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Abstract
Understanding the complex semantic structure of scene images requires mapping the image from pixel space to high-level
semantic space. In semantic space, a scene image is represented by the posterior probabilities of concepts (e.g., ‘car,’ ‘chair,’
‘window,’ etc.) present in it and such representation is known as semantic multinomial (SMN) representation. SMNgeneration
requires a concept annotated dataset for concept modeling which is infeasible to generate manually due to the large size of
databases. To tackle this issue, we propose a novel approach of building the concept model via pseudo-concepts. Pseudo-
concept acts as a proxy for the actual concept and gives the cue for its presence instead of actual identity.We propose to use filter
responses from deeper convolutional layers of convolutional neural networks (CNNs) as pseudo-concepts, as filters in deeper
convolutional layers are trained for different semantic concepts. Most of the prior work considers fixed-size (≈227×227)
images for semantic analysis which suppressesmany concepts present in the images. In this work, we preserve the true-concept
structure in images by passing in their original resolution to convolutional layers of CNNs. We further propose to prune the
non-prominent pseudo-concepts, group the similar one using kernel clustering and later model them using a dynamic-based
support vector machine. We demonstrate that resulting SMN representation indeed captures the semantic concepts better and
results in state-of-the-art classification accuracy on varying size scene image datasets such as MIT67 and SUN397.

Keywords Varying size scene images · Scene representation · Semantic multinomial representation · Concept modeling ·
Pseudo-concept · Scene recognition

1 Introduction

Scene images are composed of many fine and localized
semantic concepts (e.g., ‘car,’ ‘chair,’ ‘book,’ ‘sky,’ etc.)
which collectively form abstract semantic entities such as
‘coast,’ ‘bookstore,’ and ‘dining-room’ [20]. Scene image
recognition is one of the challenging tasks in computer vision
due to multiple factors: (i) high intra-class variability (ii)
high inter-class similarity (iii) overlapped complex seman-
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tic structure of concepts (iv) large diversity of content of
scene images and (v) varying sizes of images [45]. Efficient
and effective scene recognition approaches are important
as they are the basic task needed in many of the real-
world applications such as event recognition, indoor/outdoor
robot navigation, automatic camera mode selection, auto-
matic tour guidance, and so on. In the past two decades, a
variety of scene recognition approaches have been proposed
[2,11,24,39,47]. These approaches focus on either generat-
ing the discriminating scene representations or building an
effective classifier. Due to the complex semantic nature of
scene images, generating the discriminating and descriptive
representation is an important task. Scene image representa-
tions are broadly based on two type of features, i.e., low-level
local image features [29] and learning-based features [24].
Low-level features capture only the local semantics of a scene
image whereas high-level learned features capture the global
information. However, both the representations fail to cap-
ture and quantify the complex concepts information present
in a scene. Amore suitable representation for scene images is
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semantic concept-based representation which quantifies the
presence of different concepts in an image [33,39].

Semantic concept-based representation of an image is a
vector of concept probabilities corresponding to its semantic
content. An approach for obtaining such a representation is
known as semantic scene modeling that involves identifying
the semantic concepts present in the images and quantifying
the extent of the presence of such concepts [43]. Important
issues in semantic modeling are to decide (i) what semantic
concepts to be quantified and (ii) whichmethod to be used for
this quantification. One of the approaches to semantic scene
modeling involves representing a scene image using semantic
multinomial (SMN) representation [7,22,32,39]. SMN rep-
resentation, π = [π1, π2, π3, . . . , πC]ᵀ can be considered
as a transformation that maps an image I onto a point in a
C-dimensional probability simplex, where each element of π
corresponds to the posterior probability of semantic concepts
[32]. The posterior probabilities can be computed by building
suitable models for the concepts using concept specific fea-
tures from all the images in the database. To generate such
features, it is necessary to have images with true-concept
labels. Explicit pixel-wise annotation and feature extraction
from concept regions are impractical options [9,33]. So in the
absence of true-concept annotated images prominent concept
features can be considered as cues to concepts without their
true identity. Such features are called as pseudo-concept fea-
tures. The ‘pseudo-concepts,’ give cues for the presence of
different concepts. However, they do not give the identity of
actual concepts in an image. In [14], clusters of the low-level
local image feature corresponding to the database images
are considered as cues for pseudo-concepts. Since the local
feature vectors are not able to capture the complex semantic
structure of scene images effectively, we propose to consider
learned features to build the concept models for generating
SMN representation of scene images.

In the last few years, convolutional neural networks
(CNNs) have achieved great success in vision and other
related domains [41,51]. Due to the ability of learning
complex visual structures of scene images, CNN-based rep-
resentations are more effective in comparison with low-level
local image features [7,8]. Features extracted from fully
connected (FC) layers of a CNN correspond to the global
representation of an image but they lack spatial and geo-
metric invariance properties [7,21]. However, convolutional
(CONV) layer filters of CNNs preserve spatial structures of
concepts. Initial CONV layers capture local structures like
the blob, curve, edge, point, etc., while deeper CONV layers
capture meaningful semantic information that contributes to
concept description [10,49]. This is also illustrated in Fig. 1,
where maximally activated image regions from a particular
filter are shown in each row. It can be seen from Fig. 1 that
images in a particular row correspond to a semantic concept.
For, e.g., filter #19 trigger for semantic concept swimming

Fig. 1 Visualization of the maximally activated image regions for few
filters (19, 33, …, 228) of CONV5 layer of Places365-AlexNet [24] on
images of SUN397 scene dataset [45]. Activated regions on same row
correspond to a concept

pool, filter #33 formonument structure, and so on.This shows
that a filter in a CONV layer responds to a distinct geomet-
ric structure corresponding to a semantic concept. Therefore,
different activation maps (filter responses) of deeper CONV
layers can be thought of as the indicator of various concepts
present in the images.

Conventionally deepCNNs take thefixed size of images as
input and results in fixed-size feature representation for clas-
sification task [24,51]. Resizing varying original resolution
images to fixed-size results in loss of concept information
before feature extraction [11,18]. This loss is not very cru-
cial for object recognition tasks as object images consist of
a single object with uniform artificial background whereas
many objects and concepts co-occur in scene images. Also,
the scene images may be of varying size with high reso-
lution. Resizing such a high-resolution image to a smaller
size results in loss of semantic information corresponding to
concepts. In this work, we address this issue by considering
the actual resolution images for semantic analysis and data
generation for concept model building.

