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Abstract
Single-image dehazing is an extensively studied field and an ill-posed problem faced by vision-based systems in an outdoor
environment. This paper proposes a dark channel network to estimate the transmission map of an input hazy scene for
single-image dehazing. The architecture constitutes twomajor components—feature extraction layer and convolutional neural
network layer. The former extracts the haze relevant features, while latter convolve these features with filter kernels to estimate
the true scene transmission. Finally, the estimated transmission map is used to obtain the dehazed image using atmospheric
scattering model. The experiments have been performed on synthetic hazy images and benchmark hazy dataset available in
the literature. The performance of the proposed architecture outperforms the existing models in terms of standard quantitative
metrics—mean square error, structural similarity index, and peak signal-to-noise ratio.

Keywords Dark channel prior · Single-image dehazing · CNN · Dehazing · Image restoration

1 Introduction

The performance of computer vision-based systems is sen-
sitive to the visual quality of the observed scene for various
inference-related tasks such as object detection and image
segmentation. Poor visibility of observed scene degrades the
performance of algorithms developed for these applications.
Nowadays, vision-based systems rely on scene enhancement
techniques to rectify the captured noisy observations and
restore the clear scene. Physically, noise is induced by the
suspended atmospheric particles such as dust and smoke.
The size, material, shape, and concentration of these parti-
cles affect the intensity of the added noise [1]. During image
acquisition, light rays reflected from object surface suffer
scattering and absorption due to these suspended particles. It
results in poor contrast and visibility in the acquired image.
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This phenomenon of dispersion of light due to suspended
atmospheric particles is called atmospheric scattering.Math-
ematically, the atmospheric scattering phenomenon has been
formulated by Narasimhan and Nayar [2,3] as:

Sλ(a, b) = Jλ(a, b)t(a, b) + A (1 − t(a, b)) (1)

where Sλ(a, b) is the observed scene, Jλ(a, b) is the true
scene radiance, A is the global atmospheric airlight, λ ∈
{R,G,B} represent the associated color channel, (a, b) is a
pixel location, and t(a, b) is the scene transmission defined
as:

t(a, b) = exp (−β × d(a, b)) (2)

where β is the scattering coefficient and d(a, b) is the scene
depth at pixel location (a, b).

1.1 Literature review

Based on the atmospheric scatteringmodel, researchers came
up with various dehazing methods categorized as image
enhancement-based, priors or assumption-based, fusion-
based, and deep learning-basedmethods. BeforeNarasimhan
andNayar’s haze formationmodel, Kopeika [4] andYitzhaky
[5] used weather predicted atmospheric modulation transfer
function and prior distance estimate. Further, Oakley et al. [6]
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and Tan et al. [7,8] developed a physics-based model to
enhance the hazy scene without any weather prediction.
Earlier approaches for image dehazing require additional
information such as Schechner and Shwartz [9,10] use mul-
tiple images of a scene with various degrees of polarization
using polarized filters to obtain the clear image. In real-time
applications, vision-based algorithms cannot rely on these
types of algorithms. Hence, it generates the need for single-
image dehazing.

