our tracker
does better than SiamRPN++, demonstrating that our feature
and fusion approach helps in better representing the target.
However, it seems that using proposal, like in SiamRPN++
can lead to better accuracy (higher A value). Proposals could
be included in our method. Our method ranks a little better
for EAO compared to A for the baseline and real-time sce-
narios. This shows that our features generalize better then
the one used by other trackers. Moreover, it is interesting to
note that our tracker also performs well in the unsupervised
scenario where the tracker is not reset after failure, showing
the robustness of our siamese tracker compared to CFNet,
SiamFCOSP and ALTO, which, like our tracker, do not use

a region proposal network. Although our tracker is not the
fastest siamese tracker, it is fast enough tomaintain good per-
formance in the real-time scenario, where frames are skipped
if the tracker is not fast enough to process a video at 20 FPS.

5 Conclusion

In this paper, we presented a Multiple Features-Siamese
Tracker (MFST) that exploits diverse features at different
convolutional layers within the Siamese tracking framework.
Weutilize features fromdifferent hierarchical levels and from
different models using three combination strategies. Based
on the feature combination, different levels of abstraction of
the target are encoded into a fused feature representation.
Moreover, the tracker greatly benefits from the new feature
representation due to a calibration mechanism applied to dif-
ferent channels to recalibrate features. As a result, MFST
achieved strong performance with respect to recent state-of-
the-art trackers on object tracking benchmarks.
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