It is also observed that some of the filters in a deeper
CONV layer of a pre-trained CNN are not trained for a
meaningful semantic structure and hence non-prominent [1].
Other important observation is that some filters are trained
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for similar concepts. In this work, we propose an approach
to prune the non-prominent filters using a threshold-based
approach. We also propose to group the similar filter
responses using kernel-based clustering of pseudo-concepts
class data. Selected and grouped pseudo-concepts class data
is further used for building the pseudo-concept models using
kernel-based SVM. To summarize, main contributions of this
work are as follows:

– Actual resolution images (without cropping or re-scaling
to fixed size) are considered for concept modeling to
avoid loss of information.

– A strategy is proposed in which varying size filter
responses act as cues for pseudo-concepts in the absence
of true-concepts label data.

– Procedure to prune thenon-prominent, non-discriminative
pseudo-concepts andgroup the similar oneusingdynamic
kernel-based clustering are proposed.

– Pseudo-concept modeling using modified deep spatial
pyramid match kernel (M-DSPMK)-based SVM is pro-
posed to handle varying size activation maps.

– Novel deep CNN-based SMN representation is proposed
for varying size scene image recognition.

The remaining paper is organized as follows: Sect. 2 briefly
reviews some of the related approaches for scene image rep-
resentations and recognition. The proposed framework for
generation of deep SMN representation with motivation of
varying size images is discussed in Sect. 3. In Sect. 4, the
experimental studies on scene image recognition are pre-
sented. The conclusion and discussion on future possibilities
are presented in Sect. 6.

2 Literature review

Scene image recognition has been in the focus of the vision
community since the past decades. Many researchers have
proposed different types of approaches with the motive of
achieving high scene recognition accuracy [2–4,11]. Few
focus on holistic spatial envelope properties (degree of nat-
uralness, degree of roughness, and so on) of scene images,
others give more importance to local variation in images,
while in the last few years focus is completely shifted to
learned CNN-based approaches [50]. In this work, we argue
that neither handcrafted local image features nor CNN-based
global learned features are appropriate for original varying
size concept rich images. Alternatively, mid-level intermedi-
ate representation encoded from semantic analysis of images
captures the discriminative characteristic better.

State-of-the-art intermediate semantic representation of
scene images is obtained using either semantic analysis of
local image features [9,25,32] or learned features [3,7,23,

27,39,44] as a base feature. The work in [32] represents the
images by posterior probabilities of appearance-based classi-
fiers which are built using bag-of-visual word representation.
Thework in [9] also uses low-level local image features along
with pattern mining approaches to mine relevant visual prim-
itives of images as a bag of frequent local histograms (FLHs).
The work in [25] constructs object bank (OB) representation
using object filter responses by considering deformable part-
based model as filters, i.e., object detector.

Later, with the advancement of CNNs, local image fea-
tures as base features are replaced by learned features for
generating intermediate scene representation.Thework in [7]
proposed to represent a scene image using a bag-of-semantics
(BoS) representation. Here, scene images are first converted
into different scale patch images and then represented by
softmax layer output of pre-trained CNN. BoS representa-
tion of patch images is further encoded using Fisher vector
(FV) embedding and named as semantic FV. The work
in [44] used region proposal technique to generate poten-
tial patches containing objects, further extract CNN-based
features of these patches and harvest discriminative visual
objects and part-based representation. The work in [23]
proposed to represent images byCNN-based features ofmid-
level patches using codebooks. The work in [27] proposed to
useCNN-based features of image patches and applied pattern
mining-based approach to obtain Bag-of-Elements (BoE)
andBag-of-Patterns (BoP)-based representation.Thework in
[39] proposed a semantic representation using patch features
of multi-scale CNN for context modeling with Markov ran-
dom field framework. The work in [3] proposed to represent
image descriptors with the occurrence probabilities of the
discriminative object in patches and called their framework
as a semantic descriptor with objectness (SDO). In all these
approaches, either images patch features are considered to
build object classifier or complex model building procedure
is used with different encoding techniques. In contrast, we
propose an effective and efficient framework to build concept
models for varying size scene images.We consider images in
their original size for generating the cues for true-concepts.
In the absence of true-concept annotated data, we propose
concept modeling via pseudo-concepts and generate deep
CNN-based SMN representation.

The idea of pseudo-concepts for concept model building
and obtaining SMN representation using handcrafted local
image features are proposed in [14] for smaller datasets,
(i.e., MIT8 scene [30] and Vogel–Schiele [43]). In [14],
pseudo-concept data is generated using clusters of local fea-
ture vectors. Disadvantages of the approach proposed in [14]
are (1) concept models are built using features from the com-
plete image instead of concept specific features, as single
image comprises of multiple concepts, and (2) handcrafted
features are used for building concept models which are
local descriptors and do not capture much semantic informa-
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tion. The approach proposed was not explored for large-scale
datasets. To overcome these limitations, we propose CNN-
based pseudo-concepts using the filter responses of original
resolution images. The details of the proposed framework are
discussed in the next section.

3 Proposed framework for recognition of
varying size scene images

In this section, we first present the motivation of using scene
images in their original size for varying size scene recognition
framework. Further, the proposed conceptmodeling anddeep
SMN representation generation procedures are described in
subsequent subsections.

3.1 Motivation for using original varying size
images for semantic analysis

In real-world scene datasets, the spatial resolution of images
approximately varies from104 to 108 pixels. This is also illus-
trated in the scatter plots shown in Fig. 2 which are drawn
for large-scale scene image datasets such as MIT67 [31] and
SUN397 [45]. Each point in these plots denotes the dimen-
sion of an image (in terms of the number of pixels) present in
that dataset. It can be observed from the plots that image size
varies significantly across the datasets and resizing them all
to a fixed small size results in loss of concept information.
Hence, there is a need for a scene recognition framework that
considers varying size original resolution images.