Single-image dehazing is an ill-posed problem in which
relevant feature(s) of an image is modeled based on the avail-
able pixel information, which is utilized to obtain a clear
image from an input hazy image. Different researchers focus
on different properties of image features and utilizes different
modeling techniques to target this problem. One of the asso-
ciated effect of haze is the loss of contrast in the acquired
images. Based on this, Tan [11] proposed a single-image
dehazing framework by maximizing the local contrast of an
image, and Fattal [12] proposed to enhance the scene visibil-
ity by estimating its true transmission. Alternatively, for the
estimation of true transmission, He et al. [13] introduced
dark channel prior (DCP)-based method for single-image
dehazing. The performance of DCP was further improved
by bilateral [14], median [15,16], edge-preserving [17], and
guided [18] filters. A fast hazy region identification tech-
nique based on semi-inverse of an image was proposed by
Ancuti et al. [19]. Further, they came up with a multi-scale
fusion-based approach to restore the clear image [20]. The
dehazing quality was also improved by introducing a bound-
ary constraint and contextual regularization (BCCR) [21].
Since all of these methods depend on various priors and
assumptions, they cannot be applied globally. Tang et al. [22]
trained a random forest-based regressionmodel using various
haze relevant features for estimating true scene transmission.
This learning-based framework became the motivation for
the use of deep learning-based architectures for image dehaz-
ing. Cai et al. [23] proposed DehazeNet architecture for esti-
mating true scene transmission using convolutional neural
network (CNN)-based architecture. Similarly, Ren et al. [24]
developed an end-to-end multi-scale CNN for estimating
scene transmission. Following the success of CNN-based
models for single-image dehazing task, a number of differ-
ent novel architectures have been proposed. AIPNet [25] is
based on the observation that the illumination channel gets
significantly altered by haze compared to any other chan-
nels in YCrCb color space. Li et al. [26] modeled a novel
variable instead of transmission map and proposed a fast
and effective CNN architecture to model it. GCANet [27]
and GMAN [28] are based on encoder–decoder architecture
to extract the noise component and to rectify it from the
image.

1.2 Motivation

As mentioned earlier, single-image dehazing is an ill-posed
problem with clear scene radiance, atmospheric light inten-
sity and transmission map being the unknown entities.
Looking at (1), clear scene Jλ(a, b) depends on the observed
scene Sλ(a, b), transmission t(a, b), and global atmospheric
airlight A as:

Jλ(a, b) = Sλ(a, b) − A (1 − t(a, b))

t(a, b)
. (3)

The interpretation behind (1) is that the original clear scene
radiance Jλ(a, b) gets degraded by the scattering caused
by suspended particles in the air. Additionally, these sus-
pended particles scatter the atmospheric light, which causes
diffused white light in the observed scene. In (3), transmis-
sion map represents a crucial unknown entity required to
retrieve the clear scene. Therefore, modeling of transmission
map is carried out in the following study. Atmospheric light
varies minimally across the scene and thus approximated as
a constant.

1.3 Contributions

The main objective of the vision-based algorithms is to per-
ceive the visual stimuli from the environment in a similar
way as humans perceive. The human brain can easily identify
hazy regions and is able to distinguish varying haze densities.
The CNN-based models utilize the local information of an
image in a similar manner as that of a human eye. Therefore,
this paper proposes a CNN-based architecture for the esti-
mation of true scene transmission. The architecture is named
as “dark channel network (DCNet)”. Figure 1 shows the dia-
gram of the proposed model. The contributions of this paper
are summarized as:

– This paper proposes a novel CNN-based architecture
named as “dark channel network (DCNet)” for the esti-
mation of true scene transmission of a hazy scene with
minimumnumber of layers in comparisonwith the CNN-
based dehazing models available in the literature. The
proposed DCNet architecture comprises of two layers:
(1) feature extraction layer and (2) convolutional neural
network layer.

– The proposed network has been extensively analyzed,
and performance is compared with current state-of-the-
art models over the standard benchmark datasets to show
the effectiveness of the model and to verify the proposed
hypothesis.

The paper is organized as follows in further sections:
Section 2 explains the architecture of the proposed DCNet.
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Fig. 1 Block diagram of the proposed DCNet. Dp is referred as dark channel prior for patch size p = √
p × √

p where p =
1 × 1, 3 × 3, 5 × 5, 7 × 7, 10 × 10

Sections 3 and 4 discuss the training and experimental results
of the model. Section 5 concludes the paper with its limita-
tions and future scope.

2 DCNet: proposed architecture

The DCNet architecture comprises of two layers:

1. Feature extraction layer
2. Convolutional neural network layer

In the following subsections, these layers are discussed in
detail.

2.1 Feature extraction layer

Feature extraction layer extracts relevant pixel maps for
rectifying haze from an input hazy image. These features
constitutes value (V) channel and multi-scale dark channels.