Also, existing state-of-the-art deep CNNs require fixed-
size (≈ 227×227) input images. This requirementmay affect
the recognition accuracy for the scene images of an arbi-
trary size/resolution [18]. This is also illustrated in Fig. 3,
here, we can visualize the difference in information con-
tent of activation maps of the CONV1 layer computed
from Places365-AlexNet [51] when the image is resized to
‘227×227’ versus original size ‘2400×1594.’ We observe
that fine details and spatial concept layout are preserved
and forwarded to later convolution layers when the image is
passed to CNN in its original size instead of a fixed reduced
size. To avoid such loss, we consider original size images as
input to the CNN for concept modeling. Following are the
main benefits of doing so:

– Finer semantic concept information is preserved till the
last CONV layers of the network hierarchy.

– It avoids the need for cropping or warping of an image
in the beginning.

– It results in better features for effective conceptmodeling.
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Fig. 2 Scatter plot of original size of images in a MIT67 dataset and b
SUN397 dataset

Fig. 3 Visualization of activation maps of the CONV1 layer using
Places-AlexNet. a Original image, b Activation maps of size (55×55)
at CONV-1 layer from filter #4 and #44 (when the image is passed with
reduced size, i.e., 227×227), c Activation maps of size (598×396) at
CONV-1 layer from filter #4 and #44 (when the image is passed in its
actual size, i.e., 2400×1594)
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Fig. 4 Illustration of two different resolution images represented as
varying size sets of activation maps computed from last CONV layer
of pre-trained CNN

3.2 Concept model building using varying size
activationmaps

The core part of SMN representation generation is build-
ing the concept models which requires a concept annotated
dataset to generate concept specific features. However, it is
impossible to manually annotate concepts present in images
at the pixel level. In the absence of true-concept labeled data,
we propose to use the response of deeper CONV layer fil-
ters as concept cues. Since information regarding the filter
identity, i.e., which filter is learning what concept is not
known during the training of CNNs, we cannot infer the
true-concept identity of the particular filter from its gen-
erated activation maps. Moreover, we can only visualize
the filter responses using different visualization techniques
[1,48]. Figure 1 shows maximally activated image regions
of SUN397 images for a few filters (19, 33, …, 228) of
the CONV5 layer of Places365-AlexNet [51] using deep-
visualization toolbox [48]. It is seen that maximally activated
regions from a distinct filter have similar semantic properties
and correspond to a specific concept. This enables us to per-
ceive these filter responses as indications for concepts andwe
have called them as pseudo-concepts. Furthermore, for pre-
serving the spatial concept structure of scenes, we consider
original size images which results in varying size activation
maps for concept modeling. Figure 4 illustrates the image
representations as varying size sets of activation maps, i.e.,
Xm and X n which are obtained when two images Im and
In of size ‘400×285×3’ and ‘512×384×3,’ respectively,
are passed to CONV layers of pre-trained CNN. It can be
observed that the size of all activation maps corresponding
to an image is same and that depends upon the size of the input
image. Figure 5 shows the block diagram corresponding to
the proposed approach to varying size scene recognition and
the detailed procedure is given in the following subsections.

3.2.1 Selection of pseudo-concepts using varying size
activation maps

In the proposed framework, the filters of deeper CONV
layer of a pre-trained CNN are considered as pseudo-concept
detector and corresponding responses as features for the
pseudo-concept classes. It is determined that few of the filters
are not capturing prominent concepts of the given dataset [10]
and results in non-discriminative features. So, there is a need
to select prominent filters for the effective pseudo-concept
model building. The detailed procedure using original reso-
lution images is given in Algorithm 1. In the algorithm, K
pseudo-concepts are selected from f , where f is the total
number of filters in a chosen deep CONV layer or an initial
number of pseudo-concepts.

Given a dataset of varying size original resolution concept
rich images without concept labels, D = {I1, . . . , Im, . . . ,

IM }, whereIm ∈ R
im× jm×3. Every imageof dataset is passed

through convolutional layers of pre-trained deep CNN and
generates {X 1, . . . ,Xm, . . . ,X M } varying size sets of deep
activation maps corresponding to M database images from
chosen CONV layer. Here, Xm = {xm1, . . . , xmi , . . . , xm f }
is a set of f activationmaps with xmi ∈ R

sxm×sym , sxm×sym
is the size of an activation map which depend on chosen pre-
trained CNN architecture. As discussed, all the activation
maps triggered by their respective filters are not prominent.
To prune the non-prominent activation maps corresponding
to a filter, varying size activation maps are sum pooled and
normalized by its size. A score matrix P ∈ R

M× f is formu-
lated using normalized score values. The threshold specific to
a filter or pseudo-concept class is computed as average score
distribution of that particular filter responses corresponding
to all dataset images. A binary matrix R is generated from P
using filter specific threshold, where each entry R[m, i] indi-
cate the presence (1) or absence (0) of i th pseudo-concept in
mth image.

A count vectorpc ∈R
f is computed,wherepc[i] indicates

the total number of activation corresponding to i th pseudo-
concept class. Fewof the filters get triggered for almost all the
images of the dataset and few are for very less. For building
the effective pseudo-concept models there is a need of some
minimumnumber of activation in a pseudo-concept class. If a
particular filter got activated for almost all the images, then it
result in non-discriminative pseudo-concept model. To over-
come both the scenarios, all such pseudo-concepts are pruned
using two threshold, i.e., lb and ub, which indicates at least
and at most features needed in a pseudo-concept class for
model building. For building the models, all the activation
maps are considered as features for the selected pseudo-
concept class whose corresponding value in R matrix is
1. Let ρ = {ρ1, . . . , ρk, . . . , ρK} indicates pseudo-concept
classes data, where ρk = { x1k, . . . , x jk, . . . , xmkk} is the
kth pseudo-concept class and contain varying size activation
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Fig. 5 Block diagram of proposed varying size scene recognition framework. Here, the original resolution images are represented by deep SMN
representation which is obtained using pseudo-concept models

maps. Here, x jk ∈ R
sx j×sy j and mk is the total number of

varying size activationmaps in kth pseudo-concept class. The
time complexity of pseudo-concept selection algorithmgiven
the extracted features from pre-trained CNN is O(M f ). In
the next subsection, the procedure for grouping the similar
pseudo-concepts using dynamic kernel-based clustering is
discussed.