2.1.1 Value (V) channel

In general, the V channel or illumination channel of an image
constitutes edge information for textural interpretation. In
HSV color domain, V channel of an image constitutes max-
imum edge information (Refer Fig. 2). Mathematically, the
V or illumination channel is defined as:

SV(a, b) = max
λ∈{R,G,B} S

λ(a, b). (4)

The observed scene in hazy environment involves degraded
radiance of scene due to scattering of light, as discussed in
the previous section. It causes loss of contrast and satura-
tion, along with significant variation in value and saturation
channels of an image. The mean square error (MSE) plot for
100 images from NYU dataset [30] is shown in Fig. 3. The

Fig. 2 Visualization of an image in RGB and HSV color domains. Top
row: clear scene image. Bottom row: hazy scene image. From left to
right: RGB image, H channel, S channel, and V channel

Fig. 3 Plots for the mean square error obtained between clear and hay
images for H, S, and V channels

MSE is evaluated for H, S, and V channels of clear and hazy
images. Clearly, the V channel is significantly affected by the
presence of haze. Another critical property of V channel is
that it provides a means to identify originally bright regions
in the image and to distinguish it from hazy regions.

The minimum channel for the atmospheric scattering
model (1) is defined as:

Smin(a, b) = Jmin(a, b)t(a, b) + A (1 − t(a, b)) (5)

where

Jmin(a, b) = min
λ∈{R,G,B} S

λ(a, b). (6)
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The maximum channel for the atmospheric scattering model
(1) is defined as:

Smax(a, b) = Jmax(a, b)t(a, b) + A (1 − t(a, b)) (7)

where

Jmax(a, b) = max
λ∈{R,G,B} S

λ(a, b). (8)

The difference between (5) and (7) is

ΔS(a, b) = Smax(a, b) − Smin(a, b) (9)

or

ΔS(a, b) = (Jmax(a, b) − Jmin(a, b)) t(a, b). (10)

It is to be noted that ΔS(a, b) have smaller magnitude for
bright regions and significantly larger magnitude for dark
regions. Clearly, the value channel comprises relevant image
information for image dehazing. In the proposed architec-
ture, RGB space is transformed to HSV space and the value
channel is extracted by

(
SR, SG, SB

)
→

(
SH, SS, SV

)
. (11)

2.1.2 Multi-scale dark channels

Dark channel of an image is the pixel-wise minima over a
local patch at corresponding pixel location of RGB channels
[13]. It is defined as:

Dp(a, b) = min
(i, j)∈Ωp(a,b)

(
min

λ∈{R,G,B}
(
Sλ(i, j)

))
(12)

where Sλ(i, j) represents the observed image intensity at
location (i, j), λ ∈ {R,G,B}, and Ωp(a, b) is a patch of size√
p × √

p centered at (a, b) in Sλ(i, j).
The significance of dark channel is that it provides a way

of capturing haze density in a hazy image. For a clear image,
the image intensity over a local path at each pixel location,
except the sky, is close to zero for at least one of the color
channels (RGB) [13]. In a hazy environment, the scattered
light intensity adds up to the RGB channels of an observed
scene. Thus, the pixel intensity of all 3 color channels gets
incremented corresponding to the depth of the scene [13,22].
Figure 4 shows the dark channels of an image for different
window sizes (p). He et al. [13] stated the following

– For smaller p, dark channel property fails in certain
regions, but the pixel map constitutes better edge infor-
mation.

– For larger p, dark channel property holds better, but
dehazed image shows “halo effects”.

Fig. 4 Visualization of dark channel Dp(a, b) obtained for different
patch sizes. From left to right and top to bottom: hazy scene image,
Dp(a, b) for p = √

p×√
p = 1×1, 3×3, 5×5, 7×7, 9×9, 11×11,

13 × 13, 15 × 15, 17 × 17, 19 × 19, and 21 × 21

The feature extraction layer of DCNet extracts multi-scale
dark channels. It takes advantage of both small patch size
and large patch size to extract out the information from
input hazy scene, thus resulting in a transmission map with
sharp edges. The proposed DCNet has been analyzed over
various combinations of multi-scale dark channels. It has
been observed that the network performance improves by
increasing the number of dark channels. The increase tends
to saturate after the patch size of p = 10× 10. In this paper,
DCNet is designed by choosing dark channels with patch
sizes p ∈ {1 × 1, 3 × 3, 5 × 5, 7 × 7, 10 × 10}.
The output of feature extraction layer comprises the concate-
nation of the V channel and multi-scale dark channels of an
input hazy image. It can be represented as:

F(a, b, z) ←
(
SV (a, b), D(a, b)

)
(13)

where D(a, b) represent the set of all dark channels and z
represents the number of layers being concatenated (i.e., z =
6 in the proposed architecture).