3.2.2 Grouping of similar pseudo-concepts using
kernel-based clustering

Using deep-vis toolbox [48], we visualized the maximally
activated image region of scene images corresponding to few
of the CONV5 layer filters as shown in Fig. 1. It is observed
that a particular filter is pre-trained to detect the same seman-
tic concept in the different images of the database. Hence,
an intrinsic geometric structure can be assumed. It is also
observed that some of the filters respond to similar concepts
and will result in redundancy in pseudo-concept modeling
(e.g., #19 and #52, #35 and #63 of Fig. 1). To remove such
redundancy, we propose to use kernel-based clustering [6] to
group the data corresponding to similar varying size pseudo-
concept classes. Kernel-based clustering algorithm applies
the same approach as k-means clustering but in the trans-
formed space and for computation of distance in transformed
space kernel function is used.

From the pseudo-concept selection procedure of Algo-
rithm 1, K pseudo-concepts class data, i.e., {ρ1, . . . , ρk

. . . , ρK} is obtained, where ρk is the data for kth class. A
nonlinear mapping φ is assumed from input feature space
(i.e., pseudo-concept data space) to higher-dimensional ker-
nel feature space. In transformed space, pseudo-concept
class data is represented using the mapping implicit φ,
i.e., {φ(ρ1),φ(ρ2), . . . ,φ(ρK)}. The dynamic kernel-based
clustering procedure [6] is used to groupK pseudo-concepts
class data into C pseudo-concept classes where C ≤ K. In
dynamic kernel-based clustering algorithm, inner product
in transformed space is computed using kernel function in
original space via kernel trick. That is φ is not computed
for ρK

1 or the cluster means μC
1 as algorithm computations

are completely depend on kernel evaluations. Few examples
of kernel functions are the linear kernel, polynomial kernel,
Gaussian kernel, etc. However, all these kernel functions are
defined for fixed-length features. Kernel functions designed
for varying length patterns are referred to as dynamic ker-
nels [13,17]. Since pseudo-concepts class data is of varying
size, we propose modified deep spatial pyramid match ker-
nel (M-DSPMK) as the dynamic kernel to compute the
similarity between pseudo-concept classes in transformed
feature space. M-DSPMK uses the similar idea as DSPMK
proposed in [16,36]. The DSPMK compute the similarity
between two different or same size images represented as sets
of activation maps. The number of activation maps between
two images are same, however, there size are different. The
same kernel function is modified further to compute the sim-
ilarity between varying size pseudo-concept class data and
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Algorithm 1 Selection of pseudo-concepts and generation of
pseudo-concept class specific data using original resolution
images.
Inputs:
(i) Unlabeled varying size image dataset, D = {I1, . . . , Im , . . . , IM }.
(ii) Pre-trained CNN model.
(iii) lb: lower bound onminimum number of feature vectors (activation

maps) required in any pseudo-concept class.
Procedure:
1: ∀ Im ∈ D, extract convolutional layer features using true resolu-

tion image, i.e, varying size sets of deep activation maps, Xm =
{xm1, . . . , xmi , . . . , xm f } from chosen CONV layer of pre-trained
CNN where, xmi ∈ R

sxm×sym .
2: Generate score matrix, P[m, i] = ∑ ∑

xmi/(sxm ∗ sym), ∀m =
1, 2, . . . , M and ∀i = 1, 2, . . . , f .

3: R[m, i] =
{
1, if P[m, i] ≥ 1

M

∑M
m=1 P[m, i]

0, otherwise
4: Initialize k=0, ub =M/2 and pc_index = zeros(1, f ), ρk={}.
5: pc[i] = ∑

R[:, i], ∀i = 1, 2, . . . , f
6: for i := 1 to f do
7: if lb ≤ pc[i] ≤ ub then
8: k=k+1
9: pc_index[i]=1
10: for m:= 1 to M do
11: if R[m, i] �= 0 then
12: add xmi in ρk
13: end if
14: end for
15: end if
16: end for
17: K = k (Total number of selected pseudo-concepts classes)
Outputs:
(i) ρ = {ρ1, . . . , ρk , . . . , ρK}, where ρk ={x1k , x2k , . . . , xmkk} is the

set of varying size activation maps corresponding to data of kth

pseudo-concept class.
(ii) pc_index: index vector corresponding to selected pseudo-concepts.

named as modified DSPMK. In a pseudo-concept class data,
each activation map is of different sizes and number of acti-
vation maps also varies from one pseudo-concept class to
another.

Modified DSPMK function for computation of the sim-
ilarity between two pseudo-concept classes is given in
Algorithm 3. Let ρi = {x1i , . . . , xpi , . . . , xmi i } and ρ j =
{x1 j , . . . , xq j , . . . , xm j j } is two pseudo-concept class data
with, xpi ∈ R

sxp×syp and xq j ∈ R
sxq×syq . Here, mi is the

number of activation maps in the i th pseudo-concept class
and m j is the number of activation maps in the j th pseudo-
concept class.Modified DSPMKworks by building L spatial
pyramid levels ranging from 0, 1 to L − 1. At each level l,
activation maps corresponding to ρi and ρ j are spatially par-
titioned into 22l equal size blocks. Each block is max pooled
and results in Xl

i ∈ R
mi22l×1 and Xl

j ∈ R
m j22l×1 vectors. Xl

i

and Xl
j are �2 normalized and used to compute the interme-

diate matching score Sl using Eq. 2 of Algorithm 3. Here, the
matching score Sl computed at level l also includes all the
matches found at the finer level l + 1. Therefore, the number

of newmatches found at level l is given by Sl −Sl+1 for l = 0,
…, L-1. The final matching score is computed as a weighted
sum of the new matching score at different levels of the spa-
tial pyramid as in Eq. 4 of Algorithm 3. Pictorial illustration
of modified DSPMK for L=2 is shown in Fig. 6. Once the
prominent pseudo-concepts are identified and similar ones
are grouped then, the next step is to build the pseudo-concept
models, which is presented in the next subsection.