2.2 Convolutional neural network layer (CNN layer)

TheCNN layer ofDCNet architecture constitutes the primary
component involved in estimating the transmissionmap. The
output of feature extraction layer acts as the input to CNN
layer. The operation of a convolution layer is defined as:

Cl = f (Wl ∗ Cl−1 + bl) (14)

where Wl and bl represent the weights and biases, respec-
tively, of the lth convolutional layer, f represents the
activation function, and Cl represents the output of lth con-
volutional layer. The output of the first convolutional layer
is

C1 = f (W1 ∗ C0 + b1) (15)
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Table 1 Architecture of the proposed model

Layer Filter size

1st Layer 64 × 3 × 3

2nd Layer 32 × 3 × 3

3rd Layer 16 × 3 × 3

4th Layer 8 × 3 × 3

5th Layer 1 × 3 × 3

where

C0 = F(a, b, z). (16)

Convolutional network constitutes 5 convolutional layers
with filter size of f × f = 3× 3, as shown in Table 1. Zero
padding is applied to maintain the output dimensions across
layers. The output of CNN layer is the estimated transmission
map of the image as:

t = C4 = f (W4 ∗ C3 + b4) . (17)

Finally, the dehazed image is obtained using (3), with
global atmospheric airlight as A = (0.95, 0.95, 0.95). The
variation of atmospheric light is usually minimal, thus kept
constant in the model.

3 Training of DCNet

The training of DCNet has been carried out as a supervised
learning problem. The model is trained over synthetically
generated hazy patches of images with their corresponding
transmission maps. These patches are extracted by randomly
cropping small sections of images of size 20 × 20 and then
adding uniform haze in the patches using (1) for a random
value of transmission map t . Figure 5 shows some sample
patches. The motivation behind this formulation is that usu-
ally the variation of depth over a small patch of an image
tends to be insignificant. Thus, the transmission map over
the region is assumed to be a constant.

The training of the model has been carried out using
two different specifications for drawing random transmission
maps. The primary model is trained by drawing transmission
map uniformly randomly such that t ∈ [0.4, 1.0]. Thismodel
is more robust and better handles heavy haze situations. The
secondary model is trained by drawing t ∈ [0.7, 1.0], thus
better suited for dehazing of lightly hazed images.

In further sections, the dataset and model analysis have
been discussed in detail.

Fig. 5 Visualization of training patches of size 20× 20. Top row: clear
patches. Bottom row: corresponding hazy patches

3.1 Dataset, loss function and optimizer for DCNet

The training dataset is created by custom selection of a subset
of relevant images from “ImageNet 2013 validation set” [31].
The dataset comprises of 200 images, and in total 10,000
random patches, i.e., 50 patches per image, are extracted for
the training of DCNet. Similarly, the Synthetic Test dataset is
created by custom selection of 250 distinct and challenging
images from “ImageNet 2013 validation set”.

The training of the proposedmodel is carried out using the
MSE loss function (18). The MSE loss function is defined
as:

L(Θ) = 1

2

N∑
n=1

||NN (xn) − tn||2. (18)

The dataset is randomly shuffled over each epoch, and
RMSprop optimizer in PyTorch library is utilized during the
training procedure.

3.2 Architecture analysis

The proposed DCNet has various hyper-parameters which
affects the effectiveness and speed of the proposed model
significantly. The network has been analyzed over these
hyper-parameters to obtain the final model architecture.
These parameters are discussed below.

3.2.1 Haze relevant features

The model has been analyzed over a number of distinct
features, i.e., value (V) channel, multi-scale dark channels,
and multi-scale saturation (S) channels. Analysis shows that
adding multi-scale S channels as another feature to the CNN
layer, in addition to the V and multi-scale dark channels,
results in negligible improvement in the performance of the
model. Thus, the final architecture of the proposed model
constitutes only the value channel andmulti-scale dark chan-
nels.

3.2.2 Patch size of dark channel

The patch size of dark channel is an important parameter of
the feature, and the behavior of dark channel is highly sensi-
tive to it. The small-sized patch constitutes edge information
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Table 2 Performance of DCNet for different combinations of dark
channels (Dp) in DCNet

No. of dark channels Patch size p = √
p × √

p MSE

4
√
p ∈ {1, 3, 5, 7} 0.00716

5
√
p ∈ {1, 3, 5, 7, 10} 0.00198

6
√
p ∈ {1, 3, 5, 7, 10, 15} 0.00189

Bold represents performance of the proposed architecture

but the dark channel hypothesis fails under this specifica-
tions, whereas large-sized patch satisfies the dark channel
hypothesis but loses the boundary information. To utilize the
benefit of both the features while mitigating their limitations,
a hybrid implementation of multi-scale dark channels has
been proposed. The study has been conducted to analyze the
performance of the proposed model over varying set of dark
channels (Dt |t ∈ S), where S represents a set of window
sizes. The study shows that the performance of the model
improves with increasing number of dark channels. The
improvement becomes minimal after p = 10 × 10, whereas
the computational load keeps increasing with increase in the
number of dark channels. Table 2 shows the performance
of DCNet for various combinations of dark channels. The
model is optimized over accuracy and computational load.
The final architecture constitutes a set of 5 dark channels,
i.e., (D1, D3, D5, D7, D10).

3.2.3 Number of convolutional layers

It is a general trend in neural networks that with increas-
ing complexity of the model, the performance of model
improves. Concurrently, the computational load of network
also increases. In this work, the proposed model has been
analyzed for multiple sets of convolutional layers. The per-
formance of themodel shows an increasing trend, and it tends
to saturate after l = 5 layers. Thus, in the final architecture,
5 convolutional layers are used.

3.2.4 Activation function

The proposed architecture has been analyzed with a number
of different activation functions, i.e., ReLU, leaky ReLU,
and sigmoid function. Figure 6 shows the behavior of these
functions. Analysis shows that the proposed architecture
with leaky ReLU function outperforms models with similar
architecture constituting sigmoid and ReLU functions. The
superior performance over ReLU is due to the small negative
slope of leaky ReLU function which helps in bypassing the
dead ReLU problem. The proposed model constitutes each
convolutional layer being interleaved by a leaky ReLU func-
tion with a slope of 0.05.

Fig. 6 Plots of sigmoid, ReLU, and leaky ReLU activation functions

4 Results and discussions

Extensive experiments have been conducted to comprehend
the effectiveness of the proposed model. The performance
of the proposed model has been analyzed and compared
with the current state-of-the-art methods: DCP [13], BCCR
[21], SIDMF [20], CAP [29],MSCNN [24], DehazeNet [23],
GCANet [27], AOD-Net [26], andGMAN [28]. Experiments
have been conducted on the Synthetic Test dataset [31], Mid-
dlebury Stereo dataset [32–34], SOTS and HSTS datasets
[35] and some standard naturally hazed images. For fair com-
parison, the results over the state-of-the-art methods were
reproducedwith author’s support. Both quantitative andqual-
itative analyses have been conducted to obtain the detailed
comparison among these models. The quantitative analysis
is conducted using standard statistical measures, i.e., mean
square error (MSE), structural similarity index (SSIM) [36],
and peak signal-to-noise ratio (PSNR).

Tables 3 and 4 show the average performance compar-
ison of DCNet with current state-of-the-art methods over
Synthetic Test dataset andMiddlebury Stereo dataset, respec-
tively. The hazy images are generated using (1) with t = 0.6.
The results show that DCNet outperforms all other models.