Algorithm 2 Grouping of similar pseudo-concept classes
using dynamic kernel-based clustering.
Inputs:
(i) K : pseudo-concept classes data, i.e., {ρ1, . . . , ρk . . . , ρK}, here ρk

is the kth pseudo-concept class data.
(ii) C : effective number of pseudo-concepts.

Procedure:
1: Consider pseudo-concepts class data as points in higher dimensional

space as {φ(ρk)}
K
k=1.

2: Randomly pick C points as cluster representative in transformed
higher dimensional space i.e., {μ1, . . . ,μ j , . . . ,μC}.

3: Compute the distance of each pseudo-concept class and cluster cen-
ter μ j in transformed space using below distance measure:

D(φ(ρi ),μ j ) = ∥
∥φ(ρi ) − μ j

∥
∥2

= φ(ρi )
ᵀφ(ρi ) − 2φ(ρi )

ᵀμ j + μ
ᵀ
j μ j , here,μ j =

∑
∀ρ j∈Ω j

φ(ρ j )

|Ω j |

= K (ρi , ρi ) − 2

∑
∀ρ j∈Ω j

K (ρi , ρ j )

|Ω j | +
∑

∀ρ j∈Ω j
K (ρ j , ρ j )

|Ω j | ,

here, Ω j denote j th cluster, |Ω j | indicate the number of pseudo-
concepts class in j th cluster and K () indicate the modified DSPMK.

4: Assign pseudo-concept class to that cluster center whose distance is
minimum.

5: Recompute the cluster centers as,

μ j =
∑

∀ρ j∈Ω j
φ(ρ j )

|Ω j | (1)

6: Repeat from step 3, until there is no change in cluster center.
Outputs:
(i) {ρ̂1, . . . , ρ̂c, . . . , ρ̂C}, C pseudo concepts class data after grouping.

Here, ρ̂c= {x1c, x2c, . . . , xmcc}

3.2.3 Pseudo-concept modeling

From the grouping procedure, C pseudo-concepts class data
is obtained, i.e., {ρ̂1, . . . , ρ̂c, . . . , ρ̂C} for building the con-
cept models. Here, ρ̂c= {x1c, x2c, . . . , xmcc} is the cth class
data which contain varying size activation maps. For every
pseudo-concept class, the modified DSPMK-based SVM
model is built that discriminates corresponding pseudo-
concept data from the rest of the pseudo-concepts class
data. The modified DSPMK as dynamic kernel is used
for building the SVM-based model instead of linear ker-
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Algorithm 3 Modified deep spatial pyramid match kernel
KM-DSPMK(ρi , ρ j )

Inputs:
(i) Pseudo-concepts class data,

ρi = {x1i , . . . , xpi , . . . , xmi i } where, xpi ∈ R
sxp×syp

ρ j = {x1 j , . . . , xq j , . . . , xm j j } where, xq j ∈ R
sxq×syq

(ii) L: total number of pyramid levels.
Procedure:
1: for l = 0 to L − 1 do
2: At level l, spatially partitioned each activation map of ρi and ρ j

into 22l blocks.
3: Apply max pooling over each spatially partitioned block of acti-

vation maps and compute Xl
i ∈ R

mi 22l×1 and Xl
j ∈ R

m j 22l×1

vectors.
4: �1- normalize the generated feature vectors Xl

i and Xl
j

X̂
l
i = Xl

i
∑mi 22l

r=1 Xl
i [r ]

, X̂
l
j = Xl

j
∑m j 22l

s=1 Xl
j [s]

(2)

5: Compute level-wise matching score using histogram intersection
function as

Sl =
∑mi 22l

r=1

∑m j 22l

s=1
min(X̂

l
i [r ], X̂

l
j [s]) (3)

6: end for
7: Compute final similarity score between ρi and ρ j using level-wise

matching score,

KM-DSPMK(ρi , ρ j ) =
L−2∑

l=0

1

2(L−l−1)
(Sl − Sl+1) + SL−1 (4)

Outputs:
(i) KM-DSPMK(ρi , ρ j ).

nel as activation maps are of varying size. Inputs to the
modified DSPMK are pair of activation maps of same or
different sizes, i.e., KM-DSPMK(xi , x j ) instead of pair of sets
of activation maps. The proposed framework of building
the concept model is free from any image label, concept
or region annotation, and segmentation. A set of concept
rich images with corresponding activation maps are suf-
ficient for pseudo-concept selection and modeling. As an
image may contain multiple pseudo-concepts, the process
of modeling the pseudo-concepts is considered as weakly
supervised.

3.3 Deep SMN representation generation for
varying size scene images

To generate SMN representation of original resolution scene
image Im , convolutional layer activation maps set Xm

={xm1, . . . , xmi , . . . , xm f } is obtained from a chosen CONV
layer of a pre-trained CNN model, where xmi ∈ R

sxm×sym .
Details of used pre-trained CNN models are discussed in

Sect. 4.2. Pruning of activation maps is done by removing
non-significant filter responses using pc_index (computed in
Algorithm1). Final set of activationmaps are given as input to
every pseudo-concept model and corresponding output score
is computed. The output score sc, for the cth pseudo-concept
model is mapped onto a pseudo-probability using a logistic
function as

P̃(c | X̃m) = 1

1 + exp(−αsc)
(5)

where α is a free parameter that controls the slope of the
logistic function. The pseudo-probability value is normalized
to obtain the posterior probability value corresponding to
pseudo-concept c as follows:

πc = P(c | X̃m) = P̃(c | X̃m)
∑C

c=1 P̃(c | X̃m)
. (6)

SMN representation for an image Im is given as πm =
[πm1, πm2, . . . , πmc, . . . , πmC ]ᵀ corresponding to each of
the pseudo-concepts.

4 Experimental studies

In this section,we evaluate the effectiveness of proposed deep
SMN representation for varying size scene recognition task
using different datasets. We also discuss the various param-
eters and other fine details of the proposed framework.

4.1 Datasets

We evaluate the proposed approach on widely used scene
recognition datasets namely Vogel–Schiele (VS) [43], MIT8
scene [30], MIT67 [31] and SUN397 [45].

– MIT8 scene dataset consists of 8 outdoor scene categories
with a total of 2,688 images. Scene categories include
‘coast,’ ‘forest,’ ‘mountain,’ ‘open-country,’ ‘highway,’
‘inside-city,’ ‘tall building’ and ‘street.’ 100 images from
every class are randomly selected for training and rest for
testing in 5 trials similar to [30]. The average classifica-
tion accuracy of 5 trials is presented in the result section.

– Vogel–Schiele (VS) dataset consists of 6 natural scene
categories with a total of 700 images. Scene categories
include, ‘coasts,’ ‘forests,’ ‘mountains,’ ‘open-country,’
‘river’ and ‘sky-clouds.’ The average classification accu-
racy of fivefold is presented by considering 80% of
images from each class for training and the rest for test-
ing.

– MIT67 dataset consists of 5 main categories, i.e., store,
home, public spaces, leisure, and working place where
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Fig. 6 Illustration of computation of similarity score between two varying size pseudo-concept class data using modified DSPMKwith the number
of levels as 2

each category is further divided into several sub-categories.
Overall there are 67 indoor scene classes with a total of
15,620 images. This dataset is very challenging when
compared to outdoor scene datasets as it consists of very
confusing indoor classes (like bookstore–library, jewelry
shop–shoes shop, and so on). Another main challenge
includes the presence of varying size images, i.e., the
original resolution of images varies approximately from
104 to 12*106 also shown in Fig. 2. Classification results
are presented on single split defined in [31] with approx-
imately 80 images per training class and 20 per testing
class.

– SUN397 dataset is large-scale dataset consists of 397
classes of outdoor, indoor, and urban scene images with
varying in size. Resolution of images in this dataset varies
from 103 to 107 as shown in Fig. 2. It consists of at least
100 images per class. Training and testing splits are fixed
and publicly available [45]. Each split contains 50 train-
ing and 50 testing images per category. For the scene
image recognition task, we used the first three splits and
the results are presented as average classification accu-
racy for 3 splits.

4.2 Experimental setup

In our studies, we have utilized four different CNN archi-
tectures namely AlexNet [24], GoogLeNet [41], VGGNet16
[37], andResNet152 [19]. These architectures are pre-trained
on ImageNet [5] (i.e., object-centric) and Places-(205& 365)
[51] (i.e., scene-centric) databases. Publicly available (Caffe
Model zoo1) pre-trained weights are used without any fine-
tuning. Pre-trained CNNs are used without its FC layers
as CONV layers do not restrict the input image size and
also preserve the semantic structure of images. We consider
deep activation maps of last CONV (LC) and second-to-last
CONV (SLC) layers for the selection of pseudo-concepts and
model building.

The number of filters for different CNN architectures in
LC and SLC layers are given in Table 1. Since we have
considered the different CNN architectures, the initial num-
ber of pseudo-concepts also varies and that depends on the
total number of filters in the chosen CONV layer and CNN
architecture. We select C filters as pseudo-concepts detector
from f number of filters in chosen CONV layer using Algo-
rithms 1 and 2. The dimension of SMN representation is
restricted with number of built pseudo-concept models. The

1 https://github.com/BVLC/caffe/wiki/Model-Zoo.
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Table 1 Number of filters f in LC layer and SLC layer of different
CNN architectures considered in this study

LC layer SLC layer

AlexNet 256 384

GoogLeNet 1024 832

VGGNet16 512 512

ResNet152 2048 2048

effect of the final number of pseudo-concepts on classifica-
tion performance is discussed in Sect. 4.6. For building the
pseudo-concepts model of a particular dataset, all the train-
ing images associated with different classes of that dataset
are collectively considered as the database of M images
without any class or concept level information. Although
any collection of concept rich images are well suitable for
the pseudo-concept modeling process. The value of lb in
Algorithm 1 (i.e., minimum number of features required in
a particular pseudo-concept class) for concept modeling is
chosen as 30. The number of spatial pyramid level L is cho-
sen as 2 in Algorithm 3.

4.3 Experimental results and analysis

Tables 2 and 3 compare the classification accuracy of pro-
posed representation for different varying size scene image
datasets. Final classifiers are trained using proposed rep-
resentation and χ2-kernel [26]-based SVM classifier. An
effective number of pseudo-concepts, i.e., C, is chosen empir-
ically and bounded by number of filters in CONV layer. It
is observed that the large number of pseudo-concepts are
selected forMIT67 and SUN397 datasets in comparisonwith
MIT8 and VS datasets, as these datasets are semantically
complex and having a large number of classes. In Tables 2
and 3, best values of C are given for different CNNs and
datasets. It is also observed that from the SLC layer less
number of pseudo-concepts are selected compared to the
LC layer. This is mainly because the LC layer considers
SLC layer output responses as input and learn more dis-
tinct concepts. It is seen that the performance of SVM-based
classifiers with SMN representation from VGGNet16 and
ResNet152 is significantly better than that obtained using
other architectures like GoogLeNet and AlexNet. The rea-
son being VGGNet16 and ResNet152 are deeper networks
compared to other architectures and it learns the hierarchical
representation of visual data more efficiently. From Table 2,
it is observed that MIT8 and VS datasets show compara-
ble results with deep SMN representation obtained using
various pre-trained CNN architectures. The reason for this
behavior is that MIT8 and VS have less number of classes.
For MIT67 and SUN397 datasets, an immense difference in
results is observed between the SMN representation obtained

using AlexNet and ResNet152. Since ResNet152 captures
complex semantics in indoor scene images of MIT67 (‘chil-
dren room,’ ‘kitchen,’ ‘clothing store,’ etc.) and diverse scene
images in SUN397 (‘airplane cabin,’ ‘village,’ ‘street,’ etc.)
more effectively. Scene classification for MIT67 using deep
SMN representation obtained with Places205-VGGNet16 is
found to be better than Places365-VGGNet16 as Places205
dataset has a larger number of images per classes in compari-
son of Places365 and contain mostly indoor scene categories
[50,51]. For SUN397, deep SMN representation obtained
using Places365-VGGNet16 performs better in compari-
son with Places205-VGGNet16 as Places365 dataset covers
a large number of scene categories with diverse images.
ImageNet is an object-centric dataset whereas MIT67 and
SUN397 are scene-centric datasets. So for pseudo-concept
modeling of scene-centric datasets, activation maps are
needed from CNN architecture trained with scene-centric
datasets. Due to this reasoning, SMN representation obtained
using Places-CNNs performs better for MIT67 and SUN397
datasets.