Figure 7 shows the visual comparison of the effective-
ness of models over some images from Middlebury Stereo
dataset. Different models are able to remove haze to varying
extents.DCPandBCCRmodels removedhaze to someextent
but affected the color composition significantly. SIDMF
removed the haze non-uniformly and affected the other color
channels. CAP, MSCNN, DehazeNet, GCANet, AOD-Net,
and GMAN are able to remove significant haze, but the
resulting images are degraded to some extent in their color
composition and texture information. The resulting images
generated using DCNet are fairly close to the original clear
images preserving the texture, color, and edge informa-
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Table 3 Average performance comparison of DCNet with state of the art on Synthetic dataset

Metric DCP
[13]

BCCR
[21]

SIDMF
[20]

CAP
[29]

MSCNN
[24]

DehazeNet
[23]

GCANet
[27]

AOD-Net
[26]

GMAN
[28]

DCNet

MSE 0.0075 0.0062 0.0242 0.0024 0.0054 0.0043 0.0072 0.0044 0.0039 0.0013

SSIM 0.8472 0.7708 0.3847 0.9011 0.8283 0.9412 0.8664 0.9025 0.9023 0.9571

PSNR 19.6324 18.0292 11.5781 22.2278 19.2127 24.7768 23.1009 24.7332 24.8459 28.9276

Bold represent best performance for a particular metric

Table 4 Average performance comparison of DCNet with state of the art on Middlebury Stereo dataset

Metric DCP
[13]

BCCR
[21]

SIDMF
[20]

CAP
[29]

MSCNN
[24]

DehazeNet
[23]

GCANet
[27]

AOD-Net
[26]

GMAN
[28]

DCNet

MSE 0.0098 0.0072 0.0309 0.0016 0.0030 0.0030 0.0103 0.0026 0.0039 0.0007

SSIM 0.8431 0.7810 0.4808 0.9367 0.8677 0.9062 0.8021 0.9419 0.9201 0.9830

PSNR 16.7103 17.8482 10.8317 24.2569 21.2718 22.1496 20.6335 27.1277 24.2999 32.1301

Bold represent best performance for a particular metric

Fig. 7 Comparative visualization of dehazing methods on Baby and Drumsticks images from Middlebury Stereo dataset

tion. Similarly, Fig. 8 shows the performance comparison
of DehazeNet and DCNet on a sample image of “bird”. The
zoomed views highlight the feathers in original clear image,
its corresponding hazy image,DehazeNet output, andDCNet

output. The output obtained using DehazeNet seems over-
saturated, but DCNet output highly resembles the original
clear image.
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Fig. 8 Comparison of DehazeNet and DCNet on “bird” image. From
left to right and top to bottom: Clear image and its feather region, hazy
image and its feather region, dehazed image using DehazeNet and its
feather region, and dehazed image using DCNet and its feather region

Table 5 Performance evaluation of DCNet on SOTS Outdoor Dataset

Metric β ∈ [0.6, 0.9] β ∈ [1.0, 1.4] β ∈ [1.5, 2.0]
PSNR 28.74 24.42 21.98

SSIM 0.8871 0.8572 0.7926

Furthermore, the performance of DCNet has been ana-
lyzed on SOTS, HSTS, and standard benchmark datasets
[35]. The PSNR and SSIM metrics of the model on SOTS
outdoor dataset are provided in Table 5. Table 6 shows the
results on SyntheticHSTS dataset. (The performancemetrics
of other state-of-the-art models are retrieved from [35].) The
DehazeNet model outperforms all other models on HSTS
dataset. It is to be noted that for consistency in experimen-
tal results throughout the paper, the evaluation is carried

out using originally trained DCNet model (with synthetic
dataset). Hence, this could be a reason for disparity in results.