4.4 Comparison of proposed approach to
state-of-the -art approaches

Table 4 compares the classification results of the proposed
approach with state-of-the-art techniques. The best perform-
ing representation using the proposed approach is based on
concept modeling using Places365-ResNet152 features as
cues to pseudo-concepts. The proposed approach consid-
ers the images in their original resolutions for building the
concept models. Compared to the traditional methods, the
proposed representation is compact (bounded by the number
of pseudo-concept models) and achieves the best perfor-
mance. The Fisher vector (FV) framework considered in
[34] uses the handcrafted local image descriptors like SIFT
and converts them into fixed length for classification using
the linear classifier. The work in [3,7,8,11,12,16,42,44,50]
proposed scene classification framework using CNN-based
architectures. The work in [8] generates the global image
representation of scene images using CNN trained on object
database. Later, the work in [50] proposed the CNN archi-
tecture trained with Places dataset. This architecture gives
a significant improvement in classification results compared
to CNN trained with an object database. Results with both
the architectures are reported on fully connected layer fea-
tures with an SVM-based linear classifier. The work in
[12] extracts CNN-based features from local patches of the
image at multiple scales and generates an orderless vector
of locally aggregated descriptors at every scale separately,
and then concatenate the representation fromdifferent scales.
The resulting representation is known as multi-scale order-
less pooling (MOP-CNN). The work in [7] obtained the
semantic FV using standard Gaussian Mixture encoding for
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CNN-based features. The work in [11] used the genera-
tive model-based approach and built the dictionary of the
activation maps to obtain the FV representation for the dif-
ferent spatial regions. The work in [16] proposed a dynamic
kernel-based framework where images are considered in true
resolution. In this work, images are represented by varying
size sets of activationmaps and the classification is performed
using dynamic kernel-based SVMs. The work in [44] uses
region proposals and discriminative patch mining instead of
dense sampling of patches for generating the final image rep-
resentation by pooling the feature response maps of all the
learned metaobjects at multiple spatial scales. The results
are further improved by the work of Xie et al. [46], they pro-
pose two dictionary-based representations, namelymid-level
local representation (MLR) and convolutional Fisher vector
representation (CFV) usingAlexNet andVGGNet fine-tuned
networks. The work in [42] proposed a CNN model, which
learns the features in the convolutional neural network in
multi-stage, they named the network as GoogLeNet-based
multi-stage feature fusion (G-MS2F). The work in [3] tries
to capture the co-occurrence pattern of all the object across
scenes by considering the image patch features and named
the approach as semantic descriptor with objectness (SDO).

The proposed classification results are also compared
with fine-tuned networks, we fine-tune the ResNet-152 pre-
trained architecture using all the four scene recognition
datasets. It is observed that the proposed approach performs
better than the fine-tuned network.

In our earlier work [14], we proposed an SMN repre-
sentation with handcrafted features. We observe that results
are better in comparison with FV representation for MIT8
and VS dataset. MIT67 is a complex indoor scene dataset,
low-level features fail to capture the semantic concepts infor-
mation hence results in lower classification accuracy. From
Table 4, we observe that proposed SMN representation gives
better classification results when pseudo-concept models are
built using original resolution images in comparison with the
fixed reduced size. Combining the classifier output score of
proposed SMN representation using LC and SLC layer acti-
vation maps with χ2 kernel-based SVM classifier performs
better than other related approaches. It is also observed that
scene recognition results are varying with image size.

Though recent few works on scene recognition [35,38,40]
show better classification performance which comes at the
cost of complex and hybrid CNN architecture with specific
training procedures (patch based or multiple scales based),
but ourmethod uses only a pre-trainedCNNarchitecturewith
few parameter tuning for generation of SMN representation
which gives us an edge to distinguish it from other methods.

4.5 Ablation study

In this section, we perform an ablation study to analyze the
effectiveness of different components in the proposed pro-
cedure. The number of pseudo-concepts in pseudo-concept
modeling determines the length of SMN representation, i.e.,
C. In order to show the effectiveness of a step, we keep all
the others step fixed. Table 5 shows a summary of the abla-
tion study results onMIT67 and SUN397 datasets for various
scenarios. For building the pseudo-concept models, base fea-
tures are extracted from Places-ResNet152 architecture. We
have considered both the pre-trained and fine-tuned architec-
tures. To show the importance of true-resolution images in
semantic analysis, we have compared the results with fixed-
size images also.

First, we built the pseudo-concept models without selec-
tion procedure, i.e., all the filters in the last CONV layer are
considered as concept detectors and further grouped using
the proposed kernel-based grouping procedure. Next, the
experiments are performed without considering the group-
ing procedure in the pipeline. It is observed that the number
of final pseudo-concepts will be more in all cases and results
in lower classification accuracy. This experiment shows the
importance of selection and grouping procedure in the pro-
posed pipeline.

Second, we compare the results of building the pseudo-
conceptmodels andgenerating theSMNrepresentation using
pre-trained network with fixed and true-resolution images.
The fixed-size images result in the same size sets of activa-
tion maps across the image representations so we build the
concept models via linear kernel-based SVM [15]. For true-
resolution images, varying size set of activation maps are
obtained, so the pseudo-concept models are built via modi-
fied DSPMK. It is observed that modified DSPMK results in
better concept modeling and accuracy. This also indicates the
advantages of considering true-resolution images for build-
ing concept models and performing classification.