Additionally, the proposed model has been analyzed on
some standard natural images frequently used in the litera-
ture for comparison. These are interesting cases containing
regions like clouds, marble, etc., which generally becomes
the bottleneck for dehazing models in removing haze, as
white regions are potential areas for the presence of heavy
haze. Their corresponding clear images are not available.
Figures 9 and 10 show the results for “Canyon” and “Girls”
image, respectively.DCPmodel rectified hazy regions but, on
the other hand, increased the contrast in certain areas, such as
sky region, unrealistically high. BCCR shows similar behav-
ior as that of DCP. In SIDMF, the resulting image shows
non-uniform haze removal. In CAP, the model removed sig-
nificant haze but also caused loss in edge information and
over-saturation. MSCNN preserved the structural integrity
and naturalness of the image, but the image still contains haze
to some extent. DehazeNet effectively removed haze while
maintaining the structural integrity and naturalness, but the
image shows halo effects in certain regions. It is distinctly
visible in high-frequency regions of the image. GCANet
and GMAN effectively removed haze from the image, but
the color composition is not preserved. AOD-Net is able to
remove haze and better preserve the color composition of
the image. In comparison with all aforementioned methods,
DCNet is able to preserve the edge information, structural
integrity, and is effectively being able to remove haze from
the image while maintaining its naturalness. However, there
are slight halo effects in the regions with sharp color change.

Table 6 Performance evaluation of DCNet on HSTS dataset

Metric DCP [13] BCCR [21] CAP [29] DehazeNet [23] MSCNN [24] AOD-Net [26] DCNet

PSNR 14.84 15.08 21.53 24.48 18.64 20.55 22.27

SSIM 0.7609 0.7382 0.8726 0.9153 0.8168 0.8973 0.8003

Bold represent best performance for a particular metric

Fig. 9 Comparative visualization of dehazing methods on Canyon image. The zoomed views are shown for sky region in input hazy image (yellow
box) and dehazed image using DCNet (red box) (color figure online)
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Fig. 10 Comparative visualization of dehazing methods on Girls image. The zoomed views are shown for region with illumination and haze both,
in input hazy image (yellow box) and dehazed image using DCNet (red box) (color figure online)

Fig. 11 Dehazing results on some standard images. Top row: hazy
images; bottom row: dehazed images using DCNet

Table 7 Results of ablation studies on synthetic andMiddlebury Stereo
dataset

Metrics Synthetic dataset Middlebury dataset

DCNet† DCNet DCNet† DCNet

MSE 0.0181 0.0013 0.0130 0.0007

SSIM 0.8211 0.9571 0.8790 0.9830

PSNR 21.53 28.93 21.92 32.13

Bold represent best performance for a particular metric
DCNet† DCNet without V channel

Figure 11 shows experimental results of DCNet on some
other standard naturally hazed images. The resulting images
from the model show that the closer regions have been suc-
cessfully resolved, whereas in farther regions, light haze is
still prevalent which maintains the naturalness in accordance
with human visual perception.

4.1 Ablation studies

The proposed model takes 5 dark channels and the value
channel as input features. To realize the importance of these
features in the model, an ablation study is conducted. Table 7
shows the performance comparison of the proposed architec-
ture with and without value channel as an input feature to the
proposed network. It is quite evident that the performance
in all three metrics significantly degrades without the value
channel. Similarly, the analysis has been conducted to under-

stand the importance of dark channels with different window
sizes. Table 2 shows the performance of model with differ-
ent set of dark channels. As stated earlier, the performance of
the proposed model improves by adding more dark channel.
The improvement becomes minimal after the window size of
10× 10, but the computational load keeps increasing. Thus,
the final architecture constitutes a set of 5 dark channels.

5 Conclusions

In this paper, a novel single-image dehazing model—
“DCNet” has been proposed, constituting two major com-
ponents, namely feature extraction layer and CNN layer, for
estimating true transmission map of a hazy scene. The model
learns nonlinear mapping between input hazy image and its
transmission map, used for dehazing of image. The exper-
imental results show that the proposed model outperforms
the current state-of-the-art methods for single-image dehaz-
ing task over wide range of datasets.

Still, there is room for improvement in the model per-
formance. The model shows slight halo effects in high-
frequency regions of the images involving heavy hazy. Also,
the model shows non-ideal performance in some images
involving sizable bright regions.
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