In addition to the building pseudo-concept models using
pre-trainedCNNarchitectures, we perform the similar exper-
iments using fine-tuned networks. To compare, we consider
the ResNet152 architecture and fine-tune this network on
MIT67 and SUN397 datasets. We consider both fixed and
original varying resolution images. It is observed that consid-
ering the fine-tuned networks results in a slight improvement
of accuracy but it comes at the cost of fine-tuning.
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Table 5 Classification results (in %) on MIT67 and SUN397 datasets for varying pipeline configurations

Configuration MIT67 SUN397

C CA C CA

Without PC selection procedure [pre-trained network+original size images] 1450 77.89 1620 60.85

Without PC grouping procedure [pre-trained network + original size images] 1220 78.56 1550 61.25

Without PC selection and grouping procedure [pre-trained network + original size images] 2048 76.25 2048 60.52

Linear kernel-based PC modeling [pre-trained network + fixed-size images] 755 80.34 1240 64.25

Modified DSPMK-based PC modeling [pre-trained network + original size images] 890 82.83 1380 65.89

Linear kernel-based PC modeling [fine-tuned network + fixed-size images] 720 81.45 1180 64.31

Modified DSPMK-based PC modeling [fine-tuned network + original size images] 780 83.52 1250 66.12

Base features are extracted from ResNet152 architecture which is fine-tuned using respective dataset or pre-trained using Places dataset. Images for
PC modeling and SMN representation generation are considered in fixed or true resolutions. Here, C indicates the number of final pseudo-concepts
(PC) and length of final SMN representation

4.6 Analysis of effective number of pseudo-concepts

Figure 7 shows classification accuracy versus number of
pseudo-concepts for different datasets. The dimensional-
ity of final SMN representation is same as number of
pseudo-concept models. It is seen that for small datasets
like MIT8 and VS less number of pseudo-concepts are
enough. However, for MIT67 and SUN397, a large number
of pseudo-concepts are needed. It is also observed that with-
out pseudo-concepts selection and grouping if all the filters
response is considered for pseudo-concepts model building
then the classification accuracy is 2-3% lower for all the
cases. The detailed experiments with different numbers of
pseudo-concepts demonstrate that prominent selected filters
are enough to generate descriptive and discriminative SMN
representation. Considering fewer pseudo-concepts results in
low recognition rate whereas too many results in poor gen-
erality.

4.7 Visualization of pseudo-concept versus
true-concept

Figure 8 shows the correspondence between maximally acti-
vated image regions generated from semantic analysis of
fixed reduced size versus original size for three of theMIT67
dataset images using deep-visualization toolbox [48]. True-
concept annotations for every image are specified on the
right side. Images in the second column are of varying size
although here they are shown in a fixed size. Generated con-
cepts annotation for fixed-size images captures a few of the
conceptswhereas almost all the concepts are captured in orig-
inal size images. For example, in the images of the first row,
concepts such as ‘window,’ ‘cabinets’ and ‘food’ are cap-
tured since they are large whereas failed to capture the small
concepts such as ‘stove,’ ‘sink’ and ‘oven.’ The main rea-
son is that converting the true-resolution image (i.e., 1200 ×
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Fig. 7 Classification accuracy (in %) versus the number of pseudo-
concepts for different datasets. LC layer activation maps of true-
resolution images are computed fromPlaces365-ResNet152 for pseudo-
concepts modeling

900) to fixed reduced size (i.e., 227 × 227) results in loss of
concepts which are of small size in the original image.

Figure 9 shows the number of true-concepts versus gen-
erated pseudo-concepts distribution in MIT8 scene dataset.
For MIT8 dataset, pixel-wise true-concept annotations are
available [28]. We can observe that only ‘building,’ ‘car,’
‘mountain,’ ‘road,’ ‘sky’ and ‘tree’ concepts are promi-
nently present in the dataset in contrast concepts like ‘bird,’
‘balcony,’ ‘cow,’ ‘crosswalk,’ ‘moon,’ ‘sun,’ etc. are rarely
present in the dataset, hence building concept model for them
is very challenging. On the other hand, CNN-based pseudo-
concepts are based on their visual appearance and semantic
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Fig. 8 Illustration of the
presence of pseudo-concepts
versus true-concepts in few of
the images of MIT67 indoor
scene dataset. Pseudo-concepts
are marked with red bounding
box

Fig. 9 Illustration of the presence of true-concepts versus pseudo-concepts (PC) in the MIT8 scene dataset (Images can be better visualized in
color)
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structure, for example, PC-4 and PC-8 both correspond to the
‘mountain’ concept but as they are very different in appear-
ance so they are captured by separate pseudo-concepts. The
concept like, ‘crosswalk’ is present in very few images but
still captured as pseudo-concept. So, we can conclude that
pseudo-concepts captured byCNNs are according to the geo-
metric structure of the concepts present in images.

5 Discussion

This paper discusses mainly two issues of varying size
scene image recognition, (i) loss of information in the
pre-processing stage of CNNs when varying size original
resolution images are converted to a fixed reduced size,
(ii) challenges in the building of concept model when true-
concept annotated dataset is unavailable. For the first issue,
varying size original images are considered as input to the
CNNand corresponding activationmaps fromchosenCONV
layers are computed without any concept information loss.
For the second issue, we propose the idea of pseudo-concepts
and consider deeper CONV layer filter responses as cues to
pseudo-concepts. Finally, deep SMN representation is gener-
ated using built pseudo-conceptmodels. This performs better
in contrast to the low-level or high-level feature representa-
tion.We also noted that results are further improved by 2-3%
on combining the SMN representation obtained using acti-
vation maps of the last two CONV layers or from different
pre-trained CNN architectures. Furthermore, the proposed
representation performed significantly better in terms of
accuracy with relatively low dimension and bounded by the
number of pseudo-concepts. It also outperforms the other
CNN-based approaches without combining any complemen-
tary features. The requirement of the proposed approach
includes the need for a pre-trained CNN architecture and to
choose an effective number of pseudo-concepts in the group-
ing procedure.

6 Conclusion

We proposed a novel semantic concept-based representation
for the recognition of varying size scene images. The loss of
concept information in the pre-processing stage is reduced by
considering original resolution images as input to the CNNs.
In the absence of a true-concept annotated image database,
varying size deeper CONV layer activation maps are consid-
ered as cues for the concepts and corresponding feature maps
for model building. Non-prominent and non-discriminative
pseudo-concepts are pruned using the proposed algorithm.
Grouping of similar pseudo-concepts and model building
is performed in kernel-space using modified DSPMK. The
proposed SMN representation captures the information of

diverse and varying size concepts present in the images with-
out significant loss of semantic content and hence results in
state-of-the-art classification accuracy.

In future, proposed approach can be extended to scene
video understanding by building the generalized pseudo-
concept models using the different CNN architectures.
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